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Abstract

We study the generalization properties of ridge regression with random features
in the statistical learning framework. We show for the first time that O(1/

√
n)

learning bounds can be achieved with only O(
√
n log n) random features rather

than O(n) as suggested by previous results. Further, we prove faster learning
rates and show that they might require more random features, unless they are
sampled according to a possibly problem dependent distribution. Our results
shed light on the statistical computational trade-offs in large scale kernelized
learning, showing the potential effectiveness of random features in reducing the
computational complexity while keeping optimal generalization properties.

1 Introduction

Supervised learning is a basic machine learning problem where the goal is estimating a function
from random noisy samples [1, 2]. The function to be learned is fixed, but unknown, and flexible
non-parametric models are needed for good results. A general class of models is based on functions
of the form,

f(x) =

M∑

i=1

αi q(x, ωi), (1)

where q is a non-linear function, ω1, . . . , ωM ∈ R
d are often called centers, α1, . . . , αM ∈ R are

coefficients, and M =Mn could/should grow with the number of data points n. Algorithmically, the
problem reduces to computing from data the parameters ω1, . . . , ωM , α1, . . . , αM and M . Among
others, one-hidden layer networks [3], or RBF networks [4], are examples of classical approaches
considering these models. Here, parameters are computed by considering a non-convex optimization
problem, typically hard to solve and analyze [5]. Kernel methods are another notable example of
an approach [6] using functions of the form (1). In this case, q is assumed to be a positive definite
function [7] and it is shown that choosing the centers to be the input points, hence M = n, suffices
for optimal statistical results [8, 9, 10]. As a by product, kernel methods require only finding the
coefficients (αi)i, typically by convex optimization. While theoretically sound and remarkably
effective in small and medium size problems, memory requirements make kernel methods unfeasible
for large scale problems.

Most popular approaches to tackle these limitations are randomized and include sampling the centers
at random, either in a data-dependent or in a data-independent way. Notable examples include
Nyström [11, 12] and random features [13] approaches. Given random centers, computations still
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reduce to convex optimization with potential big memory gains, provided that the centers are fewer
than the data-points. In practice, the choice of the number of centers is based on heuristics or memory
constraints, and the question arises of characterizing theoretically which choices provide optimal
learning bounds. Answering this question allows to understand the statistical and computational
trade-offs in using these randomized approximations. For Nyström methods, partial results in this
direction were derived for example in [14] and improved in [15], but only for a simplified setting
where the input points are fixed. Results in the statistical learning setting were given in [16] for
ridge regression, showing in particular that O(

√
n log n) random centers uniformly sampled from n

training points suffices to yield O(1/
√
n) learning bounds, the same as full kernel ridge regression.

A question motivating our study is whether similar results hold for random features approaches.
While several papers consider the properties of random features for approximating the kernel function,
see [17] and references therein, fewer results consider their generalization properties.

Several papers considered the properties of random features for approximating the kernel function,
see [17] and references therein, an interesting line of research with connections to sketching [24] and
non-linear (one-bit) compressed sensing [18]. However, only a few results consider the generalization
properties of learning with random features.

An exception is one of the original random features papers, which provides learning bounds for a
general class of loss functions [19]. These results show that O(n) random features are needed for
O(1/

√
n) learning bounds and choosing less random features leads to worse bounds. In other words,

these results suggest that that computational gains come at the expense of learning accuracy. Later
results, see e.g. [20, 21, 22], essentially confirm these considerations, albeit the analysis in [22]
suggests that fewer random features could suffice if sampled in a problem dependent way.

In this paper, we focus on the least squares loss, considering random features within a ridge regression
approach. Our main result shows, under standard assumptions, that the estimator obtained with a
number of random features proportional to O(

√
n log n) achieves O(1/

√
n) learning error, that is

the same prediction accuracy of the exact kernel ridge regression estimator. In other words, there
are problems for which random features can allow to drastically reduce computational costs without
any loss of prediction accuracy. To the best of our knowledge this is the first result showing that
such an effect is possible. Our study improves on previous results by taking advantage of analytic
and probabilistic results developed to provide sharp analyses of kernel ridge regression. We further
present a second set of more refined results deriving fast convergence rates. We show that indeed
fast rates are possible, but, depending on the problem at hand, a larger number of features might be
needed. We then discuss how the requirement on the number of random features can be weakened
at the expense of typically more complex sampling schemes. Indeed, in this latter case either some
knowledge of the data-generating distribution or some potentially data-driven sampling scheme is
needed. For this latter case, we borrow and extend ideas from [22, 16] and inspired from the theory
of statical leverage scores [23]. Theoretical findings are complemented by numerical simulation
validating the bounds.

The rest of the paper is organized as follows. In Section 2, we review relevant results on learning with
kernels, least squares and learning with random features. In Section 3, we present and discuss our
main results, while proofs are deferred to the appendix. Finally, numerical experiments are presented
in Section 4.

2 Learning with random features and ridge regression

We begin recalling basics ideas in kernel methods and their approximation via random features.

Kernel ridge regression Consider the supervised problem of learning a function given a training set
of n examples (xi, yi)

n
i=1, where xi ∈ X , X = R

D and yi ∈ R. Kernel methods are nonparametric
approaches defined by a kernel K : X ×X → R, that is a symmetric and positive definite (PD)
function2. A particular instance is kernel ridge regression given by

f̂λ(x) =

n∑

i=1

αiK(xi, x), α = (K+ λnI)−1y. (2)

2A kernel K is PD if for all x1, . . . , xN the N by N matrix with entries K(xi, xj) is positive semidefinite.
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Here λ > 0, y = (y1, . . . , yn), α ∈ R
n, and K is the n by n matrix with entries Kij = K(xi, xj).

The above method is standard and can be derived from an empirical risk minimization perspective
[6], and is related to Gaussian processes [3]. While KRR has optimal statistical properties– see later–
its applicability to large scale datasets is limited since it requires O(n2) in space, to store K, and
roughly O(n3) in time, to solve the linear system in (2). Similar requirements are shared by other
kernel methods [6].
To explain the basic ideas behind using random features with ridge regression, it is useful to recall the
computations needed to solve KRR when the kernel is linear K(x, x′) = x⊤x′. In this case, Eq. (2)
reduces to standard ridge regression and can be equivalenty computed considering,

f̂λ(x) = x⊤ŵλ ŵλ = (X̂⊤X̂ + λnI)−1X̂⊤y. (3)

where X̂ is the n by D data matrix. In this case, the complexity becomes O(nD) in space, and
O(nD2 +D3) in time. Beyond the linear case, the above reasoning extends to inner product kernels

K(x, x′) = φM (x)⊤φM (x′) (4)

where φM : X → R
M is a finite dimensional (feature) map. In this case, KRR can be computed

considering (3) with the data matrix X̂ replaced by the n by M matrix Ŝ⊤
M = (φ(x1), . . . , φ(xn)).

The complexity is then O(nM) in space, and O(nM2 +M3) in time, hence much better than O(n2)
and O(n3), as soon as M ≪ n. Considering only kernels of the form (4) can be restrictive. Indeed,

classic examples of kernels, e.g. the Gaussian kernel e−‖x−x′‖2

, do not satisfy (4) with finite M . It is
then natural to ask if the above reasoning can still be useful to reduce the computational burden for
more complex kernels such as the Gaussian kernel. Random features, that we recall next, show that
this is indeed the case.

Random features with ridge regression The basic idea of random features [13] is to relax Eq. (4)
assuming it holds only approximately,

K(x, x′) ≈ φM (x)⊤φM (x′). (5)

Clearly, if one such approximation exists the approach described in the previous section can still be
used. A first question is then for which kernels an approximation of the form (5) can be derived. A
simple manipulation of the Gaussian kernel provides one basic example.

Example 1 (Random Fourier features [13]). If we write the Gaussian kernel asK(x, x′) = G(x−x′),
with G(z) = e−

1
2σ2 ‖z‖2

, for a σ > 0, then since the inverse Fourier transform of G is a Gaussian,
and using a basic symmetry argument, it is easy to show that

G(x− x′) =
1

2πZ

∫ ∫ 2π

0

√
2 cos(w⊤x+ b)

√
2 cos(w⊤x′ + b) e−

σ2

2 ‖w‖2

dw db

where Z is a normalizing factor. Then, the Gaussian kernel has an approximation of the form (5) with

φM (x) =M−1/2 (
√
2 cos(w⊤

1 x+ b1), . . . ,
√
2 cos(w⊤

Mx+ bM )), and w1, . . . , wM and b1, . . . , bM
sampled independently from 1

Z e
−σ2‖w‖2/2 and uniformly in [0, 2π], respectively.

The above example can be abstracted to a general strategy. Assume the kernel K to have an integral
representation,

K(x, x′) =

∫

Ω

ψ(x, ω)ψ(x′, ω)dπ(ω), ∀x, x′ ∈ X, (6)

where (Ω, π) is probability space and ψ : X × Ω → R. The random features approach provides

an approximation of the form (5) where φM (x) = M−1/2 (ψ(x, ω1), . . . , ψ(x, ωM )), and with
ω1, . . . , ωM sampled independently with respect to π. Key to the success of random features is that
kernels, to which the above idea apply, abound– see Appendix E for a survey with some details.

Remark 1 (Random features, sketching and one-bit compressed sensing). We note that specific
examples of random features can be seen as form of sketching [24]. This latter term typically refers
to reducing data dimensionality by random projection, e.g. considering

ψ(x, ω) = x⊤ω,
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where ω ∼ N(0, I) (or suitable bounded measures). From a random feature perspective, we

are defining an approximation of the linear kernel since E[ψ(x, ω)ψ(x′, ω)] = E[x⊤ωω⊤x′] =
x⊤E[ωω⊤]x′ = x⊤x′. More general non-linear sketching can also be considered. For example in
one-bit compressed sensing [18] the following random features are relevant,

ψ(x, ω) = sign(x⊤ω)

with w ∼ N(0, I) and sign(a) = 1 if a > 0 and −1 otherwise. Deriving the corresponding kernel is
more involved and we refer to [25] (see Section E in the appendixes).

Back to supervised learning, combining random features with ridge regression leads to,

f̂λ,M (x) := φM (x)⊤ŵλ,M , with ŵλ,M := (Ŝ⊤
M ŜM + λI)−1Ŝ⊤

M ŷ, (7)

for λ > 0, Ŝ⊤
M := n−1/2 (φM (x1), . . . , φM (xn)) and ŷ := n−1/2 (y1, . . . , yn).

Then, random features can be used to reduce the computational costs of full kernel ridge regression
as soon as M ≪ n (see Sec. 2). However, since random features rely on an approximation (5), the
question is whether there is a loss of prediction accuracy. This is the question we analyze in the rest
of the paper.

3 Main Results

In this section, we present our main results characterizing the generalization properties of random
features with ridge regression. We begin considering a basic setting and then discuss fast learning
rates and the possible benefits of problem dependent sampling schemes.

3.1 O(
√
n log n) Random features lead to O(1/

√
n) learning error

We consider a standard statistical learning setting. The data (xi, yi)
n
i=1 are sampled identically and

independently with respect to a probability ρ on X × R, with X a separable space (e.g. X = R
D,

D ∈ N). The goal is to minimize the expected risk

E(f) =
∫
(f(x)− y)2dρ(x, y),

since this implies that f will generalize/predict well new data. Since we consider estimators of the
form (2), (7) we are potentially restricting the space of possible solutions. Indeed, estimators of this
form can be naturally related to the so called reproducing kernel Hilbert space (RKHS) corresponding
to the PD kernel K. Recall that, the latter is the function space H defined as as the completion of the
linear span of {K(x, ·) : x ∈ X} with respect to the inner product 〈K(x, ·),K(x′, ·)〉 := K(x, x′)
[7]. In this view, the best possible solution is fH solving

min
f∈H

E(f). (8)

We will assume throughout that fH exists. We add one technical remark useful in the following.

Remark 2. Existence of fH is not ensured, since we consider a potentially infinite dimensional RKHS
H, possibly universal [26]. The situation is different if H is replaced by HR = {f ∈ H : ‖f‖ ≤ R},
with R fixed a priori. In this case a minimizer of risk E always exists, but R needs to be fixed a priori
and HR can’t be universal. Clearly, assuming fH to exist, implies it belongs to a ball of radius Rρ,H.
However, our results do not require prior knowledge of Rρ,H and hold uniformly over all finite radii.

The following is our first result on the learning properties of random features with ridge regression.

Theorem 1. Assume that K is a kernel with an integral representation (6). Assume ψ continuous,
such that |ψ(x, ω)| ≤ κ almost surely, with κ ∈ [1,∞) and |y| ≤ b almost surely, with b > 0. Let

δ ∈ (0, 1]. If n ≥ n0 and λn = n−1/2, then a number of random features Mn equal to

Mn = c0
√
n log

108κ2
√
n

δ
,

is enough to guarantee, with probability at least 1− δ, that

E(f̂λn,Mn
)− E(fH) ≤ c1 log

2 18
δ√

n
.

In particular the constants c0, c1 do not depend on n, λ, δ, and n0 does not depends on n, λ, fH, ρ.
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The above result is presented with some simplifications (e.g. the assumption of bounded output) for
sake of presentation, while it is proved and presented in full generality in the Appendix. In particular,
the values of all the constants are given explicitly. Here, we make a few comments. The learning

bound is the same achieved by the exact kernel ridge regression estimator (2) choosing λ = n−1/2,
see e.g. [10]. The theorem derives a bound in a worst case situation, where no assumption is made
besides existence of fH, and is optimal in a minmax sense [10]. This means that, in this setting,
as soon as the number of features is order

√
n log n, the corresponding ridge regression estimator

has optimal generalization properties. This is remarkable considering the corresponding gain from
a computational perspective: from roughly O(n3) and O(n2) in time and space for kernel ridge
regression to O(n2) and O(n

√
n) for ridge regression with random features (see Section 2). Consider

that taking δ ∝ 1/n2 changes only the constants and allows to derive bounds in expectation and
almost sure convergence (see Cor. 1 in the appendix, for the result in expectation).
The above result shows that there is a whole set of problems where computational gains are achieved
without having to trade-off statistical accuracy. In the next sections we consider what happens under
more benign assumptions, which are standard, but also somewhat more technical. We first compare
with previous works since the above setting is the one more closely related.

Comparison with [19]. This is one of the original random features paper and considers the question
of generalization properties. In particular they study the estimator

f̂R(x) = φM (x)⊤β̂R,∞, β̂R,∞ = argmin
‖β‖∞≤R

1

n

n∑

i=1

ℓ(φM (xi)
⊤β, yi),

for a fixed R, a Lipshitz loss function ℓ, and where ‖w‖∞ = max{|β1|, · · · , |βM |}. The largest
space considered in [19] is

GR =

{∫
ψ(·, ω)β(ω)dπ(ω)

∣∣∣∣ |β(ω)| < R a.e.

}
, (9)

rather than a RKHS, where R is fixed a priori. The best possible solution is f∗GR
solving

minf∈GR
E(f), and the main result in [19] provides the bound

E(f̂R)− E(f∗GR
) .

R√
n
+

R√
M
, (10)

This is the first and still one the main results providing a statistical analysis for an estimator based
on random features for a wide class of loss functions. There are a few elements of comparison with
the result in this paper, but the main one is that to get O(1/

√
n) learning bounds, the above result

requires O(n) random features, while a smaller number leads to worse bounds. This shows the main
novelty of our analysis. Indeed we prove that, considering the square loss, fewer random features
are sufficient, hence allowing computational gains without loss of accuracy. We add a few more
tehcnical comments explaining : 1) how the setting we consider covers a wider range of problems,
and 2) why the bounds we obtain are sharper. First, note that the functional setting in our paper is
more general in the following sense. It is easy to see that considering the RKHS H is equivalent to
consider H2 =

{∫
ψ(·, ω)β(ω)dπ(ω)

∣∣ ∫
|β(ω)|2dπ(ω) <∞

}
and the following inclusions hold

GR ⊂ G∞ ⊂ H2. Clearly, assuming a minimizer of the expected risk to exists in H2 does not imply
it belongs to G∞ or GR, while the converse is true. In this view, our results cover a wider range of
problems. Second, note that, this gap is not easy to bridge. Indeed, even if we were to consider G∞

in place of GR, the results in [19] could be used to derive the bound

E E(f̂R)− E(f∗G∞
) .

R√
n
+

R√
M

+A(R), (11)

where A(R) := E(f∗GR
)− E(f∗G∞

) and f∗G∞

is a minimizer of the expected risk on G∞. In this case
we would have to balance the various terms in (11), which would lead to a worse bound. For example,

we could consider R := log n, obtaining a bound n−1/2 log n with an extra logarithmic term, but the
result would hold only for n larger than a number of examples n0 at least exponential with respect to
the norm of f∞. Moreover, to derive results uniform with respect to f∞, we would have to keep into

account the decay rate of A(R) and this would get bounds slower than n−1/2.
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Figure 1: Random feat. M = O(nc) required for optimal generalization. Left: α = 1. Right: α = γ.

Comparison with other results. Several other papers study the generalization properties of random
features, see [22] and references therein. For example, generalization bounds are derived in [20]
from very general arguments. However, the corresponding generalization bound requires a number of
random features much larger than the number of training examples to give O(1/

√
n) bounds. The

basic results in [22] are analogous to those in [19] with the set GR replaced by HR. These results
are closer, albeit more restrictive then ours (see Remark 8) and especially like the bounds in [19]
suggest O(n) random features are needed for O(1/

√
n) learning bounds. A novelty in [22] is the

introduction of more complex problem dependent sampling that can reduce the number of random
features. In Section 3.3, we show that using possibly-data dependent random features can lead to

rates much faster than n−1/2, and using much less than
√
n features.

Remark 3 (Sketching and randomized numerical linear algebra (RandLA)). Standard sketching
techniques from RandLA [24] can be recovered, when X is a bounded subset of RD, by selecting
ψ(x, ω) = x⊤ω and ω sampled from suitable bounded distribution (e.g. ω = (ζ1, . . . , ζd) inde-
pendent Rademacher random variables). Note however that the final goal of the analysis in the
randomized numerical linear algebra community is to minimize the empirical error instead of E .

3.2 Refined Results: Fast Learning Rates

Faster rates can be achieved under favorable conditions. Such conditions for kernel ridge regression
are standard, but somewhat technical. Roughly speaking they characterize the “size” of the considered
RKHS and the regularity of fH. The key quantity needed to make this precise is the integral operator
defined by the kernel K and the marginal distribution ρX of ρ on X , that is

(Lg)(x) =

∫

X

K(x, z)g(z)dρX(z), ∀g ∈ L2(X, ρX),

seen as a map from L2(X, ρX) = {f : X → R | ‖f‖2ρ =
∫
|f(x)|2dρX < ∞} to itself. Under

the assumptions of Thm. 1, the integral operator is positive, self-adjoint and trace-class (hence
compact) [27]. We next define the conditions that will lead to fast rates, and then comment on their
interpretation.

Assumption 1 (Prior assumptions). For λ > 0, let the effective dimension be defined as N (λ) :=
Tr

(
(L+ λI)−1L

)
, and assume, there exists Q > 0 and γ ∈ [0, 1] such that,

N (λ) ≤ Q2λ−γ . (12)

Moreover, assume there exists r ≥ 1/2 and g ∈ L2(X, ρX) such that

fH(x) = (Lrg)(x) a.s. (13)

We provide some intuition on the meaning of the above assumptions, and defer the interested reader
to [10] for more details. The effective dimension can be seen as a “measure of the size” of the RKHS
H. Condition (12) allows to control the variance of the estimator and is equivalent to conditions on
covering numbers and related capacity measures [26]. In particular, it holds if the eigenvalues σi’s of

L decay as i−1/γ . Intuitively, a fast decay corresponds to a smaller RKHS, whereas a slow decay
corresponds to a larger RKHS. The case γ = 0 is the more benign situation, whereas γ = 1 is the
worst case, corresponding to the basic setting. A classic example, when X = R

D, corresponds to
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considering kernels of smoothness s, in which case γ = D/(2s) and condition (12) is equivalent to
assuming H to be a Sobolev space [26]. Condition (13) allows to control the bias of the estimator
and is common in approximation theory [28]. It is a regularity condition that can be seen as form
of weak sparsity of fH. Roughly speaking, it requires the expansion of fH, on the the basis given
by the the eigenfunctions L, to have coefficients that decay faster than σr

i . A large value of r means
that the coefficients decay fast and hence many are close to zero. The case r = 1/2 is the worst case,
and can be shown to be equivalent to assuming fH exists. This latter situation corresponds to setting
considered in the previous section. We next show how these assumptions allow to derive fast rates.

Theorem 2. Let δ ∈ (0, 1]. Under Asm. 1 and the same assumptions of Thm. 1, if n ≥ n0, and

λn = n− 1
2r+γ , then a number of random features M equal to

Mn = c0 n
1+γ(2r−1)

2r+γ log
108κ2n

δ
,

is enough to guarantee, with probability at least 1− δ, that

E(f̂λn,Mn
)− E(fH) ≤ c1 log

2 18

δ
n−

2r
2r+γ ,

for r ≤ 1, and where c0, c1 do not depend on n, τ , while n0 does not depends on n, fH, ρ.

The above bound is the same as the one obtained by the full kernel ridge regression estimator and
is optimal in a minimax sense [10]. For large r and small γ it approaches a O(1/n) bound. When
γ = 1 and r = 1/2 the worst case bound of the previous section is recovered. Interestingly, the
number of random features in different regimes is typically smaller than n but can be larger than
O(

√
n). Figure. 1 provides a pictorial representation of the number of random features needed for

optimal rates in different regimes. In particular M ≪ n random features are enough when γ > 0 and
r > 1/2. For example for r = 1, γ = 0 (higher regularity/sparsity and a small RKHS) O(

√
n) are

sufficient to get a rate O(1/n). But, for example, if r = 1/2, γ = 0 (not too much regularity/sparsity
but a small RKHS) O(n) are needed for O(1/n) error. The proof suggests that this effect can be a
byproduct of sampling features in a data-independent way. Indeed, in the next section we show how
much fewer features can be used considering problem dependent sampling schemes.

3.3 Refined Results: Beyond uniform sampling

We show next that fast learning rates can be achieved with fewer random features if they are somewhat
compatible with the data distribution. This is made precise by the following condition.

Assumption 2 (Compatibility condition). Define the maximum random features dimension as

F∞(λ) = sup
ω∈Ω

‖(L+ λI)−1/2ψ(·, ω)‖2ρX
, λ > 0. (14)

Assume there exists α ∈ [0, 1], and F > 0 such that F∞(λ) ≤ Fλ−α, ∀λ > 0.

The above assumption is abstract and we comment on it before showing how it affects the results.
The maximum random features dimension (14) relates the random features to the data-generating
distribution through the operator L. It is always satisfied for α = 1 ands F = κ2. e.g. considering
any random feature satisfying (6). The favorable situation corresponds to random features such that
case α = γ. The following theoretical construction borrowed from [22] gives an example.

Example 2 (Problem dependent RF). Assume K is a kernel with an integral representation (6).

For s(ω) = ‖(L+ λI)−1/2ψ(·, ω)‖−2
ρX

and Cs :=
∫

1
s(ω)dπ(ω), consider the random features

ψs(x, ω) = ψ(x, ω)
√
Css(ω), with distribution πs(ω) :=

π(ω)
Css(ω) . We show in the Appendix that

these random features provide an integral representation of K and satisfy Asm. 2 with α = γ.

We next show how random features satisfying Asm. 2 can lead to better resuts.

Theorem 3. Let δ ∈ (0, 1]. Under Asm. 2 and the same assumptions of Thm. 1, 2, if n ≥ n0, and

λn = n− 1
2r+γ , then a number of random features Mn equal to

Mn = c0 n
α+(1+γ−α)(2r−1)

2r+γ log
108κ2n

δ
,
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Figure 2: Comparison between the number of features M = O(nc) required by Nyström (uniform
sampling, left) [16] and Random Features (α = 1, right), for optimal generalization.

is enough to guarantee, with probability at least 1− δ, that

E(f̂λn,Mn
)− E(fH) ≤ c1 log

2 18

δ
n−

2r
2r+γ ,

where c0, c1 do not depend on n, τ , while n0 does not depends on n, fH, ρ.

The above learning bound is the same as Thm. 2, but the number of random features is given by a
more complex expression depending on α. In particular, in the slow O(1/

√
n) rates scenario, that

is r = 1/2, γ = 1, we see that O(nα/2) are needed, recovering O(
√
n), since γ ≤ α ≤ 1. On the

contrary, for a small RKHS, that is γ = 0 and random features with α = γ, a constant (!) number of
feature is sufficient. A similar trend is seen considering fast rates. For γ > 0 and r > 1/2, if α < 1
then the number of random features is always smaller, and potentially much smaller, then the number
of random features sampled in a problem independent way, that is α = 1. For γ = 0 and r = 1/2,
the number of number of features is O(nα) and can be again just constant if α = γ. Figure 1 depicts
the number of random features required if α = γ. The above result shows the potentially dramatic
effect of problem dependent random features. However the construction in Ex. 2 is theoretical. We
comment on this in the next remark.

Remark 4 (Random features leverage scores). The construction in Ex. 2 is theoretical, however
empirical random features leverage scores ŝ(ω) = v̂(ω)⊤(K + λnI)−1v̂(ω), with v̂(ω) ∈ R

n,
(v̂(ω))i = ψ(xi, ω), can be considered. Statistically, this requires considering an extra estimation
step. It seems our proof can be extended to account for this, and we will pursue this in a future work.
Computationally, it requires devising approximate numerical strategies, like standard leverage scores
[23].

Comparison with Nyström. This question was recently considered in [21] and our results offer
new insights. In particular, recalling the results in [16], we see that in the slow rate setting there is
essentially no difference between random features and Nyström approaches, neither from a statistical
nor from a computational point of view. In the case of fast rates, Nyström methods with uniform

sampling requiresO(n− 1
2r+γ ) random centers, which compared to Thm. 2, suggests Nyström methods

can be advantageous in this regime. While problem dependent random features provide a further
improvement, it should be compared with the number of centers needed for Nyström with leverage

scores, which is O(n− γ

2r+γ ) and hence again better, see Thm. 3. In summary, both random features
and Nyström methods achieve optimal statistical guarantees while reducing computations. They are
essentially the same in the worst case, while Nyström can be better for benign problems.
Finally we add a few words about the main steps in the proof.

Steps of the proof. The proofs are quite technical and long and are collected in the appendices.
They use a battery of tools developed to analyze KRR and related methods. The key challenges in the
analysis include analyzing the bias of the estimator, the effect of noise in the outputs, the effect of
random sampling in the data, the approximation due to random features and a notion of orthogonality
between the function space corresponding to random features and the full RKHS. The last two points
are the main elements on novelty in the proof. In particular, compared to other studies, we identify
and study the quantity needed to assess the effect of the random feature approximation if the goal is
prediction rather than the kernel approximation itself.
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Figure 3: Comparison of theoretical and simulated rates for: excess risk E(f̂λ,M )− inff∈H E(f), λ,
M , w.r.t. n (100 repetitions). Parameters r = 11/16, γ = 1/8 (top), and r = 7/8, γ = 1/4 (bottom).

4 Numerical results

While the learning bounds we present are optimal, there are no lower bounds on the number of random
features, hence we present numerical experiments validating our bounds. Consider a spline kernel
of order q (see [29] Eq. 2.1.7 when q integer), defined as Λq(x, x

′) =
∑∞

k=−∞ e2πikxe−2πikz|k|−q,

almost everywhere on [0, 1], with q ∈ R, for which we have
∫ 1

0
Λq(x, z)Λq′(x

′, z)dz = Λq+q′(x, x
′),

for any q, q′ ∈ R. Let X = [0, 1], and ρX be the uniform distribution. For γ ∈ (0, 1) and r ∈ [1/2, 1]
let, K(x, x′) = Λ 1

γ
(x, x′), ψ(ω, x) = Λ 1

2γ
(ω, x), f∗(x) = Λ r

γ
+ 1

2+ǫ(x, x0) with ǫ > 0, x0 ∈ X .

Let ρ(y|x) be a Gaussian density with variance σ2 and mean f∗(x). Then Asm 1, 2 are satisfied
and α = γ. We compute the KRR estimator for n ∈ {103, . . . , 104} and select λ minimizing the
excess risk computed analytically. Then we compute the RF-KRR estimator and select the number of
features M needed to obtain an excess risk within 5% of the one by KRR. In Figure 3, the theoretical
and estimated behavior of the excess risk, λ and M with respect to n are reported together with their
standard deviation over 100 repetitions. The experiment shows that the predictions by Thm. 3 are
accurate, since the theoretical predictions estimations are within one standard deviation from the
values measured in the simulation.

5 Conclusion

In this paper, we provide a thorough analyses of the generalization properties of random features with
ridge regression. We consider a statistical learning theory setting where data are noisy and sampled
at random. Our main results show that there are large classes of learning problems where random
features allow to reduce computations while preserving optimal statistical accuracy of exact kernel
ridge regression. This in contrast with previous state of the art results suggesting computational
gains needs to be traded-off with statistical accuracy. Our results open several venues for both
theoretical and empirical work. As mentioned in the paper, it would be interesting to analyze random
features with empirical leverage scores. This is immediate if input points are fixed, but our approach
should allow to also consider the statistical learning setting. Beyond KRR, it would be interesting
to analyze random features together with other approaches, in particular accelerated and stochastic
gradient methods, or distributed techniques. It should be possible to extend the results in the paper to
consider these cases. A more substantial generalization would be to consider loss functions other
than quadratic loss, since this require different techniques from empirical process theory.
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