
1. Introduction

Consider the hypothetical case of a doctor trying to deter-
mine how a particular hormone, naturally produced by the
human body, affects the health of patients. It seems likely
that patients with too little of the hormone in their blood
suffer negative effects, but so do patients with too much of
the hormone. Assume that the possible concentration lev-
els of this hormone can be represented as real numbers be-
tween 0 and 100 on some arbitrary measuring scale, and
that one healthy patient has been examined and found to
have a hormone level of 60. What other hormone levels
should the doctor consider healthy?

Now imagine a baby robin whose mother has just given
it its first worm to eat. The worms in this robin’s environ-
ment vary in level of skin pigmentation, and only worms
with some intermediate density of pigmentation are good
to eat; too dark or too light worms are unhealthy. Finally,
suppose for simplicity that robins are capable of detecting
shades of worm coloration between 0 and 100 on some ar-
bitrary scale, and that the first worm our baby robin has
been given scores a skin pigmentation level of 60. Assum-
ing the mother has chosen a worm that is good to eat, what
other pigmentation levels should our baby robin consider
good to eat?

These two scenarios are both cases of Shepard’s (1987b;
1994) ideal generalization problem: given an encounter
with a single stimulus (a patient, a worm) that can be rep-
resented as a point in some psychological space (a hormone
level or pigmentation level of 60), and that has been found
to have some particular consequence (healthy, good to eat),
what other stimuli in that space should be expected to have

the same consequence? Shepard observes that across a
wide variety of experimental situations, including both hu-
man and animal subjects, generalization gradients tend to
fall off approximately exponentially with distance in an
appropriately scaled psychological space (as obtained by
multidimensional scaling, or MDS). He then gives a ratio-
nal probabilistic argument for the origin of this universal
law, starting with some basic assumptions about the geom-
etry of natural kinds in psychological spaces, which could
be expected to apply equally well to doctors or robins, or
even aliens from another galaxy. The argument makes no
distinction in principle between conscious, deliberate,
“cognitive” inferences, such as the healthy hormone levels
scenario, and unconscious, automatic, or “perceptual” in-
ferences, such as the good-to-eat worms scenario, as long
as they satisfy the conditions of the ideal generalization
problem.

In the opening sentences of his first paper on the uni-
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versal law of generalization, Shepard (1987b) invokes New-
ton’s universal law of gravitation as the standard to which he
aspires in theoretical scope and significance. The analogy
holds more strongly than might have been anticipated.
Newton’s law of gravitation was expressed in terms of the
attraction between two point masses: every object in the
universe attracts every other object with a force directed
along the line connecting their centers of mass, propor-
tional to the product of their masses and inversely propor-
tional to the square of their separation. However, most of
the interesting gravitational problems encountered in the
universe do not involve two point masses. In order to model
real-world gravitational phenomena, physicists following
Newton have developed a rich theory of classical mechan-
ics that extends his law of gravitation to address the inter-
actions of multiple, arbitrarily extended bodies.

Likewise, Shepard formulated his universal law with re-
spect to generalization from a single encountered stimulus
to a single novel stimulus, and he assumed that stimuli could
be represented as points in a continuous metric psychologi-
cal space. However, many of the interesting problems of
generalization in psychological science do not fit this mold.
They involve inferences from multiple examples, or stimuli
that are not easily represented in strictly spatial terms. For
example, what if our doctor observes the hormone levels of
not one but three healthy patients: 60, 30, and 50. How
should that change the generalization gradient? Or what if
the same numbers had been observed in a different context,
as examples of a certain mathematical concept presented
by a teacher to a student? Certain features of the numbers
that were not salient in the hormone context, such as be-
ing even or being multiples of ten, now become very impor-
tant in a mathematical context. Consequently, a simple one-
dimensional metric space representation may no longer be
appropriate: 80 may be more likely than 47 to be an instance
of the mathematical concept exemplified by 60, 30, and 50,
while given the same examples in the hormone context, 47
may be more likely than 80 to be a healthy level. Just as physi-
cists now see Newton’s original two-point-mass formulation
as a special case of the more general classical theory of grav-
itation, so would we like a more general theory of general-
ization, which reduces to Shepard’s original two-points-in-
psychological-space formulation in the appropriate special
cases, but which extends his approach to handle generaliza-
tion from multiple, arbitrarily structured examples.

In this article we outline the foundations of such a the-
ory, working with the tools of Bayesian inference and in the
spirit of rational analysis (Anderson 1990; Chater & Oaks-
ford 1998; 1999; Marr 1982). Much of our proposal for ex-
tending Shepard’s theory to the cases of multiple examples
and arbitrary stimulus structures has already been intro-
duced in other papers (Griffiths & Tenenbaum 2000;
Tenenbaum 1997; 1999a; 1999b; Tenenbaum & Xu 2000).
Our goal here is to make explicit the link to Shepard’s work
and to use our framework to make connections between his
work and other models of learning (Feldman 1997; Gluck
& Shanks 1994; Haussler et al. 1994; Kruschke 1992;
Mitchell 1997), generalization (Heit 1998; Nosofsky 1986),
and similarity (Chater & Hahn 1997; Medin et al. 1993;
Tversky 1997). In particular, we will have a lot to say about
how our generalization of Shepard’s theory relates to Tver-
sky’s (1977) well-known set-theoretic models of similarity.
Tversky’s set-theoretic approach and Shepard’s metric
space approach are often considered the two classic – and

classically opposed – theories of similarity and generaliza-
tion. By demonstrating close parallels between Tversky’s
approach and our Bayesian generalization of Shepard’s ap-
proach, we hope to go some way towards unifying these two
theoretical approaches and advancing the explanatory
power of each.

The plan of our article is as follows. In section 2, we re-
cast Shepard’s analysis of generalization in a more general
Bayesian framework, preserving the basic principles of his
approach in a form that allows us to apply the theory to sit-
uations with multiple examples and arbitrary (nonspatially
represented) stimulus structures. Sections 3 and 4 describe
those extensions, and section 5 concludes by discussing
some implications of our theory for the internalization of
perceptual-cognitive universals.

2. A Bayesian framework for generalization

Shepard (1987b) formulates the problem of generalization
as follows. We are given one example, x, of some conse-
quence C, such as a “healthy person” or a “good-to-eat
worm.” We assume that x can be represented as a point in
a continuous metric psychological space, such as the one-
dimensional space of hormone levels between 0 and 100,
and that C corresponds to some region – the consequential
region – of that space. Our task is then to infer the proba-
bility that some newly encountered object y will also be an
instance of C, that is, that y will fall in the consequential re-
gion for C. Formalizing this induction problem in probabil-
istic terms, we are asking for p(y [ Cu x), the conditional
probability that y falls under C given the observation of the
example x.

The theory of generalization that Shepard develops and
that we will extend here can best be understood by consid-
ering how it addresses three crucial questions of learning
(after Chomsky 1986):

1. What constitutes the learner’s knowledge about the
consequential region?

2. How does the learner use that knowledge to decide
how to generalize?

3. How can the learner acquire that knowledge from the
example encountered?

Our commitment to work within the paradigm of
Bayesian probabilistic inference leads directly to rational
answers for each of these questions. The rest of this section
presents these answers and illustrates them concretely us-
ing the hormone or pigmentation levels tasks introduced
above. Our main advance over Shepard’s original analysis
comes in introducing the size principle (Tenenbaum 1997;
1999a; 1999b) for scoring hypotheses about the true conse-
quential region based on their size, or specificity. Although
it makes little difference for the simplest case of general-
ization studied by Shepard, the size principle will provide
the major explanatory force when we turn to the more re-
alistic cases of generalizing from multiple examples (sect. 3)
with arbitrary structure (sect. 4).

2.1. What constitutes the learner’s knowledge 
about the consequential region?

The learner’s knowledge about the consequential region is
represented as a probability distribution p(hux) over an a
priori-specified hypothesis space H of possible consequen-
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tial regions h [ H. H forms a set of exhaustive and mutu-
ally exclusive possibilities; that is, one and only one element
of H is assumed to be the true consequential region for C
(although the different candidate regions represented in H
may overlap arbitrarily in the stimuli that they include). The
learner’s background knowledge, which may include both
domain-specific and domain-general components, will of-
ten translate into constraints on which subsets of objects be-
long to H. Shepard (1994) suggests the general constraint
that consequential regions for basic natural kinds should
correspond to connected subsets of psychological space.
Applying the connectedness constraint to the domains of
hormone levels or worm pigmentation levels, where the rel-
evant stimulus spaces are one-dimensional continua, the
hypothesis spaces would consist of intervals, or ranges of
stimuli between some minimum and maximum conse-
quential levels. Figure 1 shows a number of such intervals
which are consistent with the single example of 60. For sim-
plicity, we have assumed in Figure 1 that only integer stim-
ulus values are possible, but in many cases both the stimu-
lus and hypothesis spaces will form true continua.

At all times, the learner’s knowledge about the conse-
quential region consists of a probability distribution over
H . Prior to observing x, this distribution is the prior prob-
ability p(h); after observing x, it is the posterior probability
p(hux). As probabilities, p(h) and p(hux) are numbers be-
tween 0 and 1 reflecting the learner’s degree of belief that
h is in fact the true consequential region corresponding to
C. In Figure 1, p(hux) for each h is indicated by the thick-
ness (height) of the corresponding bar. The probability of

any h that does not contain x will be zero, because it cannot
be the true consequential region if it does not contain the
one observed example. Hence, Figure 1 shows only hy-
potheses consistent with x 5 60.

2.2. How does the learner use that knowledge 
to decide how to generalize?

The generalization function p(y [ C ux) is computed by
summing the probabilities p(hux) of all hypothesized con-
sequential regions that contain y:1

We refer to this computation as hypothesis averaging, be-
cause it can be thought of as averaging the predictions 
that each hypothesis makes about y’s membership in C,
weighted by the posterior probability of that hypothesis. Be-
cause p(hux) is a probability distribution, normalized to sum
to 1 over all h [ H , the structure of Equation 1 ensures that
p(y [ Cux) will always lie between 0 and 1. In general, the
hypothesis space need not be finite or even countable. In the
case of a continuum of hypotheses, such as the space of all
intervals of real numbers, all probability distributions over
H become probability densities and the sums over H (in
Equations 1 and following) become integrals.

The top panel of Figure 1 shows the generalization gra-
dient that results from averaging the predictions of the in-
teger-valued hypotheses shown below, weighted by their
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Figure 1. An illustration of the Bayesian approach to generalization from x 5 60 in a one-dimensional psychological space (inspired by
Shepard 1989, August). For the sake of simplicity, only intervals with integer-valued endpoints are shown. All hypotheses of a given size
are grouped together in one bracket. The thickness (height) of the bar illustrating each hypothesis h represents p(hux), the learner’s de-
gree of belief that h is the true consequential region given the observation of x. The curve at the top of the figure illustrates the gradient
of generalization obtained by integrating over just these consequential regions. The profile of generalization is always concave regard-
less of what values p(hux) takes on, as long as all hypotheses of the same size (in one bracket) take on the same probability.
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probabilities. Note that the probability of generalization
equals 1 only for y 5 x, when every hypothesis containing
x also contains y. As y moves further away from x, the num-
ber of hypotheses containing x that also contain y decreases,
and the probability of generalization correspondingly de-
creases. Moreover, Figure 1 shows the characteristic pro-
file of Shepard’s “universal” generalization function: con-
cave, or negatively accelerated as y moves away from x. If
we were to replace the integer-valued interval hypotheses
with the full continuum of all real-valued intervals, the sum
in Equation 1 would become an integral, and the piecewise
linear gradient shown in Figure 1 would become a smooth
function with a similar concave profile, much like those de-
picted in the top panels of Figures 2 and 3.

Figure 1 demonstrates that Shepard’s approximately ex-
ponential generalization gradient emerges under one par-
ticular assignment of p(hux), but it is reasonable to ask how
sensitive this result is to the choice of p(hux). Shepard
(1987b) showed that the shape of the gradient is remark-
ably insensitive to the probabilities assumed. As long as the
probability distribution p(hux) is isotropic, that is, indepen-
dent of the location of h, the generalization function will al-
ways have a concave profile. The condition of isotropy is
equivalent to saying that p(hux) depends only on uhu, the size
of the region h; notice how this constraint is satisfied in Fig-
ure 1.

2.3. How can the learner acquire that knowledge 
from the example encountered?

After observing x as an example of the consequence C, the
learner updates her beliefs about the consequential region
from the prior p(h) to the posterior p(hux). Here we con-

sider how a rational learner arrives at p(hux) from p(h),
through the use of Bayes’ rule. We will not have much to say
about the origins of p(h) until section 5; Shepard (1987b)
and Tenenbaum (1999a; 1999b) discuss several reasonable
alternatives for the present scenarios, all of which are
isotropic and assume little or no knowledge about the true
consequential region.

Bayes’ rule couples the posterior to the prior via the like-
lihood, p(xuh), the probability of observing the example x
given that h is the true consequential region, as follows:

What likelihood function we use is determined by how we
think the process that generated the example x relates to the
true consequential region for C. Shepard (1987b) argues for
a default assumption that the example x and consequential re-
gion C are sampled independently, and x just happens to land
inside C. This assumption is standard in the machine learn-
ing literature (Haussler et al. 1994; Mitchell 1997), and also
maps onto Heit’s (1998) recent Bayesian analysis of inductive
reasoning. Tenenbaum (1997; 1999a) argues that under many
conditions, it is more natural to treat x as a random positive
example of C, which involves the stronger assumption that x
was explicitly sampled from C. We refer to these two models
as weak sampling and strong sampling, respectively.

Under weak sampling, the likelihood just measures in a
binary fashion whether or not the hypothesis is consistent
with the observed example:
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Figure 2. The effect of example variability on Bayesian generalization (under the assumptions of strong sampling and an Erlang prior,
m 5 10). Filled circles indicate examples. The first curve is the gradient of generalization with a single example, for the purpose of com-
parison. The remaining graphs show that the range of generalization increases as a function of the range of examples.

(2)

(3)
   
=

′ ′
′∈∑
p x h p h

p x h p h
h

( ) ( )
( ) ( )

.|
|H

  
p h x

p x h p h
p x

( )
( ) ( )

( )
| |=



Under strong sampling, the likelihood is more informative.
Assuming x is sampled from a uniform distribution over the
objects in h, we have:

where uhu indicates the size of the region h. For discrete
stimulus spaces, uhu is simply the cardinality of the subset
corresponding to h. For continuous spaces such as the hor-
mone or pigmentation levels, the likelihood becomes a
probability density and uhu is the measure of the hypothesis
– in one dimension, just the length of the interval.2 Equa-
tion 5 implies that smaller, more specific hypotheses will
tend to receive higher probabilities than larger, more gen-
eral hypotheses, even when both are equally consistent with
the observed consequential stimulus. We will call this ten-
dency the size principle. It is closely related to principles of
genericity that have been proposed in models of visual per-
ception and categorization (Feldman 1997; Knill & Rich-
ards 1996). Figure 1 depicts the application of the size prin-
ciple graphically.

Note that both Equations 4 and 5 are isotropic, and thus
the choice between strong sampling and weak sampling has
no effect on Shepard’s main result that generalization gra-
dients are universally concave. However, as we now turn to
look at the phenomena of generalization from multiple
stimuli with arbitrary, nonspatially represented structures,
we will see that the size principle implied by strong sam-
pling carries a great deal of explanatory power not present
in Shepard’s original analysis.

3. Multiple examples

In this section, we extend the above Bayesian analysis to sit-
uations with multiple consequential examples. Such situa-
tions arise quite naturally in the generalization scenarios we
have already discussed. For instance, how should our doc-
tor generalize after observing hormone levels of 60, 30, and
50 in three healthy patients? We first discuss some basic
phenomena that arise with multiple examples and then turn
to the extension of the theory. Finally, we compare our ap-
proach to some alternative ways in which Shepard’s theory
has been adapted to apply to multiple examples.

3.1. Phenomena of generalization 
from multiple examples

We focus on two classes of phenomena: the effects of ex-
ample variability and the number of examples.

3.1.1. Example variability. All other things being equal, the
lower the variability in the set of observed examples, the
lower the probability of generalization outside their range.
The probability that 70 is a healthy hormone level seems
greater given the three examples {60, 50, 30} than given the
three examples {60, 57, 52}, and greater given {60, 57, 52}
than given {60, 58, 59}. Effects of exemplar variability on
generalization have been documented in several other cat-
egorization and inductive inference tasks (Fried & Holyoak
1984; Osherson et al. 1990; Rips 1989).

3.1.2. Number of examples. All other things being equal,
the more examples observed within a given range, the lower
the probability of generalization outside that range. The
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Figure 3. The effect of the number of examples on Bayesian generalization (under the assumptions of strong sampling and an Erlang
prior, m 5 10). Filled circles indicate examples. The first curve is the gradient of generalization with a single example, for the purpose
of comparison. The remaining graphs show that the range of generalization decreases as a function of the number of examples.
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probability that 70 is a healthy hormone level seems greater
given the two examples {60, 52} than given the four exam-
ples {60, 52, 57, 55}, and greater given {60, 52, 57, 55} than
given {60, 52, 57, 55, 58, 55, 53, 56}. This effect is most dra-
matic when there is very little variability in the observed ex-
amples. Consider the three sets of examples {60}, {60, 62,
61}, and {60, 62, 61, 62, 60, 62, 60, 61}. With just two more
examples, the probability of generalizing to 70 from {60, 62,
61} already seems much lower than given {60} alone, and
the probability given {60, 62, 61, 62, 60, 62, 60, 61} seems
close to zero.

3.2. Extending the theory

Let X 5 {x1, . . . xn} denote a sequence of n examples of
some consequence C, and let y denote a novel object for
which we want to compute the probability of generalizing,
p(y [ CuX). All we have to do to make the theory of sec-
tion 2 applicable here is to replace “x,” wherever it appears,
with “X,” and to adopt the assumption of strong sampling
rather than Shepard’s original proposal of weak sampling.
The rest of the formalism is unchanged. The only compli-
cation this introduces comes in computing the likelihood
p(X uh). If we make the simplifying assumption that the ex-
amples are sampled independently of each other (a stan-
dard assumption in Bayesian analysis), then Equation 5 be-
comes:

Hence the size principle of Equation 5 has been general-
ized to include the influence of n: smaller hypotheses re-
ceive higher likelihoods than larger hypotheses, by a factor
that increases exponentially with the number of examples
observed. Figures 2 and 3 depict the Bayesian gradients of
generalization that result for several different numbers and
ranges of examples, assuming p(Xuh) based on strong sam-
pling and an Erlang distribution (Shepard 1987b) for p(h).
In addition to showing the universal concave profile, these
gradients display the appropriate sensitivity to the number
and variability of examples.

To understand how the size principle generates these ef-
fects, consider how Equation 7 weights two representative
hypotheses: h0, the smallest interval containing all the ex-
amples in X, and h1, a broader interval centered on h0 but
extending by d/2 units on either side, so that uh1u 5 uh0u 1
d. After observing n examples, the relative probabilities are
proportional to the likelihood ratio:

L is always less than 1, because d and uh0u are both positive.
As uh0u increases, but the other quantities remain fixed, L
increases. Thus, as we see in Figure 2, the relative proba-
bility that C extends a given distance d beyond the exam-
ples increases as the range spanned by the examples in-
creases. As n increases while the other quantities remain
fixed, L quickly approaches 0. Thus, as we see in Figure
3, the probability that C extends a distance d beyond the
examples rapidly decreases as the number of examples

increases within a fixed range. The tighter the examples, the
smaller uh0u is, and the faster L decreases with increasing n,
thus accounting for the interaction between these two fac-
tors pointed to earlier.

We can also now see why Shepard’s original assumption
of weak sampling would not generate these phenomena.
Under weak sampling, the likelihoods of any two consistent
hypotheses are always both 1. Thus L 5 1 always, and nei-
ther the range nor the number of examples have any effect
on how hypotheses are weighted. In general, we expect that
both strong sampling and weak sampling models will have
their uses. Real-world learning situations may often require
a combination of the two, if some examples are generated
by mere observation of consequential stimuli (strong sam-
pling) and others by trial-and-error exploration (weak sam-
pling).

Figure 4 illustrates an extension to generalizing in two
separable dimensions, such as inferring the healthy levels
of two independent hormones (for more details, see Tenen-
baum 1999b). Following Shepard (1987b), we assume that
the consequential regions correspond to axis-aligned rec-
tangles in this two-dimensional space, with independent
priors in each dimension. Then, as shown in Figure 4, the
size principle acts to favor generalization along those di-
mensions for which the examples have high variability and
to restrict generalization along dimensions for which they
have low variability. Tenenbaum (1999b) reports data from
human subjects that are consistent with these predictions
for a task of estimating the healthy levels of two biochemi-
cal compounds. More studies need to be done to test these
predictions in multidimensional perceptual spaces of the
sort with which Shepard has been most concerned.

3.3. Alternative approaches

A number of other computational models may be seen as
alternative methods of extending Shepard’s approach to the
case of multiple examples, but only the framework we de-
scribe here preserves what we take to be the two central
features of Shepard’s original analysis: a hypothesis space of
possible consequential regions and a Bayesian inference
procedure for updating beliefs about the true consequen-
tial region. The standard exemplar models of classification
(e.g., Nosofsky 1986; 1998a) take Shepard’s exponential law
of generalization as a primitive, used to justify the assump-
tion that exemplar activation functions decay exponentially
with distance in psychological space. A different approach
is based on connectionist networks (Gluck 1991; Shanks &
Gluck 1994; Shepard & Kannapan 1990; Shepard & Tenen-
baum 1991), in which input or hidden units represent con-
sequential regions, and error-driven learning – rather than
Bayesian inference – is used to adjust the weights from con-
sequential region inputs to response outputs. A third class
of models (Kruschke 1992; Love & Medin 1998) combines
aspects of the first two, by embedding Shepard’s exponen-
tial law within the activation functions of hidden units in a
connectionist network for classification learning.

Space does not permit a full comparison of the various al-
ternative models with our proposals. One important point
of difference is that for most of these models, the general-
ization gradients produced by multiple examples of a given
consequence are essentially just superpositions of the ex-
ponential decay gradients produced by each individual ex-
ample. Consequently, those models cannot easily explain
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the phenomena discussed above, in which encountering ad-
ditional consequential stimuli causes the probability of gen-
eralizing to some new stimulus to decrease, even when the
additional examples are more similar to the new stimulus
than the original example was. Exemplar and exemplar/
connectionist hybrid models are frequently equipped with
variable “attentional weights” that scale distances along a
given input dimension by a greater or lesser amount, in or-
der to produce variations in the contours of generalization
like those in Figure 4. Such models could account for our
phenomena by postulating that a dimension’s length scale
is initially large and decreases as the number of examples
increases or the variability of the examples decreases, but
nothing in the formal structure of these models necessarily
implies such a mechanism. Our Bayesian analysis, in con-
trast, necessarily predicts these effects as rational conse-
quences of the size principle.

4. Arbitrary stimulus structure

Shepard (1987b) assumed that objects can be represented
as points in a continuous metric psychological space, and
that the consequential subsets correspond to regions in that
space with some convenient properties, such as connected-
ness or central symmetry. In general, though, we do not

need to assume that the hypothesized consequential sub-
sets correspond to regions in any continuous metric space;
the notion of a consequential subset is sufficient for defin-
ing a Bayesian account of generalization. In this section we
examine how arbitrary, nonspatially represented stimulus
structures are modeled within the Bayesian framework.

Several authors, including Shepard himself, have de-
scribed extensions of the original theory of generalization
to conjunctive feature structures, in which objects are rep-
resented in terms of the presence or absence of primitive
binary features and the possible consequential subsets con-
sist of all objects sharing different conjunctions of features.
For these cases, generalization gradients can still be shown
to follow an exponential-like decay function of some ap-
propriately defined distance measure (Gluck 1991; Russell
1988; Shepard 1989; 1994). However, the Bayesian analysis
of generalization is more widely applicable than this. As we
will show here, the analysis applies even when there is no
independent notion of distance between stimuli and noth-
ing like an exponential gradient emerges from the sum over
consequential regions.

To motivate our analysis, consider a new generalization
scenario. A computer has been programmed with a variety
of simple mathematical concepts defined over the integers
1–100 – subsets of numbers that share a common, mathe-
matically consequential property such as “even number,”
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Figure 4. Bayesian generalization from multiple examples in two separable dimensions. Examples are indicated by filled circles. Con-
tours show posterior probability, in increments of 0.1. Black contours illustrate the points at which p(y [ CuX) 5 0.5. The range of gen-
eralization is affected by both the number of examples and the variability along a given dimension.



“power of two,” or “square number.” The computer will se-
lect one of these subsets at random, choose one or more
numbers at random from that subset to show you as exam-
ples, and then quiz you by asking if certain other numbers
belong to this same concept. Suppose that the number 60
is offered as one example of a concept the computer has
chosen. What is the probability that the computer will ac-
cept 50? How about 51, 47, or 80? Syntactically, this task is
almost identical to the hormone levels scenario above. But
now, instead of generalization following a monotonic func-
tion of proximity in numerical magnitude, it seems more
likely to follow some measure of mathematical similarity.
For instance, the number 60 shares more mathematical
properties with 50 than with 51, making 50 perhaps a bet-
ter bet than 51 to be accepted given the one example of 60,
even though 51 is closer in magnitude to 60 and therefore
a better bet for the doctor trying to determine healthy hor-
mone levels.

In our Bayesian framework, the difference between the
two scenarios stems from the very different consequential
subsets (elements of H ) that are considered. For the doc-
tor, knowing something about healthy levels of hormones in
general, it is quite natural to assume that the true conse-
quential subset corresponds to some unknown interval,
which gives rise to a generalization function monotonically
related to proximity in magnitude. To model the number
game, we can identify each mathematical property that the
learner knows about with a possible consequential subset 
in H . Figure 5 shows a generalization function that results
under a set of 33 simple hypotheses, as calculated from the
size principle (Eq. 5) and hypothesis averaging (Eq. 1). The
generalization function appears much more jagged than in
Figures 1–3 because the mathematical hypothesis space
does not respect proximity in the dimension of numerical
magnitude (corresponding to the abscissa of the figures).
More generally, numerical cognition may incorporate both
the spatial, magnitude properties as well as the nonspatial,
mathematical properties of numbers. To investigate the na-
ture of mental representations of numbers, Shepard et al.
(1975) collected human similarity judgments for all pairs of
integers between 0 and 9, under a range of different con-
texts. By submitting these data to an additive clustering
analysis (Shepard & Arabie 1979; Tenenbaum 1996), we
can construct the hypothesis space of consequential subsets
that best accounts for people’s similarity judgments. Table
1 shows that two kinds of subsets occur in the best-fitting

additive clustering solution (Tenenbaum 1996): numbers
sharing a common mathematical property, such as {2, 4, 8}
and {3, 6, 9}, and consecutive numbers of similar magni-
tude, such as {1, 2, 3, 4} and {2, 3, 4, 5, 6}. Tenenbaum
(2000) studied how people generalized concepts in a ver-
sion of the number game that made both mathematical and
magnitude properties salient. He found that a Bayesian
model using a hypothesis space inspired by these additive
clustering results, but defined over the integers 1–100,
yielded an excellent fit to people’s generalization judg-
ments. The same flexibility in hypothesis space structure
that allows the Bayesian framework to model both the spa-
tial hormone level scenario and the nonspatial number
game scenario there allows it to model generalization in a
more generic context, by hypothesizing a mixture of conse-
quential subsets for both spatial, magnitude properties and
nonspatial, mathematical properties. In fact, we can define
a Bayesian generalization function not just for spatial, feat-
ural, or simple hybrids of these representations, but for al-
most any collection of hypothesis subsets H whatsoever.
The only restriction is that we be able to define a prior prob-
ability measure (discrete or continuous) over H, and a mea-
sure over the space of objects, required for strong sampling
to make sense. Even without a measure over the space of
objects, a Bayesian analysis using weak sampling will still be
possible.

4.1. Relations between generalization 
and set-theoretic models of similarity

Classically, mathematical models of similarity and gener-
alization fall between two poles: continuous metric space
models such as in Shepard’s theory, and set-theoretic match-
ing models such as Tversky’s (1977) contrast model. The lat-
ter strictly include the former as a special case, but are most
commonly applied in domains where a set of discrete con-
ceptual features, as opposed to a low-dimensional contin-
uous space, seems to provide the most natural stimulus 
representation (Shepard 1980). Our number game is such
a domain, and indeed, when we generalize Shepard’s Bayes-
ian analysis from consequential regions in continuous met-
ric spaces to apply to arbitrary consequential subsets, the
model comes to look very much like a version of Tversky’s
set-theoretic models. Making this connection explicit al-
lows us not only to unify the two classically opposing ap-
proaches to similarity and generalization, but also to explain
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Figure 5. Bayesian generalization in the number game, given one example x 5 60. The hypothesis space includes 33 mathematically
consequential subsets (with equal prior probabilities): even numbers, odd numbers, primes, perfect squares, perfect cubes, multiples of
a small number (3–10), powers of a small number (2–10), numbers ending in the same digit (1–9), numbers with both digits equal, and
all numbers less than 100.



some significant aspects of similarity that Tversky’s original
treatment did not attempt to explain.

Tversky’s (1977) contrast model expresses the similarity
of y to x as

S(y,x) 5 uf (Y > X ) 2 af (Y 2 X) 2 b f(X 2 Y), (9)

where X and Y are the feature sets representing x and y,
respectively, f denotes some measure over the feature sets,
and u, a, b are free parameters of the model. Similarity thus
involves a contrast between the common features of y and
x, Y > X, and their distinctive features, those possessed by
y but not x, Y 2 X, and those possessed by x but not y,
X 2 Y. Tversky also suggested an alternative form for the
matching function, the ratio model, which can be written
as

The ratio model is remarkably similar to our Bayesian model
of generalization, which becomes particularly apparent
when the Bayesian model is expressed in the following form
(mathematically equivalent to Eq. 1):

Here, p(h, x) 5 p(xuh)p(h) represents the weight assigned
to hypothesis h in light of the example x, which depends on
both the prior and the likelihood. The bottom sum ranges
over all hypotheses that include both x and y, while the top
sum ranges over only those hypotheses that include x but
do not include y. If we identify each feature k in Tversky’s
framework with a hypothesized subset h, where an object
belongs to h if and only if it possesses feature k, and if we
make the standard assumption that the measure f is addi-
tive, then the Bayesian model as expressed in Equation 11
corresponds formally to the ratio model with a 5 0, b 5 1.
It is also monotonically related to the contrast model, un-
der the same parameter settings.

Interpreting this formal correspondence between our
Bayesian model of generalization and Tversky’s set-theo-
retic models of similarity is complicated by the fact that in
general the relation between similarity and generalization
is not well understood. A number of authors have proposed
that similarity is the more primitive cognitive process and
forms (part of) the basis for our capacity to generalize in-
ductively (Goldstone 1994; Osherson et al. 1990; Quine
1969; Rips 1975; Smith 1989). But from the standpoint of
reverse-engineering the mind and explaining why human
similarity or generalization computations take the form that
they do, a satisfying theory of similarity is more likely to de-
pend upon a theory of generalization than vice versa. The
problem of generalization can be stated objectively and
given a principled rational analysis, while the question of
how similar two objects are is notoriously slippery and un-
derdetermined (Goodman 1972). We expect that, depend-
ing on the context of judgment, the similarity of y to x may
involve the probability of generalizing from x to y, or from
y to x, or some combination of those two. It may also de-
pend on other factors altogether. Qualifications aside, in-
teresting consequences nonetheless follow just from the
hypothesis that similarity somehow depends on generaliza-
tion, without specifying the exact nature of the depen-
dence.

4.1.1. The syntax of similarity. Most fundamentally, our
Bayesian analysis provides a rational basis for the qualita-
tive form of set-theoretic models of similarity. For instance,
it explains why similarity should in principle depend on
both the common and the distinctive features of objects.
Tversky (1977) asserted as an axiom that similarity is a func-
tion of both common and distinctive features, and he pre-
sented some empirical evidence consistent with that as-
sumption, but he did not attempt to explain why it should
hold in general. Indeed, there exist both empirical models
(Shepard 1980) and theoretical arguments (Chater & Hahn
1997) that have successfully employed only common or dis-
tinctive features. Our rational analysis (Eq. 11), in contrast,
explains why both kinds of features should matter in gen-
eral, under the assumption that similarity depends on gen-
eralization. The more hypothesized consequential subsets
that contain both x and y (common features of x and y), rel-
ative to the number that contain only x (distinctive features
of x), the higher the probability that a subset known to con-
tain x will also contain y.

Along similar lines, the hypothesis that similarity de-
pends in part on generalization explains why similarity may
in principle be an asymmetric relationship, that is, why the
similarity of x to y may differ from the similarity of y to x.
Tversky (1977) presented compelling demonstrations of
such asymmetries and showed that they could be modeled
in his set-theoretic framework if the two subsets of distinc-
tive features X 2 Y and Y 2 X have different measures
under f and are given different weights in Equations 9 or
10. But Tversky’s formal theory does not explain why those
two subsets should be given different weights; it merely al-
lows this as one possibility. In contrast, the probability of
generalizing from x to y is intrinsically an asymmetric func-
tion, depending upon the distinctive features of x but not
those of y. Likewise, the probability of generalizing from y
to x depends only on the distinctive features of y, not those
of x. To the extent that similarity depends on either or both
of these generalization probabilities, it inherits their intrin-
sic asymmetry. Note that generalization can still be sym-
metric, when the distinctive features of x and y are equal in
number and weight. This condition holds in the spatial sce-
narios considered above and in Shepard’s work, which (not
coincidentally) are also the domains in which similarity is
found to be most nearly symmetric (Tversky 1977).

Finally, like Shepard’s analysis of generalization, Tver-
sky’s contrast model was originally defined only for the com-
parison of two individual objects. However, our Bayesian
framework justifies a natural extension to the problem of
computing the similarity of an object y to a set of objects 
X 5 {x1, . . . xn} as a whole, just as it did for Shepard’s the-
ory in section 3. Heit (1997a) proposed on intuitive grounds
that the contrast model should still apply in this situation,
but with the feature set X for the examples as a whole iden-
tified with >n

i51 Xi , the intersection of the feature sets of
all the individual examples. Our Bayesian analysis (replac-
ing x with X in Eq. 11) explains why the intersection, as op-
posed to some other combination mechanism such as the
union, is appropriate. Only those hypotheses consistent
with all the examples in X – corresponding to those features
belonging to the intersection of all the feature sets Xi – re-
ceive non-zero likelihood under Equation 7.

4.1.2. The semantics of similarity. Perhaps the most per-
sistent criticisms of the contrast model and its relatives fo-
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cus on semantic questions: What qualifies as a feature?
What determines the feature weights? How do the weights
change across judgment contexts? The contrast model has
such broad explanatory scope because it allows any kind of
features and any feature weights whatsoever, but this same
lack of constraint also prevents the model from explaining
the origins of the features or weights. Our Bayesian model
likewise offers no constraints about what qualifies as a fea-
ture, but it does explain some aspects of the origins and the
dynamics of feature weights. The Bayesian feature weight
p(h, x) 5 p(xuh)p(h) decomposes into prior and likelihood
terms. The prior p(h) is not constrained by our analysis; it
can accommodate arbitrary flexibility across contexts but
explains none of that flexibility. In contrast, the likelihood
p(xuh) is constrained by the assumption of strong sampling
to follow the size principle.

One direct implication of this constraint is that, in a given
context, features belonging to fewer objects – correspond-
ing to hypotheses with smaller sizes – should be assigned
higher weights. This prediction can be tested using additive
clustering analyses, which recover a combination of feature
extensions and feature weights that best fit a given similar-
ity data set. For instance, the additive clustering analysis of
the integers 0–9 presented in Table 1 is consistent with our
prediction, with a negative correlation (r 5 20.83) between
the number of stimuli in each cluster and the correspond-
ing feature weights. Similar relationships can be found in
several other additive clustering analyses (Arabie & Carroll
1980; Chaturvedi & Carroll 1994; Lee, submitted; Tenen-
baum 1996); see Tenenbaum et al. (in preparation) for a
comprehensive study. Tversky (1977) proposed several
general principles of feature weighting, such as the diag-
nosticity principle, but he did not explicitly propose a cor-
relation between feature specificity and feature weight, nor
was his formal model designed to predict these effects.

A second implication of the size principle is that certain
kinds of features should tend to receive higher weights in
similarity comparisons, if they systematically belong to
fewer objects. Medin et al. (1993) have argued that primi-
tive features are often not as important as are relational fea-
tures, that is, higher-order features defined by relations be-
tween primitives. Yet in some cases a relation appears less
important than a primitive feature. Consider which bottom
stimulus, A or B, is more similar to the top stimulus in each
panel of Figure 6 (inspired by Medin et al.’s comparisons).
In the left panel, the top stimulus shares a primitive feature
with B (“triangle on top”) and a relational feature with A
(“all different shapes”). In an informal survey, 8 out of 10

observers chose B – the primitive feature match – as more
similar at first glance. In the right panel, however, a differ-
ent relation (“all same shape”) dominates over the same
primitive feature (9 out of 10 different observers chose A as
more similar). Goldstone et al. (1989) report several other
cases where “same” relations are weighted more highly
than “different” relations in similarity comparisons. If sim-
ilarity depends in part upon Bayesian generalization, then
the size principle can explain the relative salience of these
features in Figure 6. Let m be the number of distinct shapes
(square, triangle, etc.) that can appear in the three positions
of each stimulus pattern. Then the consequential subset for
“all same shape” contains exactly m distinct stimuli, the sub-
set for “triangle on top” contains m2 stimuli, and the subset
for “all different shapes” contains m(m 2 1)(m 2 2) stim-
uli. Thus feature saliency is inversely related to subset size,
just as we would expect under the size principle. More care-
ful empirical tests of this hypothesis are required, but we
conjecture that much of the relative importance of rela-
tional features versus primitive features may be explained
by their differing specificities.

A final implication arises from the interaction of the size
principle with multiple examples. Recall that in generaliz-
ing from multiple examples, the likelihood preference for
smaller hypotheses increases exponentially in the number
of examples (Eq. 7). The same effect can be observed with
the weights of features in similarity judgments. For instance,
in assessing the similarity of a number to 60, the feature
“multiple of ten” may or may not receive slightly greater
weight than the feature “even number.” But in assessing
similarity to the set of numbers {60, 80, 10, 30} as a whole,
even though both of those features are equally consistent
with the full set of examples, the more specific feature
“multiple of ten” appears to be much more salient.

5. Conclusions: Learning, evolution, 
and the origins of hypothesis spaces

We have described a Bayesian framework for learning and
generalization that significantly extends Shepard’s theory in
two principal ways. In addressing generalization from mul-
tiple examples, our analysis is a fairly direct extension of
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Table 1. Additive clustering of similarity judgments 
for the integers 0–9 ( from Tenenbaum 1996)

Rank Weight Stimuli in class Interpretation

1 .444 2  4  8 powers of two
2 .345 0  1  2 small numbers
3 .331 3  6  9 multiples of three
4 .291 6  7  8  9 large numbers
5 .255 2  3  4  5  6 middle numbers
6 .216 1  3  5  7  9 odd numbers
7 .214 1  2  3  4 smallish numbers
8 .172 4  5  6  7  8  largish numbers

Figure 6. The relative weight of relations and primitive features
depends on the size of the set of objects that they identify. Most
observers choose B (the primitive feature match) as more similar
to the top stimulus in the left panel, but choose A (the relational
match) in the right panel, in part because the relation “all same
shape” identifies a much smaller subset of objects than the rela-
tion “all different shapes.”



Shepard’s original ideas, making no substantive additional
assumptions other than strong sampling. In contrast, our
analysis of generalization with arbitrarily structured stimuli
represents a more radical broadening of Shepard’s ap-
proach, in giving up the notion that generalization is con-
strained by the metric properties of an evolutionarily in-
ternalized psychological space. On the positive side, this
step allows us to draw together Tversky’s set-theoretic
models of similarity and Shepard’s continuous metric space
models of generalization under a single rational frame-
work, and even to advance the explanatory power of Tver-
sky’s set-theoretic models using the same tools – chiefly,
the size principle – that we used to advance Shepard’s
analysis of generalization. Yet it also opens the door to some
large unanswered questions, which we close our article by
pointing out.

In discussing similarity or generalization with arbitrarily
structured stimuli, our Bayesian analysis explains only one
piece of the puzzle of how features or hypotheses are
weighted. Weights are always a product of both size-based
likelihoods and priors, and while the size principle follows
rationally from the assumption of strong sampling, the as-
signment of prior probabilities lies outside the scope of a
basic Bayesian analysis. Thus, we can never say anything for
certain about the relative weights of any two particular fea-
tures or hypotheses merely based on their relative sizes; any
size difference can always be overruled by a greater differ-
ence in prior probability.

The ability of prior probability differences to overrule an
opposing size-based likelihood difference is hardly patho-
logical; on the contrary, it is essential in every successful in-
ductive generalization. Consider as a hypothesis in the
number game that the computer accepts all multiples of
ten, except 20 and 70. “Multiples of ten, except 20 and 70”
is slightly more specific than “all multiples of ten,” and thus
should receive higher probability under the size principle
given a set of examples that is consistent with both hy-
potheses, such as {60, 80, 10, 30}. But obviously, that does
not happen in most people’s minds. Our Bayesian frame-
work can accommodate this phenomenon by stipulating
that while the former hypothesis receives a somewhat
higher likelihood, it receives a very much lower prior prob-
ability, and thus a significantly lower posterior probability
when the prior and likelihood are combined.

It is by now almost a truism that without some reasonable
a priori constraints on the hypotheses that learners should
consider, there will always be innumerable bizarre hy-
potheses such as “all multiples of ten, except 20 and 70” that
will stand in the way of reasonable inductive generalizations
(Goodman 1955; 1972; Mitchell 1997). Trying to determine
the nature and origin of these constraints is one of the ma-
jor goals of much current research (e.g., Medin et al. 1993;
Schyns et al. 1998). Shepard’s original analysis of general-
ization was so compelling in part because it proposed an-
swers to these questions: sufficient constraints on the form
of generalization are provided merely by the representation
of stimuli as points in a continuous metric psychological
space (together with the assumption that hypotheses corre-
spond to a suitable family of regions in that space), and our
psychological spaces themselves are the products of an evo-
lutionary process that has shaped them optimally to reflect
the structure of our environment. In proposing a theory of
generalization that allows for arbitrarily structured hypoth-
esis spaces, we owe some account of where those hypothe-

sis spaces and priors might come from. Evolution alone is
not sufficient to explain why hypotheses such as “multiples
of ten” are considered natural while hypotheses such as “all
multiples of ten, except 20 and 70” are not.

The major alternative to evolution as the source of hy-
pothesis space structure is some kind of prior learning.
Most directly, prior experience that all and only those ob-
jects belonging to some particular subset h tend to possess
a number of important consequences may lead learners to
increase p(h) for new consequences of the same sort. Un-
supervised learning – observation of the properties of ob-
jects without any consequential input – may also be ex-
tremely useful in forming a hypothesis space for supervised
(consequential) learning. Noting that a subset of objects
tend to cluster together, to be more similar to each other
than to other objects on some primitive features, may in-
crease a learner’s prior probability that this subset is likely
to share some important but as-yet-unencountered conse-
quence. The machine learning community is now intensely
interested in improving the inductive generalizations that a
supervised learning agent can draw from a few labeled ex-
amples, by building on unsupervised inferences that the
agent can draw from a large body of unlabeled examples
(e.g., Mitchell 1999; Poggio & Shelton 1999). We expect
this to become a critical issue in the near future for cogni-
tive science as well.

Our proposal that the building blocks of Shepard’s “per-
ceptual-cognitive universals” come into our heads via learn-
ing, and not just evolution, resonates with at least one other
contribution to this issue (see Barlow’s target article). How-
ever, we fundamentally agree with an earlier statement of
Shepard’s, that “learning is not an alternative to evolution
but itself depends on evolution. There can be no learning
in the absence of principles of learning; yet such principles,
being themselves unlearned, must have been shaped by
evolution” (Shepard 1995a, p. 59). Ultimately, we believe
that it may be difficult or impossible to separate the contri-
butions that learning and evolution each make to the inter-
nalization of world structure, given the crucial role that
each process plays in making the other an ecologically vi-
able means of adaptation. Rather, we think that it may be
more worthwhile to look for productive synergies of the two
processes, tools which evolution might have given us for ef-
ficiently learning those hypothesis spaces that will lead us
to successful Bayesian generalizations. Such tools might in-
clude appropriately tuned stimulus metrics and topologies,
as Shepard proposes, but also perhaps: unsupervised clus-
tering algorithms that themselves exploit the size principle
as defined over these metrics; a vocabulary of templates for
the kinds of hypothesis spaces – continuous spaces, taxo-
nomic trees, conjunctive feature structures – that seem to
recur over and over as the basis for mental representations
across many domains; and the ability to recursively com-
pose hypothesis spaces in order to build up structures of
ever-increasing complexity.

We believe that the search for universal principles of
learning and generalization has only just begun with Shep-
ard’s work. The “universality, invariance, and elegance” of
Shepard’s exponential law (to quote from his article re-
printed in this volume) are in themselves impressive, but
perhaps ultimately of less significance than the spirit of ra-
tional analysis that he has pioneered as a general avenue
for the discovery of perceptual-cognitive universals. Here
we have shown how this line of analysis can be extended
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to yield what may yet prove to be another universal: the
size principle, which governs generalization from one or
more examples of arbitrary structure. We speculate that
further universal principles will result from turning our
attention in the future to the interface of learning and evo-
lution.
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NOTES
1. We derive Equation 1 as follows. Because H denotes an ex-

haustive and mutually exclusive set of possibilities, we can expand
the generalization function as

Note that p(y [ C uh, x) is in fact independent of x. It is simply 1
if y [ h, and 0 otherwise. Thus we can rewrite Equation 13 in the
form of Equation 1.

2. Note that in a continuous space, when uhu , 1, p(xuh) will be
greater than 1 (for x [ h). This occurs because p(xuh) is a prob-
ability density, not a probability distribution; probability density
functions may take on values greater than 1, as long as they inte-
grate to 1 over all x.
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