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Abstract Beyond rectangular prism polyhedron, as a dis-
crete volume element, can also be used to model the density
distribution inside 3D geological structures. The calculation
of the closed formulae given for the gravitational potential
and its higher-order derivatives, however, needs twice more
runtime than that of the rectangular prism computations.
Although the more detailed the better principle is generally
accepted it is basically true only for errorless data. As soon as
errors are present any forward gravitational calculation from
the model is only a possible realization of the true force field
on the significance level determined by the errors. So if one
really considers the reliability of input data used in the cal-
culations then sometimes the “less” can be equivalent to the
“more” in statistical sense. As a consequence the processing
time of the related complex formulae can be significantly
reduced by the optimization of the number of volume ele-
ments based on the accuracy estimates of the input data. New
algorithms are proposed to minimize the number of model
elements defined both in local and in global coordinate sys-
tems. Common gravity field modelling programs generate
optimized models for every computation points (dynamic

approach), whereas the static approach provides only one
optimized model for all. Based on the static approach two dif-
ferent algorithms were developed. The grid-based algorithm
starts with the maximum resolution polyhedral model defined
by 3–3 points of each grid cell and generates a new polyhedral
surface defined by points selected from the grid. The other
algorithm is more general; it works also for irregularly dis-
tributed data (scattered points) connected by triangulation.
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Beyond the description of the optimization schemes some
applications of these algorithms in regional and local grav-
ity field modelling are presented too. The efficiency of the
static approaches may provide even more than 90% reduc-
tion in computation time in favourable situation without the
loss of reliability of the calculated gravity field parame-
ters.

Keywords Polyhedron · Rectangular prism · Forward
gravitational modelling · DTM error · Error of gravity
potential · Model generalization

1 Introduction: a short trip around a cubic and a
polyhedral globe

As a solution of the regional forward gravitational potential
modelling problem the 3D model of the density distribu-
tion of the lithosphere in the Alps–Carpathians–Pannonian
basin (ALCAPA) region has been used to determine dif-
ferent parameters of the gravity field analytically. Gravity
acceleration, geoid undulation, gravity potential and grav-
ity anomaly, generated partly by the Newtonian attraction
of masses discretized by the model, were calculated by
Papp (1996a, b), Papp and Kalmár (1995, 1996), Papp and
Benedek (2000), Benedek (2001) and Papp et al. (2004,
2009). The consistency of the parameters is provided by
the rigorous functional relations existing between the grav-
itational field and its source represented by such a discrete
volumetric model. The building block of the ALCAPA model
was the right rectangular parallelepiped (prism) the gravita-
tional field parameters of which can be calculated by closed,
analytical formulae. Prisms are mainly used for local mod-
elling if flat earth approximation based on planar geodetic
coordinates is allowed. For an extended reference of the ear-
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liest applications of prisms in modelling (e.g. Zach 1811)
see the paper by Nagy et al. (2000). Consequently it gives an
exact way to test the accuracy of numerical methods trans-
forming one kind of gravity field-related parameter to another
(see e.g. solutions of the Stokes integral) in closed-loop
test way (Benedek 2001). The analytical approach makes
the referencing procedure hypothesis free, so any numerical
approximation used in the calculations can be investigated
rigorously.

The polyhedron is a relatively new volume element
(Okabe 1979; Cady 1980). Its application improves the real-
ism of geometrical description of the bounding surfaces
(density interfaces) related to flat-topped rectangular prisms
because it is able to provide continuity where it is reasonable.
The spatial resolution of the model can be arbitrarily syn-
chronized to the resolution of the available geometrical data
(points of the interfaces) and physical parameters (e.g. mass
density distribution). Furthermore the effect of the Earth’s
curvature can easily be taken into account in the computations
(Benedek and Papp 2009), because the polyhedral geometry
allows the description of any density model not only in local
(planar) but also in global geodetic coordinate system (e.g.
WGS84) too. Analytical expressions for the gravitational
field of a polyhedral body with either linearly or nonlin-
early varying density are also available (Garcia-Abdealem
1992, 2005; Pohánka 1998; Hansen 1999; Holstein 2003;
Zhou 2009). This improvement enables the modelling of the
continuous density variation inside the volume element if
geology justifies its existence.

The time for computing the gravitational potential and its
higher-order derivatives of a single, triangle-based polyhe-
dron is twice more than that of a single rectangular prism. It,
however, can be reduced by about 30% using carefully opti-
mized analytical formulae (Benedek 2001) selected from a
variety of available expressions (Götze and Lahmeyer 1988;
Pohánka 1998; Petrovič 1996; Holstein et al. 1999; Hol-
stein 2002a, b; Werner and Scheeres 1997; Guptasarma and
Singh 1999; Singh and Guptasarma 2001; Holstein and Ket-
teridge 1996). It is nearly a linear function of the number
of volume elements. One, however, should note that two
triangle-based polyhedrons1 are needed for the substitution
of a single rectangular prism, so the time factor is even
4. If a model contains about 106 polyhedrons the calcu-
lation of its gravitational potential on a grid consisting of
104 points needs approximately 40 h on a 15-year-old HP
A500 platform running in parallel mode (PA-8500 440-MHz

1 This is the most evident elementary approach. The flat-topped prism,
however, can be changed to a single polyhedron having even a tilted top
face. In this case, the number of volume elements is not doubled but the
four top corner points of the mass column must define a plane which
makes the unambiguous (continuous) joining of the neighbouring mass
columns difficult as far as the knowledge of the authors goes.

processors). The runtime, of course, is strongly platform
and processor dependent, so if the same model is pro-
cessed, e.g. on a HP rx2800 system on a single core of
an Itanium processor, it is eight times less as it was expe-
rienced.

With the optimization of the number of volume ele-
ments defined in the input model the computational time
outlined above can be further reduced. The measure of
reduction depends on (1) the complexity of the density
distribution defined by the known geometrical and physi-
cal parameters and (2) the accuracy of these parameters.
The questions related to these two factors are discussed in
the next chapters in details. Some examples of how these
factors influence the efficiency of generalization are also pro-
vided.

2 A short review of dynamic and static model
generalizations

In the dynamic approach (Tscherning et al. 1991; Holzrichter
et al. 2014) a new model is derived for each computation point
P from the available DTM data supposing that the closest
vicinity of P needs much higher spatial resolution (i.e. small
volume elements) than what the far zones described by large
elements admit. This assumption is in accordance with the
inverse distance law of gravitation and the advantage of its
application considering computation time is straightforward.
As far as the authors know the existing algorithms, however,
neglect the uncertainties of the input data so if those are erro-
neous the errors propagate certainly into the computed field
parameters regardless of the systematically (or in the sense
of calculation time, optimally) changing resolution.

Based on the static approach two different algorithms were
developed. The grid-based algorithm (GBA) starts with a set
of surface points defined on a uniform grid representing max-
imum available spatial resolution and generates a polyhedral
surface so that the differences along the Z axis between
the two surfaces do not exceed the threshold δH defined
in advance. The value of the threshold depends on either
local or global a priori error statistics of the input data (e.g.
δH = μz). The algorithm is fast, but it does not guarantee the
best optimum (i.e. the smallest number of volume elements).
It was implemented in Fortran language and developed for
both in the local (planar) and global rectangular (WGS84)
coordinate systems.

The other, triangle-based algorithm (TBA) is more gen-
eral; it works for irregularly distributed data (points) con-
nected by triangulation. It starts from this Delaunay-
triangulated mesh and provides the minimum number of vol-
ume elements. It, however, is highly time-consuming; the
computational time is an exponential function of the number
of input elementary triangles and δH chosen.
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3 The error budget of a DTM-based volume model
and its propagation to gravitational field
parameters

3.1 General considerations

Obviously both the geometrical and the physical parameters
used in the process of volume element model generaliza-
tion are affected by uncertainties, since those are usually
derived from heterogeneous, partly measured, partly esti-
mated data using interpolation methods and/or general rules
of (geo)physics. One should note that even most of these rules
are just formulated from numerical experiments and based
on statistical correlations (e.g. mass density—seismic veloc-
ity law, depth—density law for the sediments) discussed by
e.g. Strykowski (1996) in details.

As Fig. 1 shows the overall accuracy of a specific volume
element model depends on several elementary components.
The first one is the position error (or sampling error) of

those discrete points (e.g. the error of topographic height)
which provide a set of samples for the discretization of the
surface/volume to be modelled.

The next component is the so-called geometrical regu-

larization error which is related to the chosen regularized
geometrical representation of the real density interfaces e.g.
the surface separating the topographic masses from the air. It
is mainly caused by interpolation which is a necessary step to
define that specific volume over which the Newtonian inte-
gral will be analytically computed in a selected coordinate
system. If sampling and regularization is integrated in one
process (e.g. scanning of the target surface on a predefined
equidistant grid) and no further regularization of the samples
is required then sampling error cannot be distinguished from
regularization error.

The third component is the geometrical discretization

error (or volumetric representation error) which comes from
the differences between the geometry of the possible volume
elements applicable for the same regularized samples. For
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(a) reality (b) sampling (c) regularization

(e) integration of
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parameters

(d) volumetric representation

Fig. 1 The main steps of volumetric model generation and their related
errors. a Reality (e.g. the topographic surface z = f (x, y) and the den-
sity distribution ρ = ρ(x, y, z) below it), b irregularly sampled version
of the reality and the position errors σx , σy and σz at A, B, C and
D points defined by x, y, z coordinates, c regularization of the mesh
defined by A′, B ′, C ′ and D′ by interpolation to an equidistant grid

of points Gi, j -s. Here σz is the regularization (interpolation) error. d
Generation of a flat-topped prism utilizing e.g. the mean height derived
from the z coordinates of points Gi, j -s (top), generation of two joining
polyhedral volume elements with triangular base faces defined by Gi, j -
s (bottom), e assigning density value ρ and its error σρ to the prism
(top) and to the polyhedrons (bottom)
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Table 1 Normal and Laplacian
distribution statistics of �H

residuals

Number of points Min. Max. H0: normal H0: Laplacian

Mean SD Median MAD

81,464 −52.3 521.1 1.0 5.3 0.7 1.5

81,374a −49.6 49.9 0.9 3.5 0.7 1.4

The HU-DTM30 heights were bilinear interpolated to the points of the horizontal and vertical geodetic control
network points of Hungary
MAD mean absolute deviation, SD standard deviation
aOutliers, i.e. |�H | > 50 m, are excluded. Data are given in (m)

instance a model consisting of either flat-topped prisms or
polyhedrons can be applied to represent the volume defined
by the same set of grid (i.e. regularized) points.

The last component is the discretization error of the

density distribution inside the volume of modelled masses.
Basically it is defined by the elaboration of knowledge about
the geology of the structure under consideration. Although
sophisticated geophysical exploration methods (seismic and
geoelectric soundings, borehole drillings, etc.) provide a
huge amount of petrophysical data most of them cannot be
used directly in gravitational modelling (Strykowski 1996).
On the one hand the volume density is the least important
rock parameter for exploration purposes; therefore, in situ
determinations are very rare usually. On the other hand the
penetration depth of these methods is limited since the tar-
get structures (e.g. oil and gas traps) are located in shallow
geological structures, hidden in and directly below the sedi-
mentary deposits, maximum at a few km depth.

The most obvious example for the complexity of sampling
and regularization is the workflow of the creation of a digital
terrain model (DTM). It is usually the result of compilation
of data (1) supplied by traditional geodetic measurements,
modern remote sensing techniques and digitization of old
printed contour maps, (2) processed by interpolation methods
and (3) transformed from and to the respective coordinate
systems. The integrated effect of sampling and regularization
errors (cited as DTM error in the following) was analysed by
Zahorec et al. (2010). They showed that the quality of the used
digital terrain model is the most critical factor in the accuracy
of the calculated terrain-related gravitational potential and its
derivatives.

The effect of geometrical discretization error was inves-
tigated in details in Tsoulis et al. (2003, 2009) and Tsoulis
(2001) using different representations of the reference terrain
(i.e. some selected specific realizations of the real terrain).
These representations were based on (1) the tessellated sys-
tem of the upper horizontal bounding faces of rectangular
prisms forming a step-like mosaic surface, (2) continuous tri-
angular coverage provided by the application of polyhedrons,
(3) tessellations of bilinear continuous surfaces between
the grid points and (4) tessellations of the upper bounding
spherical caps defined by tesseroids. The results indicate a

convergence of all investigated methods as the resolution of
DTM-s increases, no matter what type of computational strat-
egy or geometrical representation of the terrain is used.

3.2 Analysis of DTM errors on the area of Hungary

Due to the above-mentioned complexity of DTM generation
and its overall error budget the accuracy estimates of the new,
high-resolution (�x,�y < 100 m) global (e.g. SRTM3) and
local (e.g. HU-DTM30) DTM-s, regardless of whether those
are surface or terrain models, are sometimes disappointing.
Papp and Szűcs (2011) showed that SRTM3, since it is a
surface model, cannot describe the topographic surface bet-
ter than 8.8 ± 5.4 m and 8.1 ± 5.9 m if the SRTM heights
are compared to the reference heights Hgeod of the horizon-
tal and vertical geodetic control network points, respectively,
on the area of a so flat country like Hungary. But even the
HU-DTM30, which is a version of the 10 m ×10 m DTM of
Hungary (generated by the Institute of Geodesy, Cartography
and Remote Sensing operated by the Ministry of Agricul-
ture, Department of Land Administration) interpolated on a
30 m × 30 m grid cannot provide much better accuracy of
residual heights defined by:

�H = Hgeod − HHU-DTM30 (1)

in terms of standard deviation (see SD in Table 1). The dis-
persion estimate in Table 1 based on H0: normal distribution,
however, is not correct considering the empirical distribution
of residual heights (Fig. 2).

According to earlier experience (e.g. Papp 1993; Zahorec
et al. 2010; Wang et al. 2015) the estimation procedure of
statistical parameters (expected value, deviation) of residual
data has to be selected according to the real distribution of
those in order to obtain realistic error estimates. Since the
distribution of �H is obviously not normal, Laplacian dis-
tribution was probed by χ

2-test. For Laplacian distribution
the expected value and the deviation have to be estimated by
the median and the mean absolute deviation (MAD), respec-
tively, which are also listed in Table 1. As one can see MAD
is significantly less than SD, but even if it is much closer
to the characteristics (more than 60% concentration of �H

data in the interval defined by ± MAD) of the histogram H0:

123



Generalization techniques to reduce the number of volume elements for terrain effect… 365

height difference [m]

relative frequency [%]

-9
.5

0

-8
.5

0

-7
.5

0

-6
.5

0

-5
.5

0

-4
.5

0

-3
.5

0

-2
.5

0

-1
.5

0

-0
.5

0
0.5

0
1.5

0
2.5

0
3.5

0
4.5

0
5.5

0
6.5

0
7.5

0
8.5

0
9.5

0

10.
50

0%

10%

20%

30%

40%

50%

empirical

normal

Laplace

Fig. 2 The histogram of �H height differences defined by (1) and the
theoretical distributions computed by the estimated statistics for full
data set in Table 1

Laplacian distribution is also false (c.f. the theoretical fre-
quencies to the empirical ones in Fig. 3). One has to note that
gross errors also influence significantly the value of SD so
those have to be identified and removed prior to parameter
estimation (Table 1).

3.3 Error estimation based on the law of error

propagation

3.3.1 Case of rectangular prism

The general law of error propagation can be applied for the
investigation of the modelling errors. If e.g. the vertical com-
ponent gz of gradU =

(

gx , gy, gz

)

defined by Nagy et al.
(2000)

gz (P) = Gρtopo

(

∂u

∂z

)
∣

∣

∣

∣

P

= Gρtopo

(
∣
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∥

∥
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∣

∣
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)

(2)

is computed from a DTM composed of rectangular prisms the
analytical formula of ∂gz/∂z (the second vertical derivative
of the gravitational potential U ) can be used to derive the
error μgz , i.e. the uncertainty of gz due to the error μz of the
height z:

μgz =

(

∂gz

∂z

)
∣

∣

∣

∣

P

μz = Gρtopo

(

∂2u

∂z2
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∣

∣
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P
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(

∣

∣

∣

∣

∥

∥

∥

∥

− tan−1 xy

zr

∣

∣

∣

∣

x2

x1

∣

∣

∣

∣

y2

y1

∣

∣

∣

∣

z2

z1

)

μz . (3)

In (2) and (3) G is the gravitational constant, r is the distance
between the computation point P and the respective corner of

the prism, x1, x2, y1, y2, z1 and z2 define the prism in a rect-
angular coordinate system the origin of which is shifted to the
computation point, and its axes are parallel to the respective
edges of the prism and u is the primitive function of 1/r over
the integration domain [x1, x2] × [y1, y2] × [z1, z2] (Nagy
et al. 2000). Obviously (3) gives the error contribution of a
single prism, not that of the whole model. It is defined by:

σ 2
gz

=
(

μgz

)2
1 +

(

μgz

)2
2 + · · · +

(

μgz

)2
i
+ · · · +

(

μgz

)2
N

, (4)

where N is the number of prisms. But if P is just above a spe-
cific prism, located on its vertical axis where (∂gz/∂z)|z=const
has a local maximum, the computation of μgz is a kind of
minimum estimation due to the omission of the contribution
of other prisms.

Computing (3) for different μz values (0–10 m) and for
variable heights (80–1000 m) simulating real situations refer-
ring to the reliability of available DTM-s (Table 1) and
topographic heights of Hungary (Papp and Kalmár 1996),
respectively, one can see from Fig. 3 how the minimum
estimation is influenced by μz and z2 when z1 = 0 m,
x2 − x1 = y2 − y1 = 30 m and ρtopo = 2670 kg/m3. In the
height range investigated no influence of z2 can be detected
and μgz is a strongly linear function of μz . One should notice
that (3) is formally identical with the Bouguer plate effect:

δgB = 2πGρtopo Htopo =
∂g

∂ H
Htopo

= 0.1119Htopo

[

mGal

m

]

[m] (5)

where ρtopo = 2670 kg/m3 and 1 mGal = 10−5 m/s2. So if
Htopo is substituted by μz in (5) then (3) can be well approx-
imated by (5) indicating that there is not much difference
between the Bouguer plate effect and the exact solution given
by (3) when μz ≤ 10 m, x2 − x1 = y2 − y1 = 30 m and the
computation point is on the vertical axis of symmetry of the
prism.

Taking the MAD values from Table 1 as the best esti-
mations of μz the error of the vertical component of the
gradU cannot be less than 0.1 mGal regarding the horizontal
variation of surface mass density (1900 kg/m 3 ≤ ρtopo ≤

2900 kg/ m3) on the area of Hungary indicated by geologi-
cal maps2 (Fig. 4). This result is in a good accordance with
the case studies published by Papp et al. (2009) and Papp and
Szűcs (2011).

2 The map in Fig. 4 was digitized by Kata Tolnay, a young Hungarian
geologist who was missed during a rock avalanche in the Himalaya
near to the peak Ren Zhong Feng together with her three companions
in 2009.
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Fig. 3 The error of gz generated by a single 30 m × 30 m × z2 prism in a point located on its vertical axis of symmetry at heights of 0.01 m (a)
and 0.50 m (b) above z2 as a function of topographic height z2 and its error μz . Contour interval is 0.1 mGal
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3.3.2 Case of polyhedron

The analytical formulae of the first and second derivatives of
the gravitational potential generated by a polyhedron volume
element are derived based on the paper of Pohánka (1998),
using notation analogous to that used by Holstein (2002a, b).
The following expressions were coded in Fortran for the anal-
ysis of error propagation:

gz =
∂U

∂z
= −Gρtopo

n
∑

i=1

ni,z

⎛

⎝

l(i)
∑

j=1

(

hi j Ci jε − ziε	i jε

)

⎞

⎠

(6)

∂gz

∂z
=

∂2U

∂z2

= Gρtopo

n
∑

i=1

ni,z

l(i)
∑

j=1

(

νi j,zCi jε − ni,zsign(hi )	i jε

)

(7)
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The definition of Ci jε, 	i jε functions is:

Ci jε = Ci jε

(

l1i j , l2i j , hi j , hi , ε
)

= sign
(

l2i j

)

× · ln
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∣
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)
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∣
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∣

∣

Wi jε

)

	i jε = 	i jε

(

l1i j , l2i j , hi j , zi , ε
)

= 2 tan−1 2hi j li j
(

Ti jε + li j

)

·
∣

∣Ti jε − li j

∣

∣ + 2Ti jεziε

(8)

where

ziε = zi + ε, Wi jε =
√

h2
i j + z2

ε
, Qi jε =

√

l2
1i j + W 2

i jε,

Vi jε =
√

l2
2i j + W 2

i jε, Ti jε = Qi jε + Vi jε

li j = ai j+1 − ai j , li j =
∣

∣ai j+1 − ai j

∣

∣ ,

µi j =
ai j+1 − ai j
∣

∣ai j+1 − ai j

∣

∣

,

ni =
(

ni,x , ni,y, ni,z

)

=
li1 × li2

|li1 × li2|
,

νi j =
(

νi j,x , νi j,y, νi j,z

)

= µi j × ni ,

r1i j = ai j − rM , r2i j = ai j+1 − rM ,

l1i j = r1i j · µi j , hi j = r1i j · νi j

zi = |hi | =
∣

∣r1i j · ni

∣

∣ , l2i j = l1i j + li j . (9)

The number of polyhedron faces is denoted by n, l (i) is the
number of the vertex of i th face, i is the face index, and j is
the index of vertices, (e1, e2, e3) are the unit vectors of the
input coordinate system. The normal vector of the i th face is
ni , µi, j is unit vector belonging to the j th edge (connecting
the j and j + 1 vertices, where the direction defined by the
j, j + 1, j + 2, . . . points is counter clockwise) of the i th
face, νi, j is the cross-product of these two unit vectors so that
(

µi, j , ni , νi, j

)

is a right-handed system belonging to the j th

vertex (Fig. 5). ε is an arbitrarily small (e.g. 10−25) constant
applied to avoid numerical singularities.

The test polyhedron volume element used for the compu-
tation of μgz was derived from a prism by halving it vertically
along two opposite vertical edges. However, in Eq. (3) the
second vertical derivative ∂gz/∂z of gravitational potential
was replaced by (7). The error μgz determined by the height
error (μz) was investigated in terms of inclination angle α

of the top face (Fig. 6). For each α the maximum value was
selected from the derivatives computed at 28 points evenly
distributed above the triangular top face of the polyhedron
at a height of 0.5 m. This height was measured along the
vertical lines connecting the computation points and their
vertical projections on the top face. The height z2 of the test

.

.

i , j

i
i , j

i , j

.P( 0 , 0 , 0 )

z

x

y

n

a

l i, j

j

j+1

Fig. 5 The illustration of vector quantities used in formula (9)

polyhedron was 100 m for α = 0◦, and this value was fixed
for all α as Fig. 6 shows. Consequently z2 was the height
of the rotation axis AA′ in horizontal position around which
the top face of the test polyhedron was tilted incrementally.
Actually AA′ is identical with the axis of symmetry of the
top face which is a right isosceles triangle in this case.

It can be clearly seen from Figs. 3 and 6 that the maximum
errors of gz generated by a prism and a polyhedron (even
if the mass of the latter is just half of the former) at the
same computation point are nearly identical and both agree
well with the Bouguer plate effect for 0◦ ≤ α ≤ 10◦. It is,
however, interesting that theμgz for a givenμz is significantly
decreasing as α is increasing so formally the same DTM error
generates smaller error of gz in case of a steep terrain than
in case of a flat terrain. But this tendency, indicated by the
contour lines in Fig. 6, dominates in the very rare situation
of extremely rugged topography (Ramsayer 1963; Levallois
1964). As it was shown in the subsections above the height
errors of the recent high-resolution DTMs are still in the
order of a few metres, so eventually not less than a few tenth
of mGal uncertainty of the gravitational effect gz computed
from them can be expected.

Consequently a “blind” application of the dynamic gener-
alization does not provide physically significant short-wave
signal content at P necessarily, but it certainly produces
noise. Moreover the input model is not the same for all the
computation points (i.e. the model is slowly changing as the
computation point moves from one place to the next one), so
it is also a usually unknown and probably terrain-dependent
error source among the uncertainties. In the static approach
described in Sect. 4 only one model is derived from the input
data taking into account the reliability of them. This is usu-
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Fig. 6 a Polyhedron volume element with triangular top and bottom
faces. The triangular face of the top of the polyhedron is tilted with
angle α ∈ {0◦, 5◦, 10◦, . . . , 60◦} along the median AA′ of the triangle.
b The contour map of the error of gz generated by a polyhedron with

30 m×30 m × 100 m dimensions as a function of the tilt of the top face
α and the height error (μz). μgz is computed at the height of 0.5 m above
the top triangular face. Contour interval is 0.05 mGal

ally not so effective in terms of computation speed but much
more self-consistent.

3.4 Estimation of the geometrical discretization error

using a high-resolution DTM

In this section the statistics of differences between gravita-
tional fields (gz) generated by prism- and polyhedron-based
representations of a subset of the available highest resolution
(10 m×10 m) DTM of Hungary (HU-DTM10) was investi-
gated numerically using Eqs. (2) and (6), respectively. The
selected area is a small region with a horizontal extension of
6.99 km×6.99 km where the topographic surface is defined
by 700×700 = 490,000 grid points. It is located on the north-
ern part of the Great Hungarian Plain (Fig. 7) and is defined
by the geographical coordinates 19◦40′32′′ ≤ λ ≤ 19◦46′8′′

and 47◦17′59′′ ≤ ϕ ≤ 47◦21′44′′. A constant density value
of 2.67 g/cm3 was used to scale the gravitational effect of
topographic masses.

The prism model is composed of 490,000 elementary
volume elements with 10 m × 10 m horizontal extension,
whereas the heights of the prisms were defined by the respec-

tive grid points. It covers an area of 6.995 km × 6.995 km
since one grid point represents one prism.

The polyhedron model is composed of nearly 1 million
elementary volume elements defined by three neighbouring
grid points of HU-DTM10 forming a flat triangle on the
z = 0 plane (bottom triangle) and a tilted triangle defined
by the heights of the respective grid points on the topo-
graphic surface (top triangle). Since it covers an area of
6.99 km × 6.99 km there is a systematic volumetric dif-
ference near to the edges of the models which must be
considered in the comparison of calculation results.

The effect of the geometrical discretization error of the
DTM on gz can be analysed by the statistics of the differ-
ence �gz = (gz)ph − (gz)pr, where (gz)ph and (gz)pr are the
vertical gravitational attractions generated by polyhedrons
and prisms, respectively (Fig. 8). The data were computed
in 128×128 grid points. The height of a grid point HP was
determined by the continuous surface formed by the join-
ing top faces of the polyhedrons so that the vertical distance
ΔHP = P P ′(see Fig. 9) was always 0.5 m, regardless of the
horizontal location of the respective grid point defined by
xP , yP :
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Fig. 7 The grey-shaded relief map of the test area in the northern part
of the Great Hungarian Plain drawn from HU-DTM10. The coordinates
are given in the local planar geodetic projection system (central EOV)
of Hungary. The contour interval is 5 m. The statistics of height values
in grid points: Hmean = 120.65 m, SDH = ±16.86 m, Hmin = 101 m,
Hmax = 175 m

HP = HP ′ + 0.5 [m] = zph
(

P ′
)

+ 0.5 [m]

= zph (xP , yP ) + 0.5 [m] , (10)

where P ′ is the vertical projection point of P on the top face
of the polyhedron and zph (xP , yP ) is the actual height of
the (generally tilted) top face at xP , yP . The same grid with
HP ′ grid point heights was applied for the calculations of
(gz)pr.

Due to the edge effect mentioned above the data in a
0.4-km-wide band around the models were omitted from
the calculations of statistics. The mean of �gz difference
is -0.001 mGal, the standard deviation is ±0.002 mGal, and
the maximum deviation is about 0.060 mGal (Fig. 8). So the
geometrical discretization error is negligible in most cases of
practical applications (e.g. gravity reductions) if the terrain is
as flat as in this example. The variation of the �gz difference
was also investigated as a function of the deviation between
the two surfaces defined by the top faces of polyhedron- and
prism-based models:
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Fig. 8 a The difference �gz = (gz)ph − (gz)pr of the first vertical
derivatives of gravitational potentials (gz)ph and (gz)pr computed from
the elementary models built from polyhedrons and prisms, respectively.
Both models were generated from a subset of HU-DTM10 having a
horizontal extension of 6.99 km×6.99 km and 10 m×10 m horizontal
resolution. The relative distance (i.e. the height difference) between
the computation points (P) and their vertical projection points on the
top faces of the polyhedron volume elements (P ′) was 0.5 m. The grid

defined by this way was applied for the calculation of the effect of prism-
based model too. The constant value of 2.67 g/cm3 was used to scale the
gravitational effect of topographic masses. b The variation of �gz dif-
ferences as a function of the height differences �HM = zph

(

P ′
)

−zpr of
the top surfaces of the two elementary models and the relevant statistics.
The grey stripe shows −0.7 m ≤ ΔHM ≤ 0.7 m range of differences
where �gz is nearly zero
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Fig. 9 The scheme of the three typical set-up of the computation point
(P) related to the top of the prism and polyhedron. The computa-
tion point (P) is at 0.5 m above the surface of polyhedron model (i.e.
PP′ = 0.5 m) so zP = zph

(

P ′
)

+0.5. a The computation point is inside
the prism where �HM = zph −zpr < −0.7 m. b The computation point

is near to both of the top faces where −0.7 m < �HM < 0.7 m. c The
computation point is above both of the volume elements, but it is located
closer to the top face of the polyhedron than that of the prism where
�HM < 0.7 m. The grey stripe shows −0.7 m < �HM < 0.7 m range
of differences where �gz is nearly zero (Fig. 8)

�HM = zph
(

P ′
)

− zpr (xP , yP ) . (11)

Figure 8 shows that �gz data concentrated mainly in the
range −0.7 m ≤ ΔHM ≤ 0.7 m are nearly zero or slightly
negative, whereas �gz is positive outside of it regardless of
the sign of �HM . This interesting attribute of �gz can be
explained if the relative position between the location of the
computation point and the heights of both the prisms and
polyhedron top faces is analysed in three classified groups
(Fig. 9). If �HM < −0.7 m (Fig. 9a) then the computation
point is situated inside the prism and outside the polyhe-
dron since P P ′ was 0.5 m. The mass of the prism located
directly above P diminishes (gz)pr, so �gz > 0 dominantly.
If −0.7 m ≤ ΔHM ≤ 0.7 m (Fig. 9b) then the gravita-
tional effect of the two volume elements will be nearly the
same, so �gz ≈ 0 or slightly negative according to the
well-known characteristics of the gravimetric terrain cor-
rection. One should recall that the difference between the
gravitational effect of the real terrain and a Bouguer plate is
always negative if P is located on the topographic surface.
In this simplified model (Fig. 9b) the prism and the polyhe-
dron play the role of the Bouguer plate and the real terrain,
respectively. If �HM > 0.7 m, then P is farer from the top
face of the prism than from that of the polyhedron. Con-
sequently (gz)ph > (gz)pr. One should note that the range
limits (defined by eye and displayed as light grey stripes in
Figs. 8 and 9) used above to separate typical cases are strongly
dependent from the value of P P ′ and probably the locations

of the sampling test points have also some slight effect on
the statistics.

4 Detailed descriptions of the proposed static
generalization techniques

The input grid of GBA algorithm must contain
(

2N + 1
)

×
(

2N + 1
)

points where N is an integer. One should note that
it is the weakest point of the algorithm since this require-
ment increases the necessary allocated memory with dummy
matrix elements. Obviously a generalization of GBA for
(

2N + 1
)

×
(

2M + 1
)

nodes (where N �= M) may diminish
this problem if the data grid has no square envelope.

In the first step the extended model is divided into
quadratic blocks with dimension of 2 so any block contains
2×2 grid cells i.e. 3×3 grid points. In case of each block
of this level of evaluation (i.e. first level of evaluation) the
co-planarity of the nine facets belonging to a certain block is
checked and block value 1 or 0 is assigned in confirmed case
or otherwise, respectively. Co-planarity is fulfilled if

∣

∣

∣
H j − Ĥ j

∣

∣

∣
< δH ( j = 1, . . . , L) (12)

holds for every j . L is the number of grid points in the
block investigated, H j and Ĥ j are the height of the j th grid
point and the height of the plane fitted over the block at
this point, respectively. Consequently the number of blocks

123



Generalization techniques to reduce the number of volume elements for terrain effect… 371

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

0 1 1 1

0 1 1 1

1 1

0 1
A4=[0]A1= A3=A2=

A 1(1,1)

A 2(1,1)

A3(1,1)

A 4(1,1)

A 1(1,2)

A 2(1,2)

A3(1,2)

A 1(1,3)

A 2(1,3)

A3(2,1)

...

A 2(1,4)

A3(2,2)

A 1(1,8) A 1(2,1) A 1(2,2)

1 1 1

A 2(2,1) A 2(2,2) A 2(2,3)

...

A 2(2,4)

A1(2,8) A1(3,1) ...

1 1 1

A 2(3,1) A2(4,4)

level1

level2

level3

level4

1

1

1

0

1

1

1

1

1

0

1

1

1 1 1 1 1 1

A 1(8,8)

...

C=

3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
1 1 2 2 3 3 3 3
1 1 2 2 3 3 3 3
0 1 2 2 3 3 3 3
1 1 2 2 3 3 3 3

(a)

(b)

(c)

Fig. 10 Explanation of the processing of a grid containing 17 × 17
points (N = 4). a The structure of the block systems at different levels
of the evaluation process of the grid and their hierarchical connection.
b The hierarchy defined by the connectivity relation between the blocks
determined at different levels. The first level contains 8×8 block values
(0 or 1) defining the A1 matrix. At this level each block represents 3×3

grid points. The second level contains 4×4 block values defining the A2

matrix, the third level contains 2 × 2 block values defining A3, and the
last level contains 1×1 block defining A4. c C(k, l) matrix elements
are the integrated connectivity indices. The mesh drawn in grey colour
shows the processed grid

in the first, second, … and the N th level is 2N−1 × 2N−1,
2N−2 × 2N−2, … and one, respectively. The block values of
the i th level define the Ai square matrix of order 2i−1 with
0 and 1 elements (Fig. 10). These elements determine a kind
of connectivity relation existing between the corresponding
blocks of levels i and i − 1. If its value, i.e. the connectivity
index, is 1 then the grid points represented by the four cor-
responding blocks (i.e. a square submatrix of Ai−1) of the
preceding level i − 1 are co-planar.

In case of N = 4, the number of grid points is 17×17.
This grid defines 16×16 blocks (grid cells) defined by 2 ×

2 grid points (Fig. 10). After the first turn of evaluation of
co-planarity the first level contains 8×8 = 64 = 43 blocks and
each block represents 3×3 grid points of the original grid.
In the second and the further turns the second level contains
4 × 4 = 16 = 42 blocks representing 5 × 5 grid points, the
third level contains 2×2 = 4 = 41 blocks representing 9×9
grid points, and the last level contains 1 × 1 = 1 = 40 block
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Fig. 11 a The block system of the GBA with the fixed corner points (black dots) and the reference planes defined for the investigation of co-
planarity. b The final triangles fixed to the corner points and the new point B ′ (white dot) interpolated along facet AC . GBA grid-based algorithm

representing the initial 17 × 17 grid points, respectively. In
a specific case when the block value of the last level (i = 4)
is 1 then all the 17 × 17 evaluated grid points define a plane
fulfilling (12). At any level the occurrence of a block having 0
value means that the grid points belonging to the four adjacent
blocks defined by the previous level do not satisfy (12) above
the domain determined by them.

An integrated connectivity index c(c ≤ N ) can be derived
for each block of level 1 by summing up the connec-
tivity indices determined for the consecutive levels (i =

1, . . . , N ). Its value is proportional to the number of grid
points (2c + 1)2 satisfying co-planarity relation (12) on a
specific quadratic subset of the original grid. The hierarchy of
the levels and the rigorous quad-tree structure implemented
by the evaluation algorithm ensure that the position and
dimension of c can be unambiguously identified. The prop-
erly ordered integrated connectivity indices define matrix C

(Fig. 10) of order 2N−1. Figure 10b shows an example for
c = C(1, 1) = 1 + 1 + 1 + 0 = 3.

If any element of C is zero then the four corresponding
elementary square faces defined by 3×3 grid points on level
1 cannot be merged to one surface element without violating
(12). In this case eight triangular faces (right isosceles tri-
angles) are formed, which define eight polyhedron volume
elements having constant densities in the output volumetric
model.

Depending on the value of c (c > 0) 4c elementary grid
cells can be merged to one larger block so that (12) is satisfied
for all of the corresponding (2c + 1)2 grid points. Eventually
all the square blocks fixed at any level are divided into two
triangles forming the upper planes of the corresponding poly-
hedrons. These two triangles are defined by the four corner
points of the specific block regardless of its level.

It is obvious from the scheme above that the co-planarity
of the grid points in any single square-shaped block is inves-

tigated independently from its neighbours since the vicinity
relation is defined by a rigorous quad-tree structure fixed to
the grid geometry of input data. So this method cannot auto-
matically provide a continuous joining of the facets of tilted
planes defined by block corners. Consequently, a final cor-
rection is needed to provide continuity (i.e. stepless joining of
the neighbour triangles having usually different dimensions)
of the optimized surface (Fig. 11). This correction process
starts at the highest block level (i.e. at squares of largest
size) containing nonzero element (Fig. 10). The heights of
the four corner points of a square block considered are fixed
to their original value. The heights of the grid points along
the block boundaries (facets) are, however, adjusted to those
defined by the equations of the specific facets (applying lin-
ear interpolation), so when neighbour blocks at lower level
are considered, their corner points, if those are aligned on a
joining block facet, inherit the new interpolated height. This
process is repeated from level to level resulting in a set of
blocks of varying size.

Eventually all the square blocks at any level are divided
into two triangles representing the upper planes of the two
corresponding polyhedrons.

The TBA investigates co-planarity in the closest vicinity of
the specific point P (where the height HP is known) defined
by the so-called Dirichlet cell the central point of which is
P itself. For this a least-squares height interpolation is done
at P from its Dirichlet neighbours by calculating the normal
vectors of the triangles connecting the neighbours with P

(Kalmár et al. 1995). The variation of HP obviously changes
the tilts of the corresponding triangles, the common vertex
of which is P itself. Therefore a suitable ĤP can be found
where the squared sum of the deviations of the normal vectors

from their average gives a minimum. If
∣

∣

∣
HP − ĤP

∣

∣

∣
< δH

holds then P is flagged and the process can be repeated on all
the Dirichlet cells formed by tessellation on the whole set of
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Fig. 12 The optimized models created by the two algorithms and represented as triangular meshes in case of a δH = 1 m, b δH = 0.5 m and
c δH = 0.1 m thresholds. TBA triangle-based algorithm, GBA grid-based algorithm
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Table 2 The comparison of the
efficiency of the two algorithms

Threshold δH [m] Computational time Noptimized and the rate of reduction

TBA GBA TBA GBA

1 ∼10 h 180 s 6740 (99.3%) 13,460 (98.6%)

0.5 ∼54 h 17 m 17,804 (98.2%) 35,246 (96.4%)

0.1 ∼25 d 50 h 99,503 (89.8%) 21,2290 (78.4%)

The number of initial elementary volume elements is 980,000. Rate of reduction = 100 ·
(

1 − Noptimized/Nelementary
)

. The times refer to an HP A500 platform operated by a PA-8500 RISK processor.
TBA triangle-based algorithm, GBA grid-based algorithm

Table 3 The statistics of the
residual heights are given in m
unit

Method δH threshold

1 m 0.5 m

Min Max Mean SD MAD Min Max Mean SD MAD

GBA −2.21 2.12 0.00 0.36 0.28 −1.17 1.15 0.00 0.19 0.14

TBA −1.00 1.00 0.01 0.31 0.24 −3.43 1.16 0.00 0.19 0.14

SD standard deviation, MAD mean absolute deviation, TBA triangle-based algorithm, GBA grid-based algo-
rithm

irregularly distributed points. The flagged points are skipped
from the set of points being investigated in the next loop until
no more points can be flagged. Obviously before each and
every loop of co-planarity investigation a new tessellation
has to be done. The final triangulation defines a continuous
tessellated surface composed by general triangles which can
straightforwardly be used to form polyhedrons.

5 Local and regional case studies for static
generalization

The effect of generalization (or optimization) can be studied
with respect to heights and gravitation. In the first case the
original grid point values (topographic elevations) are com-
pared to those heights which are determined by the surface of
joining triangular faces provided by the generalization pro-
cess. In the second case gravitational effects (Eqs. 6 and 7)
of the optimized model are calculated and compared to those
computed from the elementary polyhedral volumetric model
serving as input for generalization. Both aspects were con-
sidered and discussed in details in the next paragraphs.

The description of the local, high-resolution DTM data
used to demonstrate the capabilities of the proposed static
methods can be found in Sect. 3.4. The optimized volumetric
models of the topography were created by the two algorithms
described in Sect. 4 using three different threshold values
(Fig. 12). The efficiency of the algorithms can be classified
by (1) the reduction factor of the model elements and by (2)
the computational time (Table 2). The overall geometrical
correctness of the process can be checked by the statistics of

�H = Hgrid − Hoptimized (13)

difference which is the deviation between the surface topog-
raphy described by the original grid points and the surface
generated by the presented algorithms. It was determined in
all the 490,000 grid points of the model and analysed sta-
tistically (Table 3) in case of δH = 1 m and δH = 0.5 m
thresholds (Figs. 13, 14) in accordance with the MAD statis-
tics of DTM errors given in Table 1.

One should note that the maximum and minimum values
of �H differences are somewhat larger than the predefined
δH for both methods (Table 3). The reason of the outliers,
however, is different.

For GBA two sources of accuracy degradation exist.
Although condition (12) is strictly considered during the
examination of the co-planarity of points located in the indi-
vidual blocks, when the block corners are fixed, then their
original height is kept. Even if this is a violation of (12) when
a square block is finally divided into two triangles the regres-
sion plane defined virtually on it is substituted by two joining
triangular faces (Fig. 11). And if there is a small (i.e. not
“seen” by Eq. 12) but systematic change of slope on the area
of the block considered then two surface elements may give a
better approximation than one diminishing the unfavourable
effect of this simplification eventually. The other source is
the last step i.e. the fitting of the edges of the final triangles
providing continuous surface approximation. It adjusts the
heights of the corner points of lower level (smaller) blocks
based on the original DTM heights given in the largest block
corners along the joining edges as it is shown in Fig. 11.

For TBA the gross errors come from the combination of
the method of co-planarity investigation and the reprocessing
of the set of points updated by thinning/decimation in each
loop. As it is detailed already the co-planarity is checked very
locally (from one Dirichlet cell to the next one) and if a point
(i.e. the centre of a specific cell) can be skipped from the
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Fig. 13 Histograms of �H height differences for a δH = 1 m and b δH = 0.5 m thresholds. Left column: GBA, right column: TBA. TBA

triangle-based algorithm, GBA grid-based algorithm

full set of points it means a loss of information in the next
loop when the same process is repeated on the Dirichlet cells
regenerated from the remaining points around it. This way
the domain of evaluation is enlarged (if possible) from loop to
loop but more or less the same number of data forming larger
and larger Dirichlet cells is used as the process advances.

The histograms in Fig. 13, however, indicate that the num-
ber of �H values greater than threshold δH is very small and
those are negligible considering the overall accuracy of the
optimized models. The dispersions regardless of their esti-
mation method are well below δH , and the mean values of the
residual heights indicate no systematic distortions (Table 3).

To see the influence of generalization on the computed
gravity-related parameters both gz = ∂U/∂z (Fig. 15) and
∂gz/∂z = ∂2U/∂z2 (Fig. 16) were computed in 128 × 116
grid points at 0.5 m height above either the initial ele-

mentary or the GBA-optimized models. The statistics of
the residuals of first vertical derivatives of the potential
(

�gz = (gz)elementary − (gz)GBA

)

show that the difference
between the models has a very small influence on the grav-
itational acceleration and even the extrema of �gz hardly
reach ± 0.1 mGal value (Table 4).

In case of the second derivatives (gravity gradients)
the range of residual (�(∂gz/∂z) = (∂gz/∂z)elementar y −

(∂gz/∂z)GBA) is quite large (Table 4). It is well known both
from field practice (e.g. Völgyesi 2012) and from simulation
studies (e.g. Papp and Szűcs 2011) that gravity gradients are
very sensitive for terrain variability as small as a few decime-
tres in the close vicinity (≤10 m) of the point of observation
or computation, respectively. So it is expected that for local
modelling of the gravity gradients when the computation
point is close to the topographic surface, even a volume ele-
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Fig. 14 The grey-shaded maps of the �H differences for the GBA (left column) and TBA (right column) solutions using a δH = 1 m and
b δH = 0.5 m thresholds. TBA triangle-based algorithm, GBA grid-based algorithm

ment model based on a 10 m×10 m grid is not sufficient. The
histograms (Fig. 16), however, indicate a significant concen-
tration (≥ 50%) of data in a ±5 E (1 Eötvös unit = 10−9 s−2)

interval around zero mean value for both threshold param-
eters, and the numbers of residuals having a value larger or
smaller than ± 3σ are less than 2%. The formally computed
standard deviations (SD) are certainly underestimations of
the real dispersions because χ

2 tests fail for H0: normal dis-
tribution. MAD values are tendentiously and significantly
smaller, ±8.5 E and ±6.7 E for δH = 1 m and δH = 0.5 m
thresholds, respectively.

GBA can be easily generalized for the application in a
global rectangular coordinate system. As an example the
regional model of the Moho interface of the European plate
(Grad and Tiira 2009) given in WGS84 with 0.1◦(∼ 11 km)

horizontal resolution was processed by GBA. The initial
model (i.e. the 0.1◦ × 0.1◦ grid of Moho depths) contains
301,602 elementary polyhedrons. The generalized model
computed with very optimistic (i.e. overestimated in the
sense of accuracy) 100-m threshold consists of 29,442 poly-
hedrons, which means a 90% rate of reduction (Fig. 17).
It indicates that the variability (defined by e.g. the average
height change per distance unit) of the Moho surface is very
low.

The second application is a counterexample. It considers
the topography of Central-East Europe (Fig. 18). The spe-
cific subset of ETOPO1 model (Amante and Eakins 2009)
with 0.033◦(∼ 3.7 km) degraded horizontal resolution leads
to an initial model consisting of 638,684 elementary poly-
hedrons defined in a global geocentric Cartesian coordinate
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Fig. 15 The differences of the first derivatives of potential �gz =

(gz)elementary − (gz)GBA generated by the elementary model and the
model derived by GBA with a δH = 1 m and b δH = 0.5 m thresh-

olds computed in 128 × 116 grid points at 0.5 m above the models.
1 mGal = 10−5 m/s2. GBA grid-based algorithm
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Table 4 The statistics of
residual first (�gz) and second
derivatives (�(∂gz/∂z))

obtained as differences between
the gravitational effect of the
elementary and optimized
(GBA) volume element models

Parameter Threshold

1 m 0.5 m

Min Max Mean SD Min Max Mean SD

�gz − 0.129 0.121 − 0.001 0.027 − 0.071 0.063 0.000 0.014

�(∂gz/∂z) − 224.5 190.0 − 0.2 14.6 − 121.8 128.3 − 0.1 11.3

�gz and �(∂gz/∂z) are given in mGal unit (10−5 m/s2) and Eötvös unit (10−9 s−2), respectively. The number
of data is 14,848
GBA grid-based algorithm, SD standard deviation
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Fig. 17 a The colour shaded depth map of Moho of the European plate (Grad and Tiira 2009), b GBA-generated model. Coordinates are given in
arc degrees. The dashed white line shows the state border of Hungary. GBA grid-based algorithm

system connected to WGS84 system. In order to check the
correctness of the result of elementary volume element model
generation by applying polyhedrons the volumes of all the
elements were computed from the respective Cartesian coor-
dinates. If the respective element represents a topographic
mass column it has a positive volume, and when it represents
a water mass column (bathymetry) it has a negative volume.
These volumes were ordered to the grid points of the initial
model and finally plotted in Fig. 18. From this elementary
model GBA produces 323,424 and 288,244 volume elements
applying 15 and 20-m thresholds, respectively. The low rate
of reduction (only about 50%) is in a good accordance with
the low horizontal resolution of the degraded ETOPO1 which
means strong height averaging in a grid cell obviously. So the
relation between the model resolution and the variability of
the surface to be approximated has a significant influence on
the efficiency of generalization.

6 Conclusions and future applications

Currently available high-resolution digital elevation models
permit computations of terrain-related gravitational param-

eters with an unprecedented accuracy. It is ± 0.1 mGal
(10−6 m/s2) and ±10 E unit (10−8 s−2) in terms of the first
and second derivatives of the gravitational potential, respec-
tively. These grid models, however, mean a huge number of
elementary polyhedron volume elements (even ∼100 mil-
lion polyhedrons in case of a country as small as Hungary)
the computation of the gravitational effect of which is a real
challenge when fully analytical solution is preferred. If the
characteristic number, i.e. the number of volume elements
times the number of computational points, is around 1012

the runtime may take a few months on a single proces-
sor (core) designed for general IT purposes. The proposed
and presented static generalization techniques, however, may
reduce the number of volume elements efficiently by a factor
of 5–10 if the known/estimated accuracy of the terrain data
is interpreted as a threshold parameter. In the range of the
threshold all the possible realizations of the real topography
may give statistically equivalent results in gravitational for-
ward modelling. In these contexts the presented examples
and the results of their statistical evaluations are in a good
accordance with the accuracy estimations obtained from the
simplified application of the error propagation law demon-
strated in this paper.

123



Generalization techniques to reduce the number of volume elements for terrain effect… 379

10˚

10˚

12˚

12˚

14˚

14˚

16˚

16˚

18˚

18˚

20˚

20˚

22˚

22˚

24˚

24˚

26˚

26˚

28˚

28˚

30˚

30˚

40˚ 40˚

42˚ 42˚

44˚ 44˚

46˚ 46˚

48˚ 48˚

50˚ 50˚

52˚ 52˚

54˚ 54˚

-20

-16

-12

-8

-4

0

4

8

12

km3

16˚

16˚

20˚

20˚

24˚

24˚

44˚ 44˚

48˚ 48˚

(a) (b)

Fig. 18 a The colour shaded volumetric map of the topography of
Central-East Europe based on ETOPO1 model. Volumes are computed
from elementary polyhedron model so those are nearly linear func-
tions of height. Positive and negative volumes mean topography and
bathymetry, respectively. The black line shows the location of those

volume elements the volume of which is nearly zero i.e. those are at
the coast line. b The triangular mesh of the upper faces of the polyhe-
dron system derived by GBA in and around the Pannonian basin. GBA

grid-based algorithm

The detailed analysis of the methods and the results
provided by them recovered those points where further devel-
opments are possible. In GBA a generalization of the method
by changing the initial grid for a 2N × 2M nodes is possi-
ble which may reduce the required memory allocation. Also a
more sophisticated calculation can be applied to fix the corner
points of the blocks created at any level of the optimization
process to the reference planes used for the investigation of
co-planarity of points of the block considered. The method of
the final division of the block into two triangles, the solution
of which is not unique, can be developed by investigating the
statistics of the fit between block points and the faces defined
by the triangles joining along one diagonal of the block or
the other. Moreover the algorithm can be easily parallelized
for multiprocessor/core systems.

TBA can also be developed methodologically if the
flagged centre points of the Dirichlet cells tessellated in a
loop are reused in the next loop to make a triangular mesh
of points inside the new (usually larger) cells, and height
interpolation to its central point is done from all the triangles
defined by both flagged and un-flagged points. The runtime
required for such a process probably does not make its appli-
cation possible for large number of points (> 106) and low
threshold (< 1 m).

The efficiency of the methods can be evaluated by the
GGMplus model (Hirt et al. 2013) providing data of Earth’s
gravity at 200-m grid resolution with near-global coverage.
By the application of the proposed generalization technique

the agreement between gravity data synthetically computed
from the local model HU-DTM30 and GGMplus gravity can
be analysed up to the ultra-high-frequency components pro-
vided by SRTM3 global elevation model for GGMplus. If
the discrepancy is not significant the use of SRTM3 surface
model instead of HU-DTM30 in the geodetic computations
can also be feasible, but at the same time it reduces the
computational time by a factor of 10 due to the resolution
differences. In this case even a global model can be applied
for local/regional modelling of the gravitational effect of the
topographic masses in the ALCAPA region. Otherwise the
merging of the local terrain model (HU-DTM30) and the
regional surface model (SRTM3) will be necessary to gen-
erate a suitable topographic model which can describe the
local gravity field with sufficient accuracy.
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