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Abstract

Humans can understand and produce new utter-

ances effortlessly, thanks to their compositional

skills. Once a person learns the meaning of a

new verb “dax,” he or she can immediately un-

derstand the meaning of “dax twice” or “sing and

dax.” In this paper, we introduce the SCAN do-

main, consisting of a set of simple compositional

navigation commands paired with the correspond-

ing action sequences. We then test the zero-shot

generalization capabilities of a variety of recur-

rent neural networks (RNNs) trained on SCAN

with sequence-to-sequence methods. We find that

RNNs can make successful zero-shot generaliza-

tions when the differences between training and

test commands are small, so that they can ap-

ply “mix-and-match” strategies to solve the task.

However, when generalization requires system-

atic compositional skills (as in the “dax” example

above), RNNs fail spectacularly. We conclude

with a proof-of-concept experiment in neural ma-

chine translation, suggesting that lack of system-

aticity might be partially responsible for neural

networks’ notorious training data thirst.

1. Introduction

Human language and thought are characterized by system-

atic compositionality, the algebraic capacity to understand

and produce a potentially infinite number of novel combina-

tions from known components (Chomsky, 1957; Montague,

1970). For example, if a person knows the meaning and

usage of words such as “twice,” “and,” and “again,” once

she learns a new verb such as “to dax” she can immediately

understand or produce instructions such as “dax twice and
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then dax again.” This type of compositionality is central to

the human ability to make strong generalizations from very

limited data (Lake et al., 2017). In a set of influential and

controversial papers, Jerry Fodor and other researchers have

argued that neural networks are not plausible models of the

mind because they are associative devices that cannot cap-

ture systematic compositionality (Fodor & Pylyshyn, 1988;

Marcus, 1998; Fodor & Lepore, 2002; Marcus, 2003; Calvo

& Symons, 2014, a.o.).

In the last few years, neural network research has made

astounding progress in practical domains where success

depends on generalization. Perhaps most strikingly, end-to-

end recurrent neural networks currently dominate the state-

of-the-art in machine translation (Bojar et al., 2016; Wu

et al., 2016). Since the overwhelming majority of sentences

or even word sequences in a language only occur once,

even in a large corpus (Baroni, 2009), this points to strong

generalization abilities. Still, it is commonly observed that

neural networks are extremely sample inefficient, requiring

very large training sets, which suggests they may lack the

same algebraic compositionality that humans exploit, and

they might only be sensitive to broad patterns over lots of

accumulated statistics (Lake et al., 2017).

In this paper, we introduce a grounded navigation environ-

ment where the learner must translate commands given in a

limited form of natural language into a sequence of actions.

This problem is naturally framed as a sequence-to-sequence

task, and, due to its simplicity, it is ideal to study systematic

generalization to novel examples in a controlled setup. We

thus use it to test a wide range of modern recurrent network

architectures in terms of their compositional abilities. Our

results suggest that standard recurrent seq2seq architectures

generalize very well when novel examples feature a mix-

ture of constructions that have been observed in training.

However, the models are catastrophically affected by sys-

tematic differences between training and test sentences, of

the sort that would be trivial for an agent equipped with an

“algebraic mind” (Marcus, 2003).
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2. The SCAN tasks

We call our data set SCAN because it is a Simplified version

of the CommAI Navigation tasks (Mikolov et al., 2016).1

For a learner, the goal is to translate commands presented in

simplified natural language into a sequence of actions. Since

each command is unambiguously associated to a single ac-

tion sequence, SCAN (unlike the original CommAI tasks)

can be straightforwardly treated as a supervised sequence-

to-sequence semantic parsing task (Dong & Lapata, 2016;

Jia & Liang, 2016; Herzig & Berant, 2017), where the input

vocabulary is given by the set of words used in the com-

mands, and the output by the set of actions available to the

learner.

Several examples from SCAN are presented in Fig. 1. For-

mally, SCAN consists of all the commands generated by a

phrase-structure grammar (presented in Supplementary) and

the corresponding sequence of actions, produced according

to a semantic interpretation function (see Supplementary).

Intuitively, the SCAN grammar licenses commands denot-

ing primitive actions such as JUMP (denoted by “jump”;

Fig. 1), WALK (denoted by “walk”) and LTURN (denoted

by “turn left”). We will refer to these as primitive com-

mands.2 It also accepts a set of modifiers and conjunctions

that compositionally build expressions referring to action

sequences. The “left” and “right” modifiers take commands

denoting undirected primitive actions as input and return

commands denoting their directed counterparts (“jump left”;

Fig. 1). The “opposite” modifier produces an action se-

quence that turns the agent backward in the specified di-

rection before executing a target action (“jump opposite

left”), while “around” makes the agent execute the action

at each step while turning around in the specified direction

(“jump around right”; Fig. 1). The “twice/thrice” modifiers

trigger repetition of the command they take scope over, and

“and/after” combine two action sequences. Although the

SCAN examples in Fig. 1 focus on the “jump”/JUMP prim-

itive, each instance of JUMP can be replaced with either

WALK, RUN, or LOOK to generate yet more commands.

Many more combinations are possible as licensed by the

grammar. The input vocabulary includes 13 words, the

output 6 actions.

The SCAN grammar, lacking recursion, generates a finite

but large set of unambiguous commands (20,910, to be

precise). Commands can be decoded compositionally by

applying the corresponding interpretation function. This

means that, if it discovers the right interpretation function,

1SCAN available at: https://github.com/

brendenlake/SCAN
2Introducing the primitive turning actions LTURN and

RTURN considerably simplifies the interpretation function, com-
pared to capturing orientation by specifying arguments to the move-
ment actions (e.g., JUMP[L], JUMP[R]).

a learner can understand commands it has not seen during

training. For example, the learner might have only observed

the primitive “jump” command during training, but if it has

learned the meaning of “after”, “twice” and “around left”

from other verbs, it should be able to decode, zero-shot, the

complex command: “jump around left after jump twice”.

3. Models and setup

We approach SCAN through the successful sequence-to-

sequence (seq2seq) framework, in which two recurrent net-

works work together to learn a mapping between input se-

quences and output sequences (e.g., Sutskever et al., 2014).3

Fig. 2 illustrates the application of the seq2seq approach

to a SCAN example. First, a recurrent network encoder

receives the input sequence word-by-word, forming a low-

dimensional representation of the entire command. Second,

the low-dimensional representation is passed to a recurrent

network decoder, which then generates the output sequence

action-by-action. The decoder’s output is compared with

the ground truth, and the backpropagation algorithm is used

to update the parameters of both the encoder and decoder.

Note that although the encoder and decoder share the same

network structure (e.g., number of layers and hidden units),

they do not otherwise share weights/parameters with each

other. More details regarding the encoder-decoder RNN are

provided in Supplementary.

Using the seq2seq framework, we tested a range of standard

recurrent neural network models from the literature: simple

recurrent networks (SRNs; Elman, 1990), long short-term

memory networks (LSTMs; Hochreiter & Schmidhuber,

1997), and gated recurrent units (GRUs; Chung et al., 2014).

Recurrent networks with attention have become increasingly

popular in the last few years, and thus we also tested each

network with and without an attentional mechanism, using

the model from Bahdanau et al. (2015) (see Supplemen-

tary for more details). Finally, to make the evaluations as

systematic as possible, a large-scale hyperparameter search

was conducted that varied the number of layers (1 or 2),

the number of hidden units per layer (25, 50, 100, 200, or

400), and the amount of dropout (0, 0.1, 0.5; applied to

recurrent layers and word embeddings). Varying these hy-

perparameters leads to 180 different network architectures,

all of which were run on each experiment and replicated 5

times each with different random initializations.4

In reporting the results, we focus on the overall-best ar-

chitecture as determined by the extensive hyperparameter

search. The winning architecture was a 2-layer LSTM with

3Very recently, convolutional seq2seq networks have reached
comparable or superior performance in machine translation
(Gehring et al., 2017). We will investigate them in future work.

4A small number of runs (23/3600) did not complete, and thus
not every network had 5 runs.

https://github.com/brendenlake/SCAN
https://github.com/brendenlake/SCAN
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jump ⇒ JUMP

jump left ⇒ LTURN JUMP

jump around right ⇒ RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP

turn left twice ⇒ LTURN LTURN

jump thrice ⇒ JUMP JUMP JUMP

jump opposite left and walk thrice ⇒ LTURN LTURN JUMP WALK WALK WALK

jump opposite left after walk around left ⇒ LTURN WALK LTURN WALK LTURN WALK LTURN WALK

LTURN LTURN JUMP

Figure 1. Examples of SCAN commands (left) and the corresponding action sequences (right).

jump

WALK

twice and walk <EOS>

JUMP JUMP

<SOS> JUMP JUMP WALK

<EOS>

Figure 2. The seq2seq framework is applied to SCAN. The sym-

bols <EOS> and <SOS> denote end-of-sentence and start-of-

sentence, respectively. The encoder (left) ends with the first

<EOS> symbol, and the decoder (right) begins with <SOS>.

200 hidden units per layer, no attention, and dropout

applied at the 0.5 level. Although the detailed analyses to

follow focus on this particular model, the top-performing ar-

chitecture for each experiment individually is also reported

and analyzed.

Networks were trained with the following specifications.

Training consisted of 100,000 trials, each presenting an

input/output sequence and then updating the networks

weights.5 The ADAM optimization algorithm was used

with default parameters, including a learning rate of 0.001

(Kingma & Welling, 2014). Gradients with a norm larger

than 5.0 were clipped. Finally, the decoder requires the

previous step’s output as the next step’s input, which was

computed in two different ways. During training, for half the

time, the network’s self-produced outputs were passed back

to the next step, and for the other half of the time, the ground-

truth outputs were passed back to the next step (teacher

forcing; Williams & Zipser, 1989). The networks were

implemented in PyTorch and based on a standard seq2seq

implementation.6

Training accuracy was above 99.5% for the overall-best

network in each of the key experiments, and it was at least

95% for the top-performers in each experiment specifically.

5Note that, in all experiments, the number of distinct training
commands is well below 100k: we randomly sampled them with
replacement to reach the target size

6The code we used is publicly available at the link:
http://pytorch.org/tutorials/intermediate/

seq2seq_translation_tutorial.html

4. Experiments

In each of the following experiments, the recurrent networks

are trained on a large set of commands from the SCAN tasks

to establish background knowledge as outlined above. After

training, the networks are then evaluated on new commands

designed to test generalization beyond the background set

in systematic, compositional ways. In evaluating these new

commands, the networks must make zero-shot generaliza-

tions and produce the appropriate action sequence based

solely on extrapolation from the background training.

Experiment 1: Generalizing to a random subset of

commands

In this experiment, the SCAN tasks were randomly split

into a training set (80%) and a test set (20%). The training

set provides broad coverage of the task space, and the test

set examines how networks can decompose and recombine

commands from the training set. For instance, the network is

asked to perform the new command, “jump opposite right

after walk around right thrice,” as a zero-shot generaliza-

tion in the test set. Although the conjunction as a whole is

novel, the parts are not: The training set features many ex-

amples of the parts in other contexts, e.g., “jump opposite

right after turn opposite right” and “jump right twice after

walk around right thrice” (both bold sub-strings appear

83 times in the training set). To succeed, the network needs

to generalize by recombining pieces of existing commands

to interpret new ones.

Overall, the networks were highly successful at general-

ization. The top-performing network for this experiment

achieved 99.8% correct on the test set (accuracy values here

and below are averaged over the five training runs). The top-

performing architecture was a LSTM with no attention, 2

layers of 200 hidden units, and no dropout. The best-overall

network achieved 99.7% correct. Interestingly, not every

architecture was successful: Classic SRNs performed very

poorly, and the best SRN achieved less than 1.5% correct at

test time (performance on the training set was equally low).

However, attention-augmented SRNs learned the commands

much better, achieving 59.7% correct on average for the test

set (with a range between 18.4% and 94.0% across SRN

http://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
http://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
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Figure 3. Zero-shot generalization after training on a random sub-

set of the SCAN tasks. The overall-best network was trained on

varying proportions of the set of distinct tasks (x-axis) and gener-

alization was measured on new tasks (y-axis). Each bar shows the

mean over 5 training runs with corresponding ±1 SEM.

architectures). For LSTMs and GRUs, attention was instead

not essential. Since the SCAN commands are never longer

than 9 words, attention is probably superfluous, at least

in this simple setup, for gated architectures that generally

exhibit a more robust long-distance behaviour than SRNs.

As indicated above, the main split was quite generous, pro-

viding 80% of the commands at training time for a total of

over 16,700 distinct examples (with strong combinatorial

coverage). We next re-trained the best-overall network with

varying numbers of distinct examples (the actual number

of training presentations was kept constant at 100K). The

results are shown in Fig. 3. With 1% of the commands

shown during training (about 210 examples), the network

performs poorly at about 5% correct. With 2% coverage,

performance improves to about 54% correct on the test set.

By 4% coverage, performance is about 93% correct. Our re-

sults show that not only can networks generalize to random

subsets of the tasks, they can do so from relatively sparse

coverage of the compositional command space. This is well

in line with the success of seq2seq architectures in machine

translation, where most test sentences are likely never en-

countered in training. Still, even with this sparser coverage,

differences between training and test instances are not dra-

matic. Let us for example consider the set of all commands

without a conjunction (e.g., “walk around thrice”, “run”,

“jump opposite left twice”). All the commands of this sort

that occur in the test set of the 2% training coverage split

(either as components of a conjunction or by themselves)

also occur in the corresponding training set, with an average

of 8 occurrences. Even for the 1% split, there is only one

conjunction-less test command that does not also occur in

the training split, and the frequency of occurrence of such

commands in the training set is at a non-negligible average

value of 4 times.

Experiment 2: Generalizing to commands demanding

longer action sequences

We study next a more systematic form of generalization,

where models must bootstrap to commands requiring longer

action sequences than those seen in training.7 Now the train-

ing set contains all 16,990 commands requiring sequences

of up to 22 actions, whereas the test set includes all remain-

ing commands (3,920, requiring action sequences of lengths

from 24 to 48). Under this split, for example, at test time the

network must execute the command “jump around left twice

and walk opposite right thrice”, requiring a sequence of 25

actions. Although all the elements used in the command

have been observed during training, the network has never

been asked to produce a sequence of this length, nor it has

ever seen an “around * twice” command conjoined with an

“opposite * thrice” command (although it did observe both

components conjoined with others). Thus, it must produc-

tively generalize familiar verbs, modifiers and conjunctions

to generate longer action sequences. This is a fair task for

a system that is correctly translating the input commands.

If you know how to “walk around,” how to “jump,” and the

function of the “and” conjunction, you will be immediately

able to “walk around and jump,” even if you have never

performed an action sequence of that length.

This test turns out to be very challenging for all models. The

best result (20.8% on average, again over 5 runs) is achieved

by a GRU with attention, one 50-dimensional hidden layer,

and dropout 0.5. Interestingly, this is a model with consider-

ably less capacity than the best for the random-split setup,

but it uses attention, which might help, to a limited degree,

to generalize to longer action sequences. The overall-best

model achieves 13.8% accuracy.

Fig. 4 (top) shows partial success is almost entirely ex-

plained by generalization to the shortest action sequence

lengths in the test set. Although we might not expect even

humans to be able to generalize to very long action se-

quences, the sharp drop between extrapolating to 25 and

26 actions is striking. The bottom panel of Fig. 4 shows

accuracy in the test set organized by command length (in

word tokens). The model only gets right some of the longest

commands (8 or 9 tokens). In the training set, the longest ac-

7We focus on action sequence length rather than command
length since the former exhibits more variance (1-48 vs. 1-9). The
longest commands (9 words) are given by the conjunction of two
directed primitives both modified twice, e.g.: “jump around left
twice and run opposite right thrice.” On the other hand, a relatively
short command such as “jump around left thrice” demands 24
actions.



Generalization without Systematicity

Figure 4. Zero-shot generalization to commands with action se-

quence lengths not seen in training. Top: accuracy distribution by

action sequence length. Bottom: accuracy distribution by com-

mand length (only lengths attested in the test set shown, in both

cases). Bars show means over 5 runs of overall-best model with

±1 SEM.

tion sequences (≥20) are invariably associated to commands

containing 8 or 9 tokens. Thus, the model is correctly gener-

alizing only in those cases that are most similar to training

instances.

Finally, we performed two additional analyses to better un-

derstand the source of the errors. First, we examined the

greedy decoder for search-related errors. We confirmed

that, for almost every error, the network preferred its self-

generated output sequence to the target output sequence

(as measured by log-likelihood). Thus, the errors were not

due to search failures in the decoder.8 Second, we studied

whether the difficulty with long sequences can be mitigated

if the proper length was provided by an oracle at evaluation

8For both the overall best model and the best model in this
experiment, on average over runs, less than one test command (of
thousands) could be attributed to a search failure.

time.9 If this difficulty is a relatively straightforward issue

of the decoder terminating too early, then this should pro-

vide an (unrealistic) fix. If this difficulty is symptomatic

of deeper problems with generalization, then this change

will have only a small effect. With the oracle, the overall-

best network performance improved from 13.8% to 23.6%

correct, which was notable but insufficient to master the

long sequences. The top-performing model showed a more

substantial improvement (20.8% to 60.2%). Although im-

proved, the networks were far from perfect and still exhib-

ited difficulties with long sequences of output actions (again,

even for the top model, there was a strong effect of action se-

quence length, with average accuracy ranging from 95.76%

for commands requiring 24 actions to 22.8% for commands

requiring 48 actions).

Experiment 3: Generalizing composition across

primitive commands

Our next test is closest to the “dax” thought experiment pre-

sented in the introduction. In the training phase, the model

is exposed to the primitive command only denoting a certain

basic action (e.g., “jump”). The model is also exposed to

all primitive and composed commands for all other actions

(e.g., “run”, “run twice”, “walk”, “walk opposite left and

run twice”, etc.). At test time, the model has to execute

all composed commands for the action that it only saw in

the primitive context (e.g., “jump twice”, “jump opposite

left and run twice”, etc.). According to the classic thought

experiments of Fodor and colleagues, this should be easy:

if you know the meaning of “run”, “jump” and “run twice”,

you should also understand what “jump twice” means.

We run two variants of the experiment generalizing from

“turn left” and “jump”, respectively. Since “turn right” is

distributionally identical to “turn left” (in the sense that

it occurs in exactly the same composed commands) and

“walk”, “run” and “look” are distributionally identical to

“jump”, it is redundant to test all commands. Moreover, to

ensure the networks were highly familiar with the target

primitive command (“jump” or “turn left”), the latter was

over-represented in training such that roughly 10% of all

training presentations were of the command.10

We obtain strikingly different results for “turn left” and

“jump”. For “turn left”, many models generalize very well to

composed commands. The best performance is achieved by

a GRU network with attention, one layer with 100 hidden

units, and dropout of 0.1 (90.3% accuracy). The overall-

9Any attempt from the decoder to terminate the action se-
quence with an <EOS> was ignored (and the second strongest
action was chosen) until a sequence with proper length was pro-
duced.

10Without over-sampling, performance was consistently worse
than what we report.
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best model achieved 90.0% accuracy. On the other hand, for

“jump,” models are almost completely incapable to gener-

alize to composed commands. The best performance was

1.2% accuracy (LSTM, attention, one layer, 100 hidden

units, dropout 0.1). The overall-best model reached 0.08%

accuracy. As in Experiment 2, the errors were not due to

search failures in the decoder.

In the case of “turn left”, although models are only exposed

to the primitive command during training, they will see the

action it denotes (LTURN) many times, as it is used to ac-

complish many directed actions. For example, a training

item is: “walk left and jump left”, with ground-truth interpre-

tation: LTURN WALK LTURN JUMP. Apparently, seeing

action sequences containing LTURN suffices for the model

to understand composed commands with “turn left”, proba-

bly because the model receives direct evidence about how

LTURN is used in context. On the other hand, the action

denoted by “jump” (JUMP) only occurs with this primitive

command in training, and the model does not generalize

from this minimal context to new composed ones.

We now take a closer look at the results, focusing on the

median-performance run of the overall-best model (as the

most representative run of this model). We observe that

even in the successful “turn left” case model errors are

surprising. One would expect such errors to be randomly

distributed, or perhaps to pertain to the longest commands or

action sequences. Instead, all 45 errors made by the model

are conjunctions where one of the components is simple

“turn left” (22 cases) or “turn left thrice” (23 cases). This

is particularly striking because the network produced the

correct mapping for “turn left” during training, as well as

for “turn left thrice” at test time, and it gets many more

conjunctions right (ironically, including “turn left thrice

and turn left”, “turn left thrice after turn left” etc.). We

conclude that, even when the network has apparently learned

systematic composition almost perfectly, it got at it in a very

counter-intuitive way. It’s hard to conceive of someone who

understood the meaning of “turn left”, and “jump right and

turn left twice” (which the network gets right), but not that of

“jump right and turn left” (one of the examples the network

missed). In the “jump” experiment, the network could only

correctly decode two composite cases, both starting with the

execution of primitive “jump”, conjoined with a different

action: “jump and run opposite right”, “jump and walk

around left thrice”.

It is instructive to look at the representations that the net-

work induced for various commands in the latter experiment.

Table 1 reports the 5 nearest neighbours for a sample of

commands. Command similarity is measured by the cosine

between the final encoder hidden state vectors, and com-

puted with respect to all commands present in the training

set. “Run” is provided as an example primitive command

for which the model has been exposed to the full composed

paradigm in training. As one would expect, “run” is close

to the other primitive commands (“look”, “walk”), as well

as to short conjoined commands that contain primitive “run”

as one of the conjuncts (we observe a similar pattern for

the non-degenerate “jump” representation induced in Ex-

periment 1). Instead, since “jump” had a different training

distribution than the other primitive commands, the model

does not capture its similarity to them, as shown by the

very low cosines of its nearest commands. Since it fails to

establish a link to other basic commands, the model does

not generalize modifier application from them to “jump”.

Although “run twice” is similar to (conjunctions of) other

primitive tasks composed with “twice”, “jump twice” is

isolated in representational space, and its (far) nearest neigh-

bours look arbitrary.

We tested here systematicity in its purest form: the model

was only exposed to “jump” in isolation, and asked to boot-

strap to its compositional paradigm based on the behaviour

of other primitive commands such as “walk”, “look” and

“run”. Although we suspect humans would not have prob-

lems with this setup, it arguably is too opaque for a com-

putational model, which could lack evidence for “jumping”

being the same sort of action as “walking”. Suppose we give

the network some evidence that “jumping” composes like

“walking” by showing a few composed “jump” command

during training. Is the network then able to generalize to the

full composed paradigm?

This question is answered in Figure 5. We present here

results for the best model in the “jump”-generalization task,

which was noticeably better in the present setup than the

overall-best model. Again, the new primitive command

(and its compositions) were over-sampled during training to

make up 10% of all presentations. Here, even when shown 8

different composed commands with “jump” at training time,

the network only weakly generalizes to other composed

commands (38.3% correct). Significant generalization (still

far from systematic) shows up when the training set contains

16 and especially 32 distinct composed commands (77.8%

and 88.4%, respectively). We conclude that the network

is not failing to generalize simply because, in the original

setup, it had little evidence that “jump” should behave like

the other commands. On the other hand, the runs with more

composed examples confirm that, as we found in Experi-

ment 1, the network does display powerful generalization

abilities. Simply, they do not conform to the “all-or-nothing”

rule-based behaviour we would expect from a systematically

compositional device–and, as a consequence, they require

more positive examples to emerge.
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Table 1. Nearest training commands for representative commands, with the respective cosines. Here, “jump” was trained in isolation

while “run” was trained compositionally. Italics mark low similarities (cosine <0.2).

run jump run twice jump twice

look .73 run .15 look twice .72 walk and walk .19

walk .65 walk .13 run twice and .65 run and walk .16

look opposite right thrice

walk after run .55 turn right .12 run twice and .64 walk opposite right .12

run right twice and walk

run thrice .50 look right twice .09 run twice and .63 look right and walk .12

after run after walk twice look opposite right twice

run twice .49 turn right .09 walk twice and run twice .63 walk right and walk .11

after run after turn right

1 2 4 8 16 32
Number of composed commands used for training
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Figure 5. Zero-shot generalization after adding the primitive “jump”

and some compositional “jump” commands. The model that per-

formed best in generalizing from primitive “jump” only was re-

trained with different numbers of composed “jump” commands

(x-axis) in the training set, and generalization was measured on

new composed “jump” commands (y-axis). Each bar shows the

mean over 5 runs with varying training commands along with the

corresponding ±1 SEM.

Experiment 4: Compositionality in machine

translation

Our final experiment is a proof-of-concept that our find-

ings are more broadly applicable; that is, the limitations of

recurrent networks with regards to systematic composition-

ality extend beyond SCAN to other sequence-to-sequence

problems such as machine translation. First, we trained our

standard seq2seq code on short (≤ 9 words) English-French

sentence pairs that begin with English phrases such as “I

am,” “he is,” “they are,” and their contractions (randomly

split with 10,000 for training and 1180 for testing).6 An

informal hyperparameter search led us to pick a LSTM with

attention, 2 layers of 400 hidden units, and 0.05 dropout.

With these hyperparameters and the same training procedure

used for the SCAN tasks (Section 3), the network reached a

respectable 28.6 BLEU test score after 100,000 steps.

Second, to examine compositionality with the introduction

of a new word, we trained a fresh network after adding 1,000

repetitions of the sentence “I am daxy” (fr. “je suis daxiste”)

to the training data (the BLEU score on the original test set

dropped less than 1 point).11 We tested this network by em-

bedding “daxy” into the following constructions: “you are

daxy” (“tu es daxiste”), “he is daxy” (“il est daxiste”), “I am

not daxy” (“je ne suis pas daxiste”), “you are not daxy” (“tu

n’es pas daxiste”), “he is not daxy” (“il n’est pas daxiste”),

“I am very daxy” (“je suis très daxiste”), “you are very daxy”

(“tu es très daxiste”), “he is very daxy” (“il est très dax-

iste”). During training, the model saw these constructions

occurring with 22 distinct predicates on average (limiting

the counts to perfect matches, excluding, e.g., “you are not

very X”). Still, the model could only get one of the 8 trans-

lations right (that of “he is daxy”). For comparison, for the

adjective “tired”, which occurred in 80 different construc-

tions in the training corpus, our network had 8/8 accuracy

when testing on the same constructions as for “daxy” (only

one of which also occurred with “tired” in the training set).

Although this is a small-scale machine translation problem,

our preliminary result suggests that models will similarly

struggle with systematic compositionality in larger data sets,

when adding a new word to their vocabulary, in ways that

people clearly do not.

5. Discussion

In the thirty years since the inception of the systematicity

debate, many have tested the ability of neural networks

to solve tasks requiring compositional generalization, with

mixed results (e.g., Christiansen & Chater, 1994; Marcus,

1998; Phillips, 1998; Chang, 2002; van der Velde et al.,

11Results do not change if, instead of repeating “I am daxy”
1,000 times, we insert it 100 times; with just 1 or 10 occurrences
of this sentence in the training data, we get 0/8 translations right.
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2004; Botvinick & Plaut, 2006; Wong & Wang, 2007; Bow-

ers et al., 2009; Botvinick & Plaut, 2009; Brakel & Frank,

2009; Frank et al., 2009; Frank, 2014; Bowman et al., 2016).

However, to the best of our knowledge, ours is the first study

testing systematicity in modern seq2seq models, and our

results confirm the mixed picture. On the one hand, Exper-

iment 1 and the “turn left” results in Experiment 3 show

how standard recurrent models can reach very high zero-

shot accuracy from relatively few training examples. We

would like to stress that this is an important positive result,

showing in controlled experiments that seq2seq models can

make powerful zero-shot generalizations. Indeed, an inter-

esting direction for future work is to understand what are,

precisely, the generalization mechanisms that subtend the

networks’ success in these experiments. After all, human

language does have plenty of generalization patterns that

are not easily accounted for by algebraic compositionality

(see, e.g., Goldberg, 2005).

On the other hand, the same networks fail spectacularly

when the link between training and testing data is depen-

dent on the ability to extract systematic rules. This can

be seen as a trivial confirmation of the basic principle of

statistical machine learning that your training and test data

should come from the same distribution. But our results also

point to an important difference in how humans and current

seq2seq models generalize, since there is no doubt that hu-

man learners can generalize to unseen data when such data

are governed by rules that they have learned before. Im-

portantly, the training data of experiments 2 and 3 provide

enough evidence to learn composition rules affording the

correct generalizations. In Experiment 2, the training data

contain examples of all modifiers and connectives that are

needed at test time for producing longer action sequences.

In Experiment 3, the usage of modifiers and connectives

is illustrated at training time by their application to many

combinations of different primitive commands, and, at test

time, the network should apply them to a new command it

encountered in isolation during training.

We thus believe that the fundamental component that current

models are missing is the ability to extract systematic rules

from the training data. A model that can abstract away

from surface statistical patterns and operate in “rule space”

should extract rules such as: translate(x and y) = translate(x)

translate(y); translate(x twice) = translate(x) translate(x).

Then, if the meaning of a new command (translate(“jump”))

is learned at training time, and acts as a variable that rules

can be applied to, no further learning is needed at test time.

When represented in this more abstract way, the training

and test distributions are quite similar, even if they differ in

terms of shallower statistics such as word frequency.

How can we encourage seq2seq models to extract rules from

data rather than exploiting shallower pattern recognition

mechanisms? We think there are several, non-mutually

exclusive avenues to be explored.

First, in a “learning-to-learn” approach (Thrun & Pratt,

1997; Risi et al., 2009; Finn et al., 2017, a.o.), a network can

be exposed to a number of different learning environments

regulated by similar rules. An objective function requir-

ing successful generalization to new environments might

encourage learners to discover the shared general rules.

Another promising approach is to add more structure to

the neural networks. Taking inspiration from recent neural

program induction and modular network models (e.g., Reed

& de Freitas, 2016; Hu et al., 2017; Johnson et al., 2017),

we could endow RNNs with a set of manually-encoded or

(ideally) learned functions for interpreting individual mod-

ifiers, connectives, and primitives. The job of the RNN

would be to learn how to apply and compose these functions

as appropriate for interpreting a command. Similarly, dif-

ferentiable stacks, tapes, or random-access memory (e.g.,

Joulin & Mikolov, 2015; Graves et al., 2016) could equip

seq2seq models with quasi-discrete memory structures, en-

abling separate storage of variables, which in turn might

encourage abstract rule learning (see Feng et al., 2017, for

a memory-augmented seq2seq model).

Other solutions, such as ad-hoc copying mechanisms or

special ways to initialize the embeddings of novel words,

might help to solve the SCAN tasks specifically. But they

are unlikely to help with more general seq2seq problems.

It remains to be seen, of course, if any of our proposed

approaches offer a truly general solution. Nonetheless, we

see all of the suggestions as directions worth pursuing, per-

haps simultaneously and in complementary ways, with the

goal of achieving human-like systematicity on SCAN and

beyond.

Given the astounding successes of seq2seq models in chal-

lenging tasks such as machine translation, one might argue

that failure to generalize by systematic composition indi-

cates that neural networks are poor models of some aspects

of human cognition, but it is of little practical import. How-

ever, systematicity is an extremely efficient way to general-

ize. Once a person learns the new English adjective “daxy”,

he or she can immediately produce and understand an infin-

ity of sentences containing it. The SCAN experiments and

a proof-of-concept machine translation experiment (Exper-

iment 4) suggest that this ability is still beyond the grasp

of state-of-the-art neural networks, likely contributing to

their striking need for very large training sets. These results

give us hope that neural networks capable of systematic

compositionality could greatly benefit machine translation,

language modeling, and other applications.
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