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ABSTRACT 

The problem of determining probability density functions of general 

transformations of random processes is considered in this thesis. A 

method of solution is developed in which partial differential equations 

satisfied by the unknown density function are derived. These partial 

differential equations are interpreted as generalized forms of the 

classical Fokker-Planck-Kolmogorov equations and are shown to imply the 

classical equations for certain classes of Markov processes. Extensions 

of the generalized equations which overcome degeneracy occurring in the 

steady-state case are also obtained. 

The equations of Darling and Siegert are derived as specia l cases 

of the generalized equations thereby providing unity to two previously 

existing theories. A technique for treating non-Markov processes by 

studying closely related Markov processes is proposed and is seen to 

yield the Darling and Siegert equations directly from the classical 

Fokker-Planck-Kolmogorov equations. 

As illustrations of their applicability, the generalized Fokker

Planck-Kolmogorov equations are presented for certain joint probability 

density functions associated with the linear filter. These equations are 

solved for the density of the output of an arbitrary linear filter 

excited by Markov Gaussian noise and for the density of the output of an 

RC filter excited by the Poisson square wave. This latter density is 

also found by using the extensions of the generalized equations mentioned 

above. Finally, some new approaches for finding the output probability 
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density function of an RC filter-limiter-RC filter system driven by 

white Gaussian noise are included. The results in this case exhibit 

the data required for complete solution and clearly illustrate some of 

the mathematical difficulties inherent to the use of the generalized 

equations. 
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CHAPl'ER I 

INTRODUCTION 

A. The Problem of Determining Probability Density Functions of Trans

formations of Random Processes. 

The work of this thesis is motivated by the problem of determining 

the probability density function(s) of a random process {y(t)} which 

is related to same other known random process (x(t)} through a pre

scribed transformation law ~ or ~: 

y(t) = q(x(t)} or x(t) = ~(y(t)} (1.1) 

where q and ~ are arbitrary function or fUnctional transformations 

(or operators) with or without inverses. (x(t)} will be referred to as 

the input process and {y(t)} as the output. Many problems in communi

cation and statistical control theory can be cast in these forms and are 

largely unsolved. Few general techniques are known, except for the 

case when the input is Gaussian and the transformation is linear. In 

the communication problem, y( t) is usually a signal or noise at same 

point in a communication link while in the control problem it may 

represent position, velocity, acceleration, etc. We shall be primarily 

concerned with input and output processes which can assume a continuous 

range of values. However, we shall also have occasion to deal with 

discrete random processes. In both cases, the processes will always 

have a continuous time parameter. 
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It is often possible to express moments of the output process in 

terms of operations on various moments of the input process. Such a 

procedure gives a "solution" to the problem of characterizing the out

put process. However, the computations soon become untractable even 

in the simplest cases. Wonham and Fuller (20) employed this technique 

to obtain the first order probability density fUnction of the output 

of an RC filter excited by a Poisson square wave; however their solu

tion is somewhat involved and cannot be extended to the higher-order 

density fUnctions. 

Many distribution problems can be reduced to solving a differen

tial or integral equation (see, for example, Kac (8)). These methods 

have usually applied only to the particular problem being solved. 

Nevertheless, the idea of describing the unknown density by a differen

tial or integral equation seems to offer much promise . In attempting 

such a description, the characteristics of the input process and the 

transformation, as well as the general properties of probability 

density fUnctions are the known data to be utilized . The two notable 

techniques which have resulted from this approach are the Fokker

Planck-Kolmogorov (9) method and the Darling and Siegert (5) method. 

This thesis is concerned with this approach to the description of out

put probability density fUnctions . 

B. Historical Aspects of the Problem. 

l. The Fokker-Planck-Kolmogorov Equations. When the output 

(y(t)} is a continuous random process and the input and the transfor-
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* mation law are suitably well behaved , a pair of partial differential 

equations can be derived for the transition probability density func-

tion p(y,tly
0
,t

0
) (i.e., the conditional probability density func

tion of y at time t given the value y
0 

at time t
0
). These 

differential equations may be derived whenever the transition densities 

of the output satisfy the Smoluchowski (or Chapman-Kolmogorov) 

equation 

p(y,tly
0
,t

0
) = Jdy'p(y,tly',t')p(y',t'IY

0
,t

0
) ; t

0 
< t' < t, 

(l. 2) 

which is obviously satisfied if y(t) is a one-dimensional Markov 

** process The partial differential equations are of the form 

2 

I: 
n=l 

and 

(1.4) 

* We assume throughout this work that any regularity conditions are 
satisfied; i.e., differentiability, integrability, existence of 
limits, etc. 

** For examples of non-Markov processes satisfying the Smoluchowski 
equation see Rosenblatt and Slepian (12) and the references con
tained therein. 



where 

and we require 
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lim ~t E[(y(t+6t) - y(t)}njy(t)], 
6t-o+ 

0 ; n ~ 3· 

(l.5) 

The first of these equations is called the Fokker-Planck equation or 

the forward equation and the second the Kolmogorov equation or the 

backward equation. In order to find the conditional density, the 

conditional moments (l.5) are computed, the differential equations 

solved and suitable boundary conditions applied. The conditional 

moments are computed from knowledge of the transformation ~ or ~ 

and the statistics of (x(t)}. For examples of derivations and appli-

cations, the reader is referred to the works of Kolmogorov (9), Wang 

and Uhlenbeck (l8), Uhlenbeck and Ornstein (l8), Middleton (ll) and 

Bharucha-Reid (3) . 

One disadvantage of the Fokker-Planck-Kolmogorov equations is that 

they can only be used when the output process satisfies the Smoluchowski 

equation. For this reason, these equations are usually confined to the 

study of output processes which are Markov, for these processes always 

satisfy the Smoluchowski equation. For a given input and transforms-

tion, determining if the output is Markov may still be a formidable 

task. 
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Stratonovich (l5) applies the Fokker-Planck method to non-Markov 

processes by a perturbation technique. This method might be termed 

quasi-Markov and has limited applicability. 

The classical problem solved by use of the Fokker-Planck equation 

is Brownian motion. However, in this case the input process is essen

tially white Gaussian noise and the transformation is linear so that 

simplier techniques may be used. Tikhonov (l6) used the Fokker-Planck 

equation to obtain the steady-state phase-error distribution for a 

first-order phase-locked loop. These results were l ater extended by 

Viterbi (l7) and are important because of the nonlinear nature of the 

transformation. Applications of the Fokker-Planck equations to dynami

cal systems have been made by Andronov, Pontryagin and Witt (l), Chuang 

and Kazda (4) and Barrett (2) . The Fokker-Planck-Kolmogorov equations 

also play a central role in the Darling and Siegert (5) method. Their 

role in this method will be considered presently. 

The Fokker-Planck-Kolmogorov equations can be extended to multi

dimensional (or vector) random processes which satisfy multidimensional 

forms of the Smoluchowski equation. 

When the output (y(t)} is a discrete random process which can 

assume, say N values from a set s, we consider the transition 

probability 

(l.6) 

(i.e., the conditional probability that y at time t is equal to r 
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given that y at time t
0 

was equal to k). If the transition 

probabilities satisfy the Chapman-Kolmogorov equations 

Prk(t Ito) = L Pri (tIt' )Pik(t' Ito) ; to < t' < t , 

i€8 

differential equations analogous to the Fokker-Planck-Kolmogorov 

(1.7) 

equations of the continuous case may be derived. These equations, 

called the Kolmogorov equations, are 

and 

* where 

~t prk(tlto) = L ari (t)Pik(tlto) ' 

i€8 

= L pri (tjto)aik(to) ' 

i€8 

a .(t) = lim ~ [Pri (t+6tlt)- ori] • 
r~ 6t-+a+ 6t 

(1.8) 

(1.9) 

(1.10) 

* ori denotes the Kronecker delta; i.e., ori = 1 if r = i and 

ori = o if r ~ i. 
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By analogy with the continuous case, (l.8) is called the forward 

equation and (l.9) the backward equation. These equations are defined 

for all r 1 kES so that in general we have N
2 

forward and N
2 

backward 

equations. 

Derivations and applications of these equations are given in any 

of the standard texts on random processes. 

2. The Darling and Siegert Method. Darling and Siegert (5) con-

sidered a class of problems in which the input is taken to be a vector 

Markov process and the output a somewhat general functional of the input 

which can be written in the form 

(l.ll) 

where ~[x(T),T] is a known function. For continuous input processes 

they derived a pair of differential equations of the Fokker-Planck-

Kolmogorov type from which the marginal density of the output can be 

found. Darling and Siegert considered the function 

(X) 

~ ejvy p(x,y,tjx
0
,t

0
)dy. (l.l2) 

_en 

Since the input process is Markov it satisfies the Fokker-Planck-

Kolmogorov equations which we write in the operator notation 

(l.l3) 
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where L and L
0 

are found from the multidimensional forms of (1.3) 

and (1.4). The differential equations found by Darling and Siegert can 

* then be written 

(L
0 

+ ~t )r(x,v,tjx
0
,t

0
) =-jv~(x 0 ,t 0 )r(x,v,tjx 0 ,t 0 ), (l.l5) 

0 

where, by analogy with the Fokker-Planck-Kolmogorov equations, the 

first of these will be called the forward equation and the second the 

backward equation. 

Darling and Siegert (5) and Siegert (l31 l4) have given examples 

showing the usefulness of these equations. 

closed form the characteristic functions of 

For example, they 

t 2 J x ( ,-)dT and 
0 

find in 

t 2 J x (T)exp(-arr)dT when (x(t)} 
0 

is a one-dimensional Gaussian Markov 

process. The reader is referred to their original papers for details 

and other examples. 

When the input is a discrete random process satisfying the 

Kolmogorov equations (l.8) and (l.9), we obtain 2N
2 

Darling and 

** Siegert equations These equations are 

* See Appendix A for a derivation of these equations. 

** Ibid. 
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~ ari(t)Rik(v,tjt0 )- ~t ~k(v,tjt 0 ) 
i€8 

-jvt[x(t)=r]~k(v,tjt 0 ) , 

(l.l6) 

Rri(v,tjt
0
)aik(t0 ) + ~t ~k(v,tjt 0 ) = -jvt[x(t 0 )~]Rrk(v,tjt 0 ) , 

0 

(l.l7) 

where 

00 

R k(v,tjt ) r o Prk(tjt
0

) ~ ejvyp(yjx(t)=r; x(t
0

)=k}dy 

-00 

(l.l8) 

p k(tlt ) r o 

and a ji(t) is defined by (l.lO) for the process (x(t)} . The N
2 

equations (l.l6) will be called the forward equations and (l.l7) the 

backward equations. 

MCFadden (l) used the backward equations to find the distributions 

of outputs of several different linear filters excited by Poisson 

square waves. 

c. Notation. 

In this thesis we shall use the letter '~" without subscripts to 

denote all probability density fUnctions. We also follow the conven-

tion of communication theorists for conditional probability density 

functions and write the conditioning variables to the right of the 

vertical bar. 

Since both spatial and temporal derivatives are employed in this 

thesis, we will explicitly denote the time dependence in writing 
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probability density functions associated with random processes; i.e., 

p(yl,tl) represents the density of the random variable y(t) at time 

t = tl. Occasionally we may suppress the time dependence and write 

p(yl,tl) = p(yl) when there is no danger of confusion. 

A few, well-known, symbols and notions of set theory are used 

throughout. 

D. Outline of the Thesis. 

The primary goal of this thesis is to generalize the classical 

Fokker-Planck-Kolmogorov equations. Generalized forms of the classical 

equations are derived for the transition densities of arbitrary random 

processes. These generalized equations are shown to imply the classical 

equations for certain classes of Markov processes. Furthermore they 

provide a means for obtaining a deeper insight into the mathematical 

mechanisms underlying the nature of random processes and provide some 

unity to previously existing theories. 

Most of the theoretical results - generalizatio~s and extensions 

of the classical equations - are presented in Chapter II and are con

veniently summarized as theorems and corollaries. In Chapter III the 

equations of Darling and Siegert are derived as special cases of the 

generalized Fokker-Planck-Kolmogorov equations. The remaining chapters 

are devoted to applications. 
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CHAPI'ER II 

GENERALIZATIONS OF THE FCKKER-PLANCK-KOLMOGOROV 

EQUATIONS & EXTENSIONS 

A. Introduction. 

We begin this chapter by presenting a generalization of the one

dimensional Fokker-Planck equation. The generalization is shown to be 

valid for all continuous (regula r) random processes and is termed a 

"generalization" because it reduces to the classical Fokker-Planck 

equation for the class of Markov processes. Examples illustrating the 

validity and use of this generalized equation are given. Steady-sta te 

forms of the generalized equation are considered and are seen to degen

erate for a wide class of processes, thereby motivating the extension of 

the generalized Fokker-Planck equation presented in Sec. D. Same 

theorems concerning conditional moments arising in the derivation of 

the gener alized equation are proved and the multidimensional form of 

the generalized equation is stated. A backward form of the gener alized 

equation is discussed and is shown to imply the classical Kolmogorov 

backward equation for a certain class of stationary, continuous Markov 

processes . Finally, we consider generalizations of the Kolmogorov 

equations for discrete random processes. 

B. The Generalized Fokker-Planck Equation. 

Let (Y,T) denote an arbitrary set of k random variables Y 

and their times of occurrence T. For example 
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where x, y and z might denote r andom variables from different 

random processes. This nota tion will be employed extensively throughout 

this chapter and, with it, we state the following: 

Theorem 2.1 (Generalized Fokker-Planck Equation). If t fo T, 

the conditional probability density function p(y,tjY,T) of every con

tinuous random process (y(t)} satisfies the one-dimensional generalized 

Fokker-Planck equation 

~t p(y,tjY,T) 

where 

=L (-l)n cP 
[An(y,t;Y,T)p(y,tjY,T)], 

n! oyn 
nd 

lim ~t E[(y(t+~t)-y(t)}njy,t;Y,T]. 
~t-tO+ 

( 2 . 2) 

( 2. 3) 

Proof. Our proof of this theorem follows the derivation of the classi-

* cal Fokker-Planck equation given by Stratonovich (cr. Stratonovich (15 ) 

p. 57). ** We begin with an integral form of Bayes'Law 

* We could also prove the theorem by suitably generalizing the deriva
tion of the classical Fokker-Planck equation in the fundamental 
paper of Kolmogorov (9). 

** In the derivation of the classical Fokker-Planck equation, the 
Smoluchowski equation is assumed at this point. 
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p(y,t+lltiY,T) J dy I p ( y' t+ll t I y I ' t; y' T) p ( y I 't I y' T) ' ( 2. 4) 

-00 

where lit is a positive increment. We express the first term in the 

integrand as the Fourier transform of the conditional characteristic 

function of (y-y 1
) and expand this characteristic fUnction in a Taylor 

series. Let 

Then 

where 

·~( v t+Atly 1 t·y T) -- E[ejv(y-y
1

) IY 1
1 t,·Y,T] 

, ' u ' ' ' 

CJ) 

J ejv(y-y
1 

)p(y, t+llt IY 1 , t;Y,T)dy. 

-00 

00 

p(y,t+t~tly 1 ,t;Y,T) = ;7( J e-jv(y-y
1

)t(v,t+6t ly 1 ,t;Y,T)dv, 

00 

J (jv)ne -jv(y-y
1 
)dv, 

n=O 

\ (-l)n ( ) on J -jv(y-y 1
) dv = ~ a y 1

1 t;Y,T e 2 ~ n! n oyn 
n=o -oo 

a (y',t;Y,T) = E[(y(t+llt )-y '(t)JniY 1
1 t;Y,T] 

n 

(2. 5) 

(2.6) 
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Substituting (2.5) into (2.4) and performing the integration gives 

00 

:p(y,t+iltjY,T) =L: 
( -l)n cP 

[a (y,t;Y,T):p(y,tjY,T)] • 
n! oyn n 

(2.7) 

n=o 

Transposing the first term of the summation, dividing through by ilt 

and taking the limit ilt~+ yields the desired result (2.2). 

It is important to note that we have imposed no ordering upon the 

times ti for ti € T but have required merely that t t T. Eq. (2.2) 

will also be referred to as the forward equation because the conditional 

moments An(y,t ;Y,T) are computed by "looking forward"; i.e., examining 

the incremental change in the :process in a time ilt after the time of 

occurrence of the random variable y(t). The significance of taking 

ilt negative (note that the above :proof still remains valid) and conse-

quently "looking backward" in computing the conditional moments will be 

considered in Sec. G of this chapter. 

As mentioned in Ch. I, we are tacitly assuming that any regularity 

conditions are satisfied. Such a condition is that :p(y,tjY,T) be an 

analytic fUnction of y so that derivatives with respect to y are 

defined. However, the :proof of the theorem is valid on any interval of 

y over which the transition density :p(y,tjY,T) is analytic. Hence if 

there are discontinuities in :p(y,tiY,T) and/or its derivatives, the 

generalized Fokker-Planck equation must be solved over the regions of 

continuity and the :points of discontinuity suitably accounted for. If, 

for example, the transition density contains a o-fUnction and is 
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otherwise analytic, we expect the generalized Fokker-Planck equation to 

characterize only the continuous part of the density function . 

By properly selecting the set of conditioning variables Y, 

Eq. (2.2) can in principal be solved for any conditional probability 

density fUnction, say p(yk'~jyl,tl; ••• ;yk-l'tk-l)' of the process 

(y(t)}; assuming, of course, that the conditional moments 

An . (yk'~;yl,tl; ••• ;yk-l'tk- l) can be evaluated and that suitable 

boundary conditions are known. The joint density fUnction 

p(yl,tl; •• • ;yk 1 ~) can then be found from this conditional density 

function by using the identity 

k 

p(yl,tl; ••• ;yk,tk) = p(yl,tl) r-r p(yi,tijyl,tl; ••• ;yi-l'ti-l) 

i=2 

where the factors on the right-hand side of this equation are computed 

from the conditional density fUnction p(yk,tkjyl,tl; ••• ;yk-l'tk-l) 

by letting certain of the conditioning times go to minus infinity. 

Hence, the generalized Fokker- Planck equation enables us to obtain a 

complete statistical description of the random process (y(t)} . 
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We now consider the relationship between the generalized and 

classical Fokker-Planck equations. If (y(t)} is a Markov process and 

t
0 

< t, the conditional moments An(y,t;y
0
,t

0
) in the generalized 

Fokker-Planck equation for p(y,tjy
0
,t

0
) reduce to the conditional 

moments appearing in the classical Fokker-Planck equation [Cf. Eqs. 

(1.3) and (1.5)]; i.e., 

An(y,t;y
0
,t) = lim :t E[(y(t+t::.t)-y(t)}njy,t;y ,t J 

d t::.t~+ u 0 0 

lim ~t E[(y(t+t::.t)-y(t)}njy,t] 
t::.t~+ 

This observation leads to the following corollary. 

corollary 2.1. If t < t 
0 

and if 

(i) An(y,t;y
0
,t

0
) = An(y,t) ; n = 1, 2, 

(ii) An(y,t;y
0
,t

0
) = 0 ; n ~ 3, 

(2.8) 

then the generalized Fokker-Planck equation for p(y,tjy
0
,t

0
) reduces 

to the classical Fokker-Planck equation. 

Necessary and sufficient conditions for the equivalence of the gen-

eralized and classical equations have not as yet been found. It is 

sufficient for equivalence tha t the conditional moments be the same in 
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both equations. Any condition implying this equivalence is therefore 

sufficient, as the Markov condition leading to (2.8). 

As an illustration of the validity of the generalized Fokker-

Planck equation for processes whose transition densities do not 

satisfy the Smoluchowski equation, we consider a case in which the 

conditional moments A (y,t;Y,T) can be computed. 
n 

Example 2.1. Let (y(t)} be a stationary Gaussian random 

process with mean m and variance cr
2

• We wish to show that 

satisfies the generalized Fokker-Planck equation 

CD 

L 
n=l 

n! 

[A (y,t)p] 
n--

with 

(2.9) 

lim ~t E[(y(tk+~t)-y(tk)Jnlz,!] 
~t-+o+ 

and 
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= 
' 

t 

In this case we can compute the conditional moments A (y,t) 
n --

since we know all multivariate probability density functions of the 

process (y(t)}. Using these moments, we must then verify that the 

generalized Fokker-Planck equation is satisfied. 

The k-th order joint probability density function of the process 

(y(t)} is* 

where K is the covariance matrix 

l 

l 

K 

* The notation p(y,t) = N(m,K) means that ~ is normal with mean 
vector m and covariance-matrix K. 



l9 

in which 

l 
p .. = p(lt.-tj!) = ? E[(y.-m)(y.-m)] • 
~J ~ cr ~ J 

As shown in APpendix B, the conditional density function required for 

the computation of the moments can be written in terms of these covari-

ances as 

where 

* ~ is the augmented covariance matrix 

I 
plk I Pl,k+l 

l 

l I 
p2k I P2,k+l 

I 
2 = (J 

I 
I 
I 
I 
I 

~ Pk2 l I Pk,k+l 

-----------------+----
~+l,l pk+l, 2 pk+l,kl l 

* The subscript "t" will be used to denote the transpose of a 
matrix. 
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and 

The conditional moments A (y,t) are now easily calculated using this 
n--

density function . We find 

[

p - p p - p p - p j 
l

. k+l,l k,l k+l,2 k,2 ... k+l,k k,k K-lc _ ) 
= ~m t::.t !1t /1t r ~ , 

/1t-+O+ 

(2.l0) 

where a dot denotes differentiation with respect to tk. In a similar 

way, 

l . I<P I 
= -1 -1 l~m /1t 

K /1t-+e+ 
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Now consider [~[. Subtracting row k from row (k+l) leaves the 

value of the determinant unchanged. Subtracting column k from 

column (k+l) in this new determinant yields 

The elements off the main diagonal in the partitioned matrix all go to 

zero linearly with ~t and hence their contributions to the value of 

the determinant are of the order of (6t)
2

• Therefore 

and we get 

lim 
6t-o+ 

2o2[K l (l- Pk, k+l) 

6t } 

(2.ll) 

Since the moments of a Gaussian process for n ~ 3 can be written 

as sums of products of the first and second moments, which we have just 

shown are of order 6t, we have 

A (y,t) = 0 ; n ~ 3· 
n--

(2.l2) 
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It is now a simple, but somewhat involved, matter of differentia-

tion to show that (2 . 9) is satisfied with the moments (2 . l0), (2 .ll) 

and (2.l2). We omit the details . 

In this example, all conditional moments vanished for n ~ 3. This 

will also be the case in all problems which we later consider . However, 

we will always write the generalized Fokker- Planck equation as an 

infinite sum, and in each instance verify that all moments of suffici-

ently high order vanish . 

If the autocorrelation function of a stationary Gaussian process is 

differentiable at the origin, p(o) = 0 . Eq. (2 . ll) then shows that the 

second moment of the generalized Fokker- Planck equation must vanish and 

the generalized equation becomes 

op 
0~ = 

(2 . l3) 

where the dot again denotes differentiation with respect to tk . In 

particular, this equation holds for any stationary Gaussian process that 

is differentiable mean square (since it is well- known that a random 

process is differentiable mean square if and only if its autocorrelation 

function is twice differentiable) . 

\ole now consider a simple example which illustrates how the condi-

tional moments are computed when we are given a differential equation 

relating the process of interest and some other known process. 



Example 2 . 2 . 
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-)(

Consider the differential equation 

dy 
dt 

f(y) + n(t) , 

where f(y) is a prescribed function and n(t) is white 

E[n(t)] =0 and R (,-) 
n = 2Noo(,-) . We assume furthermore 

is independent of n(t') for t I= t I • Let us derive the 

( 2 .14) 

noise with 

that n(t) 

generalized 

Fokker-Planck equation for p(y,tjy ,t ) . 
0 0 

To first order in 

(2.14) can be rewritten 

y(t+llt) - y(t) f[y(t}~t + Jr~t n(t)dt . 

t 

Assuming t > t ) 
0 

the conditional moments are now easily computed from 

this equation . We find: 

2No 

and 

* Thi s one dimensional system has been considered by many investigators
originally by Andronov, Pontryagin and Witt (1) and l ater by Chuang 
and Kazda (4), Barrett (2), Stratonovich (15) and others. For a 
rigorous treatment, see Doob (6), p . 273, where it is shown (under 
suitable conditions) that the output process [y(t)} is a Markov 
process. 
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The generalized Fokker-Planck equation can now be written 

which is identical to the classical Fokker- Planck equation. However, 

we have not found it necessary to show a priori that (y(t)} is a 

Markov process or has a transition density satisfying the Smoluchowski 

equa~ion, as must be done in using the classical equation . 

\-lhen f(y). = - (3y, y(t) can be interpreted as the output of an 

RC filter with a time constant (3 excited by white noise n(t)/(3 . In 

this case (2 . l5) is easily solved using Fourier transforms [cf . 

Middleton (ll), p . 459] , and the solution satisfying the initial condi-

l 
( 2 . l6) 

where 

and 

l - e • 
( 

- 2f3(t-t0 )) 
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c. The Steady-State Case. 

The case in which we are solving for the first-order probability 

density fUnction when the output is stationary will be called the 

steady-state case. The first order density function can be obtained 

from the conditional density function by letting the times of the con-

ditioning variables go to minus infinity; i.e., 

p(y) = p(y,t) = lim p(y,tiY,T) 1 

T-+- (I) 

where the notation T ~ - co means t ..... - (I) if 
i 

lim ~t p(y,tiY,T) 
T-+- (I) 

op(y) 
at 

(2.17) 

Then 

and the generalized Fokker-Planck equation, Eq. (2.2) becomes an ordin-

ary differential equation 

where 

(-lt 

n! 

dn 
[An(y)p(y) J ' 

dyn 

An(y) = lim E[(y(t+~t)-y(t)Jnly,t] • 
~t~+ ~t 

(2.18) 

(2.19) 

The moments ~(y) are now identical to those appearing in the 

classical Fokker-Planck equation so that the generalized and classical 
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equations are identical in the steady-state case (assuming A (y) = 0 
n 

for n ~ 3, since the classical equation is defined only for this 

case). As we shall see shortly, the Fokker-Planck equation in the 

steady-state case becomes degenerate (i.e., 0 = 0) for a wide class 

of random processes. 

The limiting procedure in (2.17) is valid only when two values of 

y(t) at times sufficiently far apart are statistically independent. 

However, (2.18) is valid in any case since we could have derived it 

directly from p(y) by following exactly the steps in the proof of 

Theorem 2.1. 

Example 2.3. Let us consider the steady- state generalized Fokker

Planck equation for the first order density function of the Gaussian 

process of Example 2.1. Since the process is stationary and 

p(T) ~ 0 as ITI ~ 00
1 the conditional moments (2.10) and (2.ll) 

become 

and 

The generalized steady-state equation for p(yk) is therefore 
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0 = 

When p(O+) = 0 1 this reduces to 

0 = 0 
' 

and evidently the generalized Fokker-Planck method breaks down. This 

result motivates the next section in which we extend the generalized 

Fokker-Planck equation to overcome this difficulty. However, let us 

first consider an example illustrating the use of the steady-state 

equation. 

Example 2. 4. The steady-state equation for the system discussed 

in Example 2.2 is found from (2.l5) to be 

0 

The solution to this equation satisfying the boundary conditions 

p(± cn) = 0 is 

a) 

where C is determined from the condition J p(y)dy = l. 

When 

are 

f(y) = - a N sin y , 
0 

a > o, and the boundary conditions 
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1( 

J p(y)dy = 1 , 

-1( 

and 

the solution to the above steady-state equation is 

p(y) _ exp(a cos y) 
- 21Cib(a) 

; IYI < 1( , 

where I
0 

is a modified Bessel function of the first kind. Tikhonov 

(16) and Viterbi (17) have shown that this is the steady-state phase-

error distribution of a first-order phase-locked loop. 

D. An Extension of the Generalized Fokker-Planck Equation in the 

Steady-State Case. 

As mentioned above, the steady-state equation could have been 

derived directly and in so doing we would have arrived at the steady 

state form of (2.7); viz., 

p(y) =L (2.20) 

n=O 

where 

a (y) = E[(y(t+~t)-y(t)}njy(t)] • 
n . 

(2.21) 
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To derive (2.18), we would now transpose the first term of the summa-

tion, divide both sides by ~t and take the limit as ~t-oo+. However, 

after transposing the first term of the summation, the left-hand side 

of the equation is identically zero. Hence the possibility of dividing 

through by a higher power of bt before taking the limit is suggested. 

We divide by (bt)v and refer to the resulting equation as the 

generalized v-th order Fokker-Planck equation; i.e., 

(2.22) 

where 

(2.23) 

This v-th order equation will clearly have meaning only when the 

moments A ( v) (y) exist. By analogy with Brownian motion, the case 
n 

v j 1 implies that the particles are constrained in such a way that .. 

they can move only distances of the order of (by)l/v in the time bt, 

where v need not necessarily be an integer. 

Most of our previous results had been quite similar to the classi-

cal Fokker-Planck equation, although containing an important difference; 

but the above result represents a significant departure. The v-th order 

equations will later be used in a non-trivial example. 



E. Properties of the Conditional Moments. 

In many cases of interest, the output process possesses symmetry 

about the origin which is reflected in a symmetry property of the condi-

tional moments. This property is summarized in the following: 

Theorem 2.2. If p(y',t'jy,t;Y,T) = p(-y',t'j-y,t;-Y,T), then 

= (-l)nA (-y,t;-Y,T) 
n 

(2.24) 

Proof. By definition of the conditional moments, Eq. (2.3), we have 

Hence 

An(y,t;Y,T) = lim ~t E[{y(t+6t)-y(t))njy,t;Y,T] • 
6t~ 

~(-y,t;-Y,T) = lim ~t E[{y(t+6t)-y(t)Jnl-y,t;-Y,T] 1 

6t~ 

= (-l)n lim ~t E[{-y(t+6t)+y(t))nj-y,t;-Y,T]. 
6t-oo+ 

Making a change of variables in the expectation, letting 

y(t+6t) ~ -y(t+6t), and invoking the hypothesis in the statement of 

the theorem yields the result (2.24). 

This theorem imposes certain constraints upon possible solutions 

to the generalized Fokker-Planck equation. More specifically, the 



theorem is a type of boundary condition which the solution must 

satisfy and we will later use it for that very purpose. In the steady

state case, p(y,tjY,T) - p(y,t) as T - - ~ and the above theorem 

yields 

A (y) = (-l)nA (-y) • n n 

Hence An (y) is an even f'unction of y for n even and an odd 

fUnction of y for n odd. 

(2.25) 

With little difficulty we could extend the above theorem to the 

moments appearing in the v-th order equation [cr. Eq. (2.22)] and 

obtain 

(2.26) 

The following theorems make fUrther explicit statements about the 

behavior and existence of the conditional moments: 

Theorem 2.3a. If {y(t)) is a stationary random process, then 

E[A1 (y,t;Y,T)] is zero. 

Proof. Interchanging the limit and expectation operations, we find 

1 
E[A1 (y,t;Y1 T)] = lim ~t E[y(t+~t)-y(t)] 

~t-.o+ 

= 0 • 
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Theorem 2.3b. Let (y(t)} be a stationary random process. If 

the autocorrelation function Ry(T) is differentiable at the origin, 

then 

A (y,t;Y,T) = 0 for all n ~ 2 • 
n 

Proof. Interchanging the limit and expectation operations, we find 

E[A2(y,t;Y,T)] = lim !t E[(y(t+llt)-y(t)}
2

] 
llt-oo+ 

= lim !_ [2y
2 

- 2R (llt)] 
llt-oo+ llt ~y 

= - zR (0+) • 
y 

If Ry(T) is differentiable at the origin, Ry(O+) must vanish since 

Ry(T) is an even function of T. Since A
2
(y,t;Y,T) is non-negative 

* with mean zero, it must then be identically zero (a.e.) • Finally, 

using Schwarz's inequality, we find for n > 2, 

~ ~ (~t E[ly(t+llt)-y(t)lnly,t;Y,r]\
2 

, 
llt-.o+ ~ 

~ lim (~t E[(y(t+llt)-y(t)}
2

1y,t;Y,T]) X 
t.t-.o+ 

X (~t E[(y{t+bt)-y{t)} 2{n-l}IY,tJY,T]) , 

* The notation (a.e.) following a statement means that the statement 
is true almost everywhere; i.e., except possibly on a set of 
Lebesgue measure zero. 
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or 

(where we have tacitly assumed A (y,t;Y,T) < m ~or all r). This 
r 

completes the proof of the theorem. 

The validity of this theorem was demonstrated .in Example 2.1 for 

stationary Gaussian processes. In particular, the theorem holds for 

all stationary random processes which are di~ferentiable mean square •. 

The above two theorems imply the ~ollowing: 

Corollary 2.3. Let {y(t)} be a stationary random process with 

Ry(o+) = 0. Then A
1

(y) = 0 and the steady-state generalized Fokker

Planck equation becomes degenerate. 

Proo~ . Since ~(e+ ) = o, A (y) = 0 ~or all n ~ 2 by Theorem 2.3b. 
n 

The steady-state generalized Fokker-Planck equation ·then ~ollows ~ram 

( 2 .18) ; viz • , 

~y [Al(y)p(y)] = 0 • 

I~ A
1 

(y) /= o, this equation has the solution 



p(y) = AlCY) ; c =constant f 0 • 

Since we have shown in Theorem 2.3a that the expected value of Al(y) 

is zero, Al(y) must either be zero or assume both positive and nega

tive values. In the latter case we would not obtain p(y) ~ 0 for all 

Y• Therefore Al(y) must be zero and the generalized steady-state 

Fokker-Planck equation degenerates to 

0 = o. 

F. Generalization of the MUltidimensional Fokker-Planck Equation. 

The generalization of the classical multidimensional Fokker-

Planck equation follows in exactly the same way as in the one-dimen-

sional case. Let .l(t) denote an M-dimensional vector whose compon

ents are the M-randam variables y(i)(t), (i=l, ••• ,M); i.e., 

where the 
(i) 

y are from different random processes. 

sional form of (2.4) can then be written 

co 

(2.27) 

The multidimen-

p(z, t+Llt IY, T) = j dl'P(z:, t+Lltlz', t;Y,T)p(z', t IY,T) • < 2. 28) 

-"" 
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Writing the first term in the integrand as the Fourier transform of the 

M-dimensional conditional characteristic function of (z-z') and 

following the other steps in the proof of Theorem 2.l leads to the 

result: 

Theorem 2.4. (Multidimensional Generalized Fokker-Planck Equation). 

If tIT, the conditional probability density function p(z,tiY,T) of 

every M-dimensional continuous random process (z(t)] satisfies the 

M-dimensional generalized Fokker-Planck equation 

where 

Anl···a_(z,t;Y,T) = lim 
M 6t~ 

and 

( 2. 31) 

The two-dimensional form of the above equation will later be used. 

Setting y(l)(t) = x(t) and y( 2)(t) = y(t) we find for M = 2 



~t p(x1 y 1 tiY,T) 
( -l)m+n om+n 

[A (x,y,t;Y,T)p(x,y,tiY,T)] 1 
I 1 :::.. .. m::.yn mn 

where 

m,n 
m+n~ 

m.n. UA u 

(2.32) 

lim ~t E[(x(t+6t)-x(t))m(y(t+6t)-y(t))nlx,y,t;Y1 T] • 
6t-oo+ 

( 2. 33) 

As a matter of convenience, we shall confine most of our results 

to the one-dimensional case with obvious generalizations to the 

M-dimensional case by the above theorem - considering the M-dimensional 

case only when it is germane to the discussion at hand. 

G. The Generalized Kolmogorov Equation. 

As mentioned in Sec. B, we could have taken 6t negative in the 

proof of Theorem 2.l and would have dbtained: 

Theorem 2.5. (Generalized Kolmogorov Equation.) If t t T, 

the conditional probability density fUnction p(y,tiY,T) of every 

continuous random process (y(t)) satisfies the one-dimensional gener-

alized Kolmogorov equation 

- ~t p(y,tiY,T) 

where 

on 
[Bn(y,t;Y,T)p(y,tiY,T)] , 

oyn 

Bn(y,t;Y,T) = lim ~t E[(y(t-6t)-y(t)Jnly,t;Y,T] • 
6t-oo+ 

(2.35) 
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The conditional moments Bn(y,t;Y,T) are now computed by examining 

the incremental change in the process in a time fit > 0 prior to the 

occurrence of the random variable y(t). Once again we have imposed no 

ordering upon the times ti, ti € T, and have allowed the set y to 

be arbitrary. 

Note that in general 

since equality would imply from (2.2) and (2.34) that 

%t p(y,tiY,T) = 0 1 

which is physically unrealistic for most of the processes which we 

shall have occasion to consider (except in the steady-state case). 

Eq. (2.34) has been termed the generalized Kolmogorov equation 

even though we have not been able to establish the equivalence between 

(2.34) and the classical Kolmogorov equation (1.4) for the class of 

Markov processes. However, this equivalence does exist for a certain 

class of Markov processes possessing a type of temporal homogeneity. 

* We will say that a random process is absolutely stationary if it is 

stationary and if its joint probability density function at two 

* Absolute stationarity implies wide-sense stationarity and in the 
case of a Gaussian or Markov process strict sense stationary (also 
note that every stationary Gaussian process is absolutely 
stationary). 



instants of time depends only upon the absolute value of the time 

difference. We then have the following equivalence: 

Theorem 2. 6. Let {y(t)} be an absolutely stationary Markov 

process with a first order probability density function p(y) satis-

fying the steady-state equation [Cf. Eq. (2 . l8)] 

with 

A (y) = 0 for all n ~ 3 • 
n 

(2.37) 

Then the generalized Kolmogorov equation (2.34) for p(y
0
,t

0
ly,t};t

0
< t, 

reduces to the classical Kolmogorov equation (l.4) for 

p(y,tly ,t );t < t, if and only if 
0 0 0 

Proof. The generalized Kolmogorov equation for p(y
0
,t

0
ly,t) is 

(2.39) 

where 
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Bn(y
0
,t

0
;y,t) = lim ~t E[(y(t -D.t)-y(t )]njy ,t ;y,t] • 

D.t-oo+ Ll 0 0 0 0 

By the Markov hypothesis, the conditioning variable y may be dropped 

in the conditional expectation. Application of absolute stationarity 

then yields 

= lim ~t E[(y(t +6.t)-y(t ]njy ,t ] 1 
D.t-oo+ Ll 0 0 0 0 

(2.40) 

where the A 's are the moments of the steady-state equation [Cf. Eq. 
n 

(2.37)]. For a stationary Markov process, these moments are also equal 

to the moments of the classical Kolmogorov equation, Eq. (l.4). Since 

A (y ) = 0 for all n ~ 3 by (2.37), (2.4o) then shows that 
n o 

B (y ,t ;y,t) = 0 for all n ~ 3· Using the moments (2.4o), Eq. (2.37) 
n o o 

and employing Bayes' law enables us to put (2.39) into the form 

(2.4l) 

= - p(~ 
0

) [~y 0 · p(y, t I Yo'\)][~ ~y 0 [A2(yo)p(yoD-Al (yo)p(yo) ] • 
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(i) ~ Assuming (2.}8) to be true, (2.41) reduces to the classical 

Kolmogorov equation for p(y,tjy
0
,t

0
). 

(ii) ~When the generalized Kolmogorov equation for p(y
0
,t

0
jy,t) 

reduces to the classical Kolmogorov equation for p(y,tjy
0
,t

0
), the 

left-hand side of (2.41) must be zero. Hence 

If the first factor on the left-hand side of this equation vanishes for 

all y
0

, the classical Kolmogorov equation for p(y,tjy ,t ) implies 
0 0 

that op(y,tlyo,to)/oto = 0 and, as previously mentioned, this is 

physically unrealistic for the processes which we ~hall consider. 

Hence 

The Gaussian Markov process in an example of a random process 

satisfying the hypotheses of this theorem. Observing that the left-

hand side of (2.4l) is the classical Kolmogorov equation for 

p(y,tjy
0
,t

0
), we can state the following: 

corollary 2.6. If (y(t)} is an absolutely stationary Markov 

process with a transition density p(y,tly
0
,t

0
); t

0 
< t, satisfying 

the classical Kolmogorov equation, then 
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( 2.42) 

This corollary is one application of the generalized Kolmogorov 

equation and shows that absolute stationarity is a sufficient condition 

for (2.42). other sufficient conditions are given by Andronov, 

Pontryagin and Witt (l) (in Russian) and are summarized by Barrett (2) 

(in English). The condition (2.42) is used, for example, in the work 

of Wong and Thomas (19). We shall later consider other applications of 

the generalized Kolmogorov equation. 

The generalized Fokker-Planck and the generalized Kolmogorov 

equations can be summarized in the single equation 

where 

ft: p(y,tjY,T) =I: 
nd 

( -l)n on 
- [Cn(y,t;Y,T)p(y,tjY,T)], 

' -::.yn n. u 

= lim ~t E[(y(t+llt)-y(t)}njy,t;Y,T] , 
llt-+O 

(2.43) 

(2.44) 

in which the right-hand limit t~t-+O+ gives the generalized Fokker-

Planck equation and the left-hand limit lit-o- the generalized 

Kolmogorov equation. In general, the right and left hand limits are 

different as is easily demonstrated in the steady state case when 

(y(t)} is a Gaussian Markov process. For example 



and 
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lim ~t E[y(t+~t)-y(t)jy(t)] = p(o+)y(t) , 
~t--tQ+ -

lim ~t E[y(t+~t)-y(t) jy(t)] = -p(o+)y(t) • 
~t--tQ-

H. The Generalized Kolmogorov Equations for Discrete Random Processes. 

Most of the above results can be extended to the case in which 

(y(t)} is a discrete random process which can assume a finite number 

of states, say N, from a set S. We shall employ the notation 

pjlj2 ••• jn (tljt2, • • • ,tn) = Pr(y(tl) = jljy(t2) = j2' ••• ,y(tn)=jn}' 

(2.45) 

which, in conjunction with the notation (2.l), will also be written 

( 2.46) 

We then state the following: 

Theorem 2.7. Let (y(t)} be a discrete random process with N 

states from a set s. If t J T, the N conditional probabilities 

PjY(tjT), j e S, each satisfy the generalized Kolmogorov equation 

where 

~t P j y ( t IT) = L a j i y ( t, T) Pi y ( t I T) 

ieS 

(2.47) 



ajiY(t,T) = fl~~ ~t [Pr(y(t+flt)=j IY(t)=i;Y,T}-oji] • (2.48) 

Proof. We begin with the discrete analog of (2.4); namely, 

PjY(t+fltlT) = ~ Pr(y(t+flt)=j ly(t)=i;Y,T}PiY(tlT) 

ieS 

Subtracting PjY(tlT) from both sides of this equation yields 

PjY(t+fltiT)-PjY(tiT) = ~ [Pr(y(t+flt)=j ly(t)=i;Y,T}-oji]PiY(tiT) 

ieS 

Dividing through by fit and taking the limit fit~ gives the result 

(2.47) with the moments defined by (2.48). 

The equations resulting from the right-hand limit fit~+ will be 

called the generalized forward equations and those from the left-hand 

limit fit~- the backward equations. Theorems relating the generalized 

and classical equations in the case of discrete Markov processes can 

easily be formulated and proved as was done in the continuous case. 

By suitably combining the ideas behind the generalized equations 

for the continuous and discrete cases, we can handle the situation in 

which the desired probability density function is a joint density func-

tion with both continuous and discrete components. We illustrate this 

case by considering the joint transition probability distribution -

probability density function of an input-output pair when the input 



[x(t)} is a discrete random process with a set of states X, and the 

output [y(t)} a continuous random process. We then desire to find a 

generalized Fokker-Planck-Kolmogorov type equation for 

pjk(y,tly
0
,t

0
) = p[y,tlx(t)=j;y(t

0
),x(t

0
)=k}Pr[x(t)=jly(t

0
),x(t

0
)=k} • 

(2.49) 

Combining the steps in the proofs of Theorems 2.l and 2.7, the desired 

equation is easily shown to be 

where 

and 

+ ~ ajik(y,t;yo,to)pik(y,tlyo,to) ' <2 ·5°) 
ieX 

Again, the right-hand limit will be called the forward equation and the 

left-hand limit the backward equation and theorems concerning the 



equivalence of these equations and their classical forms can be stated 

and proved without difficulty. Eq. (2.50) is useful, for example , in 

finding the probability density function of the output of a filter 

excited by a Poisson square wave. 

We do not attempt to write the generalized Fokker-Planck-Kolmogorov 

equations for an M-dimensional process with an arbitrary combination of 

continuous and discrete components since such a general formulation 

would be quite cumbersome with our present notation, and we shall not 

have occasion to use it. However, the general form is suggested by 

(2.50). 



46 

CHAPTER III 

THE METHOD OF DARLING & SIEGERT AS A SPECIAL CASE OF THE 

GENERALIZED FOOCER-PLANCK-KOLMOGOROV EQUATIONS 

A. Introduction. 

As we demonstrated in the last chapter, there is complete 

equivalence between the generalized equations derived therein and the 

classical Fokker-Planck-Kommogorov equations whenever the output 

processes belong to certain classes of Markov processes. In this 

chapter we show the equivalence of the generalized equations of the 

l ast chapter and the equations of Darling and Siegert whenever the 

input processes belong to the very same classes of Markov processes. 

We work with a slightly more general form of Darling and Siegert's 

output throughout and hence obtain more general results. A method for 

treating non-Markov processes by studying closely related Markov pro-

cesses is proposed and is seen to yield Darling and Siegert's equations 

directly from the classical Fokker-Planck-Kolmogorov equations. The 

generalized steady-state Fokker-Planck equation is also derived for 

the above output without restricting the input to be Markov and is seen 

to provide explicit evaluation of a certain conditional expectation. 

B. The Output Process. 

The output process considered by Darling and Siegert (Cf. Ch. I, 

* Sec. B) when the input is one-dimensional is 

* The results of this chapter can be extended to the multidimensional 
case by using Theorem 2.4 in the appropriate derivations. 



( 3-l) 

where ~[x(T) 1 T] is a known function and (x(t)} is a continuous 

Markov process with a transition density satisfying the Fokker-Planck-

Kolmogorov equations 

We shall consider the slightly more general output 

t 

g(t,t
0

) j Hx(T) 1 T]dT ; t
0 

< t • 

to 

( 3- 2) 

( 3· 3) 

(3.4) 

One distinct advantage in including the function g(t,t
0

) in the out

put, instead of merely defining y(t,t
0

) = z(t,t
0
)/g(t,t

0
) is that the 

random process (z(t,t
0

)} can be stationary even if the process 

(y(t,t
0
)} is non-stationary. For example, it is well known that if 

the input, say (x(t)}, to an RC filter is stationary, then the output 

is stationary - this output is given by (3.4) with t
0 

~, 

~[x(T),T] = x(T)(RC)-
1

exp(T/RC) and g~ 1 -oo ) = exp(-t/RC). However, the 

output given by (3.1) is now non-stationary. 

In the following, we shall have occasion to regard one of the 

times t or t
0 

as a fixed quantity with respect to certain operations 

and will adopt the shorthand notations 
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or 

z (t ) = z(t,t
0

) 
0 0 

( 3· 5) 

using the first set in dealing with the forward equation and the 

second set in the case of the backward equation . 

c. The Forward Equation of Darling and Siegert as a Special-Case of 

the Generalized Fokker-Planck Equation . 

Taking the inverse transform of the function considered by Darling 

and Siegert, Eq. (l .l2), we find p(x,y, tlx
0
,t

0
) as the density 

function to consider in relating the forward equation of Darling and 

Siegert and the generalized Fokker-Planck equation for continuous 

input and output processes . We are thus led to consider p(x,z,t!x ,t ) 
0 0 

in the more general case of (3.4). The two-dimensional generalized 

Fokker-Planck equation for this density function can be written from 

(2.32) a s 

where 

A (x,z,t;x ,t ) 
mn o o 

= ~ ....:.(_-l__.)'-m-+_n °m+n [A (x,z,t;x ,t )p(x,z,t lx ,t ) ], 
~ m!n! oxmozn mn 0 0 0 0 
m,n 

m+n/D 
(3.6) 

= lim :t E[[x(t+6t)-x(t)}m[z(t+~t)-z(t)}njx,z,t;x ,t ] . 
~t-o+ u 0 0 

( 3· 7) 

We must now evaluate these conditional moments from (3.4). We now 

write (3.4) as 



t 

z ( t) = g ( t) J Hx ('f), 'f ]d 'f . 

to 

(3.8) 

We first consider the case n = 0. Employing the Markov property of 

(x(t)}, we find 

A (x,z,t;x ,t ) = lim ~t E[(x(t+6t)-x(t)}mjx,t] , (3.9) 
mo o o 6 t~+ 

which shows the moments Amo to be identical with those appearing in 

the operator L in the Fokker-Planck equation for p(x,tjx
0
,t

0
), 

Eq. (3.2). Therefore, we can separate the terms corresponding to 

n = 0 in the double summation in (3.6) and rewrite (3.6) as 

co co 

= - L L (-l)m+n 

m!n! 
m=O nd 

[A (x,z,t;x ,t )p(x,z,tjx ,t )] 
oxmozn mn 0 0 0 0 

( 3 .l0) 

We next consider m,n ~ l. For 6t small, from (3.8) we have to first 

order (assuming i[x('f),'f] to be sufficiently regular) 

t+6t t 

z(t+~t)-z(t) g(t+~t ) ~ ~[X('f) 1 T]dT-g(t) ~~[x(T) 1 T] dT 1 

to to 

t+~t t 

g(t+6t) ~ i[x('f),'f]d'f+[g(t+6t)-g(t)] ~~ [x( 'f),'f]dT , 

t t 
0 

~ 6t ( g(t+6t)Hx(t),t] + ~~!~ z(t)) , ( 3.ll) 
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where the dot denotes differentiation with respect to t . For m,n ~ l, 

A (x,z,t;x ,t ) = lim 
mn o o 

(6t)n-~[(x(t+6t)-x(t)}m x 

X (g(t+6t)~(x,t) + gttt~ z(t)}njx,z,t;x ,t]. 
g 0 0 

Denoting the expectation conditioned on (x,z,t;x ,t ) by E and 
0 0 c 

using Schwarz ' s inequality we find 

j~(x,z,t;x 0 ,t 0 )j ~ lim Ec[jx(t+6t)-x(t)jmjg(t+6t)~(x,t)+gt~~z(t)jn], 
6t~+ g 

~ lim {Ec[jx(t+6t)-x(t)j2m])~ x 
6t~+ 

X (Ec[jg(t+6t)~(x,t)+ :t~~z(t) j2n])~, 

~ jg(t)~(x,t)+gt~~z(t)jn lim (Ec[jx(t+6t)-x(t)j2m])t, 
g 6t~+ 

= 0 • (3.l2) 

The only moments remaining to be evaluated are A , n ~ l. Using on 

(3. ll) again, we find 

g(t)~(x,t) + ~~~~ z; n = l , 

A (x,z,t;x ,t ) (3.l3) 
on o o 

0 ; n > l . 
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Substituting these moments (3.l2) and (3.l3) into (3.l0) gives the 

generalized Fokker-Planck equation 

( 3.l4) 

We now specialize to the output process of Darling and Siegert by 

setting g(t) = l. The above equation is then 

(3.l5) 

* which, upon Fourier transformation with respect to y becomes the 

forward equation of Darling and Siegert [Cf. Eq. (l.l4)]. 

When the input is a discrete random FrOcess we can derive discrete 

forms of the above equations by beginning with (2.50) and consequently 

derive the discrete Darling and Siegert equation, Eq. (l.l6). 

D. The Backward Equation of Darling and Siegert as a Special Case of 

the Generalized Kolmogorov Equation. 

In this section, we follow essentially the steps of the previous 

section. However, we shall find it necessary to further restrict the 

* We tacitly assume that all terms corresponding to "initial condi
tions" of the Fourier transformation cancel. We know that they must 
since (3.l5) and (l.l4) were derived independently. An example in 
which these terms are present is considered in Sec. c, Ch. IV, where 
they are computed in detail. 
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input process; namely, we assume that the input is absolutely station-

ary and is such that the generalized Kolmogorov equation for 

p(x ,t Jx, t) reduces to the classical Kolmogorov equation [Cf. 
0 0 

Theorem 2.6] . We now write the output (3.4) in the form 

t 

z
0
(t

0
) = g

0
(t

0
) J ~[x(,-),T]d-r ; t

0 
< t • 

to 

Beginning with the two-dimensional form of the generalized 

( J.l6) 

Kolmogorov equation (2.34) for the density function p(x
0
,z

0
,t

0
jx,t) 

and following exactly the steps of the previous section we find the 

generalized Kolmogorov equation 

where the dot denotes differentiation with respect to t
0 

and where 

L' 
o' 

which depends only upon X 
0 

and is defined by the general-

ized Kolmogorov equation for p(x
0
,t

0
lx,t); viz ., 

(L' + ~t )p(x ,t jx,t) = 0 • 
0 u 0 0 0 

We desire to rewrite (3.l7) in terms of p(x,z ,tjx ,t ) 
0 0 0 

and the 

( J.l8) 

operator L
0 

of the classical Kolmogorov equation, (3 . 3). From Bayes' 

law, we have 
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(3.19) 

Substituting this equation into (3 .17) and following the steps in the 

proof of Theorem 2. 6 leading to Eq. (2.41) yields the desired result 

(L + ~t )p(x,z ,tlx ,t ) 
0 0 0 0 

0 

where we have employed the condition of absolute stationarity. Note 

that we could just as well write z instead of z since they are the 
0 

same quantity. Setting g
0
(t

0
) = l so that we get the output of 

Darling and Siegert, z
0 

= y
0 

= y, the above equation becomes 

(3.21) 

which is recognized as the inverse Fourier transform of Darling and 

Siegert's backward equation, Eq. (1.15). 

Again, when the input is a discrete random process, we begin with 

(2 . 50) and, following the above procedure, can derive the discrete form 

of (3.21), Eq. (1 .17)· 

E . Markovization - Extension to Arbitrary Transition Densities. 

The concepts of time and the evolution of time are intimately 

involved in the d~finition of a Markov process - with such terms as 

"past", "present" and "future" used extensively to describe the course 
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of certain physical phenomena. However, the idea of a Markov process 

can be viewed simply as a mathematical property of certain conditional 

probability density functions expressing independence of certa in random 

variables upon other random variables when the times of occurrence are 

ordered. The time parameter need not be the actual time (with respect 

to the real world) of occurrence of events but could conceivably be 

some other parameter such as a time-constant, delay, truncation, etc . 

For example, let (y(t) } be the output of a linear filter excited 

by a zero-memory transformation of the Markov process (x(t)}; i.e., 

t 

y(t) 1 h(t-T)V[x(T)]d'f 

-ex> 

In general, (y(t)} is not a Markov process nor can it be regarded as 

the projection of a higher-dimensional Markov process. Let us introduce 

a parameter, say £, in the upper limit of the integral, writing* 

t+£ 

w(e) = J h(t-T)V[x(T)]d'f , 

_ex> 

and consider the evolution of w(e) as £ varies, holding t fixed . 

We write wi = w(ei) and xi = x(t+ei) and will now show that the 

joint process (wi,xi} is a two-dimensional Markov process, with 

respect to the parameter £. For we can write 

* h(t) is now to be considered as the analytic continuation of the 
impulse response. 
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Ei 

wi wj + J h( -u)v[x(t+u) ]du . 

Ej 

Hence, the statistical properties of wi depend only upon those of 

and x for 
q 

we have 

p(w ,x jw1x1 ; ·•• ;w 
1
,x 

1
) = p(w ,x jw 

1
,x 

1
) 

n n n- n- n n n- n-

and conclude that (wi,xi} is a two-dimensional Markov process. 

Consequently, the transition densities of the process must satisfy 

two-dimensional -classical Fokker-Planck-Kolmogorov equations; viz., 

(Li - ~EJ p(wi,xilwj,xj) = 0 ; £. 
J 

< £. 
1 ' 

(Lj + ~£ J p(wi,xi lwj ,xj) 0 ; £. < Ei J 
J 

where is an operator depending only upon wi,xi and and 

an operator depending only upon wj,xj and 

We note furthermore that if (x(t)} were a white process with 

x(t) and x(t') independent for t ~ t', that (wi} would be a 

one-dimensional Markov process with respect to the parameter £, We 

could then characterize the transition densities of the process (wi} 

by the classical Fokker-Planck-Kolmogorov equations. Many of our 

results of this chapter and the next can be obtained by employing the 



artifice of Markovization and using the classical equations. However, 

we choose to work directly with the generalized equations since they 

are valid in all cases . 

The output process considered by Darling and Siegert [Cf. Eq. 

(3.1)] can be written in the form 

~-? 
where yi = y(ti) and t

0 
is a constant. As was done above, we can 

show that the joint process (yi,xi} is a two-dimensional Markov 

process and, using the classical equations, can derive Darling and 

Siegert type equations for the arbitrary transition densities 

p(yi,xijyj,xj) ; 

not be taken at 

t
0 

< tj < ti ; i.e., the conditioning variables need 

t = t • These same equations can be found from the 
0 

generalized Fokker-Planck-Kolmogorov equations as was done in the pre-

ceding sections. 

F. The Steady-State Case for Arbitrary Inputs. 

In this section, we consider the output process [z(t)} defined 

by (3.4) but do not require the input process [x(t)} to be Markov. 

When (z(t)} is stationary, the steady-state generalized Fokker-Planck 

* equation for p(z) follows from (2.18) 

* Note that we have not let t - - 00 even though the steady-state 
equation was heuristically d~rived in this way. However, in 
arriving at (3.11), we have tacitly assumed t independent of t 
so that t 0 will indeed be - 00 in most cases

0
to insure that z(t) 

is stationary. Examples in which t
0 
~ - 00 are considered in the 

next chapter. 
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IX> 

-- \ (-l)n dn 
0 ~ ' d n [An(z)p(z)] ' 

n=.l n. z 

where 

A (z)• lim ~t [(z(t+!::Jt)-z(t)Jnlz,t] • 
n t:Jt-o+ Ll 

* These moments are easily computed from (3.11) and we find 

A1 (z) = g(t )E[t(x,t)lz(t)] + :~~~ z (t) , 

A {z) = 0 , n ~ 2 • 
n 

Therefore the steady-state equation can be written in the form· 

(3.22) 

(3.23) 

( 3· 24) 

( 3· 25) 

d 
dz [A1 (z)p(z)] = 0 , (3.26) 

which implies that A
1

(z) must vanish [Cf. proof of Cor. 2.3]. Hence 

( 3. 24) yields 

E[IP(x,t) lz,t] (3.27) 

* A bounded autocorrelation fUnction for t(x,t) is quite sufficient 
to insure that A (z) = 0, n ~ 2, which in this case serves as the 
regularity condit~on mentioned before (3.11). 



Note that the first order generalized Fokker-Planck equation for p(z) 

degenerates in this case; nevertheless, it has enabled us to 

explicitely evaluate the above conditional expectation. This result 

is important for two reasons: 

(i) The conditional expectation (3.27) cannot be evaluated 

directly, and 

(ii) The information given by the conditional expectation 

can be used advantageously as a boundary condition 

and/or to compute the conditional moments of higher-

order generalized Fokker-Planck equations (this use of 

(3.27) will be illustrated in later examples). 

When z(t) is the output of an RC filter excited by a zero

memory transformation of the stationary process (x(t)}, say v(x), 

we have 

~it~ 
z(t) = e- e RC v[x(T)]dT • (3.28) 

Hence ~(x,t) = (RC)-
1

exp(T/RC)V[x(T)] and g(t) = exp(-t/RC) so that 

(3.27) yields 

E[V(x)lzJ = z • (3.29) 

Thus, when the input to an RC filter is stationary, the expected va lue 

of the input conditioned on the output is equal to the output. 
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As another application of (3.27), we consider the case when the 

joint process {x(t),z(t)) is stationary, with {x(t)) Markov. The 

steady-state equation for p(x,z) can be written from (3.l4): 

Lp(x,z) = ~z [{g(t)~(x,t) + :~~~)p(x,z)] (3-30) 

Assuming again that z(t) is stationary, we integrate this over all 

x and apply (3.27). This results in the following null property of 

the Fokker-Planck operator L: 

CD 

J Lp(x,z)dx = 0 , ( 3· 3l) 
_co 

where we recall that L was defined as the operator in the classical 

Fokker-Planck equation for p(x,tlx
0
,t

0
) ; t

0 
< t ; that is, 

(L- ~)p(x,tjx 0 ,t 0 ) = o. 
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CHAPl'ER IV 

THE LINEAR FILTER 

A. Introduction. 

The output process (3.4) considered in the last chapter is quite 

simila r in form to the output of a linear filter. By suitably modify-

ing the results of the last chapter, we present in this chapter 

generalized Fokker-Planck-Kolmogorov equations governing certain joint 

probability density functions associated with the general linear filter. 

We consider the output process 

y(t,A.,e) tjf h(t-T)V[x(T)]dT ) 

t-A. 

(4.l) 

where [x(t)} is a one-dimensional Markov process, v(x) a prescribed 

zero-memory transformation of x and h(t) the impulse response func

* tion of the filter • Our primary objective is to determine the output 

probability density function p(y) for both continuous and discrete 

input processes [x(t)}; however, our approach requires in most cases 

that we first find the joint density function of y and x(t') at 

some time t' and then integrate out x(t'). To illustrate the 

methodology of solution of the generalized Fokker-Planck-Kolmogorov 

equations found herein, we solve them for the case in which 

* h(t) will always denote the analytic continuation of the impulse 
response function of an untruncated filter. The filter will be 
truncated by our choice of limits of integration. 
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V[x(t)] = x(t) is the Gaussian Markov process for an arbitrary impulse 

response h(t). The discrete generalized Kolmogorov equations are also 

presented and their solution considered when (x(t)} is the Poisson 

square wave. The output probability density fUnction of an RC filter 

excited by the Poisson square wave is found by solving the generalized 

Kolmogorov equations and also by using the v-th order generalized 

Fokker-Planck equations. Wenham's results (21) for the transition 

density of this process are extended. Finally, we illustrate the use 

of the v-th order equations in finding asymptotic solutions. 

B. Continuous Input Processes. 

In this section (x(t)} is assumed to be a continuous one-dimen-

sional Markov process with a transition density satisfying the 

classical Fokker-Planck-Kolmogorov equations 

(4.2) 

(4.3) 

and the generalized Kolmogorov equation 

(4.4) 

l. The Forward Equation. If we think of the time t as a fixed 

quantity, (4.l) can be written in the form 
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t[x(T),T]dT ; t < t J 
0 

(4.5) 

where t[x(T),T] ~ h(t-T)V[x(T),T], t 1 ~ t-E and t ~ t-A. 
0 

This 

form is identical with (3.4) when g(t
1
,t

0
) ; 1. The generalized 

Fokker-Planck equation for p(x,y,t
1

jx ,t ) follows at once from 
0 0 

(3.15); viz., 

UPon changing the independent time variable from t
1 

to E and using 

the above definitions, this becomes 

where x = x(t-A)• This is our desired result and is a partial 
0 

differential equation (usually of second order) in the three variables 

x, y and E· Fourier transformation with respect to y simplifies 

the equation somewhat by eliminating the derivative with respect to 

Y· 

The solution to (4.7) must possess the usual properties of 

probability density functions and must also satisfy the obvious boundary 

condition 

(4.8) 



As we shall later see, this boundary condition is sufficient for 

unique solution of (4.7) for a large class of problems. We can let 

A ~ oo in (4.7) and obtain the generalized forward equation for 

p(x,y,t-e); i.e., 

0 0 
(L + OE)p(x,y,t-E) = h(E)V[x(t-E)] oyP(x,y,t-E) ; (4.9) 

however, the boundary condition (4.8) has no meaning in the limit. 

Hence, it appears necessary to first solve the truncated case, A < oo, 

and let A ~ oo in the solution to obtain the solution for the 

untruncated case. This is unsatisfactory in that we intuitively 

expect the joint first-order density p(x,y,t-E) to be simplier than 

the transition density p(x,y,t-Ejx
0
,t-A)• On the other hand, the more 

complicated case yields much more information. However, we have not as 

yet been able to determine an appropriate boundary condition for (4.9). 

Moreover, we have not even been able to find a generalized equation for 

p(y) with appropriate boundary conditions for the general linear filter. 

2. The Backward Equation. The generalized Kolmogorov equation for 

p(x
0
,y,t-Aix,t-E) can be found in the same way as in the last section. 

Beginning with (3.l7), we find 

(L' - ~ )p(x ,y,t-Ajx,t-E) = h(A)V[x(t-A)] ~~(x ,y,t-Ajx,t-E) , (4.l0) 
o vA o oy- o 

and have the boundary condition 



p(x ,y,t-Ejx,t-E) = o(y)o(x-x) • 
0 0 

(4.ll) 

The backward equation for p(x,y,t-Ejx ,t-A) can also be easily found 
0 

by beginning with (3.21) (or the Fourier transform of the Darling and 

Siegert backward equation if we do not assume absolute stationarity). 

We get 

(4.12) 

which is to be solved with the boundary condition 

(4.13) 

Once again, the truncated case must be solved first, then the limit 

A - ~ taken to obtain the solution to the untruncated case. 

3· The Linear Filter Excited by RC Noise. Let (x(t)} be a 

stationary Gaussian Markov process with mean zero, unit variance(for 

convenience) and autocorrelation function 

(4.14) 

The Fokker-Planck equation satisfied by p(x,tjx
0
,t

0
); t

0 
< t, is 

found from Example 2.1 to be 



a 
02

2 
p(x,tjx

0
,t

0
) +a ~[xp(x,tjx ,t )] - ~ p(x,tlx ,t ) = 0 , (4.l5) 

ox ax 0 
o ot 0 0 

from which we find the operator L to be 

o2 
0 

L( ·) = a ( ·) + a -[x( •)] . 
ax2 ox 

We desire to solve the generalized Fokker-Planck equation, Eq. (4.7), 

for the joint density p(x,y,t-£) when v(x) = x. Our method of 

solution, with slight modifications, can also be used to find the 

transition density p(x,y,t-£jx
0
,t-A); but, for simplicity, we con

fine our attention to the first-order joint density. Averaging out the 

variable X 
0 

in (4.7) and using the operator L from (4.l5) results 

in the equation 

where p = p(x,y,t-£). The boundary condition (4.8) becomes 

2 

p(x,y,t-A) 

X 

-2 
6(y) _e __ 

-/2;c 

To solve (4.l6) we employ the two-dimensional Fourier transform 

(I) (I) 

¢(~,v,£) = 1 dx 1 dy ej~x+jvyp(x,y,t-£) • 

_co _co 

(4.l6) 

(4.l7) 

(4.l8) 
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Transforming (4.16), we obtain the first-order equation 

(4.19) 

with the boundary condition (4.17) transforming to 

¢(s,v,A) (4.20) 

Eq. (4.19) is in the form of the standard first-order linear partial 

* differential equation • The system of characteristic equations is 

-dE (4.2l) 

We seek two independent solutions of this set in the forms f
1

(s,e,¢)=c
1 

and f
2

(s,e,¢)=e
2 

with c
1 

and c
2 

constants. The general solution 

to (4.19) can then be written f
2 

= H(f1) where H is an arbitrary 

function to be determined from the boundary condition. The equation 

determined by the first pair in (4.2l) is 

~! + as = vh(e) } 

* See, for example, Martin, w. T. and Reissner, E., Elementary 
Differential Equations, Addison-Wesley, Reading, Mass, 1956. 

(4.22) 
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which has the solution 

e: 

~eae: -v J h( IJ.)eaiJ.diJ. = c
1 

• 

0 

From the second pair we get 

or 

2 d¢ 
a~ de: = ~ , 

- 2ae: ( ae c
1 

e: 

+ J h( IJ.)eaiJ.diJ.) 
2

de: 

0 

This equation has the solution 

( 4. 23) 

Using (4.23) to eliminate c1 , this equation can be put into the form 

From (4.23) and (4.24), the general solution can now be expressed as 
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Applying the boundary condition (4.20) yields 

Since this must hold for all s, we can replace s by 

A 

sea(e:-A) + v J h(J..L)ea(J..L-A)dJ..I. 

e: 

to obtain 

H (te8
' -v J h(~)e 8 ~d~) ~ ex{ ~ (·ea(E-A) +V 2h(~)e 8 (~-}.)d~ r -

-1 dvae-2av (<e "' -v J e "11:. ( ~)d~ fJ 
Substituting this equation into (4.25), we obtain after some 

manipulations 

where 

and 

¢(s,v,e) = exp - 2 (s + 2p sv + cr v ) , [ l 2 2 2j 
xy Y 

A 

Pxy = J h(J..L)e-a(J..L-e:)dJ..I. = E[x(t-e:)y] , 

e: 

A A 

cry
2 =j dj..L j dvh(!-L)h(v)e-ai!-L-vl = E[y2] , 

e: e: 

(4.26) 



(the equivalence between the second and third members of these last 

two equations is easily verified from the definition of y, Eq. (4.l) 

with v(x) = x). The case of the untruncated filter is obtained by 

setting E = 0 and letting A ~ oo. 

Hence, (4.26) shows that x(t-E) and y are jointly Gaussian. 

Although this problem can be solved by other (in fact simplier) methods, 

it has not been heretofore solved by the Fokker-Planck-Kolmogorov 

method for arbitrary h(t). The solution is important from the stand-

point that any reasonable method for finding probability densities 

* should enable us to handle this Gaussian case . 

The results of this section are also valid for the output 

(4.27) 

if we replace h(t-T) by h(t,T) in all of the equations. 

c. Discrete Input Processes. 

(x(t)} is now taken to be a discrete one-dimensional Markov 

process with a transition density satisfying the Kolmogorov equations 

[Cf. Eqs. (l.8) and (l.9)] 

* Following methods similar to those of this section, we can also 
obtain and solve the generalized Fokker-Planck equations for the 
first-order density p(y) when the input (x(t)} is white 
Gaussian noise and the filter weighting function h(t) is 
arbitrary. 
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L ari (t)Pik(t Ito) ' 

i€S 

P i(tlt )a.k(t ) • r o ~ o 

(4.28) 

(4.29) 

As a matter of convenience, we also assume that [x(t)} is absolutely 

stationary. We now consider the output process 

y(t,k,E) = ~E h(t-T)X(T)dT ; 

t-A. 

(4. 30) 

and seek discrete forms of the forward and backward equations of Sec. 

B, Eqs . (4.7) and (4.l2). Eqs. (4.7) and (4.l2) could have been 

obtained directly from .the continuous Darling and Siegert equations as 

could their discrete counterparts. As a matter of simplicity, we shall 

use the discrete Darling and Siegert equations as our starting point 

instead of beginning with forms of (2.50). We now consider the joint 

probability density - probability distribution function 

prk(y,t-Eit-A.) = p(yjx(t-£) = r,x(t-A.) = k}Prk(t-£jt-A.) • 

(4.31) 

l. The Forward Equations . Again, regarding the time variable t 

as a fixed quantity, (4.JO) can be written in the form 

Hx(T),T]dT ; (4. 32) 
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where ~[x(T),T] = h(t-T)x(T), t 1 = t-E and t
0 

= t-A· This is now 

in the form of Darling and Siegert's output. Hence, the inverse 

Fourier transform of (l.l6) gives 

2: ari(tl)pik(y,tllto) - ~t 1 Prk(y,tllto) = rh(t-tl) ~y Prk(y,tl\to) • 

i€8 

Changing the independent time variable from t
1 

to E yields the 

desired result 

2: ari(t-E)Pik(y,t-Eit-A) + ~E prk(y,t-Eit-A) 

i€8 

= rh(E) ~y Prk(y,t-Eit-A)• 

(4.33) 

~on Fourier transformation with respect to y, this yields a system 

of N
2 

(N denoting the number of states of x) ordinary differential 

equations which are to be solved with the N
2 

boundary conditions 

2. The Backward Equations. Beginning with (1.17) and following 

2 
the above procedure, we easily obtain the system of N backward 

equations 

L: pri(y,t-Eit-A)aik(t-A)- ~A Prk(y,t-Eit-A) = rh(A) ~y prk(y,t-Eit-A), 

i€8 (4.35) 

which are to be solved with the N
2 

boundary conditions 
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(4. 36) 

3· The Linear Filter Excited by the Poisson Square Wave. Let 

x(t) be the Poisson square wave assuming the values +1 and -1 with 

equal probability and with an average number of traversals per unit 

time equal to a. The probability that K traversals occur in the 

time T is then given by the Poisson distribution 

P(K,T) 
= (aTle-aT 

K! 
(4. 37) 

There is a non-zero probability that no traversals occur in the time 

interval (t-A,t-E)J namely 

( ) 
-a(A-E) 

P o,A-E = e , 

so that the output (4.)0) takes on the values 

t-E 

; 1 
t-A 

h(t-T)dT 
1 

with non-zero probabilities. The conditional probability density 

functions 

p (y,t-E) S p(yjx(t-E) = ±1) 
± 

(4. 38) 

(4. 39) 

(4.40) 
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will then have the discrete components 

d (y,t-e) 
± 

-a(t.-e) ( ) e 6 y ± y
1 

• (4.41) 

We wish to consider the generalized Fokker-Planck-Kolmogorov 

equations for the transition densities p (y,t-e); 
± 

however, because 

of the presence of the 6-functions, we must consider instead these 

equations for the continuous parts of the density functions; i.e., for 

q (y,t-e) = p (y,t-e) - d (y,t-e) • 
± ± ± 

(4.42) 

We confine most of our attention to the forward equations, keeping t. 

fixed and allowing e to vary. From (4.)0), the output is constra ined 

to lie between the values 

(4.43) 

with y
2 

= y
1 

when h(t) ~ 0. The evolution of the density functions 

p (y,t-e) as e varies is indicated in Fig. 4-l. As curves (c) 
± 

of the figure show, when e ~ t., the density functions reduce to a 

6-function of unit area and a point at y = 0. 

The moments ari(t) of the Kolmogorov equations for the transi

tion probability of the input are found from (l.lO) and (4.37) to be 



-a(A-e:) 
e 

p_(y,t-e:) 

e 

P_(y,t-e:) 

-a(A-e:) 

p_(y,t-e:) 

l (l) 

~ 
• 

_ ____.I ___ y 

I 
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a) e: << A 

b) e: <A 

c) e: = A 

p (y,t-e:) 
+ 

-a(A-e:) 
e 

p+(y,t-e:) 

-a(A-e:) 
e 

p+(y,t-e:) 

~ (1) 

• 

----4---1 -· y 

Fig. 4-l. The evolution of p (y,t-e:) with e:. 
± 
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-a ; r = i , 

ari(t) = 
a ; r = -i . 
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(4.44) 

Since l: p k(y,t-£jt-A.) = p{yjx(t-E)=r}, summing (4.33) over the 
keS r 

index k and employing the moments (4.44) yields the pair of forward 

equations 

oq oq+ 
-aq + aq + d£+ = h(£) oy 

; IYI < y2 , + ,. (4.45) 

oq - oq -
-aq+ + a.q - aE = h(£) ay 

; IYI < y2 ' - (4.46) 

where q± = q±(y,t-£). Appropriate boundary conditions for this 

equation are not directly available but must be determined from our 

knowledge about q (y,t-£) and use of the differential equations 
± 

(4.45) and (4.46). Our eventual solution of (4.45) and (4.46) will be 

by means of Fourier transforms and hence we will require boundary condi-

tions only for the transformed variables. However Fourier transformation 

will require knowledge of certain initial conditions on the functions 

Therefore we consider calculation of q (y,t-A.) 
± 

to illus-

trate that appropriate boundary conditions for the equations (4.45) and 

(4.46) can indeed be found and at the same time obtain results which 

we will later need. 

consideration of Fig. 4-lc shows that as £ ~ A., the functions 

q (y,t-£) become zero everywhere except at the origin, where they may 
± 

assume some non-zero value. The value of the point functions 



76 

q±(y,t-A) is determined as follows. Assume h(t) > 0 on the inter

val (e,A)• Then y1 = y2 and integration of (4.42) yields 

yl 

1 
-yl 

q (y,t-e)dy = 1-e-a(A-E) • 
:± 

(4.47) 

Differentiating this equation with respect to E and employing the 

fact that oy1/oe = -h(e) [Cf. Eq. (4.39) for h(t) ~ 0] gives 

yl 

~ ~E q±(y,t-e)dy = -ae-a(A-E) + h(e)[q±(y11t-e)+q±(-y
1
,t-e)] 

-yl 

Using these last two equations to integrate (4.45) over all y 

results in 

-a(A-E) 
q (-y ,t-e) = ae 
+ 1 2h(E) ' 

which, :for e = A can be written 

2h(A) 
q (y,t-A) = 

{ 

a 

:± 0 

; y = 0 ' 

; elsewhere. 

(4.48) 

(4.49) 

We had assumed h(t) > 0 on (e,A); however, as E -A this assump

tion is equivalent to h(A) > 0 and can be removed by using lh(A) I 

in the above equation. Hence, the desired boundary conditions are 

; y = 0 

(4.50) 
; else'Where. 
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other boundary conditions can be found in a similar way. 

Solving the pair (4.45) and (4.46) for ~(q+ + q_), we obtain an 

equation for the continuous part q(y,t) of the unconditional proba-

bility density function p(y,t); namely 

.. 
q - [2a +*t] ; (4.51) 

where q s q(y,t) and a dot denotes differentiation with respect to t. 

Suitable boundary conditions for this equation can be determined; 

however, the form of the equation suggests that Fourier transforms be 

used to solve it, so we will focus our attention on the transformed 

equation and boundary conditions for the transformed variable. 

Rather than transforming (4.51) directly, it is easier to trans

form (4.45) and (4.46) and solve the resulting set for the function of 

interest. For simplicity, we assume h(t) ~ 0 (so that y
1 

= y
2
). 

Define 

and 

ejvy q (y, t-t) dy 
1 :± 

R (v,£) = ~(p (y,t-t)] ; D (v,t) = ~(d (y,t-t)] • 
± ± ± . ± 

(4.52) 

(4. 53) 

Differentiating (4. 52) with respect to t and rearranging we .find 



Using this equation to transform (4.45) gives 

or 

OQ+ 
-aQ + aQ + -:s-- + jvh(E)Q 

+ - uE + 

-a(A.-E)-Jvy1 
= -ae , 

where we have employed (4.48). Since D±(v,E) = exp[-a(A.-E)± Jvy
1
], 

a simple calculation shows that 

oD 
-aD + aD + ::. + + jvh(E)D 

+ - uE + 
= ae 

-a(A.-e:)-jvyl 

Therefore, the transform of (4.45) can be written finally as 

-a(Q+ + D ) + a(Q + D) + ~ (Q + D ) + jvh(E)(Q + D ) = O, 
+ - - uE + + + + 

with a similar result for the transform of (4.46). Noting that 

R± • Q± + D±' we get the set of transformed equations 

oR + . 
-aR+ + aR_ + ~ + jvh(E)R+ = 0 , 

oR 
-aR + aR - ~ + jvh(e:)R = 0 • 

+ - OE -
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The boundary conditions for these equations are found from the condi-

tion 

to be 

R (v,A) = l • (4.55) 
± 

l 
Solving the set (4.54) for -

2
(R + R ) yields an equation for the 

+ -

unconditional characteristic function R(v,E) =3(p(y,E)} ; viz., 

where a dot denotes differentiation with respect to E· By adding and 

subtracting the pair (4.54) and applying (4.55), we find the boundary 

conditions 

R(v,A) = l and R(v,A) = 0 . (4.57) 

These are the desired results. Observe that (4.56) can be obtained 

from (4.5l) by writing p for q and ignoring all "initial condi-

tiona" when Fourier transforming. However, (4.5l) does not hold for 

p because of the presence of o-functions. 

The backward equation corresponding to (4.56) is obtained by 

beginning with the set of backward equations (4.35). We find 



8o 

•• [ h(A)] • 2_ 2 R1 + 2a - 'ii"(I} Rl + vn (A)R1 = 0 , 

where R1 = R1 (v,A) = 3{p(y,A)} (e held fixed), the dot now denotes 

differentiation with respect to A and the appropriate boundary 

conditions are 

(4.59) 

McFadden (lO) has previously obtained this equation for the case 

E c 0 and has solved it for same impulse responses h(t). 

4. The RC Filter Excited by the -Poisson Square Wave. In the 

-l 
case of an RC filter with time constant RC = f} , h(t) = f} exp(-f}t). 

Eq. (4.56) then becomes 

The solution to this equation satisfying ,the boundary conditions 

(4.57) is 

R(v,e) = - 2 ~ vz~ l-~[J (vz)Y 1(vz )-Y (vz)J 1 (vz )] , 
0 ~ ~- 0 ~ ~- 0 

where J and Y are Bessel functions of the first and second kinds 

respectively, z = exp ( .; t3e ) , and Setting 

£ = 0 and letting A ~ m gives the characteristic fUnction of the 
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output of the untruncated filter (10) 

a(p(y)) 

Consequently 
a 

- l 
{l-y2l13 

; IYI ~ l , 
(1 a) 

B Z'-;3 
p(y) .= (lf.6o) 

0 ; IYI > 1 , 

where B denotes the beta function. This solution has also been 

found by Wonham and Fuller (20) by a different method. 

5· The RC Filter Excited by the Poisson Square Wave-Output 

Probability Density Function from v-th Order Fokker-Planck Equations. 

The above solution (4.6o) can be found without first solving the 

truncated case by utilizing the v-th order generalized Fokker-Planck 

equations of Sec. D, Ch. II. Setting £ = o and A = = in (4.30), 

the output of interest can be written in the more convenient form 

Since the output is stationary,· we can take t
0 

= 0 without loss of 

generality and restrict our attention to the output 

t 

y = y
0

e-f3t + j. ,:3e-~(t-T)x(T)dT , (4.61) 

0 

where y = y(t) and y
0 
= y(t

0
). Stationarity also enables us to 
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write the v-th order ~neralized Fokker-Planck equations rrom (2.22) as 

(4.62) 

where 

(4.63) 

The rirst-order equation (v=l) has already been considered in 

Sec. F, Ch. III and was seen to degenerate yielding the .result 

E[xlyJ = y , (4.64) 

where x= x(t). We now turn to the second-order equation (v=2) and 

begin by computing the moments A ( 2)(y ). From (4.61) we see that 
n o 

ly-y
0
ln- (2~)n as t ~ 0 so that the first two moments at most 

are non-zero; i.e., 

A(
2)(y)=0; n~3. 

n o 
(4.65) 

We have rrom (4.61) and (4.63) for n = 1 1 

t 

A1(2)(yo) = t:!:~( yo(e-13t_1) + J f3e-13(t-T)E[x(,-)lyo]dT)· 

0 (4.66) 



The conditional expectation in the integrand can be evaluated from the 

properties of the Poisson square wave. Let N(o,T) denote the number 

of traversals in the time interval (o,T). N(o,T) is a random 

variable independent of x(t) for t ~ 0 and consequently independent 

of y
0 

since y
0 

depends only upon x(t) for t ~ o. Hence, for 

T 2: 0 1 

(4.67) 

where X EX(t ). 
0 0 

Using this result in (4.66), we obtain 

(4.68) 

The second moment is found in a similar fashion: 

A~2><:ro> = ~ ~2 E[(:ra<·-t>t-1:) + J tle-~<t-'>x<<)d<rl:ra] , 

= lim ;[y2 (e-t3t_J.) 2 + 2y (e-t3t-l) Jt t3e-t3(t-T)E[x(T) jy ]dT 
t-oo+ tG 0 0 0 

0 

t t 

+ .~ 2 ~~ (1 du 1 dv~ 2 e~(u+v)x(u)x(v) l:r
0
r 

0 0 ~ 
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Note that the double integral goes as t 2 so that we need not evaluate 

the conditional expectation (since x
2
(t) = l for all t) and that the 

second term can be evaluated as was done in computing Al2
)(y

0
). We 

get 

A(2)( ) _ R2(l 2) 
2 Yo - ~ -yo • (4.69) 

The second-order Fokker-Planck equation is then 

d
2 

[f3
2 

2 ~ d ~ -- (1-y )p(y) + --[~yp(y)] = 0 ; IYI < l • 
dy 2 dy 

Integrating once and noting that p(y) must be an even function of y 

gives 

.. (4.71) 

We now have a first-order ordinary differential equation and hence the 

general solution contains only one arbitrary constant. This constant 

is determined by normalizing the solution to unity. We find 

. a . l 

(l-y2)13 -

p(y) = 

(1 a) 
B 2 1 13 

0 

; IYI s: l ' 

; IYI > l ' 

which is the same as that found in the previous section. 



In comparing the methods of the last two sections it is observed 

that the latter is simpler and more direct than the former. However, 

the former is the more general of the two since the moments 

cannot be evaluated for a general weighting function h(t). 

6. The Transition Probability Density FUnction. The transition 

probability density function p(y,tly
0
,t

0
) ; t

0 
< t, for the output of 

an RC filter excited by the Poisson square wave has been considered 

previously by Wonham (21). Wonham assumes that the transition density 

is completely described by p(y,tlO,t
0

) with suitable transformations 

applicable for y
0 

f 0. However, as we now show, this is not the case. 

The transition density can be written as the sum of two terms as 

follows 

p(y,tly ,t ) = p (y,tly ,t )Pr(x =+lly} + p (y, tly ,t )Pr(x =-lly } , 
0 0 + 0 0 0 0 - 0 0 0 0 

(4.72) 

where p (y,tly ,t ) = p(y,tly ,t ; X=± l). 
± 0 0 0 0 0 

As Wonham shows, the 

densities are completely described by 

* through the relationship 

p (y,tjy ,t ) = p (y-y e-~t,tjo,t ) • 
± 0 0 ± 0 0 

However, the conditional probabilities Pr(x =±lly } 
0 0 

described by Pr(x =±lly =0}. 
0 0 

* See Wonham (21), p. 377, Eq. (lO). 

p (y,tlo,t ) 
± 0 

a re not completely 
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The conditional probabilities Pr{x =±lly } 
0 0 

can be evaluated from 

the first-order generalized Fokker-Planck equation by observing from 

(4.64) that 

y
0 

= E[x
0

ly
0

] = Pr(x
0

=+lly
0

} - Pr(x
0
=-lly

0
} 

Also 1 we have 

Hence 

' 

and (4.72) becomes 

p(y,tlyo,to) • (l:yo) p+(y,tlyo,to) + (l~yo)P_(y,tlyo,to) 
(4. 73) 

The conditional densities p±(y,tly
0
,t

0
) can be found from the results 

of Wonham and are expressed in terms of hypergeometric functions. These 

results can also be obtained from the transition probability density 

function of the truncated RC filter (101 21). 

7• Asymptotic Solutions Using the v-th Order Fokker-Planck 

Equations. Assuming that the generalized v-th order Fokker-Planck 

equations have a unique solution for some prescribed boundary conditions, 

the equations can be viewed as representations of probability density 

functions in terms of the conditional moments ~v)(y). Hence, if we 

can approximate the moments in same way and solve the resulting 

equations, we can obtain an approximate solution for a desired density 
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fUnction. In this section, we apply this idea to find an asymptotic 

solution for the probability density fUnction of the output of an RC 

filter excited by a Poisson square wave. As mentioned in the last 

section, the actual solution can be written in terms of hypergeometric 

fUnctions. However, the purpose of this section is not to solve a new 

problem, but rather to illustrate a methodology of solution. 

We consider the output 

y(t) = J
t 

(4.74) 
t-A. 

and desire to find p(y) for sufficiently large A. by using the v-th 

order generalized Fokker-Planck equations (4.62). We observe that the 

density fUnction p(y) must contain two 6-functions 1 which arise 

because there is a non-zero probability that no traversals occurred 

in the time interval (t-A.,t); namely, 

P(O,A.) = e 
-a A. (4.75) 

Since the input assumes the values ±l with equal probability, the 

output attains each of the extreme values ±Yl.' 

(4.76) 
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with probability Hence p(y) must 

have the discrete components 

-a A. 
~ [6(y-yl)+6(y+yl] • (4.77) 

The v-th order generalized Fokker-Planck equations are now 

solved in the interval IYI < IY
1

1 and the solution normalized to 

account for the presence of the 6-functions at the endpoints of the 

interval. Since the output is stationary, we take t = 0 without loss 

of generality and compute p(y
0
). For computation of the conditional 

moments, we write (4.74) in the more convenient form 

t-A. 
t t-A. 

= J- J 
0 -A. t t-A. 

=]-j+j-J 
-co -m 0 -A 

t 

= y
0

e-f3t + J j3e-j3(t-T)[x(T)-x(T-A.)e-f3A.]dT 
1 (4.78) 

0 

where y = y(t) and y
0 

= y(O). From this equation we obtain the 

bound 





[ I ] -2aT 
= E x y e , 

0 0 
(4.81.) 

and the second term is 

We now assume that the average number o~ traversals occurring in the 

time interval (-A,O) is very large, or Aa >> l. We then expect the 

number o~ traversals occurring in the interval (-A,T-A) to be 

approximately independent o~ the value y
0

, and the above equation 

·yields 

Using this, (4.79) and (4.8l) in (4.8o) gives 

l [ ( -t3t ) = lim 2 y
0 

e -l 
t-..o+ t 

= lim l
2 

[y (e -~ -l) 
t-oo+ t 

0 

= -t3ay 
0 

Likewise, ~or the second moment we have 

(4.82) 



= lim ~{y2(e-13t_l)2 
tr--o+ t2 0 

t 
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+ 2y
0

(e-f3t-l) J f3e-13(t-T)E[x(T)-x(T-A.)e- 13"-ly
0

]d,

o 

+ E [ (J lle -~( t-') (x( ')-x( ,_A)e -~A]d, r I Yo] } 

= 13~[(x -x(-A.)e-13"-J 2 IY ]-f3
2
y

2 
• 

0 0 0 

We now assume the number of traversals occurring in the interval 

(-A., 0) to be approximately independent of y , 
0 

which also seems 

reasonable for A.a >> 1. Then 

and we find 

(4.83) 

The second-order Fokker-Planck equation can finally be written as 

- -(k -y )p(y) + - [13ayp(y) J = 0 ' d
2 

[13
2 

2 2 ~ d 
dy

2 
2 dy 
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where k 2 _ l 2 -(~2a)A -2~A > 0 - - e + e • Integrating once and noting that 

p(y) is even in y gives 

d 2 2 2a 
ay [(k -y )p(y)] + ~ yp(y) = 0 ' 

which has the general solution 

a 
2 2 ~- l 

p(y) = c1 (k -y) ; c
1 

=constant. (4.84) 

The complete solution with a-functions [Cf. (4.77)] is then 

a l . -aA 

Cl(k 2-y2)~- e [ ( ) ( )] + ~ 6 y-y1 + 6 Y+Y~ ; 

p(y) = (4.85) 

0 j IYI > yl ' 

where c
1 

is found by integrating over all y to be 

[ 
Y a ]-l A 1 2 2 - l 

c
1 

= (1-e-a ) ~ (k -y )~ dy 

l 

We note also that 

-2~A > l 2 -~A -2~A + e - e + e 
' 

; 
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Hence k
2 > yi so that p(y) is always real and positive. It was 

indeed necessary to check this point because our solution is an 

approximation to a probability density function and we had not 

necessarily restricted ourselves to a class of real, non-negative 

approximate solutions. 

Letting A- oo in (4.85), we get the density function of the 

output of the untruncated filter, Eq. (4.6o). 



CHAPl'ER V 

NONLINEAR FUNCTIONAL OF RC NOISE 

A. Introduction. 

As our ~inal example, ve consider the problem o~ determining the 

~irst-order probability density ~ction o~ the ~ctional 

y(t) _( ~-~(t-T)V(x(T)]dT • (5 .l) 

-00 

where V(x) = sgn x and (x(T)} * is RC notse (Markov Gaussian noise ) 

with autocorrelation ~ction Rx(T) = exp(-aiTI)· y(t) can be inter-

preted as the output o~ a "~ilter-limiter-~ilter" system as shown in 

Fig. 5-l. 

White 
Gaussi 
Noise 
8=2/a 

~ 
RC Filter 

x(t) 
Ideal 

v[x(t)] 
RC Filter 

Limiter ~ 

RC=l/a V(X)=sgn X RC=l/t3 
y(t) 

Fig. 5-l. "Filter-limiter-~ilter" system. 

The purpose of this chapter is to apply the methods and results 

o~ the preceding chapters to the solution o~ the above problem. We 

do not obtain a complete solution to the problem - an expression ~or 

the ~irst-order density p(y). However, our approaches are new and 

* This noise process is sometimes called the Ornstein-Uhlenbeck process. 
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exhibit the unknown data which we are lacking for the solution. Also, 

some of the mathematical difficulties inherent to the problem are 

clearly illustrated. 

Employing the techniques of the preceding chapters, it is appar

ently not possible to obtain a differential equation for p(y) 

directly, but we must work through the joint density p(x,y) and 

obtain p(y) upon integration over x. The generalized Fokker- Planck

Kolmogorov equations for the densities p(y) and p(x,y) are consid

ered in Sec. B. In Sec. C a comprehensive study is made of the 

boundary conditions for the generalized Fokker-Planck equation for 

p(x,y). The results of Doyle, MCFadden and Marx (7) are summarized in 

Sec. D and the last section contains our approaches to the problem. 

B. The Generalized Fokker-Planck Equations. 

There are several Fokker-Planck-Kolmogorov equations which we 

might consider in attempting to find the first-order probability 

density function p(y). Three of these are 

(i) The v-th order generalized Fokker-Planck equations for 

p(y), 

(-ii) The generalized Fokker-Planck-Kolmogorov equations for 

the joint probability density - probability distribution 

function p(yiV)P(V), and 

(iii) The generalized Fokker-Planck equations for the joint 

probability density function p(x,y) . 

The v-th order generalized Fokker-Planck equations for p(y) follow 



in much the same way as the equations for the output of an RC filter 

excited by the Poisson square wave [cr. Sec. C-5, Ch. IV]. The first-

order equation is degenerate; however, we are not able to compute all 

of the moments of the second-order equation as we did in Sec. C-5, 

Ch. IV. We find 

(5.2) 

~ 2
) (y) = 0 for n :2: 3 , ( 5. 3) 

but are not able to evaluate Al2
)(y). We fo~d Al2

)(y) for the 

output of the RC filter excited by the Poisson square wave by using 

the zero-crossing properties of the Poisson square wave. However, the 

zero-crossing properties which we employed are unknown in the case of 

V(x) = sgn x where (x(t)) is Markov Gaussian noise. It is known 

that Markov Gaussian noise has an expected number of zero-crossings per 

unit time equal to infinity. But this anomaly of v(x) does not imply 

that Al2)(y) does not exist for the present problem. Using the 

definition of Al2
)(y), Eq. (3.23), and l'Hospitals rule we obtain 

Ai2)(yo) = lim l2 E[y(t)-yojyo] ' 
t-oo+ t 

= t=~{r 0 e-~~+e-l't J jle-~[v(x(u)J\y 0 ]d~, 

= ~ ~t(E[v(x(t))jy 0 ]) 
t=O+ 

(5.4) 

/ 
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Another expression for Al
2
)(y

0
) can be obtained by integrating the 

generalized Fokker-Planck equation for p(x,tly
0
,o), which is seen 

from (4.l5) to be 

o2 a o 
a ax2 p(x,tlyo,o) +a Ox [xp(x,tlyo,o)] =at p(x,tlyo,o) • 

(5.5) 

Integrating this equation over all x and using (5.4) yields 

The generalized Fokker-Planck-Kolmogorov equations ~or the joint 

probability density - probability distribution fUnction p(ylv)p(V) 

presuppose knowledge of the classical Kolmogorov equations for P(v). 

To compute the conditional moments of these classical equations, we 

again need certain zero-crossing properties of V(x) which, as previ-

ously mentioned, are not known. Therefore, we turn to the generalized 

Fokker-Planck equation for p(x,y). 

From (4.l5) and the steady-state form of (3.l4) we find the gener-

alized Fokker-Planck equation for p(x,y); viz., 

a2 a a 
ox2 p(x,y)+ ox [xp(x,y)] - a oy [(v(x)-y)p(x,y)] = 0 ; jyj< l; lxl < oo 

(5.7) 

where as f3/a. Although this equation has been simple enough to write 

down, it does not uniquely determine a joint probability density func

tion unless we can specify appropriate boundary conditions which the 



density fUnction must satisfy. As we shall see in the following 

sections, our inability to deduce appropriate boundary conditions for 

p(x,y) prevents us from solving the problem, except for one particular 

value of the parameter a; namely, a = 2. However, we will be able 

to make further statements about the first-order density p(y). 

c. Boundary Conditions. 

Because of the discontinuity in V(x), we interpret (5.7) as the 

pair of equations 

02

2 p(x,y) + ~x [xp(x,y)] -a ~Y [(l-y)p(x,y)] = 0 ; jyl<l; x > o, 
ox 

(5.8) 

o2 
0 0 

---
2 

p(x,y) + ~~ [xp(x,y)] +a--- [(l+y)p(x,y)] = 0; jyj<l; x < o. 
ox UA ay 

(5.9) 

The solution to these equations must satisfy the obvious symmetry 

condition 

p(x,y) = p(-x,-y) (5.10) 

so that any solution to either .(5.8) or (5.9) uniquely determines a 

solution to the other equation. Hence, without loss of generality, we 

can restrict our attention to (5.8). Nevertheless, as a matter of 

completeness, we will consider the boundary conditions for both 

equations. 
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Another condition which the solution must satisfy follows from 

( 3· 29); namely 

E[v(x)jy] = y. (5.ll) 

Writing out this equation and using the fact that p(x,y) is a joint 

density function yields the pair of equations 

<X> 0 

1 p(x,y)dx - 1 p(x,y)dx = yp(y) 1 

0 

and 

<X> 0 

1 p(x,y)dx. + J p(x,y)dx = p(y) 

0 

Adding, we obtain 

<X> 

J p(x,y)dx = 
(l+y) ( ) 

2 p y ' 

0 

which, evaluated at y = -l gives 

<X> 

J p(x, -l)dx = 0 • 

0 

Hence we obtain the boundary condition 

p(x,-l) = 0 (a.e~ ; x > 0, 

(5 .12) 

(5 .13) 



lOO 

and, by symmetry 

p(x,+l) = 0 (a.e.); x < 0 • (5.14) 

We next consider continuity properties of the solutions to (5.7). 

The type of continuity which we shall be concerned with is equality of 

right and left-hand limits at x = o. If the solutions were discontinu-

ous in this sense; that is if 

lim p(x,y) ~ lim p(x,y) , 
x--o+ x--o-

then for b € (-l,l) we would have 

lim Pr[y < b lx} ~ lim Pr(y < b lx} • 
x-+o+ x--o-

However, since the second RC filter in Fig. 5-l tends to smooth varia-

tions in the output y due the changes in x, it is inconceivable that 

a slight change in our knowledge of x would result in a gross change 

in our knowledge of y. For example, we expect Pr(y < b lx = l0-5°} 

to be approximately equal to Pr(y < bjx = -lo-5°}. We conclude that 

lim p(x,y) = lim p(x,y) • (5.15) 
X-oQ+ x--o-

continuity of the first derivative of p(x,y) with respect to x 

is demonstrated as follows. Integrating (5.8) and (5.9) over their 

respective ranges of x (and assuming ~/ax = 0 at x = ± ~) gives 



lOl 

x:a": Op~~,y) - a ~Y [(l-y) Z p(x,y)dx] = 0 , 

lim op(~~y) + a~ [(l+y)-1° p(x,y)dx] = 0 
x~o- oy 

Subtracting and using (5.12) and (5.10) yields 

lim op(x,y) = lim op(x,y) 
ox ax x ..... O+ x~o-

(5.16) 

We are not able to conclude that the second derivative is continu-

ous at x = o. However, we make the following observation: if 

then 

2 2 
lim o p(x,y) = lim o p(x,y) 

X-tO+ ox2 
X-oQ- ox

2 1 

1 
p(o,y) = --

2$ 
, IYI < l . 

(5.17) 

(5.18) 

This result is proved by taking the limits x.....a± in (5.8), adding the 

resulting equations and using (5.15), (5.16) and (5.17). We obtain 

oP(o,y) = O 
()y 

which has the (suitably normalized) solution (5.18). 

The above boundary conditions and other evident properties of the 

joint density fUnction p(x,y) are summarized below: 

.· 



(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

and finally, 

(ix) If 

l02 

p(x,y) = p(-x,-y) 

P(± a>,y) = 0 

+l 

~ p(x,y)dy = (2n)-l/
2
exp(-x2/2) 

-l a> 

E[V(x)jy] = y ~ J p(x,y)dx = ~(l+y)p(y) 
0 

p(x,-l) = 0 (a.e.) ; X> 0 

p(x,+l) = 0 (a.e.) ; x<o 

lim p(x,y) = lim p(x,y) 
X-+o+ x--oo-

lim op(x,y) - lim op(x,y) 
ox - dX 

x--oo+ x--oo-

2 2 
lim o p(x,y) - lim o p(x,y) 

2 - 2 , 
X-tO+ oX x--oo- Ox 

then p(o,y) 

(5 .l9) 

(5.20) 

(5.2l) 

(5.22) 

(5. 23) 

(5.24) 

(5.25) 

(5.26) 

l 
=--. 
2~ 

(5.27) 

With the exception of (ix), these are all known properties of the 

solution to (5.8) and (5.9); however, we have not demonstrated the 

sufficiency of these conditions for determining a unique solution to 

the differential equations. To this end, we make a change of variables 
' 

in (5.8). Let the variable ~ be defined by 

Y = l-2e-a ~ (5.28) 
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and write 

-a~ p(x,l-2e ) (5.29) 

Making this change of variables in (5 . 8) yields 

0 < x, ~ < CX) 

(5.3)) 

This equation is in the form of a parabolic differential equation in 

the region ~' x > 0. Hence, we expect the boundary ~ = ex> to be open 

and require Dirichlet or Neumann conditions on the other three boundaries. 

We know conditions at ~ = 0 (y = -1) and at x = ex> and thus if we 

knew a condition at x o we could uniquely solve (5.3)). This means 

(in terms of x and y) that if we knew either 

p( o, y) (5.31) 

or 

we could uniquely solve (5 . 3)) and consequently determine p(x,y). 

However, our above considerations of the boundary conditions have not 

yielded (5.31) or (5 . 32) except in the case of (5.27) . 

Eq. (5.6) shows that if we knew (5.32), we would then know 

Ai2)(y)p(y) and could solve the 2nd-order generalized Fokker-Planck 
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equation for p(y). Hence, we see here a connection between the v-th 

order generalized Fokker-Planck equations for p(y) and the general-

ized Fokker-Planck equation for p(x,y). Our ignorance about 

A( 2)(y) in the v-th order equations for p(y) manifests itself as 
l 

ignorance in the boundary conditions for the equation for p(x,y). 

D. The Solution of Doyle, McFadden and Marx. 

Using the method of Darling and Siegert; Doyle, McFadden and Marx 

(7) have found the density function p(x,y) for the case a = 2. Their 

result is 

2 
X 

p(x,y)-12,{ e
2 

= ~(l-x 2 ) l [xe -x

2

Tl
2 

2 ~ +--- --- -(l-x )Erf(xTj) ; 
li 2Tj 

where 

and 

T\=~' 

Erf(z) =] .-t
2
dt 

0 

x > o; IYI<I ; 

( 5. 33) 

The first-order density p(y) for this case (a= 2) is found by 

integrating (5.33) and using (5.22): 

p(y) = 

l (l 2)-l/2 . - -y , 
lt 

0 ; elsewhere. 

jyj< l ' 

(5.34) 
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The solution procedure of Doyle, et al. becomes untractable for a~ 2 

and it is this fact which motivates our work in the following section. 

E. Solutions of the Generalized Fokker-Planck Equation. 

In this section, we consider two methods for solving (5.8). In 

the first method we use Laplace transforms to solve the equivalent 

equation (5.30) and in the second we use separation of variables to 

solve (5.8) directly. 

l. Laplace Transform Solution. Define [Cf. Eq. (5.29)] 

(X) 

F(x,s) = j e-s~[e-a ~f(x,~)]d~ , 

0 

where the factor -a~ e is included to insure that 

(5.35) 

F(x,s) converges 

for s ~ 0. Using this definition to transform (5.30) and (5.23) to 

evaluate the initial condition of the Laplace transform results in the 

ordinary differential equation 

d ?~(x,s) dF(x s) 
-~~~~ + x ' + (1-s)F(x,s) = 0 • (5.36) 

dx
2 

ds 

Making the substitution F(x,s) = exp(-x2/4)G(x,s) to eliminate the 

first derivative term gives 

d
2
G(x,s) [l x

2
] ~ 2 + 2 - s - ~ G(x,s) = 0 • (5. 37) 

TWo linearly independent solutions to this equation are the parabolic 



* cylinder fUnctions D (x) 
-s 
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and Ds-l (.::1: jx) • However, 

exp( -x
2
/4)Ds-l (± jx) ''blows up" at x = + co for s > l and hence 

cannot be a solution to (5.36) since we expect the Laplace transform 

F (x,s) to exist for all s > o. Thus the solution to (5.36) can be 

written 

( -x
2/4 ( F(x,s) = c s,a)e D x) , 

-s (5. 38) 

where c(s,a) is a constant to be determined from the boundary 

conditions. 

In order to proceed fUrther, we assume at this point the boundary 

condition (5.27); i.e., 

p(O,y) 
l 

=--' 
2$ 

or in terms of f(x,s) [cf. (5.29)], 

f(o,s) l =--. 
2$ 

Using this equation in (5.35), · we find the boundary condition for 

F(x,s); viz., 

l 
F(O,s) = ----

2$(s+a) 

(5.39) 

* The parabolic cylinder functions are discussed by Erd~lyi, et.al., 
Higher Transcendental Functions, Vol. 2, Ch. VIII, McGraw Hill Book 
co., New York, 1953· 
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This equation determines c(s,a) in (5.38). Consequently, the 

* solution can be written 

F(:x,s) = 
2$(s+a)D (o) 

-s 
' 

s-1 

r(l+s)2 """"2 e-x2/4D (x) 
2 -s 

= 
2:n:(s+a) 

We need only invert and change back to our original variables to 

(5.40) 

obtain p(x,y). _ Applying the inversion formula for Laplace transforms 

to the above equation, we have 

f(x,~) (5.41) 

Since D (x) 
-s 

is an entire function of x for all s, the only poles 

of the integrand are s = -a and those due to the gamma function at 

s -(2n+l); n = o, 1, The residue of f[(l+s)/2] at the pole 

s = -(2n+l) is 2(-l)n/n!. Hence, for a~ (odd integer), (5.41) 

yields 



:f(x,~) 
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r(l;a) 2-(a + l)/2 2 
e-x / 4 D (x) + 

a 

e(a-2n-l)~ -x2/4 
---- e D2n+l (x) 

a-2n-l 21(11! 
n=O 

(5.42) 

The case a = (odd integer) results in a second-order pole at s = -a. 

The effect of this second-order pole is that the :first term o:f (5.42) 

and the term in the summation corresponding to a are missing. 

Finally, changing back to our original variables, we obtain 

r(l-a) 2-(a + l)/2 2 
p(x,y) = 2 e-x /

4 
D (x) + 

2nl2 a 

n=o 
21(11! a-2n-l 

which is valid :for jyj< l and x > 0. 

For a= 2, Eq. (5.43) can be summed and yields the result o:f 

Doyle, McFadden and Marx, (5.33). Moreover, a= 2 is the only value 

o:f a :for which (5.43) satisfies all of the boundary conditions (5.19) 

through (5.27). We demonstrate the necessity of requiring a= 2 by 

deriving a condition :from (5.22) which the correct solution must 

satisfy and then show that (5.40) satisfies this condition only for 

the case a= 2. Considering (5.22) :for both positive and negative y 

and eliminating p(y) between the resulting equations gives 
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00 00 

l!y J p(x,y)dx = l:y J p(x,-y)dx . 

0 0 

00 

F(s) = J F(x,s)dx , 

0 

00 00 

= J dx J d~e-(s+a)~f(x,~) , 

0 0 

00 +l 

J J 
s/a dy l-y 

= dx 2a ("2} p(x,y) • 

0 -l 

Employing condition (5.44) in this equation yields 

J
oo +l s/a-1 

F(s) = dx j ~~ {l~y)(l;y) p(x,-y) , 

0 -l 

oo +l s/ a,..l 

= J dx J ~~ { l;y) { l~y} p(x,y) 

0 -l 

Finally, transforming back to x,~ variables gives 

00 00 

F(s) = j dx J d~ e- 2 a · ~ (1-e-a~)s/a-lf(x,~) • 

0 0 

From this equation, it follows that 

F(a) 
F(2a) = 

2 
' 

(5.44) 

(5.46) 
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which is the desired condition. We now apply this condition to our 

solution. Integrating (5.4o) over positive x, 

l 
F(s) = ----

4.[,{ (s+a) 

r(~) 

r ( 2~s) 

* we find 

(5.47) 

Using this equation in (5.46), we get the transcendental equation in a 

r(~ + ~) 
3 2 2 

r(~ +a) 
(5.48) 

It is easily argued that both sides of this equation are monotone 

decreasing in a and intersect at only one point for a> 0. Hence, 

there exists only one a> 0 which satisfies this equation and it is 

readily verified that a = 2 is the solution. 

That our solution with a = 2 satisfies the other boundary con-

ditions follows in a straightforward way and will not be considered. 

That fact that our solution does not satisfy the boundary 

conditions for a~ 2 implies that condition (5.27) does not hold 

unless a = 2. 

* Ibid. p. l221 Eq. (20): 

.[,{ 2(a-l)/2 

r( 2;a) 
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2. Separation of Variables Solution. In this section we 

apply the technique of separation of variables to solve the pair (5.8) 

and (5.9). Assuming p(x,y) = X(x)Y(y) in Eq. (5.8), we find 

X" +XX' 
X 

= a(l~y)Y' _ (l+a) -k , 

where k is the separation constant. Solving the equation for Y 

yields the solution 

Y(y) = (l-y)-(i+~k)/a • (5.50) 

The equation for X, 

X" + .XX I + kX = 0 ' 

is transformed by the substitution X(x) = exp(-x
2
/4)w(x) to the 

equation of the parabolic cylinder functions; viz., 

W" + 
l x 2 

(k-1 + 2 - ~)w = o • 

TWo linearly independent solutions to the equation are ~- 1 (x) and 

D_k(± jx) but exp(-x
2
/4)D_k(± jx) does not remain finite as x- ro 

and hence cannot be part of the solution. Thus 
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( ) -x
2 
/4 ( ) 

X X = e Dk-l X • 

Using superposition, we then can write 

p(x,y) = L Ak (l-y)- (l+a-k)/a e -x2 /4 ~-l (x) ; 

kEK 

(5.51) 

X> 0 1 

(5.52) 

where the set K and Ak are to be determined from the boundary con

ditions. Similar considerations for x < 0 lead to the equation 

kEK' 
(5.53) 

where again K' and ~ are to be determined from the boundary 

conditions. 

APPlying the symmetry condition p(x,y) = p(-x,-y) to (5.52) and 

(5.53) we see that K and K' should be the same set and obtain 

0 = L (1-y)-(l+a-k)/a (AkDk-l (x)-~1\-l (-x)) • 

kEK 

( 5 .54) 

For this to vanish for all x,y, we require that each term vanish. 

Therefore ~- 1 (x) and ~-ltx) are linearly dependent and we con

* elude that k must be an integer • For k integral, 

Dk_
1

(x) = (-l)k-~_ 1 tx) so that 

* Ibid. p. ll7. 
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(5.55) 

Furthermore, requiring (5.52) to be integrable term-by-term over y 

leads to the conclusion 

or k >l. 

The solution can now be written in the form 

. p(x,y) = 

oo k-a 

LAk(l-y)a e-x2/4 11t(x) ; x > o ' 

k=l 
oo k-a 

\ ( k a -x
2/4 

~ Ak -1) (l+y) e ~(x) .J X< 0 • 

k=l 

(5.56) 

(5.57) 

We cannot proceed to evaluate the coefficients Ak without 

further information. However the parabolic cylinder functions are 

not orthogonal on the half-line and the functions (1 ± y)~ are not 

recognized as a set of orthogonal functions. It is unclear how much 

more information is required. Furthermore, expansions in the parabolic 

cylinder functions on the half-line usually do not converge to the 

functions they represent at the origin so that knowledge of p(o,y) 

does not help us here as it does in the Laplace transform solution. 

Let us attempt to solve (5.57) for the first-order density 

function p(y). Integrating the pair (5.57) over their respective 
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ranges of x * gives the equations 

00 

J p(x,y)dx = L A2n+l (-l)n(2n-l)!! (l-y) (2n+l-a:)/a:, 

o n=o 

0 00 

J p(x, y)dx = L A2n+l ( -l)n(2n-l)!! (l+y) (2n+l-a:)/a: • 

_oo n=o 

Adding these two equations, we obtain 

00 

p(y) = I>2n+l ( -l)n( 2n-l)!! [(l-y) ( 2n+l-a) /a + (l+y) ( 2n+l-a) /a J 
n=o 

(5.58) 

(5.59) 

Using this equation and the boundary condition (5.22) leads to the 

following requirement 

00 

o = I>2n+l ( -1)n(2n-l)! l [(l-y) (2n+l)/a - (l+y) (2n+1)/a] • (5.6l) 

n=O 

FUrthermore, integration of (5.6o) over all y gives 

* (i~ See footnote in connection with Eq. (5.47). 
(ii The notatiOn tn-2) (2) ; n even , 

n''-•• = 
n(n-2) (l) ; n odd 
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equations became 

p(y) = k L ck 

k odd 

[il?) (k-a) I a + (1;:') (k-a) I a} 

where the coefficients ck must satisfy 

0 L jyj< l ' 

k odd 

and 

l = L ~ 
k odd k 

jyj< l ' 

(5.63) 

If the conditions (5.64) and (5.65) were sufficient to uniquely 

determine the ck' we would then have a unique solution for p(y) 

given by (5.63). However, we have not been able to solve (5.64) and 

(5.65) for the 

The discussions of this and the preceding sections clearly illus-

trate the two primary difficulties we encounter in applying the 

generalized Fokker-Planck-Kolmogorov equations and/or the v-th order 

generalized Fokker-Planck equations: 

(i) We may not be able to compute the conditional moments, 

and 
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(ii) Even if we can find the conditional moments, we may 

not be able to determine sufficient boundary conditions 

for the resulting partial differential equation. 

For the problem of this chapter, we saw at the end of Sec. c. that 

these two difficulties were to some degree equivalent. 
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CHAPI'ER VI 

EPILOGUE 

A. Summary and Conclusions. 

In the foregoing chapters, the classical theory of the Fokker-

Planck Kolmogorov equations was generalized from the class of random 

processes with transition densities satisfying the Smoluchowski (or 

Chapman-Kolmogorov) equations to the class of all (regular) random 

processes. For the transition density p(y,tiY,T) of a one-dimensional 

continuous random process it was shown that the single equation 

with 

Cn(y,t;Y,T) = lim ~t E[(y(t+~t)-y(t)}njy,t;Y,T] 1 

~t-oO 

(6.1) 

can be interpreted both as a forward and as a backward equation by 

taking the right (~t~+) and the left (~t~-) hand limits respect-

ively in the definition of Cn(y,t;Y,T). For certain classes of Markov 

processes this pair of equations was seen to imply the classical Fokker-

Planck-Kolmogorov equations. Generalizations for the transition densi-

ties of discrete and of mixed random processes and also for multidimen-

sional random processes were also presented. Various properties of the 

conditional moments Cn(y,t;Y,T) were examined in a series of theorems 

in Ch. II. 
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In the steady-state case, the generalizations degenerated for a 

large class of random processes. This degeneracy enabled us to 

evaluate certain conditional expectations and also motivated the 

derivation of the generalized v-th order Fokker-Planck equation 

co 

(6.2) 

with 

v 

lim ( ~t) 
D.t-+o+ 

E[{y(t+D.t)-y(t)Jnly(t)] • 

The equations of Darling and Siegert were derived in Ch. III as 

special cases of the generalized equation (6.1). A method termed 

Markovization for treating non-Markov processes by studying closely 

related Markov processes was considered and was seen to lead to the 

derivation of Darling and Siegert's equations directly from the classi-

cal Fokker-Planck-Kolmogorov equations. It was observed that many of 

the problems considered in the later chapters could also be solved by 

Markovization and use of the classical equations. However, in that 

using Markovization is equivalent to showing that certain processes are 

Markov, we chose to work directly with the generalized equations. 

The generalized Fokker-Planck-Kolmogorov equations for joint 

probability density fUnctions associated with the linear filter were 

pr.esented in Ch. IV for both continuous and discrete input processes. 

These equations were solved for the joint input-output probability 

density of a general linear filter driven by Markov Gaussian noise and 
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also for the output probability density fUnction of an RC filter 

excited by the Poisson square wave. The latter density function was 

also found by solving the v-th order equations and the transition 

density corresponding to this output was considered. 

In the final chapter we considered the problem of finding the 

output density function of an RC filter-limiter-RC filter ·system 

driven by white Gaussian noise. Our analysis yielded previously ob

tained results 1or a certain ratio of the filter time constants. In 

the general case, this example clearly i~ustrated the maJor difficul

ties encountered in applying the Fokker-Planck-Kolmogorov equations -

the difficulty in computing the conditional moments and the difficulty 

in determining appropriate boundary conditions for the resulting partial 

differential equations. 

B. Suggestions for Further Study. 

At the onset of this work we had desired to develop a technique 

for handling non-Markov processes and to apply this technique to the 

solution of practical problems. It is hoped that this thesis presents 

a start toward the development of such a technique; however, there is 

much more work to be done in the more difficult area of application, as 

evidenced by the problem considered in Ch. v. Another area which might 

be termed application is the development of means for evaluating and/or 

approximating the conditional moments Cn(y,t;Y,T). 

Several interesting theoretical questions remain unanswered. 

Probably the most obvious of these is, "Do the generalized equations 
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imply the classical equations if the transition density satisfies the 

Smoluchowski equation?" 

A second question arises from physical considerations of the con-

ditional moments. It can be argued that Cn(y,t;Y,T) should vanish for 

n ~ 3 [Cf. applications af the Fokker-Planck equations to Brownian 

motion]. By an application of the Chebyshev inequality it can be shown 

that if c
2

(y,t;Y,T) < oo, then 

(6-3) 

for all E > 0 and n ~ 3· We then ask under what conditions does this 

1 
convergence in probability imply convergence in mean , i.e. under what 

conditions does (6.3) imply that 

lim ~t E[(y(t+~t)-y(t))nly,t;Y,T] = 0 ? 
Lit-eo 

Finally, it is hoped that the techniques developed and the examples 

considered in this thesis will themselves be suggestive of other areas 

for fUrther study. 
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APPENDIX A 

DERIVATION OF THE DARLING & SIEGERT EQUATIONS 

As a matter of completeness, we present in this appendix 

heuristic derivations of the Darling and Siegert equations. 

l. Continuous Input Process. We assume the input to be a con-

tinuous vector Markov process with a transition density 

satisfying the Fokker-Planck-Kolmogorov equations 

p(x,tlx ,t ) 
0 0 

(A.l) 

(A. 2) 

where L is an operator depending only upon x and t and L
0 

an 

operator depending only upon x
0 

and t
0

• The output is related to the 

input by 

t 

y(t,t
0

) = J t(x'T,"T)d'T ; t
0 

< t , 

to 

where x = x('T) and ~ is a prescribed fUnction. Consider the 
'T 

function 

r(x,v,tjx ,t ) 
0 0 

o:> 

j ejvyp(x,y,tjx
0
,t

0
)dy • 

-ex> 

(A. 3) 

(A.4) 

We now think of the integral defining y(t,t
0

) as the limit of an 
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approximating sum of the form 

\~(x ,t )llt • (A . 5) L q q q 
q 

Then the expectation over y in (A.4) is equivalent to (the limit of) 

an expectation over the X • 
q 

Without introducing limits and summation 

signs, we write this expectation symbolically as 

00 ( t 

Jdx n(x,t;x ,Ti x ,t )exp jvj 
-T"" -T- 0 0 

-00 t 
0 

~ (x T)dT) , 
T, 

(A . 6) 

where x is a vector with components (which are also vectors) deter
-T 

mined by the x of (A. 5) · 
q 

Applying the operator (A.l) to both sides 

of this equation yields the Darling and Siegert forward equation; viz., 
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-jv~(x,t)r(x,v,tjx ,t ) . 
0 0 

(A. 7) 

Likewise, applying the operator of (A.2) to (A.6) yields the Darling 

and Siegert.backward equation 

(L + ~t )r(x,v,tlx ,t ) = -jv~(x ,t )r(x,v,tjx ,t ) • 
0 u 0 0 0 0 0 0 

0 

(A.8) 

2. Discrete Input Processes. When the input is a discrete Markov 

process satisfying the Kolmogorov equations [cr. Eqs. (1.8) and (1.9)] 

~ prk(tjto) = L ari (t)Pik(tjto) ' 

iES 

= L prk(tlto)aik(to) i 

i€8 

we consider the fUnction [Cf. Eq. (l.l8)] 

(X) 

(A. 9) 

(A .lO) 

Rik(v,tjt
0

) = Pik(tjt
0

) ~ ejvyp(ylx(t) = i , x(t
0

) = k)dy , 

-00 

(A .ll) 

where 

As in the continuous case, we think of y(t,t
0

) as the limit of the 

approximating sum (A.5) and average over the X • 
q 

Let denote 
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the vector with components determined by the components of the sum 

(A.5). Then (A.ll) can be written symbolically as* 

Multiplying through by a .(t), summing over i€8 and using (A.9) 
rl. 

yields the result (in the limit), 

~ ari(t)Rik(v,tlt0 ) - ~t Rrk(v,tjt0 ) 

i€8 

-jv~[x(t)=r]R k(v,tlt ) , r o 

which is the discrete Darling and Siegert forward equation. In a 

similar way, the discrete backward equation can also be derived: 

-jv~[x(t )~]R k(v,tlt ) . o r o 

* We are using the following notation: Let X be a discrete random 
variable and 

(A,T) (al' t 1 ; a2,t2 ; ; a ,t ) 
n n 

(B,T') = (bl,tl ; b2,t2 ; b t ') 
m' m 

Then 

- Pr(x(tl)=al x(t )=a lx(tl')=bl x(t')=b } • , ••• , n n , ••• , m m 
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APPENDIX B 

THE CONDITIONAL GAUSSIAN DISTRIBUTION 

This appendix contains t he derivation of a convenient r epresents-

tion for the probability density function of the Gaussian variate 

[yk+l(tk+l)-yk(~)] conditioned on the k Gaussian variables 

yl(tl), ···,yk(tk) . The r andom variables yi are assumed to be from 

the stationary random process (y(t)) with mean m and variance cr
2

• 

The multivariate probability density function of the conditioning 

variables can then be written 

where K is the covariance matrix 

l 

in which 

~2 

l p2k , 

l 

(B.l) 

(B.2) 

Likewise, the multivariate probability density function of all (k+l) 

variables is 
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: Pl,k+l 

: P2,k+l 

I 
I 
I 
I Pk,k+l 

---------------+---
p p p I l 
k+l,l k+l,2 k+l,k I 

(B .4) 

(B. 5) 

Denoting the cofactors of the covariance matrix i by ¢ij' (B.4) 

can be written in more detail as 

[ 

k+l j 
exp - _l_ \ (y -m)¢ (y -m) 

2ji I L i iJ J 
i,j 

(B.6) 

Completing the square for (yk+l-m) and observing that ¢k+l,k+l = jKj 

gives 

.exp[- hl_(y -m + ~ (y ) ¢i,k+l)2] 
2lil k+l 6 k-m IKI 

l 2 ' 

(
2n:lil) 

IKI (B.7) 

where f(~ 1 ! 1 ••• ) is a fUnction not containing yk+l. Integration of 

(B.7) over all yk+l shows in fact that f(~ 1 ! 1 ••• ) is equal to 
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p (z., ~) • Therefore it follows from (B. 7) and Baye s ' Law that 

(B.8) 

Hence 

(B.9) 

¢i,k+l is by definition (-l)i+k+l times the determinant of ~ with 

row i and column k+l suppressed. This determinant can be expanded 

along the bottom row [cr. Eq. B.5] giving 

k 

¢i,k+l = - I: pk+l, jKij 
j:::J. 

(B.lO) 

where the Kij are the cofactors of the covariance matrix K. We could 

just as well subtract the row above the bottom row from the bottom row 

before expanding the determinant and get 

k 

¢i,k+l =- I: (pk+l,j-pkj)Kij ; i /= k • 
j=l. 

A slightly more detailed analysis shows when i~ that 

k 

= - l - I: 
j:::J. 

(B.ll) 

(B.l2) 
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Using (B.ll) and (B.l2) in (B.9) gives the desired result 

(B .l3) 

where 

(B.l4) 

and 

(B.l5) 
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