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Abstract. Cotangent sums are associated to the zeros of the Estermann zeta
function. They have also proven to be of importance in the Nyman-Beurling

criterion for the Riemann Hypothesis.

The main result of the paper is the proof of the existence of a unique positive
measure µ on R, with respect to which certain normalized cotangent sums are

equidistributed.

Improvements as well as further generalizations of asymptotic formulas regard-
ing the relevant cotangent sums are obtained. We also prove an asymptotic

formula for a more general cotangent sum as well as asymptotic results for the

moments of the cotangent sums under consideration. We also give an estimate
for the rate of growth of the moments of order 2k, as a function of k.
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1. Introduction

Cotangent sums are associated to the zeros of the Estermann zeta function. R.
Balasubramanian, J. B. Conrey and D. R. Heath-Brown [3], used properties of
the Estermann zeta function to prove asymptotic formulas for mean-values of the
product consisting of the Riemann zeta function and a Dirichlet polynomial. Period
functions and families of cotangent sums appear in recent work of S. Bettin and
J. B. Conrey (cf. [6]). They generalize the Dedekind sum and share with it the
property of satisfying a reciprocity formula. They prove a reciprocity formula for
the V. I. Vasyunin’s sum [31], which appears in the Nyman-Beurling criterion for
the Riemann Hypothesis.
In the present paper, improvements as well as further generalizations of asymptotic
formulas regarding the relevant cotangent sums are obtained. We also prove an
asymptotic formula for a more general cotangent sum as well as asymptotic results
and upper bounds for the moments of the cotangent sums under consideration.
Furthermore, we obtain detailed information about the distribution of the values
of these cotangent sums. We also give an estimate for the rate of growth of the
moments of order 2k, as a function of k.

1.1. The cotangent sum and its applications. The present paper is focused in
the study of the following cotangent sum:
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Definition 1.1.

c0

(r
b

)
:= −

b−1∑
m=1

m

b
cot
(πmr

b

)
,

where r, b ∈ N, b ≥ 2, 1 ≤ r ≤ b and (r, b) = 1.

The function c0(r/b) is odd and periodic of period 1 and its value is an algebraic
number. Its properties of being odd and periodic are depicted in the following
graphs:
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Figure 1: Graph of c0(r/b), for 1 ≤ r ≤ b, b = 757, with (r, b) = 1.
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Figure 2: Graph of c0(r/b), for 1 ≤ r ≤ b, b = 946, with (r, b) = 1.
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Figure 3: Graph of c0(r/b), for 1 ≤ r ≤ b, b = 1471, with (r, b) = 1.

It is interesting to mention that for hundreds of integer values of k for which we
have examined the graph of c0(r/b) by the use of MATLAB, the resulting figure
always has a shape similar to an ellipse.
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Figure 4: Graph of c0(r/b), for 1 ≤ r ≤ b, b = 1619, with (r, b) = 1.

Part of our goal is to understand this phenomenon, and we will do it to some
extent. The main result in this respect is contained in Theorem 1.5, which provides
information about equidistribution and moments of these sums.

Before presenting the main results of the paper regarding this cotangent sum,
we shall demonstrate its significance by exhibiting its relation to other important
functions in number theory, such as the Estermann and the Riemann zeta functions,
and its connections to major open problems in Mathematics, such as the Riemann
Hypothesis.

Definition 1.2. The Estermann zeta function E
(
s, rb , α

)
is defined by the Dirichlet

series

E
(
s,
r

b
, α
)

=
∑
n≥1

σα(n) exp (2πinr/b)

ns
,

where Re s > Re α+ 1, b ≥ 1, (r, b) = 1 and

σα(n) =
∑
d|n

dα .

It is worth mentioning that T. Estermann (see [16]) introduced and studied the
above function in the special case when α = 0. Much later, it was studied by I.
Kiuchi (see [21]) for α ∈ (−1, 0].
The Estermann zeta function can be continued analytically to a meromorphic func-
tion, on the whole complex plane up to two simple poles s = 1 and s = 1 + α if
α 6= 0 or a double pole at s = 1 if α = 0 (see [16], [18], [29]).
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Moreover, it satisfies the functional equation:

E
(
s,
r

b
, α
)

=
1

π

(
b

2π

)1+α−2s

Γ(1− s)Γ(1 + α− s)

×
(

cos
(πα

2

)
E
(

1 + α− s, r̄
b
, α
)
− cos

(
πs− πα

2

)
E
(

1 + α− s,− r̄
b
, α
))

,

where r̄ is such that r̄r ≡ 1 (mod b) and Γ(s) stands for the Gamma function.
For more details regarding the functional equation of the Estermann zeta function,
the reader is referred to the Appendix.
R. Balasubramanian, J. B. Conrey and D. R. Heath-Brown [3], used properties of
E
(
0, rb , 0

)
to prove an asymptotic formula for

I =

∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 ∣∣∣∣A(1

2
+ it

)∣∣∣∣2 dt ,
where A(s) is a Dirichlet polynomial.
Asymptotics for functions of the form of I are useful for theorems which provide
a lower bound for the portion of zeros of the Riemann zeta-function ζ(s) on the
critical line (see [19]).

M. Ishibashi (see [17]) presented a nice result concerning the value of E
(
s, rb , α

)
at s = 0.

Theorem 1.3. (Ishibashi) Let b ≥ 2, 1 ≤ r ≤ b, (r, b) = 1, α ∈ N ∪ {0}. Then
(1) For even α, it holds

E
(

0,
r

b
, α
)

=

(
− i

2

)α+1 b−1∑
m=1

m

b
cot(α)

(πmr
b

)
+

1

4
δα,0 ,

where δα,0 is the Kronecker delta function.
(2) For odd α, it holds

E
(

0,
r

b
, α
)

=
Bα+1

2(α+ 1)
.

In the special case when r = b = 1, we have

E (0, 1, α) =
(−1)α+1Bα+1

2(α+ 1)
,

where by Bm we denote the m-th Bernoulli number, where B2m+1 = 0,

B2m = 2
(2m)!

(2π)2m

∑
ν≥1

ν−2m.

Hence for b ≥ 2, 1 ≤ r ≤ b, (r, b) = 1, it follows that

E
(

0,
r

b
, 0
)

=
1

4
+
i

2
c0

(r
b

)
,

where c0(r/b) is the cotangent sum (see Definition 1.1).
This result gives a connection between the cotangent sum c0(r/b) and the Ester-
mann zeta function.
Period functions and families of cotangent sums appear in recent work of S. Bettin
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and J. B. Conrey [6], generalizing the Dedekind sums and sharing with it the prop-
erty of satisfying a reciprocity formula. Bettin and Conrey proved the following
reciprocity formula for c0(r/b):

c0

(r
b

)
+
b

r
c0

(
b

r

)
− 1

πr
=
i

2
ψ0

(r
b

)
,

where

ψ0(z) = −2
log 2πz − γ

πiz
− 2

π

∫
( 1

2 )

ζ(s)ζ(1− s)
sinπs

z−s ds ,

and γ stands for the Euler-Mascheroni constant.
This reciprocity formula demonstrates that c0(r/b) can be interpreted as an “im-
perfect” quantum modular form of weight 1, in the sense of D. Zagier (see [5], [32]).

The cotangent sum c0(r/b) can be associated to the study of the Riemann Hy-
pothesis, also through its relation with the so-called Vasyunin sum. The Vasyunin
sum is defined as follows:

V
(r
b

)
:=

b−1∑
m=1

{mr
b

}
cot
(πmr

b

)
,

where {u} = u− buc, u ∈ R.
It can be shown (see [5], [6]) that

V
(r
b

)
= −c0

( r̄
b

)
,

where, as mentioned previously, r̄ is such that r̄r ≡ 1 (mod b).
The Vasyunin sum is itself associated to the study of the Riemann hypothesis
through the following identity (see [5], [6]):

1

2π(rb)1/2

∫ +∞

−∞

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 (rb)it dt
1
4 + t2

=
log 2π − γ

2

(
1

r
+

1

b

)(1)

+
b− r
2rb

log
r

b
− π

2rb

(
V
(r
b

)
+ V

(
b

r

))
.

Note that the only non-explicit function in the right hand side of (1) is the Vasyunin
sum.
The above formula is related to the Nyman-Beurling-Baéz-Duarte-Vasyunin ap-
proach to the Riemann Hypothesis (see [2], [5]). According to this approach, the
Riemann Hypothesis is true if and only if

lim
N→+∞

dN = 0,

where

d2N = inf
DN

1

2π

∫ +∞

−∞

∣∣∣∣1− ζ (1

2
+ it

)
DN

(
1

2
+ it

)∣∣∣∣2 dt
1
4 + t2

and the infimum is taken over all Dirichlet polynomials

DN (s) =

N∑
n=1

an
ns
.
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Hence, from the above arguments it follows that from the behavior of c0(r/b), we
understand the behavior of V (r/b) and thus from (1) we may hope to obtain crucial
information related to the Nyman-Beurling-Baéz-Duarte-Vasyunin approach to the
Riemann Hypothesis.

Therefore, to sum up, one can see from all the above that the cotangent sum
c0(r/b) is strongly related to important functions of Number Theory and its prop-
erties can be applied in the study of significant open problems, such as Riemann’s
Hypothesis.

1.2. Main result. We now come to the main result of the paper, which states the
equidistribution of certain normalized cotangent sums with respect to a positive
measure, which is also constructed in the following theorem.

Definition 1.4. For z ∈ R, let

F (z) = meas{α ∈ [0, 1] : g(α) ≤ z},
where “meas” denotes the Lebesgue measure,

g(α) =

+∞∑
l=1

1− 2{lα}
l

and

C0(R) = {f ∈ C(R) : ∀ ε > 0, ∃ a compact setK, such that |f(x)| < ε,∀ x 6∈ K}.

Remark. The convergence of this series has been investigated by R. de la Bretèche
and G. Tenenbaum (see [8]). It depends on the partial fraction expansion of the
number α.

Theorem 1.5. i) F is a continuous function of z.
ii) Let A0, A1 be fixed constants, such that 1/2 < A0 < A1 < 1. Let also

Hk =

∫ 1

0

(
g(x)

π

)2k

dx,

Hk is a positive constant depending only on k, k ∈ N.
There is a unique positive measure µ on R with the following properties:
(a) For α < β ∈ R we have

µ([α, β]) = (A1 −A0)(F (β)− F (α)).

(b) ∫
xkdµ =

{
(A1 −A0)Hk/2 , for even k
0 , otherwise .

(c) For all f ∈ C0(R), we have

lim
b→+∞

1

φ(b)

∑
r : (r,b)=1
A0b≤r≤A1b

f

(
1

b
c0

(r
b

))
=

∫
f dµ.

Remark. R. W. Bruggeman (see [9], [10]) and I. Vardi (see [30]) have investigated
the equidistribution of Dedekind sums. In contrast with the work in this paper,
they consider an additional averaging over the denominator.
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1.3. Outline of the proof and further results. In [25], M. Th. Rassias proved
the following asymptotic formula:

Theorem 1.6. For b ≥ 2, b ∈ N, we have

c0

(
1

b

)
=

1

π
b log b− b

π
(log 2π − γ) +O(1) .

In that paper, a method which applies properties of fractional parts in order to
approach the cotangent sum in question is described. This method is generalized
in the present paper, where some stronger results are being proved.
We initially provide a proof of an improvement of Theorem 1.6 as an asymptotic
expansion. Namely, we prove the following:

Theorem 1.7. Let b, n ∈ N, b ≥ 6N , with N = bn/2c + 1.There exist absolute
real constants A1, A2 ≥ 1 and absolute real constants El, l ∈ N with |El| ≤ (A1l)

2l,
such that for each n ∈ N we have

c0

(
1

b

)
=

1

π
b log b− b

π
(log 2π − γ)− 1

π
+

n∑
l=1

Elb
−l +R∗n(b)

where

|R∗n(b)| ≤ (A2n)4n b−(n+1).

Additionally, we investigate the cotangent sum c0
(
r
b

)
for a fixed arbitrary positive

integer value of r and for large integer values of b and prove the following results.

Proposition 1.8. For r, b ∈ N with (r, b) = 1, it holds

c0

(r
b

)
=

1

r
c0

(
1

b

)
− 1

r
Q
(r
b

)
,

where

Q
(r
b

)
=

b−1∑
m=1

cot
(πmr

b

)⌊rm
b

⌋
.

Theorem 1.9. Let r, b0 ∈ N be fixed, with (b0, r) = 1. Let b denote a positive
integer with b ≡ b0 (mod r). Then, there exists a constant C1 = C1(r, b0), with
C1(1, b0) = 0, such that

c0

(r
b

)
=

1

πr
b log b− b

πr
(log 2π − γ) + C1 b+O(1),

for large integer values of b.

Theorem 1.10. Let k ∈ N be fixed. Let also A0, A1 be fixed constants such that
1/2 < A0 < A1 < 1. Then there exist explicit constants Ek > 0 and Hk > 0,
depending only on k, such that

(a) ∑
r:(r,b)=1

A0b≤r≤A1b

Q
(r
b

)2k
= Ek · (A2k+1

1 −A2k+1
0 )b4kφ(b)(1 + o(1)), (b→ +∞).
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(b) ∑
r:(r,b)=1

A0b≤r≤A1b

Q
(r
b

)2k−1
= o

(
b4k−2φ(b)

)
, (b→ +∞).

(c) ∑
r:(r,b)=1

A0b≤r≤A1b

c0

(r
b

)2k
= Hk · (A1 −A0)b2kφ(b)(1 + o(1)), (b→ +∞).

(d) ∑
r:(r,b)=1

A0b≤r≤A1b

c0

(r
b

)2k−1
= o

(
b2k−1φ(b)

)
, (b→ +∞).

Using the method of moments, we deduce detailed information about the distri-
bution of the values of c0(r/b), where A0b ≤ r ≤ A1b and b → +∞. Namely, we
prove Theorem 1.5.

Finally, we study the convergence of the series∑
k≥0

Hkx
2k

and prove the following theorem:

Theorem 1.11. The series ∑
k≥0

Hkx
2k,

converges only for x = 0.

Another interesting question which we have investigated but have not reached a
conclusion yet is whether the series∑

k≥0

Hk

(2k)!
x2k,

has a positive radius of convergence. This would lead to a simplification in the
proof of our equidistribution result, since in this case we could apply results about
distributions which are determined by their moments.
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