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1. Introduction

In our study of Picard–Fuchs differential equations of Calabi–Yau type [2,3] we discovered
some curious relations between hypergeometric series
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and their natural generalizations. Although our original motivation was the differential
equations themselves, we are intrigued to see that many of our identities can be extended
to a more general form, which does not use all the properties of the Calabi–Yau proto-
types. In addition to the classical examples of such identities, like Clausen’s Formula
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and Orr-type theorems in [17, § 2.5], we have already indicated an example related to
a Calabi–Yau equation in [2, Proposition 6]. The main aim of the present paper is to
systemize our findings and present algebraic transformations of certain hypergeometric
and related series in a general form. One of our general theorems (Theorem 5.5) relates
two different Hadamard products of second- and third-order hypergeometric-like differ-
ential equations in a way which could be counted as a higher-order analogue of (1.2).
Specializations to Calabi–Yau examples [2,3] are discussed in some detail.

The paper is organized as follows. In § 2 we review the notion of a Calabi–Yau dif-
ferential equation, while in § 3 we recall some ‘standard’ relations between Calabi–Yau
differential equations of order 2 and 3, and of order 4 and 5; these two sections may be
regarded as an expanded introductory part. Section 4 is devoted to algebraic transforma-
tions of second- and third-order differential equations. In § 5 we discuss transformations
of higher-order equations with applications to Calabi–Yau examples. In § 6 we indicate
a natural formal invariant of fourth-order Calabi–Yau differential equations that can be
used to verify whether two such equations are related by an algebraic transformation. In
§ 7 we discuss our strategies to find and prove algebraic transformations for differential
equations.

2. Calabi–Yau differential equations

Certain differential equations look better than others, at least arithmetically. To illustrate
this principle, consider the differential equation

(θ2 − z(11θ2 + 11θ + 3) − z2(θ + 1)2)y = 0, where θ = z
d
dz

. (2.1)

What is special about it? First of all, it has a unique analytic solution y0(z) = f(z)
with f(0) = 1; another solution may be given in the form y1(z) = f(z) log z + g(z)
with g(0) = 0. Secondly, the coefficients in the Taylor expansion f(z) =

∑∞
n=0 Anzn are

integral, f(z) ∈ 1 + zZ[[z]], which can hardly be seen from the defining recurrence

(n + 1)2An+1 − (11n2 + 11n + 3)An − n2An−1 = 0 for n = 0, 1, . . . , A0 = 1 (2.2)

(cf. (2.1)), but follows from the explicit expression

An =
n∑

k=0

(
n

k

)2(
n + k

n

)
, n = 0, 1, . . . , (2.3)

due to Apéry [5]; note that these numbers appear in Apéry’s proof of the irrationality of
ζ(2). Thirdly, the expansion q(z) = exp(y1(z)/y0(z)) = z exp(g(z)/f(z)) also has integral
coefficients, q(z) ∈ zZ[[z]]. This follows from the fact that the functional inverse z(q),

z(q) = q

∞∏
n=1

(1 − qn)5(n/5), (2.4)

where (n/5) denotes the Legendre symbol, lies in qZ[[q]]. The formula in (2.4), due to
Beukers [7], shows that z(q) is a modular function with respect to the congruence sub-
group Γ1(5) of SL2(Z).
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If the reader is not greatly surprised by these integrality properties, then we suggest
trying to find more such cases, replacing the differential operator in (2.1) by the more
general one

θ2 − z(aθ2 + aθ + b) + cz2(θ + 1)2. (2.5)

To ensure the required integrality, one easily gets a, b, c ∈ Z, but for a generic choice of
the parameters the second feature (y0(z) = f(z) ∈ 1+zZ[[z]]) fails almost always. In fact,
this problem was studied by Beukers [8] and Zagier [20]. The exhaustive experimental
search in [20] resulted in 14 (non-degenerate) examples of the triplets (a, b, c) ∈ Z3 when
both this and the third property (the integrality of the corresponding expansion z(q))
hold; the latter follows from modular interpretations of z(q).

A natural extension of the above problem to third-order linear differential equations is
prompted by the other Apéry sequence used in his proof [5] of the irrationality of ζ(3).
One takes the family of differential operators

θ3 − z(2θ + 1)(âθ2 + âθ + b̂) + ĉz2(θ + 1)3 (2.6)

and looks for the cases when the two solutions f(z) ∈ 1 + zC[[z]] and f(z) log z + g(z)
(with g(0) = 0) of the corresponding differential equation satisfy f(z) ∈ Z[[z]] and
exp(g(z)/f(z)) ∈ Z[[z]]. Apart from some degenerate cases, we have again found in [2]
14 triplets (â, b̂, ĉ) ∈ Z3 meeting the integrality conditions; the second condition holds in
all these cases as a modular bonus. Apéry’s example corresponds to the case (â, b̂, ĉ) =
(17, 5, 1).

How can one generalize the above problem of finding ‘arithmetically nice’ linear dif-
ferential equations (operators)? An approach we followed in [2,3], at least up to order 5,
was not specifying the form of the operator, as in (2.5) and (2.6), but rather imposing
the following:

(i) the differential equation is of Fuchsian type, that is, all its singular points are
regular; in addition, the local exponents at z = 0 are zero;

(ii) the unique analytic solution y0(z) = f(z) with f(0) = 1 at the origin has integral
coefficients f(z) ∈ 1 + zZ[[z]]; and

(iii) the solution y1(z) = f(z) log z + g(z) with g(0) = 0 gives rise to the integral
expansion exp(y1(z)/y0(z)) ∈ zZ[[z]].

Requirement (i), known as the condition of maximally unipotent monodromy (MUM),
means that the corresponding differential operator written as a polynomial in variable z

with coefficients from C[[θ]] has constant term θm, where m is the order (that is, the
degree in θ); the local monodromy around 0 consists of a single Jordan block of maximal
size. Note that (i) guarantees the uniqueness of the above y0(z) and y1(z). Condition (ii)
can be usually relaxed to f(Cz) ∈ 1 + zZ[[z]] for some positive integer C (without the
scaling z �→ Cz, many of the resulting formulae look ‘more natural’).
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In fact, in [2,3] we also imposed on fourth-order (and fifth-order) differential equations
some extra conditions:

(iv) the ‘Calabi–Yau’ or ‘self-duality’ condition (3.4), which characterizes the structure
of the projective monodromy group; and

(v) the integrality of a related sequence of numbers, known as instanton numbers in
the physics literature; these arise as coefficients in the Lambert expansion of the
so-called Yukawa coupling, which we review in § 6.

For a long time we were confident that in all examples these additional conditions
were satisfied automatically when (i)–(iii) hold. However, we have learnt recently from
M. Bogner and S. Reiter (personal communication, March 2010) that the differential
operator

θ4 − 8z(2θ + 1)2(5θ2 + 5θ + 2) + 192z2(2θ + 1)(2θ + 3)(3θ + 2)(3θ + 4) (2.7)

satisfies conditions (i)–(iv) while condition (v) seems to fail.
Our experimental search [2,3] resulted in more than 350 examples of such operators

satisfying (i)–(v), which we called differential operators of Calabi–Yau type, since some of
these examples can be identified with Picard–Fuchs differential equations for the periods
of one-parameter families of Calabi–Yau manifolds. For an entry in our table from [3],
checking (i) and (iv) is trivial, (ii) usually follows from an explicit form of the coefficients
of f(z) (when it is available), while (iii) can be verified in certain cases using some of
Dwork’s p-adic techniques. Substantial progress in this direction was obtained recently
by Krattenthaler and Rivoal [11]. According to standard conjectures (see, for exam-
ple, [4]) all our operators should be of geometric origin, meaning that they correspond
(as subquotients of the local systems) to factors of Picard–Fuchs equations satisfied by
period integrals for some family of varieties over the projective line. Finally, a rigorous
verification of condition (v) remains beyond the reach of available methods; we only have
computational evidence for integrality of the instanton numbers.

Basic examples of Calabi–Yau differential equations are given by the general hyperge-
ometric differential equation(

θ

m∏
j=2

(θ + bj − 1) − z

m∏
j=1

(θ + aj)
)

y = 0 (2.8)

of order m satisfied by the hypergeometric series (1.1). The equation (2.8) has (smallest
possible) degree 1 in z and condition (i) forces b2 = · · · = bm = 1 to hold. The latter is
the main reason for our identities below to involve the hypergeometric series with this
special form of the lower parameters.

3. Symmetric and antisymmetric squares

Given a second-order linear homogeneous differential equation

y′′ + Py′ + Qy = 0 (3.1)
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(where the prime denotes d/dz) and a pair of its two linearly independent solutions
y0 = y0(z) and y1 = y1(z), one can easily construct the third-order differential equation
whose solutions are y2

0 , y0y1 and y2
1 :

y′′′ + 3Py′′ + (2P 2 + P ′ + 4Q)y′ + (4PQ + 2Q′)y = 0, (3.2)

called the symmetric square of (3.1) (see [19, Chapter 14, Exercise 10]). Clearly, (3.2) is
independent of a choice of solutions y0, y1 of the equation (3.1). A hypergeometric exam-
ple of the relationship between solutions of (3.1) and (3.2) is Clausen’s Formula (1.2).

The situation changes drastically when one goes to linear homogeneous differential
equations of order higher than 2. In principle, there is no difficulty in writing formulae
similar to (3.2) for the symmetric cubes, biquadratics, etc, but unfortunately, as far as we
know, this never results in some non-trivial identities for the hypergeometric series (1.1).

If the coefficients of a fourth-order linear differential equation

y(iv) + Py′′′ + Qy′′ + Ry′ + Sy = 0 (3.3)

satisfy the relation
R = 1

2PQ − 1
8P 3 + Q′ − 3

4PP ′ − 1
2P ′′, (3.4)

then the equation and the corresponding operator are said to satisfy the Calabi–Yau
condition [2]; the equation expresses the self-duality of (3.3). To avoid possible confusion,
(3.4) is only one condition characterizing the class of Calabi–Yau differential equations
and operators; the latter should satisfy conditions (i)–(v) of § 2. However, our theorems
below refer to linear differential equations of more general type, not just to Calabi–Yau
examples.

If y0, y1, y2, y3 are linearly independent solutions, then condition (3.4) implies that
the six functions

wjk = W (yj , yk) = det

(
yj yk

y′
j y′

k

)
, 0 � j < k � 3, (3.5)

are linearly dependent over C. These functions satisfy a fifth-order linear differential
equation

y(v) + P̃ y(iv) + Q̃y′′′ + R̃y′′ + S̃y′ + T̃ y = 0, (3.6)

independent of the choice of solutions y0, y1, y2, y3 of (3.4) and called the antisymmetric
square of (3.4) (see, for example, [2, Proposition 1]).

Proposition 3.1 (Almkvist [1]; Y. Yang (personal communication, November
2006)). Suppose that a fifth-order equation (3.6) is the antisymmetric square of a fourth-
order linear differential equation. Let U = U(z) be an arbitrary function. Then, for any
pair w0, w1 of solutions of (3.6), the function

y = W (w0, w1)1/2 · U (3.7)

satisfies a fourth-order equation (3.4) whose coefficients P , Q, R and S are differential
polynomials in P̃ , Q̃, R̃, S̃, T̃ and U . (The explicit expressions are given in [1].)
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Following [1] we call the resulting fourth-order equation (3.4) with the choice

U = z5/2 exp
{

−1
5

∫ z

P̃ (z) dz

}
(3.8)

the Yifan Yang pullback of (3.6), or the YY-pullback for short. Note that for Calabi–Yau
equations the exponential factor in (3.8) is an algebraic expression.

As an example, the YY-pullback of the equation

(θ5 − z(θ + 1
2 )(θ + α)(θ + 1 − α)(θ + β)(θ + 1 − β))y = 0, (3.9)

satisfied by the hypergeometric function

5F4

( 1
2 , α, 1 − α, β, 1 − β

1, 1, 1, 1

∣∣∣∣ z

)
, (3.10)

is given [1] by

(θ4 − z(2(θ + 1
2 )4 + 1

2 (θ + 1
2 )2(α(1 − α) + β(1 − β) + 3)

− 1
4α(1 − α)β(1 − β) + 1

8α(1 − α) + 1
8β(1 − β))

+ z2(θ + 1
2 + 1

2 (α + β))(θ + 1
2 + 1

2 (α + 1 − β))(θ + 1
2 + 1

2 (1 − α + β))

× (θ + 1
2 + 1

2 (1 − α + 1 − β)))y = 0. (3.11)

As we will see in the theorems of § 5, many Calabi–Yau differential equations related
by algebraic transformations are Hadamard products of second- and third-order Picard–
Fuchs differential equations, with 0 a MUM point. Recall that the Hadamard product of
two series

f(z) =
∞∑

n=0

Anzn and f̂(z) =
∞∑

n=0

Ânzn

is defined by the formula

f(z) ∗ f̂(z) =
∞∑

n=0

AnÂnzn.

If f(z) and f̂(z) are the analytic solutions of two differential equations Dy = 0 and
D̂y = 0, respectively, then their Hadamard product f(z) ∗ f̂(z) satisfies a differential
equation D̃y = 0 (we pick the one of minimal order), which we then call the Hadamard
product of the two equations. The differential operator D̃ in this case is the Hadamard
product of the corresponding operators D and D̂. The Hadamard product is the analytic
representation of the multiplicative convolution. In particular, the singular points of
the operator D̃ consist of the products of singular points of D and of D̂. The Hadamard
product of operators of geometric origin is again of geometric origin (see, for example, [4]).

We will say that two (Calabi–Yau) differential equations or operators are equivalent
if they are related by an algebraic transformation. Note that algebraic transformations
preserve the order of differential equations with rational or algebraic coefficients.
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4. Apéry-like differential operators

To illustrate the above theorems and also to present some further algebraic transforma-
tions, we will list second- and third-order Calabi–Yau equations, keeping the names used
in [2,3,18].

In writing down the series for analytic solutions of the Calabi–Yau differential equa-
tions, one usually re-normalizes the variable z �→ Cz in order to make the series expan-
sions lying in 1+zZ[[z]] (see condition (ii) in § 2). Basic examples are 2F1-hypergeometric
series satisfying second-order differential equations, and there are exactly four such series
having MUM at the origin (that is, satisfying condition (i)):

2F1

(
α, 1 − α

1

∣∣∣∣ Cαz

)
=

∞∑
n=0

Anzn ∈ 1 + zZ[[z]], (4.1)

where
(A) α = 1

2 , C1/2 = 16 = 24,

(B) α = 1
3 , C1/3 = 27 = 33,

(C) α = 1
4 , C1/4 = 64 = 26,

(D) α = 1
6 , C1/6 = 432 = 24 · 33.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.2)

The corresponding differential operators are

θ2 − Cαz(θ + α)(θ + 1 − α), (4.3)

and the integrality of the expansions in (4.1) follows from the explicit formulae

(A) An =
(

2n

n

)2

,

(B) An =
(3n)!
n!3

,

(C) An =
(4n)!

n!2(2n)!
,

(D) An =
(6n)!

n!(2n)!(3n)!
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

These four hypergeometric instances are particular examples of the second-order differ-
ential operators having the form (2.5); they correspond to the choice c = 0. In addition
to the above hypergeometric cases, Zagier [20] found four Legendrian and six sporadic
equations.

The Legendrian examples are obtained from the hypergeometric ones by a simple
rational transformation that interchanges 1/Cα and ∞:

1
1 − Cαz

· 2F1

(
α, 1 − α

1

∣∣∣∣ −Cαz

1 − Cαz

)
∈ 1 + zZ[[z]], (4.5)
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where

(e) α = 1
2 , (h) α = 1

3 , (i) α = 1
4 , (j) α = 1

6 ; (4.6)

the corresponding differential operators

θ2 − Cαz(θ2 + (θ + 1)2 − α(1 − α)) + C2
αz2(θ + 1)2 (4.7)

have the form (2.5) with c = a2/4.
These four hypergeometric operators and their Legendrian companions have a nice geo-

metric origin: they are Picard–Fuchs operators of the extremal rational elliptic surfaces
with three singular fibres [13,16].

The sporadic examples of (2.5) (when c �= 0 and c �= a2/4 as in the hypergeometric and
Legendrian cases, respectively) with the corresponding analytic solutions

∑∞
n=0 Anzn ∈

1 + zZ[[z]] are as follows:

(a) a = 7, b = 2, c = −8, An =
∑

k

(
n

k

)3

;

(b) a = 11, b = 3, c = −1, An =
∑

k

(
n

k

)2(
n + k

n

)
;

(c) a = 10, b = 3, c = 9, An =
∑

k

(
n

k

)2(2k

k

)
;

(d) a = 12, b = 4, c = 32, An =
∑

k

(
n

k

)(
2k

k

)(
2n − 2k

n − k

)
;

(f) a = 9, b = 3, c = 27, An =
∑

k

(−1)k3n−3k

(
n

3k

)
(3k)!
k!3

;

(g) a = 17, b = 6, c = 72, An =
∑
k,l

(−1)k8n−k

(
n

k

)(
k

l

)3

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

These six sporadic operators also have a geometric origin; they arise as Picard–Fuchs
equations of the six families of elliptic curves with four reduced singular fibres [6,13],
although the connection between the operators and rational elliptic surfaces is not one-
to-one (cf. [20]).

The story for the third-order differential operators of the form (2.6) looks very similar
to that for order 2. We also have four hypergeometric examples

3F2

( 1
2 , α, 1 − α

1, 1

∣∣∣∣ 4Cαz

)
∈ 1 + zZ[[z]],

four operators of Legendre type and six sporadic operators.
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The ‘Legendrian’ third-order examples originate from the series

∞∑
n=0

Anzn =
∞∑

n=0

(Cαz)n
n∑

k=0

(
(α)k(1 − α)n−k

k!(n − k)!

)2

=
1

1 − Cαz
3F2

( 1
2 , α, 1 − α

1, 1

∣∣∣∣ −4Cαz

(1 − Cαz)2

)

=
1

1 − Cαz
2F1

(
α, 1 − α

1

∣∣∣∣ −Cαz

1 − Cαz

)2

(4.9)

(we use [17, § 2.5, Theorem IX] and the Euler transformation [17, p. 31, (1.7.1.3)]), where

(β) α = 1
2 , (ι) α = 1

3 , (ϑ) α = 1
4 , (κ) α = 1

6 ; (4.10)

the corresponding differential operators are

θ3 − Cαz(2θ + 1)(θ(θ + 1) + α2 + (1 − α)2) + C2
αz2(θ + 1)3. (4.11)

The sporadic third-order examples of (2.6) with analytic solutions

∞∑
n=0

Anzn ∈ 1 + zZ[[z]]

are given in the following list:

(δ) â = 7, b̂ = 3, ĉ = 81, An =
∑

k

(−1)k3n−3k

(
n

3k

)(
n + k

n

)
(3k)!
k!3

;

(η) â = 11, b̂ = 5, ĉ = 125, An =
∑

k

(−1)k

(
n

k

)3((
4n − 5k − 1

3n

)
+

(
4n − 5k

3n

))
;

(α) â = 10, b̂ = 4, ĉ = 64, An =
∑

k

(
n

k

)2(2k

k

)(
2n − 2k

n − k

)
;

(ε) â = 12, b̂ = 4, ĉ = 16, An =
∑

k

(
n

k

)2(2k

n

)2

;

(ζ) â = 9, b̂ = 3, ĉ = −27, An =
∑
k,l

(
n

k

)2(
n

l

)(
k

l

)(
k + l

n

)
;

(γ) â = 17, b̂ = 5, ĉ = 1, An =
∑

k

(
n

k

)2(
n + k

n

)2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.12)
The following theorem gives a natural bijection between the differential operators (2.5)

and (2.6), in particular, between the above 14 pairs of arithmetic operators.

Theorem 4.1. Let the triplets (a, b, c) and (â, b̂, ĉ) be related by the formulae

â = a, b̂ = a − 2b and ĉ = a2 − 4c. (4.13)
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For the differential operators D and D̂ given in (2.5) and (2.6), denote by f(z) and f̂(z)
the analytic solutions of Dy = 0 and D̂y = 0, respectively, with f(0) = f̂(0) = 1. Then

f(z)2 =
1

1 − az + cz2 f̂

(
−z

1 − az + cz2

)
. (4.14)

Proof. Writing down the general third-order differential equations for the functions
on the left- and right-hand sides of (4.14), respectively, is a routine exercise in Maple

to show that the transformation is the right one. �

In fact, there is a natural geometric construction that explains this bijection, which
we will sketch now. The second-order operators are Picard–Fuchs operators for special
families of elliptic curves Et, where t ∈ Y = P1. In each of the cases the rational curve Y

covers the modular curve X0(N) for some N , so that each elliptic curve Et comes with
a cyclic subgroup of order N . The quotient of Et by this cyclic subgroup turns out to
be Eι(t), where ι : Y → Y is an involution corresponding to the Atkin–Lehner involution
that acts as τ �→ −1/(Nτ) on the elliptic modular parameter. The product of the elliptic
curves At := Et × Eι(t) can now be considered as parametrized by the rational curve
Z := Y/ι. The Picard–Fuchs equation for the holomorphic 2-form for this family is of
order 3 and thus can be seen as a ‘twisted’ square of the corresponding second-order
operators. We refer the reader to [10,14,15] for details about this construction.

The specific form of the transformation can be understood by noting that the quotient
map Y → Z is described by a degree-2 rational map f : P1 → P1. If the pre-image of 0
consists of the points 0 and ∞, and the pre-image of ∞ of the two other singular points
of the second-order operator (2.5) (that is, of the roots of 1−az + cz2), then one is led to
a map of the form z �→ ez/(1−az + cz2). The singular points of the third-order operator
(2.6) consist of 0, ∞ and the roots of the equation 1 − 2âz + ĉz2 = 0, and these have to
coincide with the image of the two critical points of the map, which one computes to be
the roots of e2 + 2aez + z2(a2 − 4c). Hence, one can take e = −1, â = a and ĉ = a2 − 4c.
The factor in front of f̂ in (4.14) is needed to get the local exponents agreed, but the
value of b̂ remains undetermined by these considerations.

5. Hadamard products and algebraic transformations

Recall that the YY-pullback of the differential equation (3.9) is (3.11). The latter fourth-
order equation has a unique analytic solution of the form

F̃ (z) ∈ 1 + zC[[z]] (5.1)

at the origin, since all exponents at z = 0 are zero (in other words, (3.11) has MUM at
the origin). Roughly speaking, we may call the function F̃ (z) an antisymmetric square
root of (3.10). The following theorem may be viewed as a generalization of Clausen’s
Formula (1.2) in the special case a + b = 1

2 .
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Theorem 5.1. Let

fα(z) =
1

1 − z
2F1

(
α, 1 − α

1

∣∣∣∣ −z

1 − z

)
=

∞∑
n=0

anzn (5.2)

and

fβ(z) =
1

1 − z
2F1

(
β, 1 − β

1

∣∣∣∣ −z

1 − z

)
=

∞∑
n=0

bnzn, (5.3)

and let F (z) be the Hadamard product of the series fα(z) and fβ(z),

F (z) =
∞∑

n=0

anbnzn. (5.4)

Then for the analytic solution (5.1) of the YY-pullback (3.11) of (3.9) we have

F (z) =
1 + z/4

(1 − z/4)2
F̃

(
−z/4

(1 − z/4)2

)
; (5.5)

equivalently,

F̃ (z) =
2

1 − z +
√

1 − z
F

(
−z/2

1 − z/2 +
√

1 − z

)
. (5.6)

Remark 5.2. The coefficients an in the expansion (5.2) may be given by the formulae

an =
n∑

k=0

(−1)k

(
n

k

)
(α)k(1 − α)k

k!2
=

n∑
k=0

(α)k

k!
(1 − α)2n−k

(n − k)!2
; (5.7)

similar formulae, but with the substitution of β for α, are available for the coefficients bn.
The statement of Theorem 5.1 is a version of the experimental observation in [1, § 3.2].
Recalling the relationship between solutions of (3.9) and (3.11), we can write our final
formula (5.6) as follows (a little reminiscent of Clausen’s original formula (1.2)):

∞∑
n=0

zn
n∑

k=0

( 1
2 )k( 1

2 )n−k(α)k(α)n−k(1 − α)k(1 − α)n−k(β)k(β)n−k(1 − β)k(1 − β)n−k

k!5(n − k)!5

×
(

1 + (2k − n)
k−1∑
j=0

(
1

1
2 + j

+
1

α + j
+

1
1 − α + j

+
1

β + j
+

1
1 − β + j

))

=
4(1 − z)

(1 − z +
√

1 − z)2

( ∞∑
n=0

(
−z/2

1 − z/2 +
√

1 − z

)n

×
n∑

j=0

(−1)j

(
n

j

)
(α)j(1 − α)j

j!2
·

n∑
k=0

(−1)k

(
n

k

)
(β)k(1 − β)k

k!2

)2

.

Proof of Theorem 5.1. The sequence (5.7) satisfies the recursion

(n + 1)2an+1 − (n2 + (n + 1)2 − α(1 − α))an + n2an−1 = 0, (5.8)
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and a similar formula is valid for the sequence bn. Taking the Hadamard product anbn

in (5.4) as described in [2, § 7] gives a fourth-order recursion (which is too plain to be
stated here). The corresponding differential operator L annihilating the series (5.4) is
of order 6 and is factorizable, L = L1L2, where L1 is of order 2. Computing L1 and
performing leftdivision(L,L1, [d/dz, z]) in Maple, we find L2, which can be written
in the form

L2 = θ4 − z(2θ4 + 8θ3 − 2(s − 4)θ2 − 2(s − 2)θ + p − s + 1)

− z2(θ4 − 12θ3 − 26θ2 + 4(s − 5)θ + 4p − s2 + 4s − 7)

+ z3(4θ4 + 8θ3 − 4(s + 3)θ2 − 4(s + 4)θ − 6p + 2s2 + 2s − 8)

− z4(θ4 + 16θ3 + 16θ2 − 4(s − 2)θ + 4p − s2)

− z5(2θ4 − 2(s + 2)θ2 − 2(s + 2)θ + p − s − 1) + z6(θ + 1)4,

where s = α(1 − α) + β(1 − β) and p = α(1 − α)β(1 − β). Then we finish the proof by
performing the transformation

z =
−4Z

(1 − Z)2
, y(z) =

(1 − Z)2

2(1 + Z)
Y (Z),

which transforms the equation for F̃ (z) to L2Y = 0. (Some precaution is necessary,
since Maple does not cancel common factors in the coefficients of the resulting differ-
ential equation.) This equation has the unique analytic solution at the origin and both
expansions in (5.6) lie in 1 + zC[[z]]. �

In the cases α, β ∈ { 1
2 , 1

3 , 1
4 , 1

6}, Theorem 5.1 provides the equivalences for the
YY-pullbacks of fifth-order Calabi–Yau hypergeometric differential equations and the
fourth-order Hadamard products of Legendrian cases (4.5)–(4.7).

Our next family of transformations concerns the series

gα(z) = 2F1

(
α, α

1

∣∣∣∣ z

)
· 2F1

(
1 − α, 1 − α

1

∣∣∣∣ z

)

=
1

1 − z
3F2

( 1
2 , α, 1 − α

1, 1

∣∣∣∣ −4z

(1 − z)2

)
; (5.9)

the particular cases correspond to the Legendrian third-order examples from § 4. Writing
gα(z) =

∑∞
n=0 anzn and using the first representation in (5.9), one finds that

an =
n∑

k=0

(
(α)k(1 − α)n−k

k!(n − k)!

)2

, (5.10)

and this sequence satisfies the recursion

(n + 1)3an+1 − (2n + 1)(n(n + 1) + α2 + (1 − α)2)an + n3an−1 = 0. (5.11)
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Applying twice the Euler transformation [17, p. 31, Equation (1.7.1.3)] to the first expres-
sion in (5.9) gives one a way to express gα(z) as the square:

gα(z) =
1

1 − z
2F1

(
α, 1 − α

1

∣∣∣∣ −z

1 − z

)2

. (5.12)

Theorem 5.3. Let F (z) be the Hadamard product of 2F1( α,1−α
1 | z) and fβ(z) in

(5.3), and let G(z) be the Hadamard product of 2F1( β,1−β
1 | z) and gα(z) in (5.9), (5.12).

Let G̃(z) ∈ 1 + zC[[z]] be the analytic solution of the YY-pullback

(θ4 − z(4(θ + 1
2 )4

+ (4 − 2α(1 − α) + β(1 − β))(θ + 1
2 )2 + 1

8 + (α(1 − α) − 1
4 )(β(1 − β) − 1

2 ))

+ z2(6(θ + 1)4 + ( 15
2 − 4α(1 − α) + 3β(1 − β))(θ + 1)2

+ 3
4 + α(1 − α)β(1 − β) + α2(1 − α)2 − α(1 − α))

− z3(θ + 3
2 )2(4(θ + 3

2 )2 + 3 − 2α(1 − α) − 3β(1 − β))

+ z4(θ + 3
2 )(θ + 5

2 )(θ + β + 3
2 )(θ − β + 5

2 ))y = 0 (5.13)

of the fifth-order linear differential equation satisfied by G(z). Then

F (z) = G̃

(
−z

1 − z

)
and G̃(z) = F

(
−z

1 − z

)
. (5.14)

Proof. The proof is via a routine in the spirit of the proof of Theorem 5.1. �

In [21] we consider a quadratic transformation of a 5F4-series with a particular instance

5F4

( 1
2 , 1

2 , 1
2 , 1

2 , 1
2

1, 1, 1, 1

∣∣∣∣ z

)
=

1
(1 − z)1/2

∞∑
n=0

(
−4z

(1 − z)2

)n ( 1
4 )n( 3

4 )n

n!2
an, (5.15)

where

an =
n∑

k=0

( 1
2 )3k
k!3

( 1
2 )n−k

(n − k)!
=

n∑
k=0

(
( 1
4 )k( 3

4 )n−k

k!(n − k)!

)2

(5.16)

are coefficients in the power expansion of g1/4(z) in (5.9).
The series on the left-hand side in (5.15) is the special case α = β = 1

2 of (3.10), and
Theorem 5.1 gives an example of quadratic transformation of the corresponding YY-
pullback (3.11). Our next theorem gives another quadratic transformation for the series
F (z), from (5.4) in this case.

Theorem 5.4. Set f(z) = f1/2(z) and f̂(z) = f1/4(z), where fα(z) is defined in (5.2).
Let F (z) be the Hadamard square of the series f(z),

F (z) =
∞∑

n=0

zn

( n∑
k=0

(−1)k

(
n

k

)
( 1
2 )2k
k!2

)2

, (5.17)
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and let F̂ (z) be the Hadamard product of 2F1( 1/4,3/4
1 | z) and f̂(z),

F̂ (z) =
∞∑

n=0

zn ( 1
4 )n( 3

4 )n

n!2

n∑
k=0

(−1)k

(
n

k

)
( 1
4 )k( 3

4 )k

k!2
. (5.18)

Then

F (z) =
1√

1 − 6z + z2
F̂

(
−16z(1 − z)2

(1 − 6z + z2)2

)
. (5.19)

Proof. The proof is routine (cf. § 7). �

Our next result refers to a generic set of the (complex) parameters α, a, b and c, while
the three additional parameters â, b̂ and ĉ are defined in accordance with (4.13). The
Hadamard product of the differential operators θ2 − z(θ + α)(θ + 1 − α) (which is the
un-normalized version of (4.3)) and (2.6) is

θ5 − z(2θ + 1)(θ + α)(θ + 1 − α)(âθ2 + âθ + b̂)

+ ĉz2(θ + 1)(θ + α)(θ + 1 − α)(θ + 1 + α)(θ + 2 − α); (5.20)

its fourth-order YY-pullback reads

D = θ4 − z(4â(θ + 1
2 )4 + ((p + 4)â − 2b̂)(θ + 1

2 )2 + 1
4 (1 − p)â − 1

2 (1 − 2p)b̂)

+ z2((6â2 − 8ĉ)(θ + 1)4 + ( 3
2 (5 + 2p)â2 − 4âb̂ − 2(13 + 2p)ĉ)(θ + 1)2

+ 3
4 â2 − (1 − p)âb̂ + b̂2 − (2 + 2p − p2)ĉ)

− (â2 − 4ĉ)z3(θ + 3
2 )2(4â(θ + 3

2 )2 + 3(1 + p)â − 2b̂)

+ (â2 − 4ĉ)2z4(θ + 3
2 )(θ + 5

2 )(θ + 3
2 + α)(θ + 5

2 − α), (5.21)

where p = α(1 − α).

Theorem 5.5. Let F̂ (z) ∈ 1 + zC[[z]] be the analytic solution of the differential
equation Dy = 0 with D defined in (5.21), and let F (z) ∈ 1 + zC[[z]] be the Hadamard
product of

fα(z) =
1

1 − z
· 2F1

(
α, 1 − α

1

∣∣∣∣ −z

1 − z

)

and the analytic solution of the differential equation with differential operator (2.5). Then

F (z) =
1 − cz2

(1 − az + cz2)3/2 F̂

(
−z

1 − az + cz2

)
. (5.22)

Proof. As before, the proof is just an extensive check using Maple; the differential
equation for the Hadamard product F (z) is too lengthy to be given here. �

We remark that Theorem 4.1 in § 4 may be regarded as a limiting case α → 0 of
Theorem 5.5.
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Table 1. Equivalences relating the sporadic cases (4.8) and (4.12)

(A) (B) (C) (D)

(δ) (e) ∗ (a) (h) ∗ (a) (i) ∗ (a) (j) ∗ (a)
(η) (e) ∗ (b) (h) ∗ (b) (i) ∗ (b) (j) ∗ (b)
(α) (e) ∗ (c) (h) ∗ (c) (i) ∗ (c) (j) ∗ (c)
(ε) (e) ∗ (d) (h) ∗ (d) (i) ∗ (d) (j) ∗ (d)
(ζ) (e) ∗ (f) (h) ∗ (f) (i) ∗ (f) (j) ∗ (f)
(γ) (e) ∗ (g) (h) ∗ (g) (i) ∗ (g) (j) ∗ (g)

Note that Theorems 5.1 and 5.3 are special cases of Theorem 5.5, but in the former cases
we can explicitly write down the Hadamard products involved, through hypergeometric
series. Theorem 5.5 provides us with equivalences relating the sporadic cases (4.8) and
(4.12), namely, it gives us the list of 24 equivalences in Table 1.

Theorem 5.1 gives in a nice way the equivalence of the YY-pullbacks of the fifth-order
hypergeometric on the one side and Hadamard products of two second-order Legendrian
cases on the other side, while Theorem 5.3 provides the equivalence of (X) ∗ (x) and the
YY-pullback of (X) ∗ (ξ), where (X) is one of the hypergeometric cases (4.1), (4.2), (x) is
one of the second-order Legendrian equations (4.5), (4.6), and (ξ) is the corresponding
third-order Legendrian equation (4.10), (4.11).

We have already established the algebraic connection between the YY-pullback of the
left-hand side in (5.15) and (e) ∗ (e) (Theorem 5.1); in (5.15) we have the equivalence
implying, in particular, the equivalence of the YY-pullback of (C) ∗ (ϑ) and of (e) ∗ (e).
Finally, the equivalence of the YY-pullback of (C) ∗ (ϑ) and of (C) ∗ (i) follows from
Theorem 5.3; this implies the equivalence of (e) ∗ (e) and (C) ∗ (i), which is also the
subject of Theorem 5.4.

We now illustrate Theorem 5.5 by an explicit example of an algebraic transformation
relating two Calabi–Yau equations.

Example 5.6. Let us write the algebraic transformation for the equivalence of (the
YY-pullback of) (C) ∗ (γ) and (i) ∗ (g).

We have the following solutions of the fifth-order equation for (C) ∗ (γ):

w0(z) =
∞∑

n=0

zn (4n)!
n!2(2n)!

n∑
k=0

(
n

k

)2(
n + k

n

)2

,

w1(z) = w0(z) log z +
∞∑

n=1

zn (4n)!
n!2(2n)!

n∑
k=0

(
n

k

)2(
n + k

n

)2

× (4H4n − 2H2n − 2Hn − 2Hn−k + 2Hn+k),

with the YY-pullback

F̂ (z) = (1 − 2176z + 4096z2)−1/2(w0(z) · θw1(z) − θw0(z) · w1(z))1/2, (5.23)

where we used the data Cα = 64 and â = 17, ĉ = 1 for cases (C) and (γ).
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For (i) and (g) we have Cα = 64 and a = 17, c = 72, and the analytic solution is

F (z) =
∞∑

n=0

zn
∑

0�j�i�n

(−1)i8n−i

(
n

i

)(
i

j

)3 n∑
k=0

(−1)k

(
n

k

)
(4k)!

k!2(2k)!
. (5.24)

Then Theorem 5.5 gives us the transformation

F (z) =
1 − 294 912z2

(1 − 1088z + 294 912z2)3/2 · F̂

(
−z

1 − 1088z + 294 912z2

)
, (5.25)

which we can write in a form resembling Clausen’s Formula:( ∞∑
n=0

zn
∑

0�j�i�n

(−1)i8n−i

(
n

i

)(
i

j

)3 n∑
k=0

(−1)k

(
n

k

)
(4k)!

k!2(2k)!

)2

=
1

1 − 1088z + 294 912z2

∞∑
n=0

(
−z

1 − 1088z + 294 912z2

)n

×
n∑

k=0

(4k)!
k!2(2k)!

(4n − 4k)!
(n − k)!2(2n − 2k)!

n−k∑
j=0

(
n − k

j

)2(
n − k + j

n − k

)2

×
k∑

l=0

(
k

l

)2(
k + l

k

)2

(1 + (2k − n)(4H4k − 2H2k − 2Hk − 2Hk−l + 2Hk+l)).

(5.26)

Theorem 5.7. Let F (z) be the Hadamard square of the series fα(z) given in (5.2),
while F̃ (z) is the Hadamard product of

(1 − 4z)−1/2 =
∞∑

n=0

(
2n

n

)
zn and gα(z)

in (5.9), (5.12). Then

F (z) =
1

1 + z
F̃

(
z

(1 + z)2

)
. (5.27)

As before, Calabi–Yau applications of Theorem 5.7 correspond to the choices α ∈
{ 1

2 , 1
3 , 1

4 , 1
6}.

Finally, we present more algebraic transformations of fourth-order Calabi–Yau differ-
ential equations which are not covered by the above theorems but look quite nice (to our
taste).

Theorem 5.8. The following identities are valid:

∞∑
n=0

(
2n

n

) ∑
k,l

(−1)k+l

(
n

k

)(
n

l

)(
k + l

k

)3

zn

=
1√

1 − 4z

∞∑
n=0

(
2n

n

) n∑
k=0

(
n

k

)2(
n + k

n

)(
3k

n

)(
z

1 − 4z

)n

, (5.28)
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∞∑
n=0

(
2n

n

) n∑
k=0

(
n

k

)2(2k

k

)(
2n − 2k

n − k

)
zn

=
1√

1 − 32z

∞∑
n=0

(
2n

n

) ∑
k,l

(−1)n−k23(n−k)
(

n

k

)(
k

l

)2(2l

l

)(
2k − 2l

k − l

)(
z

1 − 32z

)n

,

(5.29)

∞∑
n=0

(
2n

n

) ∑
k,l

(
n

k

)(
n

l

)(
k

l

)(
k + l

k

)(
2l

l

)(
2k

k − l

)
zn

=
1√

1 − 4z

∞∑
n=0

(
2n

n

)2 n∑
k=0

(
n

k

)2(2k

k

)(
z

1 − 4z

)n

, (5.30)

∞∑
n=0

( n∑
k=0

(
n

k

)2(
n + k

n

))2

zn

=
1

1 + z

∞∑
n=0

(
2n

n

) ∑
k,l

(
n

k

)(
n

l

)(
k + l

k

)(
2l

l

)(
l

k − l

)(
z

(1 + z)2

)n

, (5.31)

∞∑
n=0

( n∑
k=0

(
n

k

)(
2k

k

)(
2n − 2k

n − k

))2

zn

=
1

1 − 32z

∞∑
n=0

(
2n

n

) [n/2]∑
k=0

2n−2k

(
n

k

)(
n − k

k

)(
2k

k

)(
2n − 2k

n − k

)(
z

(1 − 32z)2

)n

,

(5.32)

∞∑
n=0

( [n/3]∑
k=0

(−1)k3n−3k

(
n

3k

)
(3k)!
k!3

)2

zn

=
1

1 − 27z

∞∑
n=0

[n/3]∑
k=0

(−1)n−k

((
2n − 3k − 1

n

)
+

(
2n − 3k

n

))

× (3k)!
k!3

(3n − 3k)!
(n − k)!3

(
z

(1 − 27z)2

)n

. (5.33)

6. The invariance of Yukawa couplings

As we have already seen, algebraic transformations transform Calabi–Yau equations into
similar ones, but sometimes look quite different. Such transformations, however, preserve
(in a certain precise sense, which we describe below) the Yukawa coupling of the corre-
sponding differential equations. Recall that the Yukawa coupling K can be defined, up to
a normalization constant factor, through the quotient t(z) = y1(z)/y0(z) ∈ log z + zQ[[z]]
of the two solutions y0(z) ∈ 1 + zZ[[z]] and y1(z) of a Calabi–Yau equation (3.3) (see § 2)
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as

K =
1

y2
0 · (dt/dz)3

exp
(

−1
2

∫ z

P (z) dz

)
, (6.1)

and this function is often viewed as a function of q = et, since its q-expansion in the
case of a degenerating family of Calabi–Yau 3-folds is supposed to encode the counting
of rational curves of various degrees on a mirror manifold.

On the other hand, we did find several examples of Calabi–Yau equations whose
Yukawa couplings coincide, although it is not obvious that the equations themselves
are indeed equivalent in the sense that they are related by an algebraic transformation.
At the time of writing, we have discovered and proved algebraic transformations for all
pairs of Calabi–Yau equations with equal Yukawa couplings tabulated in [3] (see also the
diploma thesis [9]). Most of these transformations (at least those that follow a general
pattern) were given in § 5 and some of them are immediate consequences of the theorems
proven therein. Section 7 describes some of our strategies for finding the transformations.

It is routine to write down the fourth-order linear differential equation

d4Y

dx4 + P̂
d3Y

dx3 + Q̂
d2Y

dx2 + R̂
dY

dx
+ ŜY = 0 (6.2)

for the function Y (x) = v(x) · y(z(x)). For example, we have

P̂ = −6
z′′

z′ + z′P − 4
v′

v
, (6.3)

where the prime denotes the x-derivative.
Clearly, the new equation (6.2) does not necessarily have rational coefficients, but it

does after we impose certain conditions on v(x) and z(x) (for instance, assuming their
rationality). Continuing the computation in (6.3) we obtain the following.

Proposition 6.1 (cf. [12]). Define

Uz(P, Q) = Q − 3
2

dP

dz
− 3

8
P 2. (6.4)

Then
Ux(P̂ , Q̂) − (z′)2Uz(P, Q) = 5{z, x}, (6.5)

where

{z, x} =
z′′′

z′ − 3
2

(
z′′

z′

)2

(6.6)

is the Schwarzian derivative.

Our next statement shows the invariance of the Yukawa coupling.

Proposition 6.2. Let Y (x) = v(x) · y(z(x)), where z(x) = x + O(x2) and v(x) =
1 + O(x). Then the Yukawa couplings defined in accordance with (6.1) coincide:

KY (x) = Ky(z). (6.7)
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Proof. Because both the mirror map t(z) and the Yukawa coupling depend on quo-
tients of the solutions rather than on the solutions themselves, it is sufficient to treat the
case v(x) = 1. We have the formula (6.1) implying

K =
y4
0

det

(
y0 y1

dy0/dz dy1/dz

)3 exp
(

−1
2

∫ z

P (z) dz

)

Furthermore,

dY0

dx
= z′ dy0

dz
,

dY1

dx
= z′ dy1

dz
and P̃ = −6

z′′

z′ + z′P ;

hence,

KY (x) =
Y 4

0

det

(
Y0 Y1

dY0/dx dY1/dx

)3 exp
(

−1
2

∫ x

P̃ (x) dx

)

=
y0(z)4

det

(
y0(z) y1(z)

z′ dy0/dz z′ dy1/dz

)3 exp
(

−1
2

∫ x (
−6

z′′

z′ + z′P (z(x))
)

dx

)

=
y0(z)4

det

(
y0(z) y1(z)

dy0/dz dy1/dz

)3 exp
(

−1
2

∫ z

P (z) dz

)

= Ky(z).

Here we used z′(0) = 1 when we integrated

3
∫ x

0

z′′

z′ dx = 3 log z′(x) − 3 log z′(0).

�

From the transformation formulae for passing from (3.3) to (6.2) through the map
Y (x) = v(x) · y(z(x)), we find that the Calabi–Yau condition (3.4) is preserved. This is
very hard to see by direct computation, since one gets an enormous fourth-order nonlinear
differential equation for z(x).

Conjecture 6.3. If Yukawa couplings coincide, then there exists an algebraic trans-
formation between corresponding Calabi–Yau differential equations.

In fact, Proposition 6.2 states that the Yukawa coupling defined by (6.1) is preserved by
any formal coordinate transformation z(x) = x + · · · . However, the requirement for the
transformed equation to be of Calabi–Yau type (in particular, to have rational functions
as coefficients) should lead to the algebraicity of such a transformation.



292 G. Almkvist, D. van Straten and W. Zudilin

7. Proof of Theorem 5.4: guessing algebraic transformations

Not only does this section provide a proof of Theorem 5.4 but we also illustrate our
strategies to guess algebraic transformations for Calabi–Yau differential equations on
the example of Theorem 5.4; more precisely, we show how to ‘discover’ the equivalence
of (e) ∗ (e) and (C) ∗ (i). We distinguish three methods: two analytic and one algebraic.
They also provide proofs of the discovered algebraic transformation as soon as the fact
of its existence is established.

First of all we indicate a way to recognize in Maple whether a function R(z), given
by its Taylor expansion at the origin, is rational or algebraic and, if it is, to find a closed
expression. For this, one applies seriestodiffeq(R, R̂(z)) (with gfun) and then dsolve

to R̂(z).

7.1. Analytic guessing

Compute the z-expansions (30 terms, say) of the mirror maps q̃ and q, then write

q̃(z) = ±q(±z + a2z
2 + · · · + a30z

30 + · · · )

(the signs belong together); expand the latter equality up to z31 to get a system of linear
equations for unknowns a2, . . . , a30. It takes Maple a few minutes to solve the system;
this finds the inner transformation. Then compute the power series expansion of the outer
transformation multiple and use gfun.

7.2. Schwarzian relation

In passing from (e) ∗ (e) to (C) ∗ (i), we can use the ‘magic Schwarzian relation’ (Propo-
sition 6.1) for z(x) in the form z(x) = −x + · · · . Then we recursively find the expansion
for z̃(x) = −256z(x/256),

z̃(x) = x + 10x2 + 83x3 + 628x4 + 4501x5 + 31 134x6 + 210 023x7 + · · · ,

which Maple easily recognizes as the expansion of a rational function

z̃(x) =
x(1 − x)2

(1 − 6x + x2)2
.

Furthermore, denoting by Y (z), Ŷ (z) ∈ 1 + zZ[[z]] the analytic solutions of (e) ∗ (e) and
(C) ∗ (i), respectively, it remains to let Maple identify the quotient of

Y (z) and Ŷ

(
−z(1 − 256z)2

(1 − 6 · 256z + 2562z2)2

)

with the algebraic function (1 − 6 · 256z + 2562z2)−1/2.
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7.3. Local monodromy considerations

The operator for the Hadamard product (e) ∗ (e) is

D = θ4 − 16z(16θ4 + 128θ3 + 112θ2 + 48θ + 9) + · · · − 240z5(θ + 1)4.

The discriminant is (1 + 256z)2(1 − 256z)3 but the point z = − 1
256 turns out to be an

apparent singularity. The point z = 1
256 is also a MUM point and a calculation shows

that
K(q)z=1/256 = K(q2)z=0 = K(q2)z=∞.

Thus, the operator D has three MUM points and no other singularities.
The operator corresponding to the Hadamard product (C) ∗ (i) is

θ4 − 16z(4θ + 1)(4θ + 3)(32θ2 + 32θ + 13) + 216z2(4θ + 1)(4θ + 3)(4θ + 5)(4θ + 7),

an operator with discriminant (1 − 4096z)2. The exponents at z = 1
4096 are 0, 1

4 , 3
4 , 1;

at z = ∞ they are 1
4 , 3

4 , 5
4 , 7

4 , hence these points have local monodromy of order 4. All
these facts are easily checked with Maple using formal sol (within DEtools). If we
try to think of (e) ∗ (e) as a pullback of (C) ∗ (i) via a rational map R(z) = P (z)/Q(z),
we see that it requires the following properties: R−1(0) = {0, 1

256 ,∞} and the ramifica-
tion over z = 1

256 is of order 2. Therefore, the degree of R(z) is four. We also require
R−1( 1

4096 ) = {− 1
256} as we want the ramification index at z = 1

256 to be 4. But then we
cannot require the same ramification index over z = ∞; hence, we assume that R−1(∞)
consists of two points, each with ramification index 2. The pullback then has exponents
1
2 at these points, and we have to divide by the square root of the polynomial defining
these points. Combining the information we see that

R(z) = c
z(1 − 256z)2

q(z)2
, q(z) = 1 + az + bz2,

where a, b and c are certain constants. We now determine the constants by requiring
that R(− 1

256 ) = 1
4096 and

R

(
x − 1

256

)
=

1
4096

+ 0 · x + 0 · x2 + 0 · x3 + · · · .

We find
a = −1536, b = 65 536, c = −1.

If Ŷ (z) is the solution of (C) ∗ (i), then the function Ŷ (R(z)) has the square-root
behaviour at the pre-image of z = ∞, that is, at the roots of q(z) = 1−1536z +65 536z2;
hence,

Y (z) =
1√
q(z)

Ŷ

(
−z(1 − 256z)2

q(z)2

)

has the same local properties as the solution of (e) ∗ (e) and, in fact, coincides with it.
The same method can be used to find the transformation in the other cases. For

example, from the fact that the Hadamard product multiplies the singular points of the
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operators, it follows without further calculation that the operators (5.20) and (5.21) have
0, ∞ and the roots of 1 − 2âz + ĉz2 as singularities. The Hadamard product of fα(z)
and operator (2.5) has its singularities at 0, ∞ and the roots of 1 − az + cz2. A possible
transformation of degree 2 will have to map these singular points in exactly the same
way as in Theorem 4.1; hence, we are again led to consider z �→ −z/(1 − az + cz2). In
this case, the prefactor can also be determined by looking at the local exponents.

8. Concluding remarks

It is definitely not our goal here to stress the consequences of our theorems, since we
feel that the transformations, and even their existence, are beautiful by themselves.
Our results provide (albeit rather indirect) geometric interpretations of several (YY-)
pullbacks from the table in [3]; previously, such pullbacks were of geometric origin only
conjecturally, and no relation to Calabi–Yau geometry was known. Another application
of our transformation theorems, having a more arithmetic flavour, is the integrality of
the analytic solutions of the pullbacks (condition (ii) of § 2), as well as the integrality of
the corresponding mirror maps (condition (iii)) when the results in [11] are applicable.
There are many aspects that can be discussed elsewhere.
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