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1 Introduction

We are surrounded by networks almost everywhere and our life strongly depends on these networks.
Some are virtual, such as the networks we may build with colleagues and friends. e class of non-
virtual networks divides again into hidden networks such as the internet (or telecommunication
networks in general) and the publicly visible networks such as street networks. All of those non-
virtual networks can be used to send some kind of goods, for example freight in logistic networks,
data in communication networks and cars or people in the streets. Optimal routing of goods in such
networks is the topic of this thesis and we will only consider non-virtual networks in the following.
A network can be modelled using a graph of vertices that are connected by directed arcs. Goods are
sent through the network along the arcs from starting vertices to target vertices, whichwe call sources
and sinks. Huge effort is put in handling the transportation of a continuously growing amount of
these goods through larger and larger networks.
e first formalization of the above setting is due to Monge [Mon81] who defined the transporta-

tion problem that deals with the task to send goods from sources to their respective sinks. Tol-
stoĭ [Tol30] studied the transportation problem in the Soviet railway network using network flows.
A flow assigns a value to each arc that represents an amount of the goods that move from one vertex
to another. e model is extended by some naturally deduced requirements to restrict capacity or
enforce that no flow is lost. While Tolstoĭ tried to send goods through the network in the cheapest
way, Ford and Fulkerson answered the question how the same Soviet rail network can be destroyed
with lowest costs. ey established the important structural property that the value of a maximum
flow (from a source to a sink) in a network is equal to the value of a minimum cut [FF56]. Today,
network flow theory is an important field of research that comprises many different models and
covers various applications.
Ford and Fulkerson already discussed the first extension including non-negative transit times on

arcs [FF58]. e transit time of an arc denotes the amount of time one unit of flow needs to travel
from the beginning of the arc to the vertex at the end. Ford and Fulkerson have shown that in this
setting it is possible to compute a maximum flow over time efficiently, e. g., a flow sending as many
flow units as possible within a given time horizon. e inclusion of the temporal dimension allows
the task to minimize the time horizon as an additional optimization objective.
e consideration of time in network flows comes at a cost: Solution sizes can grow large, because

a flow over time does not only have to specify howmuch flow is on any arc, but has to specify this for
each point in time in the worst case. is behaviour can lead to pseudo-polynomially large outputs
whichwewould like to avoid. emaximumflowover time algorithmby Ford and Fulkerson [FF58]
has the interesting property that the flow rate does not change over time. erefore, the solution can
still be encoded in polynomial size. Unfortunately, this property cannot be maintained if flow prob-
lems becomemore complex. A classical variant of solving problems including a temporal dimension
is time expansion. A temporally expanded network consists of several copies of the original network
and the flow over time is simulated by a static flow in the larger network. ese networks easily grow
too large and it is therefore advisable to avoid them. If this is not possible, the next best result is an
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1 Introduction

algorithm that takes the original network as input and works without time expansion.

EvacuationOptimization. A very important application of flows over time, that is also discussed
in detail in this thesis, is the evacuation problem: Here the task is to find a way how the evacuees can
escape from an endangered area as quickly as possible. Evacuation scenarios can be modelled using
network flows. e environment is modelled as a network, the evacuees are placed in the sources
and the safe area corresponds to sinks. Such models have first been mentioned by Berlin [Ber78]
and Chalmet, Francis and Saunders [CFS82]. An evacuation can be represented by a flow over time
with minimal time horizon that routes the evacuees to the sinks; a task that is referred to as quickest
transshipment problem. However, because the situation may worsen at some unknown point in time
during the evacuation process, it is most advisable to evacuate as many evacuees as early as possible.
is stronger requirement is captured by earliest arrival flows.
e requirement that a single flow over time sends as many flow units as early as possible is quite

high and it is not clear if such a flow exists. For the case of a single source and a single sink, i. e., all
evacuees in an evacuation scenario are heading to a single safe place, this was proven byGale [Gal59].
An algorithm to compute such a flow in networks with a single source and a single sink was given
by Minieka [Min73]. e current state of the art for computing earliest arrival flows is an algorithm
due to Baumann and Skutella [BS09]. It works in the case of multiple sources and a single sink. Its
running time is polynomial in the input plus output size.
Formany evacuation scenarios the restriction of a single available sink is not a big problem. Several

exits can typically be modelled by a single sink representing a safe area of infinite capacity, e. g.,
outside of a building. More complicated scenarios using safe areas with limited capacities such as
shelters or life boats on nautical vessels require the introduction of multiple sinks. In these examples
a network flow satisfying the earliest arrival property does not necessarily exist. Simple scenarios
with only two sinks already show this.
A common approach in such unsatisfactory situations, which do not allow for a solution, is to

relax the requirements. In the case of earliest arrival transshipments an approximate solution can
send less than the maximal possible flow at some points in time. Quality can then be measured by
how far such an approximate flow deviates from the possible maximum flow value at each point in
time. Baumann and Köhler [BK07] propose to allow flow units to arrive a certain factor late. Under
this relaxed condition there exist approximate earliest arrival flows that send flow a constant factor
later.
In case that no solution exists and the requirements have to be relaxedwe are interested in solutions

that violate the constraints only as little as possible. An ideal algorithm in this setting does not only
guarantee a certain bound on themaximumviolation, bot computes instance optimal solutions. at
is, for every instance the solution is as good as possible and if an instance allows for a solution that
adheres to the given constraints, such a solution is computed. is is especially important in the
scenario of evacuation optimization where any improvement may safe lives. For the case of earliest
arrival flows such an algorithm computes an earliest arrival flow when this is possible. If no earliest
arrival flow exist an instance optimal algorithm computes a solution with minimal violation of the
constraints.

FurtherGeneralizations. Despite the applications of flows over time, current basic research anal-
yses the generalization of other combinatorial problems with a temporal dimension. One of these
problem is a dynamic formulation of more general packing integer programs. A first step into this

4



direction is the temporal extension of abstract flows. is model grasps the essence of what deter-
mines a network. e concept was introduced by Hoffman [Hof74] when he observed that Ford
and Fulkerson’s original proof for the Max-Flow=Min-Cut-eorem in [FF56] only uses very few
properties of networks. In the abstract setting, paths are defined to be arbitrary subsets over a fixed
ground set allowing a certain switching operation: If two paths intersect in an element of the ground
set, there is another path using only elements of the beginning of one path and only elements in the
end of the other. A general framework that allows to define temporal variants ofmany combinatorial
problems is due to Adjiashvili et al. [ABW+14].

Structure and Contributions of the Thesis

Mathematical research is oen driven by real world problems, especially in the area of combinatorial
optimization. e mentioned problems regarding the Soviet rail network are examples for such real
world applications. Research on a given problem typically initializes two approaches. In a practical
approach the original application is tackled. is usually involves building an abstractedmodel upon
which solutions that are applicable in practice are produced. At the same time, a new line of research
starts that aims for further generalizations and abstractions of the original problem. When such
generalizations are established, it is an interesting question whether the generalizations again are
applicable in practice. is thesis contributes to both the practical and theoretical areas of research.
e practical part focuses on the evacuation problem. Practitioners do not use advanced network

flowmodels in existing evacuation tools. Most of those tools only provide a simulation framework to
estimate outcomes of evacuation scenarios. From the perspective of combinatorial optimization, the
tools are too limited and ignore the potential of evacuation optimization. In this thesis we propose
approaches based on network flows over time to improve egress times of building evacuations. We
also develop a network model for evacuation scenarios that can easily be implemented in existing
soware tools.
To better handle scenarios that do not allow for an earliest arrival flow we propose the concept of

value approximation. Value-approximate flows relax the earliest arrival property such that at every
point in time only a factor of the possible maximum amount of flow has to be sent. To draw a
complete picture of the landscape of approximate earliest arrival flows we juxtapose the existing
approach of temporal approximate earliest arrival flows with the new concept of value-approximate
flows.
On the theoretical line of research we generalize network flow over time problems by allowing

negative travel times on arcs. Instances of these types appear when we consider a temporal variant
of the matching problem. We also discuss the existence of abstract earliest arrival flows.
In the followingwe briefly outline the structure of this thesis and the contributions of each chapter.

Chapter 1: Introduction. In the remainder of this chapter we briefly introduce important no-
tations and definitions that we use throughout the thesis. We also give an introduction into static
network flows which are the main topic of the thesis. e introduction covers a short historical re-
view and introduces edge- and path based formulations as well as special variants of static network
flows.

Chapter 2: Flows over Time. In Chapter 2 we introduce the field of network flows over time
and the Q T P and E A T P

5



1 Introduction

and consider time expansion as a method to solve flow over time problems. We in depths discuss
the hardness of a generalization of the Q T P in which arcs are addi-
tionally equippedwith release dates and deadlines. e extensionwas introduced and already briefly
analysed by Hoppe [Hop95]. We show Minieka’s algorithm to compute earliest arrival flows for in-
stances with a single sink using the S S P A and discuss in which
cases the algorithm can be applied to compute earliest arrival flows with multiple commodities.

Chapter 3: Evacuation Simulation andOptimization. In Chapter 3 we study how different net-
work flow algorithms and especially earliest arrival flows can be used to improve evacuation times.
To optimize evacuation times we propose exit assignments, which define the exit taken by each evac-
uee. We apply different algorithms to compute exit assignments and compare the effectiveness of
the assignments by simulation runs with the cellular automaton implemented in the soware suite
1. Soware tools used to model evacuation scenarios in practice are oen built upon simula-
tion frameworks using cellular automata. We present an approach to generate network flow models
based on an already existing cellular automaton. To prove validity of our automatically generated
network models we compare the results of an earliest arrival flow with simulation results and with
measured data from a real world test evacuation of a 22-storey building mainly consisting of offices
and seminar rooms.

Chapter 4: Approximating Earliest Arrival Flows. In Chapter 4 we study two relaxations of the
earliest arrival property in cases with multiple sinks. In a time-approximate earliest arrival flow
the flow units are allowed to arrive a given factor too late. We apply a technique by Baumann and
Köhler [BK07] to show that 4-time-approximate earliest arrival flows do exist in instances with a
single source and multiple sinks. e existence result is complemented by an example that does not
allow for a 2-approximate earliest arrival flow.
As second relaxation we study value-approximate earliest arrival flows which allows that only a

certain factor of the maximum possible flow is sent at each point in time. is relaxation, which first
has been used byHoppe andTardos [HT94], turns out to be surprisingly strong. Wepresent a general
framework that allows to answer the question if a 𝑐-value-approximate flow exists for arbitrary flow
models. For the classic flow model with a single commodity we present an algorithm that computes
a 2-value-approximate earliest arrival flow in a time-expanded network for instances with multiple
sources and sinks. e algorithm can be implemented in polynomial time if all transit times are
zero. For value-approximate earliest arrival flows, there exist instances that do not allow for a better
approximation factor. For the case of multiple commodities we extend the algorithm such that a𝑘-value-approximate earliest arrival flow can be computed in instances with 𝑘 commodities that
only use a single source and sink for each commodity. For instances with multiple sinks for the 𝑘
commodities, we show that there is always a 2𝑘-value-approximate earliest arrival flow. ese results
are complemented by a class of networks that do not allow for a 𝑘 − 1-approximate earliest arrival
flow (with only a single sink for each commodity).
Especially in the application of evacuation optimization best possible value-approximate earliest

arrival flows are desired. We present a (time-expanded) linear program to compute instance optimal
solutions. We then use geometrically condensed time-expanded networks introduced by Fleischer
and Skutella [FS07] to compute the optimal approximation factor in polynomial time.

1http://www.zet-evakuierung.de
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1.1 Preliminaries

Chapter 5: Negative Travel Times. In Chapter 5 we investigate the implications of introducing
negative transit times to flow over time problems. Even the relatively simple M F 
T P becomes 𝒩𝒫-hard if arcs are equipped with negative travel times. However, on
some instances the maximum flow can still be computed in polynomial size. We characterize in-
stances with this property which is highly related to temporally repeated flows. For the Q
T P we apply an approximation algorithm by Fleischer and Skutella [FS07]
to derive a (2 + 𝜀)-time-approximate quickest transshipment.
As an application we study the M  T P, an extension of the classical

M P to the setting with a temporal dimension. For bipartite graphs the problem
can be reduced to the M F  T P. However, instances generated by
the reduction comprise negative travel times and also release dates for the arcs. For the sake of
completeness we also show that the M  T P is 𝒩𝒫-hard.

Chapter 6: Abstract Flows over Time. In Chapter 6 we study the existence of abstract earliest
arrival flows. We generalize the notion of lexicographically maximum flows to the abstract setting
and show that both abstract lexicographically minimum andmaximum flows do exist. Repeated ap-
plication of McCormick’s maximum abstract flow algorithm [McC96] in growing abstract networks
can be used to compute such flows. We then show that time-expanded abstract networks can be used
to compute an abstract flow over time having the earliest arrival property. erefore, we establish a
correspondence between abstract lexicographically maximum flows in the time-expanded networks
and and abstract earliest arrival flows. We use the framework established in Chapter 4 to show exis-
tence of 2-value approximate abstract earliest arrival flows. e result can be achieved by an applica-
tion of a subroutine of the weighted abstract flow algorithm by Martens and McCormick [MM08].

Final Remarks. e thesis is mostly self contained and all necessary definitions and theorems are
presented. For some established theorems the proofs are omitted if they are not of importance for
the remainder of the thesis. In this cases we refer to appropriate points in the literature. We expect
the reader to be familiar with basic concepts of combinatorial optimization, such as are being taught
in introductory courses on discrete and linear optimization, and algorithms. In the introductory
chapters we refer to general text books introducing the respective areas. For most of the mentioned
techniques and definitions we also give a reference to an original publication. If there are more
publications of the same results, e. g., a technical report, a conference paper or a journal publication,
we only cite the most recent publication.

1.1 Preliminaries

We briefly introduce important notations and definitions that we use throughout the thesis. is
allows us to use a consistent notation and also to speak clearly about the topics for which there may
be several definitions in the literature. All of the covered topics are typically subject matter in un-
dergraduate courses and we assume that they are generally known. Besides the necessary definitions
we also recite some important theorems to make the thesis self contained. General introductions to
the covered topics can be found in the textbooks by Schrijver [Sch03] or Korte and Vygen [KV12].
We also give additional hints to overview literature in the respective sections.
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1 Introduction

1.1.1 Complexity

In the following we will briefly review some of the basic terms of complexity that will be needed
throughout the thesis. For a thorough introduction, see for example the books byWegener [Weg05]
and Papadimitriou [Pap94].

Running Time of Algorithms. A given instance 𝐼 of an optimization problem is solved using an
algorithmwhich is executed on the instance. We are interested inmeasuring the necessary resources
of an algorithm. From the practical point of view, we are interested in the actual running time and the
necessarymemory use. ese values candivert extremely depending on the specific implementation,
the programming language and the machine on which the algorithm is executed. is somehow
unsatisfactory situation is covered on the theoretical side by complexity theory.
An algorithm consists of a list of simple operations, which typically are small atomic operations

like the addition of values or a decision for the next step that is to be performed. We assume that
all these atomic operations need one time unit, and call the number of operations that an algorithm
performs the time complexity of the algorithm which we also call running time. e space com-
plexity of an algorithm is measured by the number of (possibly arbitrary large) values that are stored
additionally to the input during its execution. ese methods of counting space and time are also
called uniform costs, which will suffice for the purpose of this thesis. As a formal model for cal-
culating running times of algorithms, we refer to random access machines, which are a well known
implementation of a model with uniform costs that is near enough to real computer systems for our
needs. For our purposes the uniform cost model is sufficient. We just mention that operations with
large numbers (such as addition) may take longer time than operations with small numbers. More
advanced models that take this into account use the so-called logarithmic costs.
Both, the time and space complexity depend on the given instance. We thus express it in terms of

the encoding size of an instance ⟨𝐼⟩. e encoding size describes the number of bits necessary to de-
fine the instance. Wedenote the size for an instance ⟨𝐼⟩with |⟨𝐼⟩|.eactual running time for a given
instance can vary depending on its structure. A function𝑓(𝑛) ∶ ℕ → ℕ is called a runtime function
for an algorithm, if for all instances ⟨𝐼⟩with |⟨𝐼⟩| = 𝑛 the running time of the algorithm on the input
is bounded by𝑓(𝑛). As instances and their specifics are typically not known in advance we are inter-
ested in theworst-case running time. We denote the set of all valid instances for a problem by ℐ and
define the worst-case running time as max󶁁min󶁁𝑓(|⟨𝐼⟩|) | 𝑓 runtime function for ⟨𝐼⟩󶁑 | ⟨𝐼⟩ ∈ ℐ󶁑.
We say that an algorithm has a polynomial running time, if it has a runtime function 𝑓(𝑛) that
is bounded by a polynomial in 𝑛, otherwise we call the running time super-polynomial. In most
cases, we consider an algorithm to be efficient if it has a polynomial worst case running time. We
are not interested in knowing the exact running time but its order which is measured by means of𝒪-notation. For a function 𝑔 ∶ ℕ → ℕ, we define a set 𝒪(𝑔) ≔ 󶁁𝑓 ∶ ℕ → ℕ 󶙡 ∃ 𝑐 ∈ ℝ+ ∶∃𝑛0 ∈ ℕ ∶ ∀𝑛 ≥ 𝑛0 ∈ ℕ ∶ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛)󶁑, which contains all functions that grow at most
with the same order as 𝑔. For brevity, we sometimes omit logarithmic terms and therefore define𝒪̃(𝑔) ≔ 󶁁𝑓 ∶ ℕ → ℕ 󶙡 𝑓 ∈ 𝒪(𝑔(𝑛) ⋅ log𝑘󶀡𝑔(𝑛)󶀱󶁑.
For a problem let 𝑥 be the maximum value in the input ⟨𝐼⟩. We say it is a number problem

if 𝑥 cannot be bounded by |⟨𝐼⟩|. Most problems that we discuss throughout the thesis are number
problems. We call an algorithm for a number problempseudo-polynomial, if its worst-case running
time is bounded by a polynomial in both |⟨𝐼⟩| and 𝑥. e effect of pseudo-polynomial algorithms is
that its running time strongly depends on the size of the numbers in the input.
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1.1 Preliminaries

Hardness of Problems. A decision problem is a problem which only has two valid solutions
that we call yes and no. Accordingly, the instances to such problems are called yes-instance and
no-instance. Many optimization problems naturally define a decision variant. If the optimization
goal is to minimize (or maximize) a given value, the corresponding decision problem answers the
question whether a solution of a given value exists. e complexity class 𝒫 is the set of all decision
problems for which an algorithm with polynomial time complexity exists. e class 𝒩𝒫 consists of
all decision problems for which, given a certificate of polynomial size, it can be decided for all in-
stances in polynomial time if the certificate describes a correct solution. us, we have immediately𝒫 ⊆ 𝒩𝒫 . A decision problem 𝐴 can be polynomially reduced to a problem 𝐵 if there exists an
algorithm that transforms an instance ⟨𝐼𝐴⟩ for 𝐴 into an instance ⟨𝐼𝐵⟩ for problem 𝐵 in polynomial
time such that any algorithm for 𝐵 accepts ⟨𝐼𝐵⟩ if and only if ⟨𝐼𝐴⟩ was a yes-instance for 𝐴. We say,
a problem 𝐴 is 𝒩𝒫-hard, if every problem in 𝒩𝒫 can be polynomially reduced to 𝐴, e. g., 𝐵 ≤𝑝 𝐴
for all 𝐵 ∈ 𝒩𝒫 . If also 𝐴 ∈ 𝒩𝒫 , we say that 𝐴 is 𝒩𝒫-complete. us, if a polynomial algorithm
for any 𝒩𝒫-hard problem is found 𝒫 = 𝒩𝒫 would follow, which is commonly not believed to be
true. Since the discovery of the first𝒩𝒫-complete problem, a lot of problems have been shown to be𝒩𝒫 complete, a lot of them can be found in the textbook by Garey and Johnson [GJ79]. rough-
out this thesis we will assume that 𝒫 ≠ 𝒩𝒫 and sometimes see results that only follow under this
assumption.
If a pseudo-polynomial algorithm for an 𝒩𝒫-hard problem exists, we also call it weakly 𝒩𝒫-

hard. On the other hand, if a problem remains 𝒩𝒫-hard even if all numbers in an instance are
bounded by |⟨𝐼⟩|, we say it is strongly 𝒩𝒫-hard.
An example for a weakly 𝒩𝒫-hard problem is P, one of the first 21 𝒩𝒫-hard problems

described by Karp [Kar72]. We use P throughout the thesis to show 𝒩𝒫-hardness for
several other problems.

Problem: Partition

Instance: 𝑎1, 𝑎2,… , 𝑎𝑛 ∈ ℕ with 𝐴 ≔ ∑𝑛𝑖=1 𝑎𝑖 even.
Task: Find an index set 𝐼 ⊆ {1, 2,… , 𝑛} such that󵠈𝑖∈𝐼 𝑎𝑖 = 󵠈𝑗∉𝐼 𝑎𝑗 = 𝐴2 .

Approximation Algorithms. To handle the fact, that (under the assumption of 𝒫 ≠ 𝒩𝒫) it is
impossible to find efficient algorithms for 𝒩𝒫-hard problems, approximation algorithms have been
developed. emain goal here is to find a polynomial algorithm that probably does not find the opti-
mal solution but finds a solution that is “as good as necessary”. Extensive coverage of approximation
algorithms and several important techniques are presented in the books by Hochbaum [Hoc97],
Vazirani [Vaz01] and Williamson and Shmoys [WS11], whose notation we use in the following.
Let 𝑐 > 0. A 𝑐-approximation algorithm for an optimization problem is a polynomial algorithm

that computes a solution whose value lies within a factor of 𝑐 of the value𝑂𝑃𝑇 of the optimal value.
If the problem is a maximization problem, the solution of the algorithm has at least a value of 𝑂𝑃𝑇/𝑐.
For minimization problems, the solution has at most a value of 𝑐 ⋅ 𝑂𝑃𝑇.
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1 Introduction

While it is nice to find a constant 𝑐 such there exists a 𝑐-approximation algorithm for a hard combi-
natorial optimization problem, it would be even better to get arbitrarily close to the optimal solution.
In this case we could compute a solution that is as good as we wish it to be. e best we can hope
for is a polynomial approximation scheme that gives a (1 + 𝜀)-approximation algorithm for any pos-
itive 𝜀. A polynomial-time approximation scheme (PTAS) is a family of algorithms {𝐴𝜀}, where
for each 𝜀 > 0 there is an algorithm 𝐴𝜀 which is a (1 + 𝜀)-approximation algorithm. While a PTAS
already gives us basically what we want, namely an arbitrarily good optimization of the optimal so-
lution, we still might not be satisfied with the running time for very small 𝜀. is will be covered by
fully polynomial-time approximation schemes. A fully polynomial-time approximation scheme
(FPTAS) is a family of algorithms {𝐴𝜀}, where for each 𝜀 > 0 there is an algorithm 𝐴𝜀 which is a(1 + 𝜀)-approximation algorithm and whose running time is polynomial in the input size and in 1𝜀 .
Parametric Search. A common task in combinatorial optimization is to find a minimal value for
a parameter 𝜆, such that a problem remains feasible. In the context of network flows over time,
the parameter may be the time horizon. e task is then to find the minimal time horizon that
allows to ship a given amount of goods from starting points to end points. If we know upper and
lower bounds 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛, we can use binary search to detect the optimal value. However, this
method requires 𝒪󶀡log(𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛)󶀱 calls of the decision algorithm as subroutine and usually does
not guarantee strongly polynomial running time as the input most likely relies on some numbers in
the input. Megiddo [Meg79] presents a parametric search framework that improves this procedure
by bounding the number of calls of the decision algorithm.
We briefly describe the method. e basic idea of Megiddo’s parametric search framework is

to replace every variable in an algorithm by linear functions (with 𝜆 being the parameter of the
function). Actually, we are interested in the unknown optimal value 𝜆∗. By calculating with linear
functions instead of simple real valued variables, we can execute the algorithm for many (and in
the beginning: all) possible values. When the execution is started, we have the possible interval[𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥] (which totally may be ]−∞,∞[) in which 𝜆∗ can lie. During the execution, we shrink
the possible interval until we know the actual value 𝜆∗. It is possible to add linear functions, however
decisions within the algorithm create some problems.
We define the search version of a given algorithm by replacing each variable 𝑖within the algorithm

by a linear function 𝑎𝑖 + 𝜆𝑏𝑖. During the execution, the algorithm performs additions and compar-
isons based on the new linear function variables and we have to define its behaviour. e sum of
two variables 𝑖 and 𝑗 is computed as 𝑎𝑖 + 𝑎𝑗 + 𝜆(𝑏𝑖 + 𝑏𝑗). Whenever the modified algorithm has to
perform a comparison, we gain information on the optimal value 𝜆∗. Basing on the new information
we shrink the possible interval. Let 𝑖 and 𝑗 be two variables and the algorithm branches based on a
comparison 𝑖 < 𝑗 using the two corresponding functions 𝑎𝑖+𝜆𝑏𝑖 and 𝑎𝑗+𝜆𝑏𝑗. e two distinct linear
functions cross at most once; let 𝜆′ be the value for 𝜆 with 𝑎𝑖 + 𝜆′𝑏𝑖 = 𝑎𝑗 + 𝜆′𝑏𝑗. en for all 𝜆 ≤ 𝜆′
and 𝜆 ≥ 𝜆′ the comparison 𝑎𝑖 + 𝜆𝑏𝑖 < 𝑎𝑗 + 𝜆𝑏𝑗 gives the same result. us, we only need to know in
which part of the interval (le or right of 𝜆′) the optimal value 𝜆∗ lies. To get this information, we
execute the original algorithm (with normal variables) with parameter 𝜆′ and can therefore decide
in which of the two intervals [𝜆𝑚𝑖𝑛, 𝜆′], or [𝜆′, 𝜆𝑚𝑎𝑥] the optimal value 𝜆∗ lies. We update the bounds
and continue the algorithm with the decision 𝑖 < 𝑗.
e overhead for the algorithm with linear functions is constant for storing the variables and

results of additions. However, whenever a decision occurs, we have to execute the original algorithm
again. But this can occur only once for each of the original algorithm’s operations which means that
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1.1 Preliminaries

the runtime is basically squared. e method can only be applied if additions, comparisons and
function evaluations are the only used operations, which is true for many algorithms.
Theorem 1.1 (parametric search). Let 𝒜𝑑𝑒𝑐 be an algorithm for the decision variant of a given prob-
lem. Let the input for 𝒜𝑑𝑒𝑐 include a parameter 𝜆 and the question is, if the problem is feasible for 𝜆.
e optimization variant of the problem asks for the value 𝜆∗, such that 𝒜𝑑𝑒𝑐 returns no for all 𝜆 < 𝜆∗
and yes for all 𝜆 ≥ 𝜆∗.
Let 𝑝 be the number of comparisons performed by 𝒜𝑑𝑒𝑐 and 𝑞 the number of additions. If 𝒜𝑑𝑒𝑐 only

uses additions, comparisons and function evaluations and has a strongly polynomial running time, then
we can find the optimal value 𝜆∗ in strongly polynomial running time 𝒪󶀡𝑝(𝑝 + 𝑞)𝑅󶀱, where 𝑅 is the
running time of 𝒜𝑑𝑒𝑐.
1.1.2 (Integer) Linear programming

One of the most important and fruitful tools in the area of combinatorial optimization is linear pro-
gramming. It is possible to formulate many problems in terms of so called (integer) linear programs,
such that either the linear program allows to find an optimal integral solution or a relaxed solution
can be used to generate good approximation algorithms.

Problem: Linear Programming

Instance: A matrix 𝐴 ∈ ℚ𝑚×𝑛, a cost vector 𝑐 ∈ ℚ𝑚 and 𝑏 ∈ ℚ𝑛
Task: Find a vector 𝑥∗ ∈ ℚ𝑚 in 𝑃 ≔ {𝑥 ∈ ℚ𝑚 | 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} that

maximizes 𝑐𝑇𝑥, or either decide that the maximum s infinite, or𝑃 is empty.

We denote the input given by the matrix and the vectors as linear program (LP). For an integer
program (IP), we additionally require integrality, i. e., 𝑥 ∈ ℤ𝑚.. Linear and integer programs are
typically not described simply as matrix, but as a list of constraints of some variables. A simple ex-
ample for linear programs is given with the linear program (PF) formaximumflow path formulation
in Section 1.2 later in this chapter.
Linear programs can be solved efficiently in practice using the simplex method introduced by

Dantzig already 1951 [Dan51b]. However, most of the existing pivoting rules have been shown to
have exponential worst case running time [Zad73] and no general results showing polynomial run-
ning time are known. e first polynomial-time algorithm for solving linear programs has been
found by Hačijan [Hač79]. e algorithm is based on the so called ellipsoid method and is not use-
ful in practice. However, the algorithm is of importance from the theoretical point of view. Later
Karmarkar noticed that the interior points method can also solve a L P P
in polynomial time [Kar84]. Modern implementations of the interior points method are also prac-
tically efficient and can compete with the simplex algorithm. Integer linear programming is 𝒩𝒫-
complete [Kar72] and all 𝒩𝒫-complete problems can be formulated as integer program. If there is
no immediate representation the problems can be reduced to the satisfiability problem which has an
immediate representation as integer program.
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ere exist several commercial and non-commercial implementations to solve both, linear and in-
teger linear programs. Well known algorithmic packages are e. g., CPLEX [IBM14], Gurobi [Gur14],
GLPK [GLP14] and SCIP [SCI14].

Duality. Maximization and minimization of linear programs are strongly related by means of du-
ality. Any linear maximization problem can be expressed as a minimization problem with equal
optimal value, if the optima are finite. en the duality theorem of linear programming, first proven
by von Neumann [vN47] and by Gale et al. [GKT51], states, that optimizing of a linear program and
optimizing the corresponding dual is essentially the same.
Theorem 1.2 (Duality Theorem). Let 𝐴 ∈ ℚ𝑚×𝑛 be a matrix and 𝑏 ∈ ℚ𝑚, 𝑐 ∈ ℚ𝑛 vectors. enmax󶁂𝑐𝑇𝑥 | 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0󶁒 = min󶁂𝑦𝑇𝑏 | 𝑦 ≥ 0, 𝑦𝑇𝐴 = 𝑐𝑇󶁒,
if the values are finite and both programs are feasible.
In the above theorem, we call theminimization problem the dual program (DP) and 𝑦 is the dual

solution. Notice, that if the original problem was already a minimization problem, the correspond-
ing maximization problem is the dual. e correlation between the two problems is given by the
correspondence between their respective constraints and variables. e matrix 𝐴 occurs in trans-
posed form in the dual problem. As rows in the matrix correspond to constraints, while columns
are associated with variables, this relation is reversed in the dual problem. Via the process of dual-
ization, for any LP the dual can be computed by introduction of dual variables for the constraints
of the original problem while each variable introduces a constraint. Also, the cost vector of the LP
becomes the right-hand side of the DP. Depending on the form of inequalities, the duality theorem
can have several forms. For a detailed introduction see e. g., [Sch03].

Equivalence of Optimization and Separation. e aforementioned ellipsoid method may not
be useful for solving linear programs in practice, but allows to derive theoretical insights in a prob-
lem’s complexity. We will briefly introduce the method, which basically is referred to as equivalence
of separation and optimization. e results where first established by Grötschel, Lovász and Schri-
jver [GLS81] and independently discovered by Karp and Papadimitriou [KP82] and also by Padberg
and Rao [PR81]. For a detailed introduction into these concepts we refer to the book by Grötschel,
Lovász and Schrijver [GLS88]. For each LP we define the corresponding S P
to be the problem that checks, if a solution is feasible, and returns a violated constraint, if not.

Problem: Separation

Instance: A linear program, 𝑥 ∈ ℚ𝑚.
Task: Decide, whether 𝑥 is feasible for the LP, or find a violated con-

straint.

Theorem 1.3 (Equivalence of Optimization and Separation). e optimum solution for a linear
program can be found in polynomial time if and only if the corresponding separation problem can be
solved in polynomial time.
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emain result of Grötschel, Lovász and Schrijver [GLS88] is the above theorem, stating, that the
solution of an LP can be found efficiently, if the separation problem can be solved efficiently. eir
proof relies on the ellipsoid method and is therefore not applicable in practice. e crucial property
of the ellipsoid is, that it may be used without looking at all constraints, which dramatically reduces
the runtime, if a linear program consists of exponentially many constraints. us, their approach
gives raise to efficient implementations of the cutting planemethod developed byGomory [Gom58;
Gom60] and Chvátal [Chv73]. Assume an LP with exponentially many constraints. Obviously we
do not want to store the problem by itsmatrix description. Instead, we hope it is enough to store only
“few” constraints to compute an optimal solution. We start with an empty LPwithout any constraints
and find an optimal (probably unbounded) solution. We then use the separation problem to find a
violated constraint (in polynomial time). If this constraint is added to the LP, the original solution
is not valid any more and we continue solving a new solution of the now extended LP. We repeat
the process until we find a solution of our LP that does not violate any of the constraints, i. e., the
separation problem returns that the current solution is feasible. By column generation we call the
process of solving a problem with exponentially many variables. Observe, that instead of using the
cutting plane method we can simply dualize the problem and use column generation.

Total Dual Integrality. Linear optimization is a powerful tool in practice. However, if integer
solutions are desired, it is not guaranteed that an optimum is integral, even if the input is integral.
A concept dealing with this problems is due to early work by Hoffman [Hof74] and Edmonds and
Giles [EG77]. A given linear program specified by inequalities 𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0 with 𝐴 ∈ ℚ𝑚×𝑛
and 𝑏 ∈ ℤ𝑚 is totally dual integral, if the corresponding dual programmin󶁁𝑦𝑇𝑏 󶙡 𝑦 ≥ 0, 𝑦𝑇𝐴 = 𝑐𝑇󶁑
has an integer optimal solution 𝑦 ∈ ℤ𝑚 for every cost vector 𝑐 ∈ ℤ𝑛, if it is finite. Such a solution
also implies an integral optimum solution for the linear program max󶁁𝑐𝑇𝑥 󶙡 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0󶁑. For
further details see e. g., the textbook by Schrijver [Sch98]. Notice that totally dual integral systems
of inequalities are very interesting, because in this case optimizing the linear program also gives the
optimum of the IP, which makes these programs a polynomial special case.

1.1.3 Graphs

Directed Graphs. A directed graph or just graph is a pair 𝐺 = (𝑉, 𝐸) where 𝑉 is a finite set of
vertices or nodes and 𝐸 is a family of ordered pairs in 𝑉 × 𝑉. e elements of 𝐸 are called directed
edges or arcs. e edges form a family and it is possible that a graph contains multiple copies of
the same parallel edges. Edges of the form (𝑣, 𝑣) for any node 𝑣 are denoted as loops. If not stated
otherwise, we typically denote the number of nodes with 𝑛 ≔ |𝑉| and the number of arcs by𝑚 ≔ |𝐸|.
Let 𝑒 = (𝑢, 𝑣) be an arc between two nodes 𝑢, 𝑣 ∈ 𝑉. e vertices that form the arc are addressed

as tail and head with the notation tail(𝑒) ≔ 𝑢 and head(𝑒) ≔ 𝑣 . e arc 𝑒 is an outgoing arc of 𝑢
and and incoming arc of 𝑣. For a vertex 𝑣 the set of incoming arcs is defined as 𝛿−(𝑣) and the set of
outgoing arcs as 𝛿+(𝑣) . is notation is extended to subsets 𝑈 ⊆ 𝑉 by defining 𝛿+(𝑈) ≔ ⋃𝑣∈𝑈󶁁𝑒 ∈𝛿+(𝑣) 󶙡 head(𝑒) ∉ 𝑈󶁑 and 𝛿−(𝑈) ≔ ⋃𝑣∈𝑈󶁁𝑒 ∈ 𝛿−(𝑣) 󶙡 head(𝑒) ∉ 𝑈󶁑 to be the set of arcs entering and
leaving 𝑈, respectively.
Undirected Graphs. An undirected graph is a pair 𝐺 = (𝑉, 𝐸) where 𝑉 is a finite set of vertices
and 𝐸 is a family of (undirected) edges 𝑒 = {𝑣, 𝑤} ⊆ 𝑉 that are subsets of 𝑉 of cardinality 2.
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Series Parallel Graphs. A series-parallel graph is a graph having two distinguished vertices 𝑠 and𝑡hat can be composed according to he following recursive definition. An edge (𝑠, 𝑡) is a series-parallel
graph. Let 𝐺1 and 𝐺2 be two series parallel graphs with nodes 𝑠1, 𝑡1 and 𝑠2, 𝑡2, respectively. e
series-composition defines a series-parallel graph𝐺′ by identifying 𝑡1 and 𝑠2. e parallel-composition
defines a series-parallel graph𝐺′ by identifying 𝑠1 with 𝑠2 and 𝑡1 with 𝑡2. Series-parallel graphs build
an important subclass of graphs that are used to provide either specialized and therefore faster or
simpler algorithms, or show that a problem is hard already on these simple instances.

Paths and Cycles. A sequence is a list of edges (𝑒1, 𝑒2,… , 𝑒𝑘) such that the edges are connected,
i. e., head(𝑒𝑖) = tail(𝑒𝑖+1) for 𝑖 = 1, 2,… , 𝑘 − 1. e sequence is called a (directed) path, if 𝑒𝑖 ≠ 𝑒𝑗
for all 𝑖, 𝑗 ∈ {1, 2,… , 𝑘}. If also each vertex on a path is visited once, e. g., head(𝑒𝑖) ≠ head(𝑒𝑗) and
for all 𝑖 ≠ 𝑗 and head(𝑒𝑘) ≠ tail(𝑒1) , the path is simple. An 𝑢-𝑣-path is a path with 𝑢 = tail(𝑒1) and𝑣 = head(𝑒𝑘). A cycle is a path whose last arc ends at the first arc, e. g., head(𝑒𝑘) = tail(𝑒1). e set
of 𝑢-𝑣-paths in a graph are denoted as 𝓟𝑢𝑣. If the nodes are fixed we just refer to the set of paths as𝓟.

Shortest Paths. We denote the minimum distance between two nodes 𝑣 and 𝑤 by dist(𝑣, 𝑤). If
the arc lengths are non-negative, the distance and also the actual shortest paths between nodes 𝑣 and𝑤 can be computed byDijkstra’s algorithm [Dij59] or any of the countless improvements. Practically
efficient implementations using heap data structures have a running time in 𝒪󶀡𝑛 ⋅ log(𝑚)󶀱. For the
case of possibly negative arc length (but without a negative cycle), shortest paths can be computed
using the Moore-Bellman-Ford-Algorithm[Bel58; For56; Moo59] with a worst-case running time
in 𝒪(𝑛 ⋅ 𝑚).
Cuts. A subset 𝐶 ⊆ 𝐸 is called a (forward) cut, if a subset𝑈 ⊆ 𝑉 exists, such that 𝛿+(𝑈) = 𝐶. Any
given subset 𝑈 ⊆ 𝑉 defines a cut 𝐶(𝑈,𝑉 \ 𝑈) ≔ 𝛿+(𝑈). If there are two nodes 𝑠 ∈ 𝑈 and 𝑡 ∈ 𝑉 \ 𝑈,
the cut is an 𝑠-𝑡-cut. If the arcs have assigned edge costs 𝑐𝑒 ∈ ℝ, the value of a cut is defined to be∑𝑒∈𝐶 𝑐𝑒.
1.2 Classical Network Flows

In this section we introduce network flows which we will also call static or classical network flows.
e first textbook covering network flows was the seminal book by Ford and Fulkerson from 1962
[FF62]. is book also already introduced network flows over time, which are defined in Chapter 2.
Aer their introduction in the 1950’s a lot of research on the topic of static network flows has been
done. e textbook by Ahuja, Magnanti, and Orlin [AMO93] covers a vast part of the topic of static
network flows and is an excellent resource.

History of Network Flows. e foundations of network flows, which the research in this thesis is
based upon, were laid in the 1950’s. Although, as we will see, the starting point was rather military
driven, the successive research was most beneficial and the current applications are legion. Initially,
Harris and Ross [HR55] posed the question, how the Russian railway system could be “cut” between
the east and western parts in a cheapest way. Subsequently, Ford and Fulkerson [FF56] showed that
the value of a minimum cut and the value of a maximum flow is equal and thus, the computation of
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1.2 Classical Network Flows

the cut reduces to the computation of a maximum flow. is was also observed independently by
Elias, Feinstein, and Shannon [EFS56]. e first proof was non-constructive and does not allow to
generate a direct algorithm from it, a fact that we will elaborate on in Chapter 6. e corresponding
algorithm was then proposed in [FF57]. Dantzig and Fulkerson were the first to observe, that the
network flow theory is a special case of general linear programming duality [DF56], and therefore
variants of the simplex algorithm can be used to solve it [FD55]. All this research allowed Ford and
Fulkerson to answer the question on the Russian railway network. However, the network could not
be built the way we would do it, because the resulting instance would be too big to solve. Harris
and Ross [HR55] describe a technique that allows to aggregate parts of a network to reduce network
size. Finally, they came up with the instance depicted in Figure 1.1, which then was solved by using
Boldyreff ’s heuristic [Bol55], because the algorithm of Ford and Fulkerson was considered to be too
computationally expensive. Interestingly, the same algorithm is today considered one of the simplest
known algorithm that is also reasonably fast on small to medium size instances. A comprehensive
overview over the beginning of research on the topic of network flows is due to Schrijver [Sch02].
We will now define network flows in the modern and concise way as we use them throughout the
thesis.

Edge Flows. A (static) network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝑆+, 𝑆−) consist of a graph 𝐺 = (𝑉, 𝐸),
capacities 𝑢𝑒 on the arcs and disjoint sets 𝑆+ ⊂ 𝑉 and 𝑆− ⊂ 𝑉 of sources and sinks , respectively. In
the case of a single sink and single source we also write it as 𝒩 = (𝐺, 𝑢, 𝑠, 𝑡). We also denote the
nodes 𝑣 ∈ 𝑉 \ 𝑆+ ⊍ 𝑆− as intermediate nodes.
A (static) flow in a network is an assignment 𝑓 ∶ 𝐸 → ℝ+ satisfying capacity constraints𝑓(𝑒) ≤ 𝑢𝑒

for each arc 𝑒 ∈ 𝐸 and flow conservation󵠈𝑒∈𝛿−(𝑣)𝑓(𝑒) = 󵠈𝑒∈𝛿+(𝑣)𝑓(𝑒)
on intermediate nodes 𝑣 ∈ 𝑉 \ 𝑆+ ∪ 𝑆−. A network flow that also satisfies flow conservation at the
terminals 𝑆+ ⊍ 𝑆− is called circulation. We call 󶙡𝑓󶙡 ≔ ∑𝑒∈𝛿+(𝑠) 𝑓(𝑒) the value of 𝑓. e most famous
network flow problem is the (edge based) maximum flow problem, which has been studied by Ford
and Fulkerson extensively [FF62].

Problem: Maximum Network Flow

Instance: A network 𝒩 = (𝐺, 𝑢, 𝑠, 𝑡).
Task: Find a network flow 𝑓 feasible in 𝒩 with maximum value 󶙡𝑓󶙡.

Theorem 1.4 (Max-Flow=Min-Cut). Let 𝒩 = (𝐺, 𝑢, 𝑠, 𝑡) be a static network. en, the maximum
flow value |𝑓| equals the value of a minimum feasible cut separating 𝑠 and 𝑡 in 𝒩 .
is result, which is a special case of the duality eorem 1.2, has been extended to several other

types of network flow problems, including dynamic network flows and abstract flows, as we see in
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Figure 1.1: e Soviet rail network used as motivational example for the start of network flow re-
search by Ford and Fulkerson. e dashed line represents the minimum cut.

Chapter 2 and Chapter 6, respectively. It is also a very important type of a total dual integral system,
as Hoffman [Hof74] showed.
Ford and Fulkerson [FF56], and independently Elias, Feinstein, and Shannon [EFS56], first es-

tablished a so called Max-Flow=Min-Cut-eorem, which states that the value of a maximum flow
equals the value of a minimum cut. It is a special case of the duality theorem of linear programming,
and the linear programs for maximum flow and minimum cut are in fact dual linear programs. A
related problem occurs if we do not want to send as much flow as possible but if a certain amount of
given supplies and demands should be satisfied.

Problem: Transshipment

Instance: A network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝑆+, 𝑆−), supplies and demands 𝑏𝑣
for sources and sinks.

Task: Find a network flow 𝑓 feasible in 𝒩 that satisfies the given sup-
plies and demands, i. e.,∑𝑒∈𝛿+(𝑠) 𝑓(𝑒) = 𝑏𝑠 and∑𝑒∈𝛿−(𝑡) 𝑓(𝑒) = −𝑏𝑡
holds for sources 𝑠 and sinks 𝑡, respectively.
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1.2 Classical Network Flows

The Extended Network. Traditionally the maximum network flow problem is defined on net-
works containing a single source and a single sink (and without incoming arcs to the source and
outgoing arcs of the sink). is is no limitation because instances with multiple sources can be re-
duced to the special case by using the so called extended network which contains two more nodes
that we call super source and super sink. As the name already indicates these two nodes will serve
as single source and single sink in the new network.
Definition 1.5. (Extended Network) Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝑆+, 𝑆−) be a classical network. We
define the extended network 𝒩 ∗ = (𝐺∗, 𝑢∗, 𝑠∗, 𝑡∗) by introducing two additional nodes, the su-
per source 𝑠∗ and the super sink 𝑡∗ on the set 𝑉∗ ≔ 𝑉⊍ {𝑠∗} ⊍ {𝑡∗} of nodes and the edges 𝐸∗ ≔𝐸⊍⋃𝑠∈𝑆+󶁁(𝑠∗, 𝑠)󶁑⋃𝑡∈𝑆−󶁁(𝑡, 𝑡∗)󶁑. e capacities are extended as 𝑢(𝑠∗,𝑠) ≔ ∞ for sources and 𝑢(𝑡,𝑡∗) ≔∞ for sinks.
If additional supplies and demands are given for sources and sinks we define the capacities as𝑢(𝑠∗,𝑠) ≔ 𝑏𝑠 and 𝑢(𝑡,𝑡∗) ≔ 𝑏𝑡 for sources and sinks. In this case the new supplies and demands are

defined to be 𝑏𝑠 = 𝑏𝑡 = 0 for sources 𝑠 ∈ 𝑆+ and sinks 𝑆− ∈ 𝑆−, respectively. e supplies for the
super source are defined as 𝑏𝑠∗ ≔ ∑𝑠∈𝑆+ ≔ 𝑏𝑠 and the demands at the super sink are defined as𝑏𝑡∗ ≔ ∑𝑡∈𝑆− 𝑏𝑡. ◁
In the case of the M F P, the capacity of the new arc is unlimited as we try to

maximize the flow that is sent from sources to sinks. For restricted problems, e. g., the T-
 P, the amount of flow starting from sources is limited, therefore the capacity of the
arcs incoming to the original sources are limited, the same applies for the sinks.
Observation 1.6 ([FF62]). Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝑆+, 𝑆−) be a network. en the value of a maxi-
mum flow in 𝒩 and the extended network 𝒩 ∗ are the same. If supplies and demands 𝑏 ∶ 𝑉 → ℝ are
given, a transshipment exits in 𝒩 if and only if it also exists in 𝒩 ∗.
Proof. Let 𝑓∗ be a flow in 𝒩 ∗. e flow respects capacities on all arcs, and flow conservation holds
on all intermediate nodes. erefore the flow 𝑓(𝑒) ≔ 𝑓∗(𝑒) for 𝑒 ∈ 𝐸, also respects capacities and
flow conservation on intermediate nodes. Flow conservation is only violated at sources and sinks,
which is allowed.
If we have supplies and demands at the sources and sinks, we have to verify that 𝑓 respects them.

e flow conservation is at most violated by the flow sent on arcs (𝑠∗, 𝑠), and (𝑡, 𝑡∗) for sources 𝑠 and
sinks 𝑡. erefore, we bound the capacity on these arcs by 𝑏𝑠 and 𝑏𝑡, respectively.
Path Flows. Network flows can also be defined in a path based form. is alternative definition
allows for a very simple linear program because flow conservation is automatically achieved on a
path, but the size of the LP usually increases exponentially due to the huge amount of paths in a
network.
Definition 1.7 (Path Flow). Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝑆+, 𝑆−) be a network and 𝓟 the set of all 𝑠-𝑡-
paths for any pair of sources 𝑠 ∈ 𝑆+ and 𝑡 ∈ 𝑆−. e subset of paths using a given arc 𝑒 is defined as𝓟𝑒 ≔ {𝑃 ∈𝓟 | 𝑒 ∈ 𝑃} ⊆𝓟. A path flow is an assignment 𝑥 ∶𝓟 → ℝ≥0 that adheres to capacity
constraints󵠈𝑃∈𝓟𝑒 𝑥𝑃 ≤ 𝑢𝑒.
e value of 𝑥 is defined as |𝑥| = ∑𝑃∈𝓟 𝑥𝑃. ◁
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Notice, that due to the path formulation, we do not explicitly have to consider flow conservation
any more. Any path flow immediately gives an edge flow, by just summing up the flow values on
all paths going through an edge. e other direction is not as clear, but there is also a path flow
belonging to each edge flow.

Path Decomposition. Edge flows and path flows are strongly related and in fact, are identical in
the sense that each edge flow can be expressed by an equivalent path flow and vice versa: Any path
flow defines an edge flow and the flow value on an edge can be set to the sum of the flow on all paths
using this edge. A path decomposition of an edge flow 𝑓 is a set of paths 𝓟′ ⊂𝓟 of all source-sink
paths 𝓟 together with values 𝑥𝑃 for paths 𝑃 ∈ 𝓟′ such that 𝑥 perceived as path flow (by setting𝑥𝑃 = 0 for all 𝑃 ∈ 𝓟 \𝓟′) has the same value |𝑥| = 󶙡𝑓󶙡 and the flow values on arcs of the induced
flow is at most the flow value of the original flow on any arc. e last constraint originates from the
fact that flow can be sent along cycles without changing the value of an edge flow.
Theorem 1.8 (Path Decomposition Theorem, [Gal58; FF62]). ere exists a polynomial size path
decomposition of any edge flow 𝑓.
We will only review a sketch of the proof. e path decomposition can easily be constructed by

simply taking an arbitrary edge (that has positive flow on it) and (seeing it as a path) extending it in
the front and the end by adding more flow carrying edges until source and sink are reached. It may
be the case, that a cycle occurs. In this case, the flow on the cycle can be reduced and the process
can be continued. us, we see that edge and path flows can be converted into each other. However,
the M F P in the path based formulation cannot be solved in polynomial time
easily without using a separation oracle because of the possibly exponential number of paths.
e task to find a maximum flow as path flow can be formulated as a linear program. We use

variables 𝑥𝑃 for each path to denote how much flow is sent along the path and one constraint to
ensure that the flow adheres to the capacity constraints.

max 󵠈𝑃∈𝓟𝑥𝑃, (PF)

s.t. 󵠈𝑃∈𝓟𝑒 𝑥𝑃 ≤ 𝑢𝑒 for all 𝑒 ∈ 𝐸,𝑥𝑃 ≥ 0 for all 𝑃 ∈𝓟.
By introducing dual variables 𝑦𝑒 for each edge and dualization of the path based maximum flow

problem we get an LP formulation of the minimum cut problem.

min 󵠈𝑒∈𝐸𝑦𝑒, (MC)

s.t. 󵠈𝑒∈𝑃𝑦𝑒 ≥ 1 for all 𝑃 ∈𝓟,𝑦𝑒 ≥ 0 for all 𝑒 ∈ 𝐸.
18
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Problem: Minimum Cut

Instance: A network 𝒩 = (𝐺, 𝑢, 𝑠, 𝑡) with the set of 𝑠-𝑡-paths 𝓟.

Task: Find a cut 𝐶 ⊆ 𝐸minimizing the dual program (MC).

e two linear programs (PF) and (MC) are a first and very simple example of dualization. e
primal program describing the path flow, has one variable 𝑥𝑃 for every path and one constraint
for each edge 𝑒 ∈ 𝐸. Consequently, the dual program has one variable 𝑦𝑒 for each edge and one
constraint for each path. It is easy to verify, that the path formulation of the minimum cut problem
equals the above definition. Let 𝐶 be an 𝑠-𝑡-cut. By definition there is no 𝑠-𝑡-path any more if the
corresponding edges are removed. If we assign a value of 𝑦𝑒 = 1 for all 𝑒 ∈ 𝐶, this gives a solution
of (MC). Because the system is totally dual integral [Sch84], any solution also specifies a cut by using
the arcs whose variables are set to 1.
Both problems are easy to write down, but they are huge by means of complexity. e path based

maximum flow problem has exponential many variables and the dual has exponential many con-
straints. Because of eorem 1.8 we know, that there is an optimal solution that only has a poly-
nomial number number of paths that actually carry flow. us, the path flow can be computed in
polynomial time using column generation.

Solving theMaximumFlowProblem. Despite the usefulness of the path flow in theory and also
on the practical side of solving dynamic network flowproblems, practically efficientmethods of solv-
ing static network flow problems are almost all based on edge flows. Basically, the known network
flow algorithms can be divided into (mostly path based) augmentation algorithms and preflow push
algorithms. ese two approaches also reflect the duality of the linear programs. While the aug-
mentation algorithms always maintain a feasible, not optimal flow, the latter class of algorithms
maintains a primary infeasible solution and reduces the infeasibility.
Central to most network flow algorithms is the concept of a residual network. is construction

allows algorithms to take back flow that has been sent in earlier iterations of an algorithm. e idea
is to double all arcs and let the copy account for the network flow, that has been sent already on an
arc.
Definition 1.9 (Residual Graph). Let 𝒩 = (𝐺, 𝑢, 𝑠, 𝑡) be a network and 𝑓 be an edge based flow.
For an arc 𝑒 = (𝑣, 𝑤) ∈ 𝐸 we define 𝑒 ≔ (𝑤, 𝑣) to be the reverse arc of 𝑒. With the set of residual

edges ⃖⃖𝐸 ≔ 𝐸⊍{𝑒 | 𝑒 ∈ 𝐸} we define the residual graph ⃖⃗𝐺 = (𝑉, ⃖⃗𝐸) as the set of reverse arcs.
e residual capacity with respect to the flow 𝑓 is defined as

𝑢𝑓(𝑒) ≔ 󶁅𝑢𝑒 − 𝑓(𝑒) if 𝑒 ∈ 𝐸,𝑓(𝑒) if 𝑒 ∈ ⃖⃖𝐸. ◁
Most algorithms to compute a maximum flow are executed on a residual network. e only ex-

ceptions are basicallyMcCormick’s abstract flow algorithm [McC96] and solving the linear program
directly. McCormick’s algorithm has been applied to classical networks in [Kap09]. Most algorithms
belong to either the category of augmenting path algorithms, like the original algorithm by Ford and
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Fulkerson, or to the class of push-relabel algorithmswhichwere the fastest (both, in theory and prac-
tice) known algorithms for a long time. We will shortly give an overview over the development in
algorithms. Only recently, Orlin [Orl13] answered a long-standing open question and gave an algo-
rithm with a running time in 𝒪(𝑛𝑚) which even improves to 𝒪󶀢𝑛2/log(𝑛)󶀲 if the number of arcs is in𝒪(𝑛).
Evolution of Flow Augmenting Algorithms. e first maximum flow algorithm for directed
networks is the famous algorithmby Ford and Fulkerson [FF62], which essentially describes a frame-
work to solve theMFP. e algorithm consists of a loop that augments flow on
an arbitrary path in the residual network, until no residual 𝑠-𝑡-path can be found any more. When
the algorithm terminates, the current flow in the network is maximal. e runtime of the algorithm
strongly depends on the choice how an augmenting path is selected. Already Ford and Fulkerson
noticed [FF62], that the algorithm does not necessarily terminate if the capacities on the arcs are not
integral but irrational numbers and smaller examples have been provided by Zwick [Zwi95]. e
general running time is bounded by 𝒪(𝑈 ⋅ 𝑛 ⋅ 𝑚) with 𝑛 and𝑚 being the number of nodes and arcs,
respectively and 𝑈 being the highest arc capacity, and thus may be pseudo-polynomial. Edmonds
and Karp [EK72], and independently Dinic [Din70] found that the problem of the running time is
due to unwisely chosen paths. If the augmenting paths are not chosen arbitrarily, but shortest, the
running time becomes strictly polynomial and reduces to𝒪󶀡𝑛𝑚2󶀱. e augmenting path algorithms
can be improved by augmenting not only on paths but by using flows, especially so-called blocking
flows. is led to an 𝒪󶀡𝑛2𝑚󶀱 algorithm by Dinic [Din70] that was improved to have worst-case
running time of 𝒪(𝑛3) by Karzanov [Kar74; MKM78].

Push-Relabel Algorithms. e next improvements were obtained by the introduction of the
push-relabel (that are sometimes also referred to as preflow-push) algorithms by Goldberg and Tar-
jan [GT88]. eir generic algorithm has been improved by introducing several new selection rules
and also sophisticated data structures. Improvements led to the algorithm of King, Rao and Tar-
jan [KRT94] with a running time of 𝒪󶀢𝑛𝑚 ⋅ log𝑚/𝑛 log(𝑛)(𝑛)󶀲. Further improvements led to an algo-
rithm with worst-case running time of 𝒪󶀢min󶁂𝑛2/3𝑚,𝑚1/2󶁒 ⋅ log󶀢𝑛2/𝑚󶀲 ⋅ log(𝑈)󶀲, developed by Gold-
berg and Rao [GR98].
Many of the (at their time) best results are based on concepts, that are hard to implement, or are

not efficient in practice. However, in parallel to the development of better theoretical results, fast
practical implementations and heuristics have been developed. Cherkassky and Goldberg [CG97]
presented an efficient implementation of the push-relabel algorithm which is known to be one of
the fastest implementations of the push-relabel algorithm. ey introduced several heuristics that
improve the running time dramatically on practical instances. However the theoretical worst-case
running time remains the same. Later, Goldberg [Gol08] found an improved maximum flow algo-
rithm which is comparably fast in general and faster on some instances.

Minimum Cost Flows. We consider two generalized variants using costs on arcs. If 𝑐 ∶ 𝐸 → ℝ is
a cost function, the cost of a flow 𝑓 is𝑐(𝑓) ≔ 󵠈𝑒∈𝐸 𝑐𝑒 ⋅ 𝑓𝑒.
Based on the costs, we now define minimum cost problems.
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Problem: Minimum Cost Circulation

Instance: A graph𝐺 = (𝑉, 𝐸)with capacities 𝑢𝑒 on and costs 𝑐𝑒 for each arc𝑒 ∈ 𝐸.
Task: Find a circulation 𝑓 with minimal costs 𝑐(𝑓).

Note that a flow with strictly positive value will only be sent, if there are negative cycles in the
instance, because otherwise sending flow will only create costs that can be avoided.
e minimum cost circulation problem and the maximum flow problem are similar in the sense

that the amount of flow that is to be sent is only limited by the capacities on the arcs. It is common
to add additional balances 𝑏 ∶ 𝑉 → ℕ to the nodes and to require to send (or receive) the specified
amount of flow at minimum costs. In this setting, flow will also be sent on expensive paths, because
the demands have to be satisfied.

Problem: Minimum Cost Flow

Instance: A network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝑆+, 𝑆−), costs 𝑐𝑒 for each arc 𝑒 ∈ 𝐸
and balances 𝑏𝑣 for the nodes 𝑣 ∈ 𝑉. e balances satisfy 𝑏𝑣 > 0
for 𝑠 ∈ 𝑆+, 𝑏𝑣 < 0 for 𝑡 ∈ 𝑆−, 𝑏𝑣 = 0 for intermediate nodes𝑣 ∈ 𝑉 \ 𝑆+ ⊍ 𝑆−, and ∑𝑣∈𝑉 𝑏𝑣 = 0.

Task: Find a flow 𝑓 that meets the supplies and demands with mini-
mum costs 𝑐(𝑓).

A minimum cost flow that also satisfies balances is called a transshipment.

Solving theMinimumCost Flow Problem. Similarly to the maximum flow problem, there exist
a lot of algorithms for solving theminimum cost flow problem. e first algorithmwas already given
by Ford and Fulkerson [FF62], and a lot of algorithms followed. Many of the early algorithms only
have pseudo-polynomial running time [Zad73], one of which is the following.

Algorithm 1.1: Successive Shortest Path
Input: 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝑆+, 𝑆−).
Output: 𝑓minimizing ∑𝑒∈𝐸 𝑐𝑒𝑓𝑒.

1. Find a shortest (with respect to the arc costs 𝑐𝑒) 𝑆−-𝑆+-path 𝑃 in the residual net-
work 𝐺𝑓. Costs on residual arcs 𝑒 are defined to be 𝑐𝑒 ≔ −𝑐𝑒.

2. If there is no path 𝑃, return 𝑓.
3. Augment 𝑓 by as much flow on 𝑃 as possible.

Using 𝐵 = 12 ∑𝑣∈𝑉 |𝑏𝑣| as the sum of demands, the S S P A has a
pseudo-polynomial running time in 𝒪󶀡𝑛𝑚 + 𝐵(𝑚 + 𝑛 log 𝑛)󶀱 [Tom71; EK72], but it will be heavily
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used in the remainder of the thesis and is of importance in the area of network flows over time.
Also, polynomial and strongly polynomial algorithms for the minimum cost flow problem have

been developed. Orlin’s algorithm has a running time of 𝒪󶀡(𝑚 log𝑚)(𝑚 + 𝑛 log 𝑛)󶀱 [Orl93], which
currently is still the best strongly polynomial running time for minimum cost flows.
Practically, the network simplex algorithm [Dan51a; Cun76], which is a specific implementation

of the simplex algorithm exploiting the special structure of minimum cost flow problems, and Gold-
berg’s implementation of a scaling algorithm [Gol97] are fast algorithms to solve theMC
F P in practice.

Multi-commodity Flows. e problems we have seen so far are so-called single-commodity net-
work flow problems, which means that the flow units are of the “same type” and are interchange-
able with each other. If a problem consists of multiple commodities, their respective flows are not
interchangeable. is setting is easily motivated by logistic applications, because orders of some
specific goods cannot be served by other goods. A multi-commodity flow with 𝑘 commodities𝐾 ≔ {1, 2,… , 𝑘} consists of 𝑘 (single-commodity) network flows 𝑓1, 𝑓2,… , 𝑓𝑘 that share the ca-
pacities of the arcs, i. e., if several commodities share arc 𝑒, they have to obey ∑𝑖∈𝐾 𝑓𝑖(𝑒) ≤ 𝑢𝑒. To
be useful, multi-commodity maximum flow problems always contain multiple sources and sinks,
because otherwise the commodities could be merged.

Problem: MaximumMulti-commodity Flow

Instance: A network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝑆+, 𝑆−), 𝑘 commodities 𝐾 ={1, 2,… , 𝑘}
Task: Find 𝑘 network flows 𝑓𝑖 for commodities 𝑖 ∈ 𝐾, such that they

together form a feasible network flow with maximum value, i. e.,𝐾∑𝑖=1𝑓𝑖,𝑒 ≤ 𝑢𝑒 holds for each arc 𝑒 ∈ 𝐸 and 𝐾∑𝑖=1󶙡𝑓𝑖󶙡 is maximal.

eMM- FP can be formulated as a linear program. How-
ever, due to the size of the problem instances, we are very interested in finding a combinatorial al-
gorithm, i. e., an algorithm not based on LP techniques, to solve the problem. Such an algorithm
is not known as of yet. However, Garg and Könemann [GK98] give an FPTAS based on the path
formulation of fractional network flows. e algorithm is reasonably simple to be implemented, but
numerical stability and the huge number of iterations that it performs introduces severe problems
in practice. However, with modifications it is possible to implement the technique in a way that is
practically usable in areas such as VLSI design, which is known for its huge instances [Vyg04].

LexicographicallyMaximumFlows. If a network contains several sources and sinks, for a single
commodity flow, we may require certain terminals to be more important than other terminals. If
we have a given rank on the terminals, we can compare two flows with respect to the inflow/outflow
in/from the terminals. Because the flow is compared by the flow value of the terminals in their rank
ordering, these flows are referred to as lexicographically maximum flows.
Definition 1.10 (Lexicographic Flow Order). Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝑆+, 𝑆−) be a network with an
order 𝑡1, 𝑡2,… , 𝑡𝑛 of the sources and sinks in 𝑆+ ∪ 𝑆−. For a terminal node 𝑡 we define
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󶙡𝑓󶙡𝑡 ≔ 󶁇∑𝑒∈𝛿+(𝑡) 𝑓(𝑒) 𝑡 ∈ 𝑆+ is a source,∑𝑒∈𝛿−(𝑡) 𝑓(𝑒) 𝑡 ∈ 𝑆− is a sink.
A flow 𝑓1 is lexicographically bigger than a flow 𝑓2, 𝑓1 ≥𝐿 𝑓2 if∃ ℓ ∈ {0, 1,… , 𝑘 − 1} ∶ ∀ 𝑖 = {1, 2,… , ℓ} ∶ 󶙡𝑓1󶙡𝑡𝑖 = 󶙡𝑓2󶙡𝑡𝑖 ∧ 󶙡𝑓1󶙡𝑡ℓ+1 > 󶙡𝑓2󶙡𝑡ℓ+1 ,

or ∀ 𝑖 = {1, 2,… , 𝑘} ∶ 󶙡𝑓1󶙡𝑡𝑖 = 󶙡𝑓2󶙡𝑡𝑖 .
A flow 𝑓 is a lexicographically maximum flow if it is lexicographically bigger than any other

feasible flow 𝑓′. ◁
Problem: Lexicographically Maximum Flow

Instance: A network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝑆+, 𝑆−) and an order of the
terminals.

Task: Find a maximum flow 𝑓 that is also lexicographically maximum,
i. e., 𝑓 ≥𝐿 𝑔 for all feasible network flows 𝑔.

e existence of lexicographically maximum flows for any order of the terminal nodes has been
shown by Minieka [Min73]. ey can be used to model specific scenarios in an evacuation set-
ting, where flow is required to leave some nodes earlier. In this setting, Minieka also showed that
lexicographically maximum flows can be used to compute an earliest arrival flow, and Hoppe and
Tardos used them to compute a quickest transshipment [HT94], two dynamic flow problems which
we review in the next chapter.
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In this chapter, we introduce the field of network flows over time. We consider
flows in a discrete and a continuous setting with multiple commodities. Flow
problems can be classified into two main groups that allow for two different op-
timization goals: Minimizing the time horizon to satisfy some supplies and de-
mands, and sending as much flow as possible in a given period of time. e
first objective is covered by the Q T P, while the
latter is the M F  T P. We explain the technique
of time expansion to solve flow over time problems in pseudo-polynomial time
and see how a maximum flow over time can be obtained in networks with arc
release dates and deadlines by reduction to Q T. Finally,
we show the existence of multi-commodity earliest arrival flows. Earliest arrival
flows combine both optimization objectives, and multi-commodity flows model
several goods that share a network.

With static network flows it is possible to gain excellent results in static situations, for example in
image processing [BK04]. Also, the original motivation by Harris and Ross [HR55], as described
in Section 1.2, is an application in a static scenario. However, many processes in our immediate
surroundings involve some notion of time that cannot be captured by static network flows. is
motivated the definition of dynamic network flows by Ford and Fulkerson [FF58; FF62] already in
the 1950’s. We also use the term flow over time to distinguish such problems from tasks, where a
solution has to adjust to changed input data, which are also oen referred to as “dynamic” [EGI98].
What distinguishes dynamic networks from static networks is that they have an additional transit
time 𝜏𝑒 for each arc 𝑒 in the underlying graph. e term flow over time refers to the idea that flow
entering the arc at any point in time 𝜃 will leave the arc aer some time 𝜃 + 𝜏𝑒.
In the temporal setting arc capacities represent the amount of flow that can enter an arc per time

unit and not the total amount of flow on an arc. Ford and Fulkerson originally defined the flow per
time unit as a discrete value. One discrete flow unit entering an arc travels along the arc as a whole
and arrives at the head aer the transit time. Later the continuous time model was developed as a
generalization. We can add additional constraints to this basic flow model. On a network level, we
may change the properties of arcs over time. On the flow level, we may assign individual properties
to each flow unit (or to a group of flow units), like different transit times or different capacity usage.
is leads to concepts such as flow-dependent or commodity-dependent transit times. Typical opti-
mization goals in network flow over time problems are the maximization of flow arriving at a given
point in time, or the minimization of the necessary time horizon to send a specific amount of flow.
Additionally, one might also ask for flows minimizing additional constraints, such as costs.
e applications for flows over time in both practical settings and inside the field of combinato-

rial optimization are countless. We cannot give an extensive overview over all applications and will
concentrate on giving some examples. Due to the obvious connection to road networks, modelling
of traffic is one of the most wide spread applications, examples are given by Köhler, Langkau and
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Skutella [KLS02] and Harks, König and Matuschke [HKM+14]. Köhler, Möhring and Skutella sur-
vey various techniques used for traffic modelling [KMS09]. Subsequent problems involving flows
over time are connected with logistics [ADS10; RT07] and (packet) routing [PW11; HGS11]. Other
application scenarios include scheduling [Ful61], which is also one of the first usages of dynamic
network flows in an application, cloud data stores [WSL+12] and network structuring [SZJ09]. For
a general overview, see also the survey by Aronson [Aro89].

Evacuations. Another important application of network flows over time is the field of evacuation
optimization and evacuation planning. On a city-scale, an evacuation can immediately be seen as a
special form of a traffic problem. But also on smaller scales, like in buildings, persons can be mod-
elled as flow units if the network structure resembles the building with adequate precision [CFS82].
Intuitively, we would take minimization of the time horizon as optimization goal in evacuation sce-
narios, because in hazardous situations time is crucial. Solutions having this property are referred
to as quickest transshipments. However, there is a model that is even better suited for the evacuation
scenario: Earliest arrival flows do not only minimize the time horizon, but also send as much flow
as possible at every point in time. At first glance, sending the maximum amount of flow in each time
step seems like a strong requirement and existence of such flows may not be likely. However, under
certain conditions, such solutions do exist, even for multi-commodity flows. Chapter 4 deals with
situations that do not allow for an earliest arrival flow. An analysis of some practical use cases of
earliest arrival flows with regard to evacuations is given in Chapter 3. A recent survey of the use
cases for network flows over time in the setting of evacuations is due to Dhamala [Dha14].
From a practitioners point of view, earliest arrival flows are, ideally speaking, the best we could ask

for. Even in emergency scenarios, at every point in time as many evacuees can be safe if they adhere
to an earliest arrival flow during the evacuation process. Taking this view we disregard the fact that
people usually do not adhere to optimal solutions. Individual aspects are taken into account by Nash
flows over time [KS11]. Hamacher and Tüfekçi [HT87] added evenmore constraints that an optimal
flow in an evacuation scenario should satisfy. ey introduce additional costs and are looking for
an earliest arrival flow that additionally has lowest total cost. e idea behind the extension is to
minimize movement. ey also define lexicographically minimum cost flows, another extension of
the E A F P that allows priority evacuations. In this scenario flow should
leave some areas of the network, probably more endangered parts, as quickly as possible.

Outline of the chapter. We start with the introduction of our network flow over time model
in Section 2.1. We investigate the discrete and continuous model and the simple M F
 T P. e important technique of time expansion to solve discrete dynamic flow
problems is described in Section 2.2. Quickest flow problems are introduced in Section 2.3. We
use them to compute maximum flows over time in settings with arc release dates and deadlines. In
Section 2.4 we introduce earliest arrival flows. We give an overview on known results and extend
existence results and algorithms to the case of multi-commodity earliest arrival flows.

2.1 Discrete and Continuous Flows over Time

e central object for studies in the field of flows over time is the dynamic networkwhich we denote
by 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−). A dynamic network consists of a network together with transit
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times 𝜏 ∶ 𝐸 → ℝ. Depending on the problem at hand we additionally may be given supplies and
demands 𝑏𝑣 for all nodes 𝑣 ∈ 𝑉 if we are looking for a transshipment, or a time horizon 𝑇 if we are
maximizing flow within a time horizon. If we are interested in feasibility, we sometimes have both.
For a dynamic network, the transit times cover the dynamic effect of passing time when flow travels
along an edge. Flow entering an arc 𝑒 at time 𝜃 leaves the arc at time 𝜃 + 𝜏𝑒.
Discrete and Continuous Time Models. A network flow over time is an assignment of flow
values entering arcs for each point in time. ey can be defined in two ways, discrete and con-
tinuous, and the setting only changes the underlying domain. In the discrete setting, the domain
is the set {1, 2,… , 𝑇} of the first 𝑇 points in time. For the continuous setting we take the inter-
val [0, 𝑇[ as domain. We can identify the 𝑇 time steps of the discrete setting with the 𝑇 intervals[0, 1[, [1, 2[,… , [𝑇 − 1, 𝑇[ in the continuous setting. In most cases a flow in the discrete setting cor-
responds to an equal flow in the continuous setting.
We define flows over time in the broadest sense that we use in this thesis, allowing several com-

modities and negative travel times 𝜏𝑒 < 0. Flows over time are then defined as follows.
Definition 2.1 (Network Flow over Time). A discrete (multi-commodity) network flow over time
is a set of functions𝑓𝑖 ∶ 𝐸×{1, 2,… , 𝑇} → ℝ≥0 for each commodity 𝑖 ∈ 𝐾, and similarly, a continuous
network flow over time is a set of Lebesgue-integrable functions 𝑓𝑖 ∶ 𝐸 × [0, 𝑇[ → ℝ≥0.
In both models it is not allowed to have flow on arcs before time 0 or aer the time horizon 𝑇.

us we have 𝑓𝑖(𝑒, 𝜃) ≔ 0 for all 𝜃 ≥ 𝑇 −max{0, 𝜏𝑒} and 𝜃 < 0 −min{0, 𝜏𝑒} in the continuous setting
and 𝜃 > 𝑇 − max{0, 𝜏𝑒} and 𝜃 ≤ 1 − min{0, 𝜏𝑒} in the discrete setting.
A feasible flow over time adheres to capacity constraints󵠈𝑖∈𝐾𝑓𝑖(𝑒, 𝜃) ≤ 𝑢𝑒

for each 𝑒 ∈ 𝐸 and 𝜃 ∈ [0, 𝑇[.
For each vertex 𝑣 ∈ 𝑉 and each commodity 𝑖 ∈ 𝐾 we denote the inflow into 𝑣 asin𝑓𝑖(𝑣, 𝜃) ≔ 󵠈𝑒∈𝛿−(𝑣)󵐐𝜃−max{0,𝜏𝑒}0𝑓𝑖(𝑒, 𝜉) 𝑑𝜉,

and the outflow from 𝑣 asout𝑓𝑖(𝑣, 𝜃) ≔ 󵠈𝑒∈𝛿+(𝑣)󵐐𝜃0 𝑓𝑖(𝑒, 𝜉) 𝑑𝜉.
e amount of flow that is currently at a vertex at time 𝜃 is the excessex𝑓𝑖(𝑣, 𝜃) ≔ in𝑓𝑖(𝑣, 𝜃) − out𝑓𝑖(𝑣, 𝜃).
A flow over time satisfies (weak) flow conservation, ifex𝑓𝑖(𝑣, 𝜃) ≥ 0
holds for each intermediate node 𝑣 ∈ 𝑉 \ 𝑆+ ⊍ 𝑆− and each point in time 𝜃 ∈ [0, 𝑇[. e flow satisfies
strict flow conservation, if the stronger requirementex𝑓𝑖(𝑣, 𝜃) = 0
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also holds. If supplies and demands 𝑏𝑖,𝑣 for each each commodity 𝑖 ∈ 𝑖 ∈ 𝐾 and each vertex 𝑣 are
given, we additionally require the flow to satisfymin{𝑏𝑖,𝑣, 0} ≤ ex𝑓𝑖(𝑣, 𝜃) ≤ max{0, 𝑏𝑖,𝑣}
for all vertices and all points in time 𝜃. In this case, all supplies should be shipped to the sinks within
the given time horizon 𝑇 andex𝑓𝑖(𝑣, 𝑇) = −𝑏𝑖,𝑣
holds for each vertex 𝑣 ∈ 𝑉.
e value of 𝑓 at time 𝜃 is the amount of flow sent by all commodities from sources to sinks until

time 𝜃 and is defined to be󶙡𝑓󶙡𝜃 ≔ 󵠈𝑡∈𝑆−󵠈𝑖∈𝐾 ex𝑓𝑖(𝑡, 𝜃)
with the total value to be 󶙡𝑓󶙡 ≔ 󶙡𝑓󶙡𝑇.
For discrete flows over time the same definitions hold, we just have to change the integration over

the continuous time interval to a sum and define the inflowin𝑓𝑖(𝑣, 𝜃) ≔ 󵠈𝑒∈𝛿−(𝑣) 𝜃−max{0,𝜏𝑒}󵠈𝜉=1 𝑓𝑖(𝑒, 𝜉)
and outflowout𝑓𝑖(𝑣, 𝜃) ≔ 󵠈𝑒∈𝛿+(𝑣) 𝜃󵠈𝜉=1𝑓𝑖(𝑒, 𝜉)
with respect to the discrete domain. In the discrete setting, excess and flow value functions are only
defined for the discrete points in time 𝜃 ∈ {1, 2,… , 𝑇}. ◁
Fleischer and Tardos [FT98] compared flows over time in the discrete and continuous model and

showed that optimal flows for many problems have equal value in both models if transit times re-
main constant. Koch, Nasrabadi, and Skutella [KNS11] generalized both models to Borel flows, thus
creating a unified model relying heavily on measure theory.

Arc Capacities in Flows over Time. Capacity constraints define an upper capacity of the inflow
into the edge at each point in time. Onemay have the requirement that also the total amount of flow
on an edge is limited, e. g., ∫𝜃+ℓ𝜃 𝑓(𝑒, 𝜉) 𝑑𝜉 ≤ 𝑈𝑒, where 𝑈𝑒 ∈ ℝ+ is the allowed maximal aggregated
arc capacity and ℓ > 0 is a time window. A common example that can be modelled by aggregated
capacities is a bridge. e arc capacity 𝑢𝑒 as defined above limits the inflow at each point in time. For
a bridge this might be the number of lanes, for example. However, many heavy trucks on a bridge
at the same time might exceed the capacity given by its structure. erefore, flow problems having
this property are sometimes referred to as “bridge flows”. Aggregated arc capacities have first been
studied by Melkonian [Mel07], and an FPTAS is due to Dressler and Skutella [DS11].
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(b) e discrete flow at time 𝜃 = 1.5. e flow
units travel along the arcs as a whole.
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(c) e continuous flow at time 𝜃 = 1.5. Flow
continuously travels along the arcs.
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𝑓((𝑠, 𝑣), ⋅)

(d) e inflow rate on arc (𝑣, 𝑤) for the whole time
horizon.

Figure 2.1: A simple dynamic network and the same flow once in the discrete and once in the con-
tinuous model. We consider a time horizon of 𝑇 = 5 and send one flow unit along the
paths (𝑠, 𝑣, 𝑡) and (𝑠, 𝑤, 𝑡) that have a total travel time of 4 and two flow units along the
faster path (𝑠, 𝑣, 𝑤, 𝑡) with travel time 3.

Multi-commodity Flows over Time. Definition 2.1 specifies multi-commodity flows over time.
Several commodities allow for a more realistic modelling of flow over time problems, especially
for traffic and evacuation problems. However, they are considerably harder and introduce other
complications. We will discuss difficulties that occur due to multiple commodities, whenever such
difficulties arise. On the positive side, in Section 2.4 later in this chapter we show that earliest arrival
flows also exist in the multi-commodity setting under certain conditions. An interesting extension
in the case of several commodities are commodity dependent transit times. In this case the transit
time 𝜏𝑖,𝑒 for an arc 𝑒 depends on the commodity. Commodity dependent transit times are discussed
in detail in [Gro09]. Unfortunately, non-existence results for earliest arrival flows carry over which
makes approximation as described in Chapter 4 necessary for the case of commodity dependent
transit times. ey also introduce the additional problem of overtaking, which might be desirable or
not, depending on the application.

Path Flows. Similar to classical networks, we can also define a path based formulation for flows
over time. Again, we denote the set of all source-sink-paths by 𝓟. Now, a path flow assigns a flow
value not only to each path, but to each path at each point in time. e flow value denotes the inflow
rate into a path and not into an edge any more. A flow unit travels along the path without any breaks
and enters an edge 𝑒 = (𝑣, 𝑤) at time 𝜏(𝑃[𝑠,𝑣]), i. e., aer travelling along all preceding edges. To
make sure the flow does not exceed the arc capacities, we have to make sure that not too much flow
enters an arc at the same time. For simplicity of presentation, we only consider instances with non-
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negative travel times for the given arcs here and discuss the special case with negative travel times
in Chapter 5. Notice that residual networks introduce arcs with negative travel times. However, we
will see that these are not problematic.
Definition2.2 (Path Flowover Time). Let𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic networkwith𝜏 ≥ 0 and 𝓟 the set of all 𝑠-𝑡-paths for any pair of source 𝑠 ∈ 𝑆+ and sink 𝑡 ∈ 𝑆−. e length of a
path 𝑃 is defined as𝜏(𝑃) ≔ 󵠈𝑒∈𝑃 𝜏𝑒.
For an edge 𝑒 ∈ 𝐸 and a given point in time 𝜃 we define the set of paths using 𝑒 at the specified

time as

𝓟𝜃𝑒 ≔ 󶁂𝑃 ∈𝓟 | 𝜏(𝑃[𝑠,𝑣]) ≤ 𝜃 ∧ 𝜏(𝑃[𝑣,𝑡]) < 𝑇 − 𝜃󶁒.
In the case that we have a residual network, the definition is accordingly. Here, ⃖⃖𝓟⃗ defines the set

of all 𝑠-𝑡-paths in the residual network and we denote paths using an arc 𝑒, or its reverse arc at time𝜃 by ⃖⃖𝓟⃗𝜃𝑒 and ⃖⃖𝓟⃗𝜃⃖𝑒 , respectively.
A discrete path flow over time is an assignment 𝑥 ∶ 𝓟 × {1, 2,… , 𝑇} → ℝ≥0, and a continuous

path flow over time is an assignment 𝑥 ∶𝓟 × [0, 𝑇[→ ℝ≥0. Both flows have to satisfy the following
constraints on their respective domains: ere is no flow on copies of paths that arrive too late, i. e.,𝑥(𝑃, 𝜃) = 0 for 𝜃 ∈ [𝑇 − 𝜏(𝑃), 𝑇[. Additionally, the capacity of arcs is not exceeded. at is,󵠈𝑃∈⃖⃖𝓟⃗𝜃𝑒 𝑥󶀡𝑃, 𝜃 − 𝜏(𝑃[𝑠,𝑣])󶀱 ≤ 𝑢𝑒
holds for all edges 𝑒 = (𝑣, 𝑤) ∈ 𝐸 and times 𝜃 ∈ {1, 2,… , 𝑇} and 𝜃 ∈ [0, 𝑇[, respectively. We denote
the value of a path flow over time by|𝑥| ≔ 󵠈𝑃∈𝓟 𝑇󵠈𝜃=1𝑥(𝑃, 𝜃),
and |𝑥| ≔ 󵠈𝑃∈𝓟󵐐𝑇𝜃=0 𝑥(𝑃, 𝜃). ◁
Notice that we do not have to worry about flow conservation for path based flows over time, as

they automatically enforce strict flow conservation. On the other hand, path based flows do not
allow problem instances that require waiting in intermediate nodes without changing the network
structure and adding loops. Such approaches also suffer from the introduction of non-simple paths.
Observe also that it is straight forward to construct a flow over time 𝑓 from a given path flow 𝑥with
the same value 󶙡𝑓󶙡 = |𝑥|, while it is not so clear how a path flow can be constructed from a given
edge flow.
As a starting point for the introduction of network flows over time we will consider traditional

problems and techniques that have been introduced already in the 1950’s. is is the most basic
extension of network flows to the temporal setting.
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2.1 Discrete and Continuous Flows over Time

MaximumFlowover TimeProblem. eMFTPwas introduced
by Ford and Fulkerson [FF58; FF62] and is the simplest dynamic flowproblem. eproblem consists
of finding a dynamic flow that sends asmuch flow as possible within a given time bound and is stated
as follows:

Problem: Maximum Flow over Time

Instance: A dynamic network𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) and time hori-
zon 𝑇.

Task: A flow over time 𝑓 with time horizon 𝑇 that maximizes the flow
value 󶙡𝑓󶙡.

By using the extended network from Definition 1.5, the M F  T P
can be reduced to the single source-single sink case. e additional arcs are equipped with zero
transit times. e problem has been studied only for the case of non-negative travel times so far, and
two methods to solve the problem have been proposed. e first relies on time expansion, which we
discuss later in this section in 2.2, the other is based on a reduction to the M C F
P in an extended network.
Notice that in the discrete setting, the M F  T P can be written as a

linear program that enforces the constraints for a feasible flow over time. However, this LP would
be exponential in size even for the edge based formulation as flow conservation for all 𝑇 time steps
has to be ensured and 𝑇 is part of the input. An equivalent path based formulation is possible but
obviously not smaller. It is probably surprising that a polynomial algorithm to compute a maximum
flow over time not only exists, but that it is also fairly simple. For this algorithm we need some
additional notation for special types of flows over time.

Temporally Repeated Flows. e encoding size of flows over time can be large due to the time
horizon. By definition (of either the path or edge based formulation), it is necessary to specify a
flow value not only on each arc (or path), but also for each point in time. At first glance, the super-
polynomial size seems unavoidable, as 𝑇 is not polynomial in the input size in general. However,
nicer descriptions of flows over time are possible. If we can enforce the flow sent on paths to be con-
stant for most time steps and only switch its value polynomially oen, we can achieve a description
in polynomial size.
Definition 2.3 (Temporally Repeated Flow). Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic net-
work and let 𝑥 be a static path flow in the underlying network. e corresponding temporally
repeated flow is defined as𝑓(𝑒, 𝜃) ≔ 󵠈𝑃∈𝓟𝜃𝑒 𝑥(𝑃)
for each arc 𝑒 = (𝑣, 𝑤) and each point in time 𝜃 ∈ [0, 𝑇[ or {1, 2,… , 𝑇} for the continuous or discrete
setting, respectively.
Let ⃖⃖𝓟⃗ again be the set of all paths in the residual network (with respect to a given flow). A path

decomposition of the flow in the residual network with paths 𝑃 ∈ ⃖⃖𝓟⃗ is called generalized path
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2 Flows over Time

decomposition. Let 𝑥 be such a general path decomposition with 𝑃 ∈ ⃖⃖𝓟⃗. e corresponding
generalized temporally repeated flow is defined as𝑓(𝑒, 𝜃) ≔ 󵠈𝑃∈⃖⃖𝓟⃗𝜃𝑒 𝑥(𝑃) − 󵠈𝑃∈⃖⃖𝓟⃗𝜃⃖𝑒 𝑥(𝑃). ◁
Observe that the temporally repeated flow 𝑓 in fact is a feasible flow because the flow value on

each edge 𝑒 is limited by the flow value on 𝑒 within the static network flow 𝑥. In a similar way we
can define a path flow over time 𝑥′ by setting 𝑥′(𝑃, 𝜃) ≔ 𝑥(𝑃) for each time 𝜃 ∈ [0, 𝑇 − 𝜏(𝑃)[.
For a generalized temporally repeated flow the same observation is not necessarily true. Notice,

that by the above definition it is totally possible that the obtained flow might be negative. is hap-
pens if flow is reduced by the flow value on the reverse arcwhen there is no flowon the corresponding
(forward) arc. us, whenever generalized temporally repeated flows are used, we have to show that
they indeed form a feasible flow and the definition is justified.

Ford and Fulkerson Algorithm. If the travel times for an instance of the M F 
T P are all non-negative, a temporally repeated flow with maximum value can be com-
puted in strongly polynomial time [FF58]. Consider the following algorithm.

Algorithm 2.1: Ford Fulkerson Max Flow over Time
Input: 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) with transit times 𝜏 ≥ 0 and a time horizon 𝑇.
Output: A temporally repeated flow with maximum value.

1. Create the extended network 𝒩 by adding a super source and super sink and add
an additional artificial arc (𝑡∗, 𝑠∗).

2. Define arc costs 𝑐𝑒 ≔ 𝜏𝑒 for 𝑒 ∈ 𝐸 and 𝑐(𝑡∗,𝑠∗) ≔ −𝑇.
3. Compute a minimum cost circulation 𝑓 in 𝒩 ′.
4. Compute a path decomposition 𝑥 of 𝑓.
5. Return a temporally repeated flow that sends flow along paths in 𝑥 as long as pos-

sible, e. g., within the interval [0, 𝑇 − 𝜏(𝑃)[.
e idea behind the algorithm is the following: Consider a path 𝑃 in the path decomposition.

e contribution of this path to the value of the minimum cost circulation is exactly 𝜏(𝑃) − 𝑇 =−󶀡𝑇 − 𝜏(𝑃)󶀱, which is exactly the negative value of the period of time path 𝑃 is used in the tempo-
rally repeated flow. us, the smaller this value the longer the path is used and the more value is
contributed to the maximum flow over time. e value is minimized by a minimum cost computa-
tion. e running time of the algorithm is bounded by the running time of a static minimum cost
flow computation and is thus strongly polynomial. e algorithm also proves that no flow storage
at intermediate nodes is necessary to obtain an optimal solution.
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2.2 Time Expansion

In a certain sense this is the ideal algorithm. It can be implemented such that it basically works
in the original network (only few arcs are added), the running time is strongly polynomial and the
solution can be described in polynomial size as temporally repeated flow. We will therefore try to
achieve similar algorithms for more complicated problems. However, we mostly do not find algo-
rithms as powerful as this. en, we will try to find approximate solutions that are simple and can
be represented as temporally repeated flows.

Multi-commodity Maximum Flow over Time. Notice, that a solution of the M F
 T P is a single-commodity flow. Adding additional commodities to the problem
makes it weakly 𝒩𝒫-hard [HHS07], regardless of whether flow storage is allowed or not. Algo-
rithm 2.1 computes a maximum flow over time that does not require flow storage in intermediate
nodes. In the multi-commodity case, this is different: e possibility of flow storage in intermedi-
ate nodes may change the value of a maximum flow. Fleischer and Skutella [FS07] give an FPTAS
that computes a multi-commodity flow over time in the setting with flow storage in intermediate
nodes. For the case without flow storage, they present a (2 + 𝜀)-approximation algorithm. An ex-
tended FPTAS that approximates the optimal flow in the setting without flow storage is due to Groß
and Skutella [GS12b]. e same discrepancy in the value of a maximum flow between flows that
use storage, and those that do not, occurs if we allow negative travel times for the single commod-
ity M F  T P. We discuss the implications of negative travel times in
Chapter 5.

2.2 Time Expansion

A popular way of computing flows over time is the so-called time expansion. e general idea of
time expansion is to remove the temporal aspect of dynamic network flows by introducing copies of
the (static) network structure and to identify each copy of the network with a certain point in time.
As an example, assume an arc 𝑒 = (𝑣, 𝑤) with travel time 𝜏𝑒 should be used at time 𝜃. e flow then
starts at node copy 𝑣𝜃 and arrives aer 𝜏𝑒 time units at node copy 𝑤𝜃+𝜏𝑒 . Generally speaking, a copy
of an edge 𝑒 = (𝑣, 𝑤) exists between each copy of 𝑣 and 𝑤 whose time layers differ by the transit
time of the edge. e following definition is for the continuous case for multiple commodities with
possibly negative travel times. e time-expanded network in the discrete case is defined similarly.
Notice that the definition only allows continuous flows that are constant between integral points in
time.
Definition 2.4 (Time-expanded Network). Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a network with
integral time horizon 𝑇 ∈ ℤ≥0, and optionally also supplies and demands for each vertex 𝑣 ∈ 𝑉
and each commodity 𝑖 ∈ 𝐾, denoted by 𝑏𝑖,𝑣. We denote the corresponding time-expanded network
by 𝒩 𝑇 ≔ (𝐺 = (𝑉𝑇, 𝐸𝑇), 𝑢𝑇, 𝑆+𝑇, 𝑆−𝑇). Its components are defined as follows. e set of nodes
consists of 𝑇 copies of the original network denoted by 𝑣𝜃, super sources 𝑠∗𝑖 and super sinks 𝑡∗𝑖 for
each commodity, and also the original terminal nodes, that is,𝑉𝑇 ≔ 󶁁𝑣𝜃 󶙡 𝑣 ∈ 𝑉, 𝜃 ∈ {1,… , 𝑇}󶁑 ∪ 𝑆+ ∪ 𝑆− ∪ {𝑠∗𝑖 , 𝑡∗𝑖 | 𝑖 ∈ 𝐾}.
As new sources and sinks, we use the super terminals for each commodity𝑆+𝑇 ≔ {𝑠∗𝑖 | 𝑖 ∈ 𝐾}, 𝑆−𝑇 ≔ {𝑡∗𝑖 | 𝑖 ∈ 𝐾}.
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(a) A simple example with non-
negative travel times.

𝜃 ∈ [0, 1[
𝜃 ∈ [1, 2[
𝜃 ∈ [2, 3[
𝜃 ∈ [3, 4[

𝑠1
𝑠2

𝑠∗ 𝑡1 𝑡∗

(b) e time-expanded network contains two sources and a
sink outside the temporal copies and an additional super
source on the le side. e sink and super sink are on
the right side.

Figure 2.2: An example of the time-expanded network for a single-commodity dynamic network
with two sources and a single sink. e time-expanded network covers a time horizon of𝑇 = 4.

For each arc 𝑒 we create 𝑇 − |𝜏𝑒| copies connecting node copies on time layers 𝜃 with copies on time
layer 𝜃 + 𝜏𝑒, if the arrival time lies within the feasible time interval. For positive transit times, arc
copies start at time 1 and stop at time 𝑇 − 𝜏𝑒, and copies of arcs with negative transit time start at
time |𝜏𝑒| + 1 and end at time 𝑇. e set of all arc copies is defined as𝐸̃ ≔󶁃𝑒𝜃 = (𝑣𝜃, 𝑤𝜃+𝜏𝑒) 󶙣 𝑒 = (𝑣, 𝑤) ∈ 𝐸,𝜃 ∈ {1 − min{0, 𝜏𝑒},… , 𝑇 − max{0, 𝜏𝑒}} 󶁓.
Additionally, the original terminal nodes are connected their respective copies on each layer and

the super nodes with the source and sink nodes. e arcs connected to sources and their copies are
defined as𝐸+ ≔ ∪󶁁(𝑠∗𝑖 , 𝑠) 󶙡 𝑖 ∈ 𝐾, 𝑠 ∈ 𝑆+𝑖 󶁑 ∪ 󶁁(𝑠, 𝑠𝜃) 󶙡 𝑖 ∈ 𝐾, 𝑠 ∈ 𝑆+𝑖 , 𝜃 ∈ {1, 2,… , 𝑇}󶁑,
and arcs connected to sinks and their copies are denoted by𝐸− ≔ ∪󶁁(𝑡, 𝑡∗𝑖 ) 󶙡 𝑖 ∈ 𝐾, 𝑡 ∈ 𝑆−𝑖 󶁑 ∪ 󶁁(𝑡𝜃, 𝑡) 󶙡 𝑖 ∈ 𝐾, 𝑡 ∈ 𝑆−𝑖 , 𝜃 ∈ {1, 2,… , 𝑇}󶁑.
e set of all edges in the time expanded network then is defined as𝐸𝑇 ≔𝐸̃⊍𝐸+ ⊍𝐸−.
If node storage is desired, we additionally add holdover arcs between node copies belonging to

intermediate nodes of the original network𝐻 ≔ 󶁃󶀡𝑣𝜃, 𝑣𝜃+1󶀱 󶙣 𝑣 ∈ 𝑉 \ 󵠎𝑖∈𝐾 𝑆+ ⊍ 𝑆−, 𝜃 ∈ {1,… , 𝑇 − 1}󶁓,
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and set 𝐸𝑇 ≔ 𝐸𝑇 ∪𝐻 in this case. Arc capacities are defined depending on node balances. If no
node balances are given, the capacities are defined as𝑢𝑇𝑒′ ∶=󶁇𝑢𝑒 if 𝑒′ ∈ 𝐸̃ with 𝑒′ = 𝑒𝜃,∞ else, for all 𝑒′ ∈ 𝐸𝑇.
If node balances are given, the extended definition

𝑢𝑇𝑒′ ∶=󶀂󶀒󶀒󶀒󶀒󶀊󶀒󶀒󶀒󶀒󶀚
𝑢𝑒 if 𝑒′ ∈ 𝐸̃ with 𝑒′ = 𝑒𝜃,𝑏𝑖,𝑠 𝑒′ = (𝑠∗𝑖 , 𝑣),−𝑏𝑖,𝑡 𝑒′ = (𝑡, 𝑡∗𝑖 ),∞ else,

for all 𝑒′ ∈ 𝐸𝑇.
specifies extended arc capacities limiting the outflow of sources and inflow of sinks. ◁
Notice that this definition slightly differs from other definitions, e. g., in [Sku09]. Traditional def-

initions (with and without holdover) use holdover arcs between the sources and sinks. In these def-
initions arcs of type (𝑠𝑗, 𝑠𝜃𝑗 ) (𝑡𝑗, 𝑡𝜃𝑗 ) are replaced by arcs (𝑠𝜃−1𝑗 , 𝑠𝜃𝑗 ); only the first copy 𝑠0𝑗 is connected to
the super source 𝑠∗ and the last copy 𝑡𝑇𝑡 is connected to the super sink. In most cases, these changes
do not make a big difference. However, in the context of size increasing time-expanded networks this
is not only interesting on the practical side for the implementation of algorithms on time-expanded
networks, but also for approximation algorithms that we see in Chapter 4.
Definition 2.4 specifies holdover arcs with infinite capacity. e storage capacity of nodes can

be limited by setting holdover capacity to any positive value. However, neither from practical nor
theoretical point of view it makes a difference whether the node capacity is any positive, but finite
value or zero and we will not further investigate this case.
Lemma 2.5. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network with integral transit times 𝜏𝑒 ∈ℤ. For any time horizon 𝑇 ∈ ℤ≥0, a feasible static 𝑆+𝑇-𝑆−𝑇-multi-commodity flow 𝑓𝑇 in the time-
expanded network 𝒩 𝑇 yields a feasible multi-commodity flow over time 𝑓 with the sources 𝑆+ and
sinks 𝑆− in 𝒩 with time horizon 𝑇 and equal value 󶙡𝑓󶙡 = 󶙡𝑓𝑇󶙡.
Proof. We will show both directions by defining a flow in the respective model and showing that it
is indeed a feasible flow (over time). We show the case with holdover arcs and refer to the fact that
calculations are still valid if holdover arcs are missing.

Constructing a Flow over Time from a Static Flow. For a given multi-commodity flow 𝑓𝑇 in
the time-expanded network we define𝑓𝑖(𝑒, 𝜃) ≔ 𝑓𝑇𝑖 (𝑒⌊𝜃⌋+1)
for all arcs 𝑒 ∈ 𝐸, 𝜃 ∈ [0, 𝑇[ and all 𝑖 ∈ 𝐾.
e dynamic flow 𝑓 obeys capacities due to󵠈𝑖∈𝐾𝑓𝑖(𝑒, 𝜃) = 󵠈𝑖∈𝐾𝑓𝑇𝑖 (𝑒⌊𝜃⌋+1) ≤ 𝑢𝑒𝜃 = 𝑢𝑒

for all arcs 𝑒 ∈ 𝐸 and 𝜃 ∈ [0, 𝑇[.
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2 Flows over Time

For the flow conservation we consider the flow in the time-expanded network. We have zero
excess at internal nodes due to (strict) flow conservation in the static case. We split the flow into
flow on holdover arcs and flow on copies of the original arcs and use the fact that the inflow and
outflow of all holdover arcs up to time 𝜃 cancels out.

0 = 𝜃󵠈𝜉=1 󵠈𝑒∈𝛿−󶀢𝑣𝜉󶀲𝑓𝑇𝑖 (𝑒) − 𝜃󵠈𝜉=1 󵠈𝑒∈𝛿+󶀢𝑣𝜉󶀲𝑓𝑇𝑖 (𝑒)= 󶀨 𝜃󵠈𝜉=1 󵠈𝑒∈𝛿−󶀢𝑣𝜉󶀲∩𝐸𝑇 𝑓𝑇𝑖 (𝑒) + 󵠈𝑒∈𝛿−󶀢𝑣𝜉󶀲∩𝐻𝑓𝑇𝑖 (𝑒)󶀸− 󶀨 𝜃󵠈𝜉=1 󵠈𝑒∈𝛿+󶀢𝑣𝜉󶀲∩𝐸𝑇 𝑓𝑇𝑖 (𝑒) − 󵠈𝑒∈𝛿+󶀢𝑣𝜉󶀲∩𝐻𝑓𝑇𝑖 (𝑒)󶀸= 󶀨 𝜃󵠈𝜉=1 󵠈𝑒∈𝛿−󶀢𝑣𝜉󶀲∩𝐸𝑇 𝑓𝑇𝑖 (𝑒)󶀸 − 󶀨 𝜃󵠈𝜉=1 󵠈𝑒∈𝛿+󶀢𝑣𝜉󶀲∩𝐸𝑇 𝑓𝑇𝑖 (𝑒)󶀸+ 󶀨 𝜃󵠈𝜉=1 󵠈𝑒∈𝛿−󶀢𝑣𝜉󶀲∩𝐻𝑓𝑇𝑖 (𝑒) − 𝜃󵠈𝜉=1 󵠈𝑒∈𝛿+󶀢𝑣𝜉󶀲∩𝐻𝑓𝑇𝑖 (𝑒)󶀸= 󶀨 𝜃󵠈𝜉=1 󵠈𝑒∈𝛿−󶀢𝑣𝜉󶀲∩𝐸𝑇 𝑓𝑇𝑖 (𝑒)󶀸 − 󶀨 𝜃󵠈𝜉=1 󵠈𝑒∈𝛿+󶀢𝑣𝜉󶀲∩𝐸𝑇 𝑓𝑇𝑖 (𝑒)󶀸 − 𝑓𝑇𝑖 ((𝑣𝜃, 𝑣𝜃+1))= 󵠈𝑒∈𝛿−(𝑣) 𝜃−max{0,𝜏𝑒}󵠈𝜉=1 𝑓𝑇𝑖 (𝑒𝜉) − 󵠈𝑒∈𝛿+(𝑣) 𝜃󵠈𝜉=1𝑓𝑇𝑖 (𝑒𝜉) − 𝑓𝑇𝑖 ((𝑣𝜃, 𝑣𝜃+1))= 󵠈𝑒∈𝛿−(𝑣)󵐐𝜃−max{0,𝜏𝑒}𝜉=0 𝑓𝑇𝑖 (𝑒⌊𝜉⌋) 𝑑𝜉 − 󵠈𝑒∈𝛿+(𝑣)󵐐𝜃𝜉=0 𝑓𝑇𝑖 (𝑒⌊𝜉⌋) 𝑑𝜉 − 𝑓𝑇𝑖 󶀢(𝑣𝜃, 𝑣𝜃+1)󶀲= 󵠈𝑒∈𝛿−(𝑣)󵐐𝜃−max{0,𝜏𝑒}𝜉=0 𝑓𝑖(𝑒𝜉) 𝑑𝜉 − 󵠈𝑒∈𝛿+(𝑣)󵐐𝜃𝜉=0 𝑓𝑖(𝑒𝜉) 𝑑𝜉 − 𝑓𝑇𝑖 󶀢(𝑣𝜃, 𝑣𝜃+1)󶀲= in𝑓𝑖(𝑣, 𝜃) − out𝑓𝑖(𝑣, 𝜃) − 𝑓𝑇𝑖 󶀢(𝑣𝜃, 𝑣𝜃+1)󶀲= ex𝑓𝑖(𝑣, 𝜃) − 𝑓𝑇𝑖 󶀢(𝑣𝜃, 𝑣𝜃+1)󶀲
for all nodes 𝑣 ∈ 𝑉 \ 𝑆+ ⊍ 𝑆−, times 𝜃 ∈ [0, 𝑇[ and commodities 𝑖 ∈ 𝐾. We started with a value
equal to zero and due to the flow conservation constraint, we have ex𝑓𝑖(𝑣, 𝜃) ≥ 0, and the value of
the excess equals the flow value on the holdover arc from node 𝑣𝜃 to 𝑣𝜃+1. ere is no holdover arc
for time 𝑇 any more, thus equality holds at the last point in time. For the case without waiting in
intermediate nodes, we have no holdover arcs and therefore strict flow conservation also holds in
this case. Using the same calculation and taking out arcs connecting copies of sources 𝑠𝜃 and sinks𝑡𝜃 with the respective super vertices 𝑠 and 𝑡, respectively we getex𝑓𝑖(𝑠, 𝑇) = − 𝜃󵠈𝑖=1𝑓𝑇𝑖 󶀡(𝑠, 𝑠𝜃)󶀱 and ex𝑓𝑖(𝑡, 𝑇) = 𝜃󵠈𝑖=1𝑓𝑇𝑖 󶀡(𝑡𝜃, 𝑡)󶀱
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for each source 𝑠 ∈ 𝑆+ and sink 𝑡 ∈ 𝑆−, hence supplies and demands are satisfied.

Constructing a Static Flow from a Flow over Time. We set the flow value on copy 𝜃 of an arc 𝑒
to be the total flow value that enters the arc in one time step in the continuous flow. us we define𝑓𝑇𝑖 󶀢𝑒𝜃󶀲 ≔ 󵐐𝜃𝜃−1 𝑓𝑖(𝑒, 𝜉) 𝑑𝜉
for all arcs 𝑒 ∈ 𝐸 and time steps 𝜃 ∈ {1, 2, 𝑇 −max{0, 𝜏𝑒}}. If holdover arcs are present, we define the
flow value on the arcs by𝑓𝑇𝑖 󶀢𝑣𝜃, 𝑣𝜃+1󶀲 ≔ ex𝑓𝑖(𝑣, 𝜃)
for intermediate nodes 𝑣 ∈ 𝑉 \ 𝑆+ ⊍ 𝑆− and all time steps 𝜃 ∈ {2,… , 𝑇}. For any source 𝑠 ∈ 𝑆+ we
define 𝑓𝑇𝑖 󶀡(𝑠, 𝑠𝜃)󶀱 ≔ in𝑓𝑖(𝑠, 𝜃) − in𝑓𝑖(𝑠, 𝜃 − 1),
and similar for the sinks 𝑡 ∈ 𝑆−𝑓𝑇𝑖 󶀡(𝑡𝜃, 𝑡)󶀱 ≔ out𝑓𝑖(𝑡, 𝜃) − out𝑓𝑖(𝑡, 𝜃 − 1).
e arcs incident to the super terminals are just defined accordingly.
We split the inflow and outflow into flow on copies of arcs and flow on holdover arcs and use

the definitions for inflow and excess to see that flow conservation holds at all nodes 𝑣 ∈ 𝑉 and𝜃 ∈ {1, 2,… , 𝑇}.󵠈𝛿−󶀡𝑣𝜃󶀱𝑓𝑇𝑖 󶀢𝑒𝜃−max{0,𝜏𝑒}󶀲 − 󵠈𝛿+󶀡𝑣𝜃󶀱𝑓𝑇𝑖 󶀢𝑒𝜃󶀲= 󵠈𝛿−󶀡𝑣𝜃󶀱󵐐𝜃−max{0,𝜏𝑒}𝜃−max{0,𝜏𝑒}−1 𝑓𝑖(𝑒, 𝜉) 𝑑𝜉 − 󵠈𝛿+󶀡𝑣𝜃󶀱󵐐𝜃𝜃−1 𝑓𝑖(𝑒, 𝜉) 𝑑𝜉= 󶀡(in𝑓𝑖(𝑣, 𝜃) − in𝑓𝑖(𝑣, 𝜃 − 1)) + ex𝑓𝑖(𝑣, 𝜃 − 1)󶀱− 󶀡(out𝑓𝑖(𝑣, 𝜃) − out𝑓𝑖(𝑣, 𝜃 − 1)) + ex𝑓𝑖(𝑣, 𝜃)󶀱= 0
e same calculation for sources and sinks shows that the value of both flows is equal. e capac-

ities are obeyed by 𝑓𝑇 because𝑓𝑇󶀢𝑒𝜃󶀲 = 󵠈𝑖∈𝐾𝑓𝑇𝑖 (𝑒𝜃) = 󵠈𝑖∈𝐾󵐐𝜃𝜃−1 𝑓𝑖(𝑒, 𝜉) 𝑑𝜉= 󵐐𝜃𝜃−1󵠈𝑖∈𝐾𝑓𝑖(𝑒, 𝜉) 𝑑𝜉 ≤ 󵐐𝜃𝜃−1 𝑢𝑒 𝑑𝜉 = 𝑢𝑒.
Using the lemma it is easy to see that a maximum flow over time can be computed in the time-

expanded network. Any flow in the time-expanded network yields a flow over time of the same
value, thus a maximal flow over time corresponds to a maximum flow in the expanded network.
e size of the time-expanded network is not necessarily polynomial in the original input size for

the dynamic problem anymore because𝑇 is not bounded. us, algorithms basing on the technique
of time expansion are only pseudo-polynomial.
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Dynamic Problems in Time-expanded Networks. Many flow problems with dynamic counter-
parts can be solved by applying the discrete algorithm on the (static) time-expanded network. is
is basically true for all problems, in which the state of an arc at one point in time does not affect
its state at other points in time. For other problems, it might not be as obvious. An example are
interdiction problems. In such problems, a network is given and the goal is to remove arcs (probably
with costs) such that in the remaining network the value of a maximum flow is either minimized or
zero.1 In a temporal version of such problems, the interdiction of an arc at time 𝜃 would be equal to
interdiction in the time-expanded network for all times 𝜃′ ≥ 𝜃 which is not the same problem any
more. However, these issues do not occur in the problems we consider in this thesis. As a starting
point for literature on interdiction problems see for example [CSM04; MM70].
An example of a more complex flow problem that can be solved using time-expanded networks

is the M C F P. Similar to our proofs for Lemma 2.5, one can show that
a static flow in the time-expanded network induces a dynamic flow with the same value and vice
versa [Sku09]. However, in opposition to the static case (and to the M F  T
P) there is no polynomial algorithm for the problem, unless 𝒫 = 𝒩𝒫 . e 𝒩𝒫-hardness
has first been observed by Klinz and Woeginger [KW04]. ey were also the first to show that it is𝒩𝒫-hard to find a temporally repeated flow with minimum cost.
Other problems that can be solved using time-expanded networks are the Q T-

 P and the E A F P, as we see in the remainder of this
chapter.

Cyclically time-expandedNetworks. One way to generalize time-expanded networks are cycli-
cally time-expanded networks. ese networks have additional arcs. Consider an arc 󶀢𝑣𝜃, 𝑤𝜃+𝜏(𝑣,𝑤)󶀲
where the copy for time 𝜃+𝜏(𝑣,𝑤) > 𝑇would be outside the time horizon. In this case, using themod-
ulo operation node 𝑣𝜃 is connected with copy 𝑤𝜃+𝜏(𝑣,𝑤)≡𝑇. Solutions in such networks can be used to
be repeated, e. g., a transshipment may be sent every day when the time horizon equals the length of
a day. is technique has been applied to the location routing problem by Harks et al. [HKM+14]
and Köhler and Strehler [KS10; KS12] used the same technique to optimize traffic lights.

Shrinking the Network Size. A problem using time-expanded networks in practice is their typ-
ically huge size. ere exist several techniques to shrink the network size without changing the
resulting flow values toomuch and allowing for theoretically efficient fully polynomial-time approx-
imation schemes. e so-called condensed time-expanded network networks were introduced by
Fleischer and Skutella [FS07] to approximate the M C F  T P. In
condensed time-expanded networks, all travel times are divided by the same constant Δ and the ca-
pacity is in turn scaled by the same factor. If all travel times are multiples of Δ, the same flows can
be computed in smaller networks. If not all travel times are multiples of Δ, an FPTAS can be gained
if the rounding factor is chosen carefully.
Fleischer and Skutella also introduced amore advanced version of time condensation, the geomet-

rically condensed time-expanded networks. ese networks do not scale transit times by a single
constant Δ, but by several geometrically increasing constants. us it is possible to achieve a more

1e M C P problem can be seen as a very restricted variant of network interdiction problems and
in fact the original task described by Harris and Ross [HR55] asks for an interdiction of the Soviet rail network at
cheapest costs.
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detailed approximation for earlier time steps. Geometrical condensation allows for an FPTAS for the
E A F P [FS07]. We apply this type of networks in Section 4.4 to estab-
lish a fully polynomial-time approximation scheme to compute instance optimal value-approximate
earliest arrival flows. Even more generalized are the elastic time-expanded networks introduced by
Wang et al. [WSL+12]. ese networks allow different condensation factors for given time intervals[𝑇𝑖, 𝑇𝑖+1[.
Groß and Skutella use sequence rounded time-expanded networks, another variant of time con-

densation that does not only round travel times of arcs, but rounds sequences of arcs to a single arc
in the expanded network [GS12b]. e technique has use cases if optimal solutions require non
simple paths. For many problems, including the above mentioned M F  T
P, the Q T P and the E A F P
optimum solutions do not need waiting in intermediate nodes. Such solutions correspond to paths
in the time-expanded network that visit at most one node copy for any node 𝑣 ∈ 𝑉. For problems
like the M M- F  T P, it can be beneficial for flow to
use cycles if waiting in intermediate nodes is not allowed. If such paths are transferred to (geometri-
cally) condensed time-expanded networks, the loss due to the rounding can no longer be bounded
by a factor of 𝜀. In these cases sequence rounding still allows to get an FPTAS.

2.3 Quickest Transshipments

If a problem contains a temporal dimension, minimizing the necessary time becomes an additional
objective for optimization besidesmaximizing the value. For flows over time we consider a temporal
variant of the T P. Similar to the static case, we have supplies for sources and
demands for sinks, and a transshipment sends the necessary flow from sources to sinks. What is
different in the dynamic case is that the arc capacities only limit the inflow. As a consequence, more
flow can be sent as a static minimum cut in the network allows by using paths more than once.
Definition2.6 (Dynamic Transshipment). Let𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network,
and let 𝑏 ∶ 𝑉 → ℤ supplies and demands for sources and sinks, respectively.
If a flow over time 𝑓 with a time horizon of 𝑇 satisfies the supplies and demands, 𝑓 is a dynamic

transshipment or transshipment over timewith time horizon𝑇, e. g., for all commodities 𝑖 ∈ 𝐾 the
flow values satisfy − ex𝑓𝑖(𝑠, 𝑇) = 𝑏𝑠, and ex𝑓𝑖(𝑡, 𝑇) = −𝑏𝑡 for sources 𝑠 and sinks 𝑡, respectively. ◁
Feasibility of Transshipments. e first question that arises is whether the given supplies and
demands can be satisfied by some transshipment over time. To answer the question, the total capacity
(which is the value of a minimum cut) of the network is no bound for the supplies anymore. If there
is a source-sink-path, it can be used several times. us, in the temporal setting, we can decide
feasibility by ignoring capacities which leads us to the following observation.
Observation 2.7. For a given network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) and supplies 𝑏𝑣, we can decide
whether there exists a 𝑇 < ∞ such that a feasible transshipment within time 𝑇 exists by a single static
flow computation in the network with capacities 𝑢′𝑒 ≡ ∞.
Proof. For a feasible transshipment, we need to decide for each pair of source and sink how much
flow shall be sent from the source to the respective sink in total. is assignment must be such that
if any positive amount of flow is supposed to be sent from a source to a sink, then there has to be a
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path in the network that connects them. Since we can compensate a small capacity by a larger time
horizon the capacity of this path is not important. A static transshipment in the networkwith infinite
capacities 𝑢′𝑒 is such an assignment. If the transshipment needs more capacity on some arcs, in the
first step as much flow as possible is sent, continued with the second step and so on. At some finite
point in time 𝑇 all supplies have been shipped and a feasible transshipment over time exists.

Quickest Transshipments. If a feasible transshipment exists, we are interested in the necessary
time horizon to ship all supplies. is motivates the Q T P which
asks for a transshipment satisfying given balances in the shortest period of time.

Problem: Quickest Transshipment

Instance: A dynamic network 𝒩 = (𝐺, 𝑢, 𝜏, 𝑆+, 𝑆−), supplies and demands
for the sources and sinks 𝑏 ∶ 𝑉 → ℝ.

Task: Compute a feasible transshipment over time within the network𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) with minimal time horizon 𝑇.
In the case of a single source and single sink (but with a finite demand), the
problem is also called Q F P. If several sources are present
but only a single sink, the problem is also called E P.
If arcs are equippedwith costs 𝑐𝑒,𝑖, wemight ask for aQT
with bounded costs, i. e., the transshipment should also satisfy󵠈𝑒∈𝐸 𝑐𝑒,𝑖 󵐐𝑇0 𝑓𝑖(𝑒, 𝜉) 𝑑𝜉 ≤ 𝐶𝑖
for cost bounds 𝐶𝑖 for each commodity 𝑖 ∈ 𝐾.

Because the solution of the Q T P is a transshipment with lowest
possible time bound, a natural application is modelling evacuation scenarios [CFS82; CHT88]. For
these scenarios we mostly use special instances which only contain a single sink that is the safe tar-
get for all flow units. In the case of building evacuation, we assume this single sink to be “outside”.
However, the problem is not very suitable to model an evacuation scenario. If a catastrophe arises,
we are typically not only interested in minimizing the time until the last evacuee is safe but want to
evacuate as many evacuees as early as possible. In a feasible solution of the Q T-
 P it is possible for flow to travel around a cycle before entering the sink if the necessary
time horizon is is not increased by travelling trough the cycle. We will see in Section 2.4 that earliest
arrival flows are better suited for the evacuation scenario and avoid solutions containing cycles.
e Q F P can be solved in pseudo-polynomial running time by solving a

static T P within a time-expanded network. With known lower and upper
bounds of the time horizon a polynomial algorithm for the T  T P
gives a polynomial algorithm for solving the quickest transshipment problem by using it in a binary
search framework. Burkard, Dlaska, and Klinz [BDK93] have shown that this approach is relevant
in practice if the binary search is improved by some heuristics. However, even with the improve-
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ments the worst case running time does not become strongly polynomial. Instead of using a sim-
ple binary search, the optimal time horizon for a feasible transshipment can be computed by using
Megiddo’s search framework ([Meg79], see eorem 1.1). Burkard, Dlaska, and Klinz were the first
who showed how using the parametric search framework results in a strongly polynomial algorithm
for the Q F P.
For the most efficient use of the binary search framework we are interested in good lower and

upper bounds for the time horizon of a dynamic transshipment. As from any source at least some
flow has to be sent to any sink, a lower bound can be computed easily by using shortest paths. For
the upper bound we have to take the demands into account as we do not know how much flow can
be sent using shortest paths.
Observation2.8. Let𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be an instance of theQT
P, 𝐵+ ≔ ∑𝑠∈𝑆+ 𝑏(𝑠) the total supplies, and let dist(𝑣, 𝑤) denote the length of a shortest path
between two vertices 𝑣 and 𝑤. Let𝑆𝑃− ≔ max{min{dist(𝑠, 𝑡) | 𝑡 ∈ 𝑆−} | 𝑠 ∈ 𝑆+}
be the length of the longest shortest path from any source to some sink and let𝑆𝑃+ ≔ max{dist(𝑠, 𝑡) | 𝑠 ∈ 𝑆+, 𝑡 ∈ 𝑆−}
be the length of the longest shortest path between any pair of source and sink.
en, 𝑆𝑃− is a lower bound for the time horizon for a quickest transshipment. An upper bound for

the time horizon is given by𝑆𝑃+ + 𝐵+min𝑒∈𝐸 𝑢𝑒 .
Proof. From any source 𝑠, a positive amount of flow has to be sent to some sink 𝑡. us, the lower
bound is obvious.
We will show the upper bound by induction on the number of sources. Let 𝑠 be the only source.

We can send all 𝐵+ flow units along shortest paths whose length are bounded by 𝑆𝑃+. e capacity of
the path is at least theminimum capacity which allows us to send all flow units in time 𝑆𝑃++ 𝐵+min𝑒∈𝐸 𝑢𝑒 .
For the multiple source case we take out a source 𝑠with supply 𝑏𝑠 from the set of sources and solve

the instance with the smaller number of sources. Let 𝑥 be a solution of this instance. e upper
bound is by induction 𝑆𝑃+ + 𝐵+−𝑏𝑠min𝑒∈𝐸 𝑢𝑒 .
We have to sent additional 𝑏𝑠 units of flow along paths whose lengths are bounded by 𝑆𝑃+. In the

worst case, all of those paths are blocked by the solution 𝑥. In that case, the first of the remaining
flow units arrives directly aer the old flow needing additionally 𝑏𝑠min𝑒∈𝐸 𝑢𝑒 time units. In total the
upper bound is𝑆𝑃+ + 𝐵+ − 𝑏𝑠min𝑒∈𝐸 𝑢𝑒 + 𝑏𝑠min𝑒∈𝐸 𝑢𝑒 = 𝑆𝑃+ + 𝐵+min𝑒∈𝐸 𝑢𝑒 .
We call an instance of the Q T P balanced if there exists a finite

time horizon such that all supplies and demands can be balanced. We have seen, that we can easily
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detect balanced instances and Observation 2.8 gives an upper bound for the time horizon. For im-
plementation purposes, the existence of reasonably good lower and upper bounds is enough. e
decision problembelonging to theQTP raises the questionwhether
a given time horizon allows for a feasible transshipment.

Problem: Transshipment over Time

Instance: A dynamic network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−), supplies and
demands for the sources and sinks 𝑏 ∶ 𝑉 → ℝ, and a time hori-
zon 𝑇.

Task: Decide whether there exist a transshipment over time satisfying
the demands and supplies in the given time horizon 𝑇, or not.

A condition to detect whether an instance is not only balanced, but also feasible for a given time
horizon 𝑇 < ∞ has first been observed by Klinz [Kli94]. To explain the condition, we need to intro-
duce an abbreviation for themaximum flow that can be sent from a subset of terminals to the others.
Let 𝑏(𝑀) ≔ ∑𝑠∈𝑀 𝑏𝑠 be the total supply of a subset𝑀 ⊆ 𝑆+ ∪ 𝑆−. emaximum amount of flow that
can be sent from sources in 𝑆+ ∩𝑀 to sinks in 𝑆− \ 𝑀 is denoted by 𝑜(𝑀). e following eorem
gives the feasibility condition by Klinz. A similar observation has been made in the continuous flow
model by Fleischer and Tardos [FT98].
Theorem 2.9 (Klinz [Kli94]). An instance 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) with supplies and demands𝑏 ∶ 𝑉 → ℝ has a feasible solution within time horizon 𝑇 if and only if 𝑜(𝐴) > 𝑏(𝐴) for every subset𝐴 ⊂ 𝑉.
On the basis of this observation Hoppe and Tardos [HT94] have developed a strongly polynomial

algorithm for the T  T P and also subsequently for the Q
TP. ey use generalized temporally repeated flows to show that polynomial
size solutions exists. However, the algorithm strongly relies on submodular function minimization
and again on Megiddo’s parametric search framework. Due to this rather complicated methods no
implementation is known so far andmost likely an implementationwill never bemade. For practical
purposes, algorithms working in the time-expanded networks are good enough.

2.3.1 Arc Release Dates and Deadlines

Hoppe also studied a special case of transshipments that allow arcs to have release dates and dead-
lines [Hop95]. Hoppe calls arcs with such restrictions mortal arcs. An arc cannot be used by flow
before its release date and aer its deadline.
Definition 2.10. Arc release dates and deadlines are two functions 𝑟 ∶ 𝐸 → ℝ≥0 and 𝑑 ∶ 𝐸 → ℝ≥0,
respectively, that define the time an arc is available. A flow over time𝑓 is a flow that respects release
dates and deadlines if𝑓(𝑒, 𝜃) = 0 for all 𝜃 < 𝑟𝑒 and 𝜃 ≥ 𝑑𝑒 − 𝜏𝑒. ◁
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Without loss of generality, we will assume 0 ≤ 𝑟𝑒 < 𝑑𝑒 ≤ 𝑇. If the deadline is not larger than the
release date, we can just erase the arc and if release date and deadline are too early, or too late, respec-
tively, it just does not change the flow value compared to a flow without these requirements. Within
this setting we define the corresponding problems for the M F  T P
and the Q T P.

Problem: Maximum Flow over Time Problem with Release Dates and
Deadlines

Instance: A dynamic network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−), time horizon𝑇, release dates 𝑟 ∶ 𝐸 → ℝ+ and deadlines 𝑑 ∶ 𝐸 → ℝ+.
Task: Find a flow over time 𝑓 respecting release dates and deadlines

with maximal value 󶙡𝑓󶙡.
If 𝑑 ≡ 𝑇 and 𝑟 ≢ 0 we also speak of the M F  T P
with Release Dates, and if 𝑟 ≡ 0 and 𝑑 ≢ 𝑇 we speak of the M F
 T P with Deadlines.

If the release dates 𝑟𝑒 ≡ 0 are zero and the deadlines 𝑑𝑒 ≡ 𝑇 are not restricting the flow, the problem
reduces to the M F  T P.

Problem: Quickest Transshipment Problem with Release Dates and
Deadlines

Instance: A dynamic network 𝒩 = (𝐺, 𝑢, 𝜏, 𝑆+, 𝑆−), supplies and demands
for the sources and sinks 𝑏 ∶ 𝑉 → ℝ, non-negative release dates𝑟 ∶ 𝐸 → ℝ+ and deadlines 𝑑 ∶ 𝐸 → ℝ+.

Task: A transshipment over timewithminimal time horizon𝑇 respect-
ing release dates and deadlines.

Notice, that the Q T P with release dates and deadlines can be
solved in a time-expanded network. For an arc 𝑒, we just have to remove the copies 𝑒1,… , 𝑒𝑟𝑒−1 and𝑒𝑑𝑒 ,… , 𝑒𝑇. However, this solution is not preferable from the theoretical point of view as it requires
pseudo-polynomial running time.
Hoppe [Hop95] observed that instances of flow over time problems with release dates and dead-

lines can be reduced to instances without release dates and deadlines by introducing (a small number
of) additional pairs of sources and sinks. e term “a small number” refers to the fact that the in-
troduction of the additional nodes and arcs does not increase the network size too much, such that
it remains polynomial in the input size, in contrast to time expansion.
We briefly describe the reduction and prove that the M F  T P with

release dates and deadlines and the Q T P are in fact equivalent.
Note that the reduction necessarily relies on the possibility of (unlimited) holdover. Hoppe pointed
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out that alreadyKlinz observed that the problembecomes𝒩𝒫-hard if waiting in intermediate nodes
is not allowed [Kli94].
We show that it is possible to remove allmortal arcs by introducing fewnew vertices and additional

arcs. us, we create a new network which allows to compute a network flow of equal value on all
sources and sinks in the original network. e arcs are replaced by the gadget depicted in Figure 2.3b.
More formally, we construct a new network 𝒩 as follows.
Definition 2.11. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network, and 𝑟𝑒 and 𝑑𝑒 release
dates and deadlines for arcs 𝑒 ∈ 𝐸. We define the corresponding dynamic network without release
dates and deadlines 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−, 𝑇) as follows.

𝑉 ≔ 𝑉∪󶁁𝑠𝑒, 𝑡𝑒, 𝑣′, 𝑤′ | 𝐸 = (𝑣, 𝑤) ∈ 𝐸󶁑,𝐸 ≔ 󶁁(𝑣, 𝑣′), (𝑣′, 𝑡𝑒), (𝑤′, 𝑣′), (𝑠𝑒, 𝑤′), (𝑤′, 𝑤) | 𝑒 = (𝑣, 𝑤) ∈ 𝐸󶁑,𝑢(𝑣,𝑣′) ≔ 𝑢(𝑣′,𝑡𝑒) ≔ 𝑢(𝑤′,𝑣′) ≔ 𝑢(𝑠𝑒,𝑤′) ≔ 𝑢(𝑤′,𝑤) ≔ 𝑢𝑒 ∀𝑒 = (𝑣, 𝑤) ∈ 𝐸,𝜏(𝑣,𝑣′) ≔ 0, 𝜏(𝑤′,𝑣′) ≔ 0,𝜏(𝑣′,𝑡𝑒) ≔ 𝑇 − 𝑑𝑒 + 𝜏𝑒, 𝜏(𝑠𝑒,𝑤′) ≔ 𝑟𝑒, 𝜏(𝑤′,𝑤) ≔ 𝜏𝑒 ∀𝑒 = (𝑣, 𝑤) ∈ 𝐸,𝑆+ ≔ 𝑆+ ∪{𝑠𝑒 | 𝑒 ∈ 𝐸},𝑆− ≔ 𝑆− ∪{𝑡𝑒 | 𝑒 ∈ 𝐸},
𝑏𝑣 ≔󶀂󶀒󶀒󶀒󶀒󶀊󶀒󶀒󶀒󶀒󶀚
𝑢𝑒 ⋅ (𝑑𝑒 − 𝑟𝑒 − 𝜏𝑒) 𝑣 = 𝑠𝑒,−𝑏𝑠𝑒 𝑣 = 𝑡𝑒,𝑏𝑣 𝑣 ∈ 𝑉,0 𝑣′ ∈ 𝑉 \ 󶀡𝑉⊍ 𝑆+ ⊍ 𝑆−󶀱. ◁

𝑣 𝑤𝑒

(a) An arc with release date 𝑟𝑒, dead-
line 𝑑𝑒, and transit time 𝜏𝑒.

𝑣 𝑣′ 𝑤′ 𝑤
𝑠𝑒

𝑡𝑒

𝑢𝑒 ⋅ (𝑑𝑒 − 𝑟𝑒 − 𝜏𝑒)

−𝑢𝑒 ⋅ (𝑑𝑒 − 𝑟𝑒 − 𝜏𝑒)

𝑟𝑒
𝑇 − 𝑑𝑒 + 𝜏𝑒0 0 𝜏𝑒

(b) A gadget adding a new pair of source and sink to re-
place the release date and deadline as described in Defi-
nition 2.11.

Figure 2.3: e construction used to reduce instances with release dates and deadlines to instances
without mortal edges. Each arc 𝑒(𝑣, 𝑤) is replaced by the given gadget.
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We show that for any given flow in the original network 𝒩 we can construct a flow with the same
value on the original terminal nodes that also satisfies all supplies and demands of the additional
nodes. Also, we see that from any flow in 𝒩 that satisfies the demands for all terminal nodes and
that we can construct a flow in the original network that has the same value.
Lemma 2.12. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network with arc release dates 𝑟𝑒 and
deadlines 𝑑𝑒 and 𝑓 be a feasible flow in 𝒩 . en there exists a flow 𝑓′ in 𝒩 with the same value󶙡𝑓󶙡 = 󶙡𝑓′󶙡. If 𝑓 does not require waiting in intermediate nodes, then also 𝑓′ does not require waiting
in intermediate nodes.

Proof. We define 𝑓′ by setting the value for each arc 𝑒 = (𝑣, 𝑤) as follows.
𝑓′󶀡(𝑣, 𝑣′), 𝜃󶀱 ≔ 𝑓(𝑒, 𝜃)𝑓′󶀡(𝑣′, 𝑡𝑒), 𝜃󶀱 ≔ 󶁅 𝑢𝑒 𝜃 ∈ [𝑟𝑒, 𝑑𝑒 − 𝜏𝑒[0 𝜃 ∈ [0, 𝑟𝑒[ ∪ [𝑑𝑒 − 𝜏𝑒, 𝑇[𝑓′󶀡(𝑠𝑒, 𝑤′), 𝜃󶀱 ≔ 󶁅 𝑢𝑒 𝜃 ∈ [0, 𝑑𝑒 − 𝑟𝑒 − 𝜏𝑒[0 𝜃 > 𝑑𝑒 − 𝑟𝑒 − 𝜏𝑒𝑓′󶀡(𝑤′, 𝑣′), 𝜃󶀱 ≔ 󶁅 𝑢𝑒 − 𝑓(𝑒, 𝜃) 𝜃 ∈ [𝑟𝑒, 𝑑𝑒 − 𝜏𝑒[0 𝜃 ∈ [0, 𝑟𝑒[ ∪ [𝑑𝑒 − 𝜏𝑒, 𝑇[𝑓′󶀡(𝑤′, 𝑤), 𝜃󶀱 ≔ 𝑓(𝑒, 𝜃)

e capacities of 𝑓′ are feasible and lie within the interval [0, 𝑢𝑒]. Because 𝑓′((𝑣, 𝑣′), 𝜃) = 𝑓(𝑒, 𝜃)
and 𝑓′((𝑤′, 𝑣), 𝜃) = 𝑓((𝑣, 𝑤), 𝜃), flow conservation in 𝑣 and 𝑤 carries over from 𝑓.
All arcs have flow value 0 before the release date and aer the deadline. We have flow conservation

at 𝑣′ for 𝜃 ≤ 𝑑𝑒 because󵐐𝜃0 𝑓′󶀡(𝑣, 𝑣′), 𝜉󶀱 𝑑𝜉 + 󵐐𝜃0 𝑓′󶀡(𝑤′, 𝑣′), 𝜉󶀱 𝑑𝜉= 󵐐𝜃−𝜏𝑒𝑟𝑒 𝑓󶀡(𝑣, 𝑣′), 𝜉󶀱 𝑑𝜉 + 󵐐𝜃−𝜏𝑒𝑟𝑒 𝑢𝑒 − 𝑓󶀡(𝑤′, 𝑣′), 𝜉󶀱 𝑑𝜉= 󵐐𝜃−𝜏𝑒𝑟𝑒 𝑢𝑒 𝑑𝜉 = 󵐐𝜃0 𝑓′󶀡(𝑣′, 𝑡𝑒), 𝜉󶀱 𝑑𝜉.
For node 𝑤′ we have󵐐𝜃0 𝑓′󶀡(𝑤′, 𝑣′), 𝜉󶀱 𝑑𝜉 + 󵐐𝜃0 𝑓′󶀡(𝑤′, 𝑤), 𝜉󶀱 𝑑𝜉= 󵐐𝜃𝑟𝑒 𝑢𝑒 − 𝑓(𝑒, 𝜉) 𝑑𝜉 + 󵐐𝜃𝑟𝑒 𝑓(𝑒, 𝜉) 𝑑𝜉= 󵐐𝜃𝑟𝑒 𝑢𝑒 𝑑𝜉 = 󵐐𝜃−𝑟𝑒0 𝑓′󶀡(𝑠𝑒, 𝑤′), 𝜉󶀱 𝑑𝜉,

thus flow conservation holds on all nodes which shows the statement of the lemma.
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Wewill show a similar lemma for the opposite direction, i. e., creating a feasible flow from a given
flow in the extended network 𝒩 . However, in this case it is not possible to construct a flow that
does not need waiting in intermediate nodes. is is because it is possible that another source than𝑠𝑒 sends flow to 𝑡𝑒 in 𝒩 . Consider the replacement of an arc 𝑒 = (𝑣, 𝑤). e capacities on the
new source and sink and the transit time allow us to limit the flow through the gadget to the same
maximum value 𝑢𝑒 ⋅ (𝑑𝑒 − 𝑟𝑒 − 𝜏𝑒), however a feasible flow in 𝒩 can use the arc from the beginning
and aer the deadline. An example of such a situation is depicted in Figure 2.4. Because the total
flow through the construction is limited by the actual flow value we construct feasible flows that are
“drawn out”. In the following lemma we show that it is possible to “compress” the flow again and use
the arc only at valid times by storing early flow for later usage.

Lemma2.13 ([Hop95]). Let𝑓′ be a feasible flow in the network𝒩 . en, there exists a feasible flow in
the dynamic network𝒩 with release dates 𝑟𝑒 and deadlines 𝑑𝑒 that may require waiting in intermediate
nodes regardless of whether 𝑓′ requires waiting in intermediate nodes.

Proof. We define the new flow 𝑓 by setting𝑓(𝑒, 𝜃) ≔ 𝑢𝑒 − 𝑓󶀡(𝑤′, 𝑣′), 𝜃󶀱
for all arcs 𝑒 = (𝑣, 𝑤) ∈ 𝐸 and times 𝜃 ∈ [0, 𝑇[. Obviously, 𝑓 respects capacities. Also, observe that
the total amount of flow on 𝑒 satisfies ∫𝑇0 𝑓(𝑒, 𝜉) 𝑑𝜉 = ∫𝑇0 𝑓󶀡(𝑣, 𝑣′), 𝜉󶀱 𝑑𝜉 = ∫𝑇0 𝑓󶀡(𝑤, 𝑤′), 𝜉󶀱 𝑑𝜉. To
show that (weak) flow conservation holds, we have to show that at each point in time the amount
of flow assigned to 𝑒 is not more than the amount that leaves 𝑣 to 𝑣′ in 𝑓′ and at least as much as
enters 𝑤 from 𝑤′. Before time 𝑟𝑒, there is no flow on 𝑒 in 𝑓, and also no flow entering node 𝑤, so
flow conservation holds. Consider now a point in time 𝜃 > 𝑟𝑒.󵐐𝜃0 𝑓′󶀡(𝑣, 𝑣′), 𝜉󶀱 𝑑𝜉 = 󵐐𝜃𝑟𝑒 𝑓′󶀡(𝑣, 𝑣′), 𝜉󶀱 𝑑𝜉≥󵐐𝜃𝑟𝑒 𝑢𝑒 − 󵐐𝜃𝑟𝑒 𝑓′󶀡(𝑤′, 𝑣′), 𝜉󶀱 𝑑𝜉 = 󵐐𝜃𝑟𝑒 𝑢𝑒 − 𝑓′󶀡(𝑤′, 𝑣′), 𝜉󶀱 𝑑𝜉≥󵐐𝜃𝑟𝑒 𝑓′󶀡(𝑤′, 𝑤), 𝜉󶀱 𝑑𝜉 = 󵐐𝜃0 𝑓′󶀡(𝑤′, 𝑤), 𝜉󶀱 𝑑𝜉.
Observe that the statement follows because the second equation equals exactly the flow on 𝑒 in 𝑓
by definition. At time 𝑇, we have equality because both flows send the same amount of flow in
total and thus flow conservation holds. Notice, that we only have weak flow conservation due to the
inequalities in the above calculation. Strict flow conservation is violated if and only if 𝑓󶀡(𝑣, 𝑣′), 𝜃󶀱 ≠0 for some 𝜃 < 𝑟𝑒.
With these two lemmas we can show that it is possible to compute amaximumflow over time with

release dates and deadlines in a network with supplies and demands. We include the construction
in a search framework to find the exact value of the maximum flow over time.
Theorem 2.14. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑠, 𝑡) be a dynamic network and 𝑇 a time horizon. e
M F  T P with arc release dates and deadlines can be solved in (strongly)
polynomial time. e resulting maximum flow may require waiting.
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𝑣 𝑤 𝑡𝑠 𝜏(𝑠,𝑣) = 0 𝜏𝑒 = 1𝑟𝑒 = 2 𝜏(𝑤,𝑡) = 0
(a) Within time horizon 𝑇 = 4 one unit of flow can be sent.

𝑣 𝑤 𝑡𝑠 𝑣′ 𝑤′
𝑠𝑒

𝑡𝑒
𝜏(𝑠,𝑣) = 0 𝜏(𝑣,𝑣′) = 0 𝜏(𝑤,𝑡) = 0𝜏(𝑤′ ,𝑤) = 1

𝜏(𝑣′ ,𝑡𝑒) = 1
𝜏(𝑠𝑒 ,𝑤′) = 2𝜏(𝑤′ ,𝑣′) = 1

𝑏𝑠𝑒 = 1

𝑏𝑡𝑒 = −1
(b) A feasible flow in the network containing the gadget may send flow on path (𝑠, 𝑣, 𝑣′, 𝑡𝑒) at

time zero before the release date 𝑟𝑒 = 2.
Figure 2.4: An example of the computation in Lemma 2.13 that may require waiting. e network

containing edge 𝑒 = (𝑣, 𝑤) with positive release date consists of only one path (𝑠, 𝑣, 𝑤, 𝑡).
Proof. Create a network𝒩 by replacing each arcwith the structure defined inDefinition 2.11. For an
arbitrary 𝑏 ∈ ℕ we assign supplies and demands 𝑏𝑠 ≔ 𝑏 and 𝑏𝑡 ≔ −𝑏 to the original source and sink,
respectively. It is possible to send 𝑏 units of flow in the original network if the quickest transshipment
in 𝒩 has a time horizon of at most 𝑇. e flow can be transformed back using Lemma 2.13. Trying
different values for 𝑏 within a binary search framework solves the maximum flow problem. e
algorithm has strongly polynomial running time if Megiddo’s framework for parametric search is
used.

e proof of Lemma 2.13 shows, that the computed flow over time may require waiting in inter-
mediate nodes. Accordingly, the maximum flow coming out fromeorem 2.14 uses waiting. It is
not possible to find a maximum flow that does not use waiting in polynomial time, unless 𝒫 ≠𝒩𝒫 .
Theorem 2.15 ([Kli94]). If waiting in intermediate nodes is not allowed, the M F 
T P with deadlines and release dates is 𝒩𝒫-hard.

Proof. We reduce the flow over time problem with release dates to P if waiting is not al-
lowed. Let {𝑎1, 𝑎2,… , 𝑎𝑛} be a partition instance. For the reduction we create a network as depicted
in Figure 2.5a. e instance consists of 𝑛+1 nodes 𝑣1, 𝑣2,… , 𝑣𝑛+1 and consecutive nodes 𝑣𝑖 and 𝑣𝑖+1
are connected with two parallel edges 𝑒𝑖 and 𝑒𝑖. ere is an additional source node 𝑠 and a sink 𝑡.
ese nodes are connected with the other nodes via the arcs 𝑑 = (𝑠, 𝑡), 𝑏 = (𝑣1, 𝑡) and 𝑓 = (𝑣𝑛+1, 𝑡).
All arcs have unit capacity. For 𝑛 ∈ {1, 2,… , 𝑛} we set 𝜏𝑒𝑘 ≔ 𝑎𝑛 and 𝜏𝑒𝑘 ≔ 0. e other arcs have
zero travel time. All arcs except 𝑏 and 𝑓 have no release date and are immediately available. For the
remaining arcs we set 𝑟𝑓 ≔ 𝑇 and 𝑟𝑏 ≔ 1.
A solution of P is encoded by a path using either arcs 𝑒𝑘 or 𝑒𝑘. We use the interpretation

that flow using 𝑒𝑘means taking element 𝑎𝑘 into the solution and using 𝑒𝑘means that 𝑎𝑘 is not taken.
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𝑒2
𝑒2

𝑒𝑛𝑒𝑛 𝑓
(a) Reduction with release dates. All arcs are present at time 0 except 𝑟𝑏 = 1 and𝑟𝑓 = 𝑇.

⋯𝑑
𝑏

𝑒1
𝑒1

𝑒2
𝑒2

𝑒𝑛
𝑒𝑛 𝑓

(b) Reduction with deadlines. All arcs are available until the time horizon 𝑇+1
except 𝑑𝑏 = 𝑇 and 𝑑𝑑 = 1.

Figure 2.5: e graphs used by the reduction of the M F  T P with
release dates or deadlines to partition. All capacities are unit capacities, and travel times
are 𝜏𝑒𝑛 ≔ 𝑎𝑛, and 𝜏𝑒𝑛 ≔ 𝜏𝑏 ≔ 𝜏𝑑 ≔ 𝜏𝑓 ≔ 0.

e partition instance is a yes-instance if and only if there exist a path using arcs 𝑒𝑘 and 𝑒𝑘 with
travel time 𝑇≔ ∑𝑛𝑖=1 𝑎𝑖2 .
For each time 𝜃 > 1 flow can be sent along (𝑑, 𝑏). In the interval [0, 1[ flow can be sent along

another path using arc𝑓 if and only if it arrives at tail(𝑓) at time𝑇, when the edge becomes available.
us, within a time horizon of 𝑇 + 1, we can always send 𝑇 units of flow along path (𝑑, 𝑏). Another
flow unit can be sent if and only if the partition instance is a yes-instance.
Figure 2.5b shows a similar graph used to reduce the flow over time problem with deadlines to

P if waiting is not allowed. Arc 𝑑 limits the inflow in the lower paths representing the
partition instance. Arc 𝑏 can be used to send 𝑇 units of flow up to time 𝑇. e additional unit of
flow can be sent if and only if the partition instance is a yes-instance because then arc 𝑓 can be used
in the time interval [𝑇, 𝑇 + 1[. If the instance is a no-instance flow arrives to early at 𝑓 and would
block flow coming along arc 𝑏.
2.4 Earliest Arrival Flows

eM F  T P as defined in Section 2.1 and the Q T-
 P as defined in Section 2.3 can both be generalized in the following way. For the
maximization variant, we are interested in computing a flow over time that sends as much flow as
possible within a given time horizon𝑇. For the variant with supplies and demands, we are interested
in finding a minimum time horizon to satisfy them. Both problems focus only on the result at the
time horizon. However, we can additionally ask for a flow that sends flow as early as possible in
addition to the other requirements. We say that a flow over time has the earliest arrival property if
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as much flow as possible arrives at the sinks at each time 𝜃 < 𝑇. For the Q T
P we can limit ourself to satisfy as much of the total demand as possible.
Definition 2.16 (Earliest Arrival Pattern). Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network,
and 𝑓 be a feasible network flow that respects supplies and demands if 𝑏𝑣 is given.
A pattern is a function 𝑝 ∶ [0, 𝑇[ → ℝ≥0 in the continuous setting and 𝑝 ∶ {1, 2,… , 𝑇} → ℝ≥0 in

the discrete setting. A flow has the arrival pattern 𝑝𝑓 if𝑝𝑓(𝜃) = 󶙡𝑓󶙡𝜃 for 𝜃 ∈ [0, 𝑇[, or 𝜃 ∈ {1, 2,… , 𝑇}, respectively.
Let 𝑓∗𝜃 be a maximum flow with time horizon 𝜃, possibly subject to supplies and demands if 𝑏𝑣 is

given. e earliest arrival pattern for 𝒩 is then defined as𝑝∗(𝜃) ≔ 󶙡𝑓∗𝜃 󶙡 for 𝜃 ∈ {1, 2,… , 𝑇}, or 𝜃 ∈ [0, 𝑇[.
Observe that two flows 𝑓∗𝜃 and 𝑓∗𝜃′ may be completely different for 𝜃 ≠ 𝜃′. In particular, for 𝜃′ > 𝜃

it is totally possible to have 𝑓∗𝜃 (𝑒, 𝜉) ≠ 𝑓∗𝜃′(𝑒, 𝜉) for an arc 𝑒 ∈ 𝐸 (for any of the first time steps 𝜉 ≤ 𝜃).
A network flow over time 𝑓 for a given time horizon 𝑇 is an earliest arrival flow if its arrival

pattern equals the earliest arrival pattern, e. g., 󶙡𝑓󶙡𝜃 = 𝑝𝑓(𝜃) = 𝑝∗(𝜃) holds simultaneously for all
points in time. A dynamic transshipment adhering to the earliest arrival pattern is an earliest arrival
transshipment. ◁
2.4.1 Single-commodity Earliest Arrival Flows

e requirements for a flow to have the earliest arrival property is quite high, as it should meet the
pattern at all points in time. Flows having the earliest arrival property are also known as universally
maximal flows or universally quickest flows. Existence of earliest arrival flows in the case of a
single source and a single sink has first been observed by Gale [Gal59] and Philpott [Phi90] in the
discrete and continuous setting, respectively. Gales proof was non-constructive and relied on the
Supply-and-Demand-eorem also proven by Ford and Fulkerson [FF62]. First pseudo-polynomial
algorithms have been presented by Minieka [Min73] and Wilkinson [Wil71].
We discuss maximum earliest arrival flows now and earliest arrival transshipments aer that. No-

tice that there are also variations of earliest arrival flows that we do not discuss. So-called latest
departure flows satisfy a similar property as earliest arrival flows, but this property regards the depar-
ture time. For single source-single sink networks, there exist flows that have both the earliest arrival
and the latest departure property. A relaxed version of the earliest arrival property is proposed by
Stiller andWiese [SW10]: Multiple deadline flows require only that the earliest arrival pattern is met
for some points in time.

Problem: Maximum Earliest Arrival Flow

Instance: Dynamic network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) with transit
times 𝜏 ≥ 0 and a time horizon 𝑇.

Task: Compute a maximum flow over time 𝑓with time horizon 𝑇 such
that the flow pattern 𝑝𝑓 = 𝑝∗ is an earliest arrival flow.
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e M E A F P can be solved by computing a static lexico-
graphically maximal flow in the time-expanded network [Min73]. As lexicographical order of sinks,
the copies of the original sink are taken for each time point {1, 2,… , 𝑇}. More formally, let 𝑡𝜃 and𝑡𝜃′ be two copies of a sink at times 𝜃 and 𝜃′. en 𝑡𝜃 has higher priority than 𝑡𝜃′ if and only if 𝜃 < 𝜃′.
e resulting flow can then easily be transformed into a dynamic flow. An earliest arrival flow in the
time-expanded network relates to a minimum cost flow by Lemma 2.5. To see this, we take transit
times as costs and notice that flow arriving earlier incurs less total costs. In an earliest arrival flow,
at each point in time the maximum amount of flow arrives and it is not possible to send flow earlier
which would reduce costs even further. us, any earliest flow with value 󶙡𝑓󶙡 equals a minimum
cost flow of the same value in the time-expanded network.
e lexicographical order and the minimum cost approach can be combined to get the E

A F A .. It uses the S S P A . to send
flow units. Minieka [Min73] first observed that it is possible to compute this flow also without using
time expansion. e algorithm runs the S S P A on the residual
network belonging to the original graph and sends flow along the paths in a temporally repeated
way, but using backward arcs. Minieka was the first to show an earliest arrival flow can be computed
in the original network by using a generalized path decomposition.

Algorithm 2.2:Maximum Earliest Arrival Flow Algorithm
Input: 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑠, 𝑡) with transit times 𝜏 ≥ 0 and a time horizon 𝑇.
Output: A generalized temporally repeated flow over time with time horizon 𝑇.

1. Initialize 𝑓 be the zero flow in the static network 𝒩 = (𝐺, 𝑢, 𝑠, 𝑡) and let 𝑥𝑃 be the
corresponding generalized path decomposition.

2. Compute a shortest 𝑠-𝑡-path𝑃 in the residual network𝒩𝑓 where the arc lengths are
equal to the transit times. If 𝜏(𝑃) ≥ 𝑇, return the generalized temporally repeated
flow according to path flow 𝑥.

3. Let 𝛿 be the residual capacity of 𝑃. Increase 𝑥𝑃 ≔ 𝑥𝑃+𝛿, and update𝑓 accordingly.
Continue with 2.

Algorithm 2.2 is executed on the original network, however it still does not become polynomial
due to the pseudo-polynomial running time of Algorithm 1.1. is also raises doubt whether a
polynomial algorithm for E A F can exist because the earliest arrival patternmay
contain exponentially many break points and thus would be even hard to store in polynomial time.𝒩𝒫-hardness was finally shown by Disser and Skutella [DS15]. ey show that it is 𝒩𝒫-hard to
obtain the average arrival time of flow of an earliest arrival flow. Notice, that an 𝑠-𝑡-flow minimizes
its average arrival time if and only if it is an earliest arrival flow [JR82].
e early algorithms work in the discrete setting and the existence of similar continuous algo-

rithms with the same running time has been shown by Fleischer and Tardos [FT98]. An FPTAS for
the M E A F P is due to Hoppe and Tardos [HT94].

Earliest Arrival Transshipments. Notice that any earliest arrival transshipment necessarily also
is a quickest transshipment. We will now consider the case with bounded supplies and demands in
the sinks, which makes the problem harder in the following sense: It is not true any more in this
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setting, that earliest arrival flows exist necessarily. By non-existence we mean that there is no single
flow over time that meets the earliest arrival pattern for all points in time simultaneously. is gives
rise to the question of approximating the feasibility, e. g., to ask for a flow over time that is as good
as possible and is not “too far off” of the pattern. We will answer this question in Chapter 4. In
particular, if multiple sinks are present, we are only interested in the total amount of flow that has
arrived at the sinks but not at which specific sink flow has arrived.

Problem: Earliest Arrival Transshipment

Instance: A dynamic network 𝒩 = (𝐺, 𝑢, 𝜏, 𝑆+, 𝑆−), supplies and demands
for the sources and sinks 𝑏 ∶ 𝑉 → ℝ.

Task: Compute a transshipment over time sending all supplies from
sources such that all demands are satisfied and the resulting trans-
shipment over time satisfies 󶙡𝑓󶙡𝜃 = 𝑝(𝜃) for 𝜃 ∈ [0, 𝑇∗[, where𝑇∗
is the minimum necessary time horizon.

If all the transit times 𝜏 ≡ 0 are zero, we speak of the E A T-
 with zero travel times.

Algorithms for the case of a single sink and a single source can be built on the aforementioned
algorithms for the maximization case. e successive shortest path algorithm can be executed with
an increasing time horizon until the demands are satisfied by the computed solution. e case with
multiple sources and sinks is considered in Chapter 4 since the existence of earliest arrival trans-
shipments is no longer guaranteed. e case with multiple sources and a single sink, however, still
allows for earliest arrival transshipments.
An earliest arrival transshipment cannot be computed in the static network because the supplies

are limited and any temporally repeated flow will exceed the supplies eventually. However the tech-
nique to use successive shortest paths from Algorithm 2.2 can be applied in a time-expanded net-
work. Richardson and Tardos [RT02] also observed that Minieka’s existence proof based on lexico-
graphically maximal flows can be extended to networks with several sources and a single sink with
appropriate demands. e problem with the limited capacities dissolves in this case, because the arc
capacities of the super sources in Definition 2.4 limit the inflow into each source.

Algorithm 2.3: Earliest Arrival Transshipment
Input: 𝒩 = (𝐺, 𝑢, 𝜏, 𝑆+, 𝑡) with transit times 𝜏 ≥ 0, balances 𝑏𝑣, and a single sink 𝑡.
Output: An earliest arrival transshipment 𝑓.

1. Build the time-expanded network 𝒩 𝑇 with supplies and demands with a suffi-
ciently large time horizon 𝑇 ≥ 𝑇∗, e. g., by using the bound from Observation 2.8.

2. Compute a min cost flow with respect to transit times as costs in 𝒩 using the
S S P A ..

3. Return the flow over time corresponding to the static flow constructed by the pro-
cedure from Lemma 2.5.
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Baumann and Skutella [BS09] give an algorithm that computes an earliest arrival transshipment
in running time bounded by the size of the input and output size. However, the algorithm heavily
relies on submodular function minimization and is thus not practically applicable. Practical imple-
mentations, such as we consider in Chapter 3, rely on time expansion. An algorithm running in
polynomial time in the time horizon and the total supply at the sources is due to Tjandra [Tja03].
Fleischer and Skutella [FS07] present an FPTAS that sends the maximal amount of flow possible at
time 𝜃 a bit later at time (1 + 𝜀)𝜃 for each time 𝜃 ≥ 0. For the case of series-parallel graphs, Ruzika,
Sperber and Steiner [RSS11] present a polynomial algorithm.

Zero Travel Times. eEA T P becomes easier in the case
of zero travel times. As such we consider instances for which 𝜏𝑒 ≡ 0 for all arcs. It is possible
to compute an earliest arrival transshipment with zero travel times in polynomial time [HO84].
Fleischer gives an algorithm with improved running time [Fle01].

2.4.2 Multi-commodity Earliest Arrival Flows

Multi-commodity earliest arrival flows have not been studied so far, to the best of the authors knowl-
edge. In the M- E A T P we again take the
point of view motivated by the evacuation problem and try to maximize the total flow sent until a
given point in time. For this purpose, we do not weight commodities or enforce any precedence
constraints.

Problem: Multi-commodity Earliest Arrival Transshipment

Instance: A dynamic network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−), together with
a set of commodities 𝐾.

Task: A multi-commodity flow over time 𝑓 sending the maximal pos-
sible amount of flow 󶙡𝑓󶙡𝜃 = 𝑝∗(𝜃) for each 𝜃 ∈ [0, 𝑇∗[, or{1, 2,… , 𝑇∗} where 𝑇∗ is the optimal time horizon of a quickest
transshipment.

Multi-commodity Earliest Arrival Transshipments. Before we prove that multi-commodity ar-
rival transshipments exist in the case of a single sink, we observe that it is possible to reduce the
multi-commodity case to single commodities in the single source-single sink case. If all commodi-
ties start in the same source and have the same sink as destination, we can simply combine the
commodities to one big commodity, compute an earliest arrival transshipment and split the flow up
into the commodities. e same splitting technique then provides the algorithm for multiple sinks.
Observation 2.17. Let 𝑖 ≠ 𝑖′ ∈ 𝐾 be two commodities with the same sources 𝑠𝑖 = 𝑠𝑖′ and sinks 𝑡𝑖 = 𝑡𝑖′ .
e commodities can then be combined to a new commodity ̂𝚤 and any feasible flow on the new instance
with commodities 𝐾 \ {𝑖, 𝑖′} ∪ ̂𝚤 can be transformed to a feasible flow in the original instance and vice
versa.
us, all instances which only use different commodities on the same pair of sources and sinks

can be solved using any algorithm solving the E A T P by re-
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duction. Without loss of generality we now assume that multiple commodities use different source
and sink pairs. Notice that the simple example with three commodities on the network depicted in
Figure 4.10 shows that earliest arrival transshipments do not necessarily exist in the case of multi-
commodity flows with multiple sinks, even if the transit time is zero. However, if the commodities
use the same single sink but different sources, we can useAlgorithm2.3 to solve instances by combin-
ing the commodities before the earliest arrival flow computation and splitting the flow aerwards.
is leads to the following algorithm.

Algorithm 2.4:Multi-commodity Earliest Arrival Transshipment Algorithm

Input: Dynamic network 𝒩 = (𝐺, 𝑢, 𝜏, 𝑆+, 𝑡) with a single sink 𝑡 and commodities 𝐾.
Output: A multi-commodity earliest arrival transshipment 𝑓.

1. Define new supplies and demands 𝑏′ by
𝑏′𝑣 ≔ 󶀂󶀒󶀒󶀊󶀒󶀒󶀚
∑𝑖∈𝐾 𝑏𝑖,𝑣 if 𝑣 source in ⋃𝑖∈𝐾 𝑆+𝑖 ,∑𝑖∈𝐾 𝑏𝑖,𝑡 if 𝑣 = 𝑡 is the sink,0 otherwise.

2. Compute an earliest arrival transshipment for the instance defined by the network𝒩 = (𝐺, 𝑢, 𝜏, ⋃𝑖∈𝐾 𝑆+𝑖 , 𝑡) with path decomposition 𝑥 using Algorithm 2.3.

3. For each commodity 𝑖 ∈ 𝐾 split the path flow into commodity dependent paths:
- Select a source 𝑠 ∈ 𝑆+𝑖 with positive supply 𝑏𝑖,𝑠 > 0,
- let 𝑃 be an 𝑠-𝑡-path with positive flow value 𝑥𝑃 > 0,
- set flow value 𝑥′𝑖,𝑃 ≔ min{𝑥𝑃, 𝑏𝑖,𝑠},
- update 𝑏𝑖,𝑠 ≔ 𝑏𝑖,𝑠 − 𝑥′𝑖,𝑃 and 𝑥𝑃 ≔ 𝑥𝑃 − 𝑥′𝑖,𝑃,
- continue until no source with positive supplies in 𝑆+𝑖 exists any more.

4. Return edge flow 𝑓 belonging to 𝑥′.
Theorem 2.18. In dynamic networks with non-negative travel times, 𝑘 ≥ 1 commodities and a single
sink earliest arrival transshipments exist. ey can be computed by Algorithm 2.4 with a running time
that is polynomial in 𝑘 and the size of an earliest arrival transshipment in the same network in which
all commodities are combined to one commodity.

Proof. We show that the construction in step 3 of Algorithm 2.4 creates a feasible solution of the
M- E A T P. By definition of the new de-
mands 𝑏′𝑣 for each source, we have ∑𝑃∈𝓟𝑠𝑡 𝑥𝑃 = ∑𝑖∈𝐾 𝑏𝑖,𝑣. e definition of 𝑥′𝑖,𝑃 as minimum makes
sure that no path’s capacity is exceeded and no more supply is sent than possible. us, for any path𝑃, the flow values are reduced until the remaining capacities are 0 and the constructed flow respects
capacities due to ∑𝑖∈𝐾 𝑥′𝑖,𝑃 = 𝑥𝑃. Hence, 𝑥𝑖,𝑃 is a feasible flow satisfying all demands.
e constructed flow is an earliest arrival flow in the single-commodity setting. us, there cannot
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be a multi-commodity flow sending more flow at any time, as such a flow would induce a single-
commodity flow of higher value.
e algorithm computes a path decomposition of an earliest transshipment in 𝒩 . For each of the

commodities some paths are selected to define a path flow 𝑥′, which is possible in polynomial time
in the size of the path decomposition. Finally, an edge flow is built and returned.

FlowDependent Transit Times. An interesting example for evacuation modelling and for traffic
modelling in general is the usage of flow dependent transit times. ey model the fact that the speed
on a path, i. e., a lane of a street or a crowded room, becomes slower when the amount of flow units
gets higher [CFS82]. It is computationally challenging to compute such flows. However, they can
be approximatively modelled in networks in the following way: A single arc with flow dependent
transit time is replaced by several arcs with constant travel time. e capacities of the new arcs are
smaller than the capacity of the original arc which is equal to the sum of travel times. e travel
times of the new arcs are increasing. Such a construction forces flow to use the fast arc first to arrive
quicker. emore flow uses the arc, the more of the longer arcs have to be used, thus approximating
the effect of time depending travel times. e technique was first described by Köhler, Langkau,
and Skutella [KLS02] and is referred to as bow graph. Note that this model may lead to undesired
effects, such that flow using an arc copy with short travel time later may overtake flow units taking
the slower arc copy.
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e two research areas of evacuation simulation and evacuation optimization
have so far only been considered separately: Tools used in practice only pro-
vide simulation algorithms whereas approaches based on network flows over
time have been mostly evaluated in theoretical research only. In the following
we describe a simple conversion framework to generate different network flow
instances from rasterized building geometry automatically. Such rasterized data
can be derived from the cells of a cellular automaton. Apart from that we combine
simulations and optimized network flows, such as earliest arrival transshipments,
to further improve evacuation results. We provide choices for exit assignments
of evacuees within a building to improve their egress time andwe validate the au-
tomatically generated model by comparing it to a test evacuation of a 22-storey
office building.

Publication Remark: e results in Section 3.2 are joint work with Daniel
Dressler, Martin Groß, Timon Kelter, Joscha Kulbatzki, Daniel Plümpe, Gor-
don Schlechter, Melanie Schmidt, Martin Skutella, and Sylvie Temme and have
been published in [DGK+10]. e results of Section 3.3 have been presented
at the 2nd International Conference on Evacuation Management 2012 (without
proceedings).

Copingwith disaster scenarios as well as possible has always been an important task. is includes
answering the question how long it will take until all people residing in an endangered area are safe
and optimizing the evacuation process as well as evacuation management. It was common in the
pre-digital era, that calculation and optimization of egress times have been performed by experts us-
ing a lot of expertise, intuition and experience. Since then, computer simulation models have been
developed and are widely used in practice nowadays. Many of the existing soware tools are com-
mercial, but there also exist free and open source soware tools. Two of these areMATSim [MAT14]
and  [zet14], both of which are well suited for academic usage and research. While MATSim is
specifically designed for large scale1 evacuation situations,  is especially designed for modelling
building evacuations. Existing approaches for building evacuation simulation (and similarly for
nautical vessels and other comparatively small structures) employmicroscopic models. Such models
allow a very detailed modelling of both the structure of the situation and also of the behaviour of
the evacuees. Due to their size, large scale evacuations usually are simulated in amacroscopic setting
which broadly abstracts from individual evacuees and detailed structures.
In parallel to the development of better simulationmodels, combinatorial models to address evac-

uations have evolved. ose models finally led to the theory of network flows over time and espe-
cially earliest arrival flows as described in Chapter 2. Network flow models have been applied to
realistic building evacuation scenarios occasionally [Fra81; CFS82; CHT88; HT01; Tja03]. ese
works employ network flows primarily in simplemodels that largely abstract from the actual building
1By large scale we mean for example the evacuation of a city with thousands of evacuees.
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structure. e results show that network flows can be used to get meaningful results for evacuation
scenarios even if they abstract from many specific individual properties such as different walking
speeds. However, in the mentioned works much effort was put into setting up the network structure
and parameters such as transit times.
So far optimization approaches using network flows (over time) and simulations were developed

in parallel and have not been combined. However, a combination of both approaches can be fruitful
in different ways. While simulation results mainly show expected behaviour (if the model is well
calibrated), we hope to derive decisions to improve egress times from optimization results. If an
evacuation situation is modelled by a dynamic network, simulation results can also be used to auto-
matically compute transit times on arcs. e authors of [CFS82] include a detailed discussion how
the correct transit times and capacities on arcs modelling staircases should be set. Such decisions
can be made automatically without complicated reasoning by using results of pedestrian simulation
if the simulation model is well calibrated. Finally, simulations can be used to compare quality of
network-based decisions.

Exit Distributions. e first and most basic decision in an evacuation scenario that can be influ-
enced is the exit decision. Most existing evacuation plans give predefined evacuation routes, some-
times more than a single one for a given room. Depending on the building structure, exit capacity
and utilization, optimal exit choices may differ. We develop two new strategies based on network
flows to improve egress time due to better exit choices and compare the results by using a cellular
automaton simulation algorithm. We compare this solution the most basic exit assignment based
on shortest paths. To complement the results with another approach we also employ a game theory
based strategy to derive exit assignments.

AutomaticModel Generation. To be useful in practice, e. g., for implementation in existing so-
ware tools, it must be possible to generate appropriate network flow structures for buildings (or
larger scenarios) automatically. e network model should be precise enough to generate meaning-
ful results but should on the other hand not be too detailed. In this case the network sizes increase
significantly if time expansion is applied and it is easy to reach the limits by means of running time
and required memory space even on modern machines. An early model by Chalmet, Francis and
Saunders [CFS82] uses only very few nodes due to this limitations. More detailed models use one
node for each room connected via arcs going through doors. While one node can be appropriate for
some rooms like offices, this introduces inaccuracy for other rooms such as hallways. An approach
to generate finely graded instances based on semantic analysis of the building structure is presented
in [Sch11]. As such an approach requires careful reasoning we propose a method to automatically
generate networks with reasonable level of detail by subdividing the building geometry into rectan-
gular areas of variable size. Our approach works completely automatically and can be based on the
discrete structure of a cellular automaton. Hence, implementations can be easily added to existing
simulation soware based on cellular automata.

Outline of the Chapter. In Section 3.1 we describe our evacuation model which is implemented
in the soware tool . From a given scenario we derive two consistent models for simulation
and optimization that can be generated automatically. We then use the generated network models
to compute exit assignments in Section 3.2. To verify the effectiveness of the different approaches
we compare them on simple test instances representing situations commonly occurring in evacu-
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ations. In Section 3.3 we describe a test evacuation of a 20-storey building that we have observed
and compare the measured data with results from earliest arrival flow in the network model and the
simulation results.

3.1 Modelling of Evacuation Scenarios

In order to show practical relevance of network flow optimization, our approaches are implemented
within the framework provided by the  soware2. In the following we will briefly describe the
main features of the evacuation soware that we use for our experiments. Aer a short discussion of
the underlying evacuationmodel in the soware, we give an introduction into evacuation simulation
and into the process of creating network flowmodels froman evacuation scenario. e approaches in
the remainder of the chapter base on the interfaces provided by  and the network flow algorithms
published in the O N F L3 and are available as plugins.

3.1.1 The ZET evacuation tool

 consists of three main components. A use case typically begins with using the editor to model
an evacuation scenario by providing building structure and specifying positions of evacuees. e
final result can be presented using the visualization component. Version 2 supports visualization
of cellular automata, flows over time in classical networks and Nash flows over time in the queuing
model as described by Koch and Skutella [KS11]. An example for each of the visualization types
is given in Figure 3.1. Figures 3.1a and 3.1b depict the ground floor of a highly populated office
building as cellular automaton and network, respectively. e cellular automaton provides a floor
field visualizing the distance from the exit in different shades of blue and evacuees as cone shaped
objects. e network visualization distinguishes sources, sinks and intermediate nodes by different
colours. Sources are depicted in blue and sinks in green. Flow units using an arc are represented as
blue cylinders around the arcs. As another example Figure 3.18 at the end of this chapter shows a
visualization of the building used for the practice study. In the Nash flow visualization depicted in
Figure 3.1c edges are extended by transparent queues that can be filled by flow units that queue up
behind a bottleneck. Flow units that arrive at the same time at the sink have the same colour. An
elaborate introduction into Nash flows is due to Koch [Koc12].

Simulation and Optimization. However, the last component is most important for our experi-
ments: e algorithmic part contains algorithms for simulations and optimization as well as algo-
rithms converting the evacuation scenario into instances for the other algorithms.  provides a
powerful interface that allows to extend the basic algorithms already included by additional plug-
ins. All algorithms described in the remainder of this chapter are implemented as plugins and are
available from the project page.

Algorithms

Efficient network data structures and algorithms are the core ingredient for a connection of network
flows with simulation to optimize evacuations. e O N F L implements
2http://zet-evakuierung.de/en
3http://onfl.zetool.org
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(a) Cellular automaton model. (b) Network with flow over time. (c) Nash flow over time.

Figure 3.1: Examples of different evacuation models using the visualization of .

many network flow algorithm and aims at two goals: Implemented algorithms should be fast such
that large instances of flow over time problems can be solved. Furthermore, the algorithms should
provide easy to use interfaces to implement further algorithms easily.

Data Structures. e network flow library provides all necessary data structures to implement
both static and dynamic network flow algorithms. e networks can be equipped with additional
parameters that are modelled as functions. is way it is easy to switch from costs in a network to
lengths in a shortest path algorithm. e classic data structures are complemented with dynamic
variants such as time-expanded networks and flows over time, both as path and edge flow. An
interesting variant of time-expanded networks is the increasing time-expanded network which is
introduced in Chapter 4.

BasicAlgorithms. e library provides a basis of classical algorithms togetherwithmany network
flow over time algorithms used in the context of evacuation. We briefly list the most important
ones. Search algorithms such as breadth first search as well as different shortest paths algorithms
have been implemented as basic algorithms. Dijkstra’s algorithm supports non-negative rational
arc lengths [Dij59], for instances with general arc lengths without negative cycles the algorithm by
Moore, Bellman and Ford is implemented [Bel58; For56; Moo59]. Also, not so common algorithms
such as the all pair shortest path algorithm for undirected graphs by Shoshan and Zwick [SZ99] and
an implementation of Yen’s algorithm to find 𝑘 shortest paths (for 𝑘 ∈ ℕ) [MP03] are contained.

Static Network Flows. We implemented several algorithms solving the M F 
T P and the M C F P. For the former problem we implemented
two frameworks, an augmenting path framework for classical algorithms and a push-relabel frame-
work. Within the push-relabel framework we implemented the algorithm provided by Goldberg
with the highest label strategy and the global labelling and gap relabelling heuristics proposed by
Cherkassky and Goldberg [CG97]. e implementation is fast enough to run fast on large instance
such as time-expanded networks. ese implementations are complemented by a column genera-
tion approach linked with Gurobi and an implementation of Fujishige’s maximum flow algorithm
for fractional flows [Fuj03].
To solve the minimization variant we implemented theMM C C A-

 [Kle67], which is a simple strongly polynomial algorithm [GT89] and the S
S P A ..
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Flow over Time Algorithms. e main contribution of the implemented algorithms lies in the
variety of flow over time algorithms that are available. e M F  T P
can be solved in polynomial time by using the M M C C A
on the extended network (see Definition 1.5) or by one of the maximum flow algorithms in the
time-expanded network. e Q  P can be solved using a binary
search framework to calculate the optimal time horizon and then computing a static transshipment
in a time-expanded network. In the same way, the earliest arrival flow algorithm can be solved.
However, these approaches are not feasible in practice because they have very large running time.
We have implemented several algorithms solving the E A F P even

on large instances. e natural approach simply uses the S S P A
P in a time-expanded network. e approach by Tjandra [Tja03] that also augments flow on
shortest paths, but stores flows implicitly, is also implemented. Both of these approaches allow also
instances where arcs are equipped with release dates and deadlines, however the soware does not
take advantage of such features yet. We also implemented value-approximate earliest arrival flows,
for a discussion of those we refer to Chapter 4. e implementations use transit time transformation
based on reduced costs as described in Chapter 5 to minimize the necessary time horizon. e
implementations are fast enough to solve the instances in the remainder of this chapter.

3.1.2 Evacuation Model

e evacuationmodel consists of two parts: e first contains the building geometry with additional
semantic information. e second part of the model consists of the specification of evacuees in the
scenario and their properties.

Building Structure. e building geometry consists of a set of rooms and areas with specific se-
mantics within the rooms. A room 𝑟 is a closed polygon specified by 𝑛 line segments. Rooms are
simple, i. e., they do not self intersect and two rooms 𝑟1 and 𝑟2 do only intersect at the boundary.
us, two rooms may share a single point or some line segments. e border (as sequence of line
segments) is considered to not be passable, however any sequence of line segments shared by two
rooms can be defined to be passable and is then called a door. An evacuation scenariomay consist of
different floors, each of which contains several rooms. Passages between two floors can be realized
by specifying doors between rooms on different floors.
Any roommay contain several areas, each of which itself is again a simple polygon. Areas impose

additional semantics to the part of the room they cover and have therefore additional parameters.
e most important areas are as follows.

• Assignment area. An assignment area specifies a region where evacuees reside at the begin-
ning of the evacuation process. As a parameter, assignment areas store the number of evacuees
they contain, such that these can be distributed randomly within the area.

• Evacuation area. An evacuation area denotes a place that is the target for all evacuees in the
evacuation scenario. It will be typically modelled as a sink in networks. In a simulationmodel
evacuees will be taken out of the simulation process when they reach such an area.

• Stair area. In the model we consider rooms to be flat. Stair areas can be used to model height
differences within the building. Such areas contain two disjoint sequences of line segments on
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their border that we denote as upper- and lower part and the stair is considered to go upwards
from the lower part in direction of the upper part. e stair also has two speed factors as at-
tribute to reflect changes in the movement speed along the stairs for both directions. Notice
that this only makes sense if the lower and upper bounds are of equal orientation and are on
opposite endings of the area. However, intermediate angles can be approximated in the con-
version process by using the scalar product of the angle. In accordance toWeidmann [Wei93]
the walking speed on indoor stairs downwards is scaled by a factor of 0.36 while the speed on
stairs upwards is scaled by a factor of 0.45.

• Inaccessible area. Such an area simply models inaccessible regions that may occur as pillars
or balconies. ey do not need to have a non-zero surface area. If it is zero, they model a
simple barrier.

Evacuees. e actual evacuation scenario consists in positioning evacuees in the building to-
gether with deciding some of their properties. ese properties are for example their age, speed
and knowledge of the given building. e evacuees can be of different types such that it is possible
to model heterogeneous groups of inhabitants in a building. e values of the parameters are dis-
tributed at random according to given distributions and the evacuees are positioned randomly in the
assignment areas. It is possible to have overlapping assignment areas such that different densities
can be modelled.

3.1.3 Evacuation Simulation

Evacuation scenarios in buildings are typically small enough to applymicroscopicmodels, i. e., mod-
els that allow to simulate each evacuee individually. Such models then can be divided further into
discrete and continuous models. In the latter type, the evacuees can move freely within the building
geometry and the trajectories during the evacuation process may be arbitrary (with respect to possi-
ble human movement). On the contrary, discrete models allow evacuees only to obtain positions in
certain discrete positions and accordingly limit possible movement directions. ese scenarios are
oen implemented on a lattice. Continuous models are oen computationally challenging and are
therefore not as widely used as discrete models. One of the most prominent examples of continuous
models is the so-called social forces model proposed by Helbing et al. [HFM+02]. In the remainder
of this chapter we only use discrete lattice-based models.

Cellular Automata

e concept of cellular automata goes back to early work by von Neumann [Neu66]. While working
on the development of self-reproducing robots he described the concept of a lattice-based cellular
automaton.4 e concept turned out to be very powerful and has many applications, one of which is
traffic and pedestrianmodelling. Nagel and Schreckenbergmodified themodel for the case of single-
lane traffic simulation [NS92]. eir model was able to show many of the observable properties
of single-lane traffic. Consequently, the model has been extended further to more complex cases
including several lanes and pedestrian traffic. A limited two dimensional cellular automaton model
4Von Neumann finally found a model of a machine reproducing itself on a grid aer long research on this topic. e
model was then simplified by Conway, who invented the very well known Game of Life cellular automaton [Gar70].
Despite its simplicity, the model turns out to be powerful enough to simulate a universal Turing machine.
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Figure 3.2: A model of a lecture hall within the editor of . e building geometry is visualized
by black lines. Assignment areas are denoted in blue, green represents evacuation areas
and stair areas are depicted in yellow.

for pedestrian motion is due to Blue and Adler [BA99]. e possible movement was further refined
by the introduction of floor fields by Burstedde et al. [BKS+01]. ey also introduced dynamic floor
fields that can be used to generate behaviour such as lane formation and contraflow at bottlenecks,
which before was only possible to generate inmore complexmodels. A detailed overview on cellular
automaton based simulation of pedestrian flows is due to Klüpfel [Klü03].

Evacuation Cellular Automaton. Due to its simplicity and at the same time powerfulness, the
cellular automaton model is a natural candidate to be used in our combination of simulation and
optimization. e concept is easy to implement, fast and well understood. An evacuation cellular
automaton consists of a two dimensional grid𝒞 of cells, aneighbourhood function𝑁 ∶ 𝒞 → 𝒫(𝒞),
a set of exits ℰ , and potentials pot𝑒 ∶ 𝒞 → ℝ≥0 for each exit. A subset of cells 𝒞′ ⊆ 𝒞 is connected,
if for any two cells 𝑐1, 𝑐𝑛 ∈ 𝒞′ there exists a sequence 𝑐1, 𝑐2,… , 𝑐𝑛 with 𝑐𝑖 ∈ 𝑁(𝑐𝑖−1) for 𝑖 = 2, 3,… , 𝑛.
An exit 𝑒 ∈ ℰ is a connected subset 𝑒 ⊆ 𝐶 of the cells such that two exits are disjoint, i. e., 𝑒1 ∩ 𝑒2 = ∅
for two exits 𝑒1 and 𝑒2. For any exit 𝑒 the according potential defines the distance of any cell to the
exit satisfying pot𝑒(𝑐) = 0 if and only if 𝑐 ∈ 𝑒. We shortly write 𝐶𝐴 = (𝒞, 𝑁, ℰ , pot𝑒) for a cellular
automaton.
For a given evacuation scenario we are given a set ℐ = {1, 2,… , 𝑛} of evacuees. e state 𝑠 of

a cellular automaton then is defined by an injective mapping 𝑀𝑠 ∶ 𝐼 → 𝒞 of the individuals to
positions and some state dependent properties 𝑝(𝑖) of a finite state space. For example, the state
covers the information if the individual is safe, its current speed or the destination exit.
e simulation is performed by the evacuation cellular automaton algorithm that starts with the

initial state 𝑠0 and changes the state in each iteration until the evacuation is complete. An evacuation
simulation is considered complete if all evacuees within the simulation are safe (or otherwise taken
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out of the simulation). For any evacuee 𝑖 on cell 𝑐, the algorithm applies actions defined by a given
rule set ℛ taking into account the evacuees state 𝑝𝑠(𝑖) and computes a new state 𝑠′. A valid rule set
has to contain amovement rule that changes the position𝑀𝑠(𝑖) of evacuee 𝑖 based on some potentialpot𝑒. e general simulation framework is given in Algorithm 3.1.

Algorithm 3.1: General Evacuation Cellular Automaton Algorithm
Input: Cellular automaton 𝐶𝐴 = (𝒞, 𝑁, ℰ , pot𝑒), evacuees ℐ, and a rule set ℛ, and an initial

state 𝑠0.
Output: A sequence of states 𝑠0, 𝑠1,… , 𝑠𝑘.

1. Set 𝑡 ≔ 0.
2. For every evacuee 𝑖 ∈ ℐ:

For every rule 𝑟 ∈ ℛ:
- Perform actions specified by 𝑟 on cell𝑀𝑠𝑖(𝑖) taking into account neigh-
bour cells𝑁󶀡𝑀𝑠𝑖(𝑖)󶀱 and change state of the cellular automaton to 𝑠′.

3. Update the state 𝑠𝑡+1 ≔ 𝑠′ to the current state.
4. If there are still evacuees active in the cellular automaton, set 𝑡 ≔ 𝑡+1 and continue

with step 2.

Notice that the algorithmmay not terminate, if the rule set is not defined carefully. Also, the rules
are executed one aer another for the evacuees within the simulation. is may lead to problems, if
the order in which the evacuees are iterated over in step 2 is badly chosen. e ideal concept would
be a parallel execution, i. e., the rule set is applied for all evacuees in parallel. is best resembles
reality, in which people also do not move one aer another. However, such a procedure can create
collisions if two evacuees shallmove to the same cell. If such a parallel update is desired, an additional
resolving step can be inserted aer step 2. For a detailed introduction to parallel updates see for
example [Klü03]. If the rules are applied to evacuees sequentially, the order plays an important role.
e twoworst case situation is a line of evacuees standing on consecutive cells. If the rules are applied
for the evacuees from the first to the last evacuee (with respect to their desired walking direction),
they can all walk at the same time in one step, thus resembling marching soldiers. e opposite
happens if the order is reversed. en in the first step only the first evacuee can move, while the
others have to wait. It is therefore good practice to shuffle the order of the evacuees randomly before
each iteration.

Cell Shapes and Neighbourhoods. e lattice of the cellular automaton should fill the two di-
mensional Euclidean space, thus allowing triangles, squares5, and hexagons as possible shapes. e
triangle is not very suitable, because it allows only few direct neighbours and its shape does not
fit well to human evacuees. e square and hexagon have different advantages and disadvantages

5In fact, every parallelogram can be used. However, simulation is more accurate if the possible walking directions are
distributed equally and the distance differences to neighbour cells are minimized. erefore only squares and rectan-
gular cells serve as quadrilateral shapes.
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(a) Triangle pattern. (b) Hexagonal tiles. (c) Squares.

Figure 3.3: Possible cell shapes of a cellular automaton.

and are both used in practice. Hexagonal cells have equal distance to the six neighbours and fit the
shape of human beings reasonably well. However, on buildings with two rectangular main axes it
is not possible for evacuees in the simulation to walk straight in both of the directions. In the case
of squares, allowing movement along the four direction of the horizontal and vertical axis is a very
strong limitation. Allowing diagonal movement, too, however elongates the distances to four of the
eight neighbour cells by a factor of √2. is neighbourhood is calledMoore neighbourhood. Fig-
ure 3.4 depicts some common neighbourhoods. e cellular automaton implemented within 
uses square cells with the Moore neighbourhood.

Movement. Wewill briefly describe howmovement of evacuees is realized. In any step an evacuee
canmove from a cell 𝑐 to one of its neighbour cells𝑁(𝑐). e cell change is executed immediately. To
realize differentwalking speeds and to compensate the longerwalking distance in diagonal directions
of the Moore neighbourhood, the evacuees make a compulsory break aer each step. is break is
called waiting period. To derive the directions of movements we employ the potentials. We assume
that each evacuee follows a potential pot𝑒 for some exit 𝑒. e potential assigns a real value describing
the approximate distance to the exit fo each cell. e direction (i. e., which of the neighbour cells is
used) is selected based on the potential difference. A neighboured cell 𝑐′ ∈ 𝑁(𝑐) is selected with
probability𝑝(𝑐′) ≔ 𝑒pot𝑒(𝑐′)−pot𝑒(𝑐)𝐶 ,
where 𝐶 ≔ 󵠈𝑐′∈𝑁(𝑐) 𝑒pot(𝑐′)−pot(𝑐)
is a normalization constant. us, an individual walks in direction of decreasing potential values
but can deviate from the optimal path with some probability. Notice that in the above discussion we
assumed that all neighbour cells are free. If a cell already contains an evacuee, the cell it stands upon
is simply excluded from the neighbourhood.

Potential Values. e potential values for a potential according to exit 𝑒 using the Moore neigh-
bourhood are computed as follows. e potential is initialized with pot𝑒(𝑐) = 0 for exit cells 𝑐 ∈ ℰ
and with pot𝑒(𝑐) = ∞ for all other cells 𝑐 ∈ 𝐶 \ 𝑒. e potential values of the other cells is then
computed in a breadth first search manner. First all cells 𝑒 ∈ 𝑒 are inserted into a queue. en,
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(a) Von Neumann
neighbourhood.

(b) Extended von Neumann
neighbourhood.

(c) Moore neighbour-
hood.

(d) Neighbourhood for
hexagons.

Figure 3.4: Common neighbourhoods in design of cellular automata. If we denote the grey cell with𝑐, the neighbourhood𝑁(𝑐) are the blue cells.
until the queue is empty, a cell 𝑐 is extracted and for all cells 𝑐′ ∈ 𝑁(𝑐) the potential is updated
to min{pot𝑒(𝑐′), pot𝑒(𝑐) + dist(𝑐, 𝑐′)} where dist equals to 1 if the cells are horizontally or vertically
aligned, and√2 else. For hexagonal cells all neighbour cells have a distance of one.
Swapping. A special case occurs, if two persons want to switch positions. e simulation algo-
rithm implemented in  can detect such situations and allows the two evacuees to swap positions.
As the space for the swap is very limited, the swap will lead to a longer waiting period before the
next move can happen. Swapping is necessary for some of the experiments we conduct in the next
section.

3.1.4 Deriving Network Flow Models from an Evacuation Scenario

e first step in any sort of simulation or optimization is the transfer of the building geometry into
a model that is digestible by the respective algorithm. e process should work fully automatically
without manual intervention and ideally creates “similar” models for different methods such that
the results are comparable. We therefore decide to use a raster of 40cm × 40cm square cells for the
cellular automaton. is value allows for a maximum density of 6.25 persons per square meter and
seems to be quite reasonable in most cases according to [Wei93]. e building is rasterized so that it
can be represented by the cells and therefore the model is discrete in space. Based on this discretiza-
tion we also define a network flowmodel. For the conversion we assume that all vertices of polygons
are positioned on a grid and have coordinates that are multiples of the cell size. Furthermore we
assume that all line segments are either vertical or horizontal, i. e., either the 𝑥- or 𝑦-coordinates of
their respective endpoints are equal. Such geometries allow native conversion into cellular automa-
tons. For the conversion into a network flowmodel we describe a variant that directly converts such
a rasterized geometry into a network flow model.

Rasterization. If the building geometry does not suffice the above assumptions, a rasterization
preprocessing step is necessary. First, the geometry has to be rotated such that it best fits into the
requirement of having horizontal and vertical lines only. is can be done efficiently using principal
component analysis. For details see specific literature, for example [Jol02]. In a second step all
polygon coordinates have to be moved to the closest multiple of the underlying grid size. In order
to optimize results beforehand all points may be translated. Assume 𝐶 is the grid size and we have
a total amount of 𝑛 points (𝑥𝑖, 𝑦𝑖) with positive coordinates for 𝑖 ∈ {1, 2,… , 𝑛}. en we want to
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minimize the sum of the distances ∑𝑛𝑖=1𝐶 ⋅ 󶀡󶃁𝑥𝑖𝐶 󶃑 + 󶃁𝑦𝑖𝐶 󶃑󶀱. Observe that by shiing all points in one
direction we improve the sum for 𝑘 points and worsens the sum for the remaining 𝑛 − 𝑘 points if
the position was not optimal. Aer the points lie on the given raster we have to rasterize also lines
that are not vertically or horizontally aligned. is can be done for example by replacing them with
a sequence of steps, e. g., by using Bresenham’s algorithm [Bre65].

Creating a Cellular Automaton Model

e rasterization naturally defines a cellular automaton based on square cells. Let an evacuation
scenario with a set of 𝑘 rooms {𝑟1, 𝑟2,… , 𝑟𝑘} be given. e rooms are rasterized with a grid size 𝐶
using the technique above, i. e., all line segments of the polygons are axis aligned and the coordinates
are multiples of 𝐶. Let 𝑐𝑖𝑗 be a square cell defined by𝑐𝑖𝑗 ≔ 󶁁(𝑥, 𝑦) ∈ ℝ2 󶙡 𝐶 ⋅ 𝑖 ≤ 𝑥 ≤ 𝐶 ⋅ (𝑖 + 1), 𝐶 ⋅ 𝑗 ≤ 𝑦 ≤ 𝐶 ⋅ (𝑗 + 1)󶁑.
We then define the set of cells as

𝒞 ≔ 󶁂𝑐𝑖𝑗 󶙢 ∃1 ≤ ℓ ≤ 𝑘 ∶ 𝑐𝑖𝑗 lies completely within 𝑟ℓ and is not inacessible󶁒.
e neighbour cells𝑁(𝑐𝑖𝑗) ≔ 󶁂𝑐𝑖−1𝑗−1, 𝑐𝑖𝑗−1, 𝑐𝑖+1𝑗−1, 𝑐𝑖−1𝑗, 𝑐𝑖𝑗, 𝑐𝑖+1𝑗, 𝑐𝑖−1𝑗+1, 𝑐𝑖𝑗+1, 𝑐𝑖+1𝑗+1󶁒 ∩ 𝒞
of cell 𝑐𝑖𝑗 is theMoore neighbourhood consisting of the 8 surrounding cells (if they exist) and the cell
itself. We additionally include the original cell to allow an evacuee not to move at all if all neighbour
cells are already occupied.
For each of the exit areas defined in the evacuation scenario we add a potential to the cellular au-

tomaton. Evacuees are distributed randomly in the regions defined by the assignment areas. In order
to keep the simulation results comparable with the network flow output, each person is assigned the
same speed. Reaction times, movement speeds, and exit selection are controlled by according rules.
e rules also make sure that the walking speed is adjusted on stairs by the factors specified in the
model.

Creating a Network FlowModel

Modelling networks for evacuation scenarios almost always comprises some kind of balancing be-
tween level of detail and accuracy of the results. We want to achieve the following goals in our
automatic conversion process. First of all, any resulting optimal earliest arrival flow should not take
longer than an actual evacuation. Ideally, we want to get most accurate results out of a network flow
model. If some inaccuracy is introduced, at least we do not want to over estimate the evacuation time
because an earliest arrival flow is the best possible outcome and we expect it to be a lower bound on
the actual evacuation time. Second, the computation should not take too long, as the process should
be included in the workflow of existing evacuation tools.
e first network flow models for evacuation modelling are due to Chalmet, Francis and Saun-

ders [CFS82]. ey present a rather rough model for an eleven-floor building and show how dy-
namic network flows can be used to detect bottlenecks within an evacuation of that building. ey
use three to four nodes per floor in addition to a small number of temporary nodes. Capacities of
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nodes and arcs are computed manually. Based on this model we formalize the first very simple net-
work flow model for building evacuation. Examples of the rasterization approaches we consider are
depicted in Figure 3.5. Additional examples of the rectangle given in Figure 3.10 and Figure 3.20.

SimpleModelling. Let a building geometry with 𝑛 rooms 𝑅 = {𝑟1, 𝑟2,… , 𝑟𝑛} and 𝑘 exits be given.
In a simple network model, the set of vertices 𝑉 ≔ 𝑅⊍ {𝑡1,… , 𝑡𝑘} consists of a node for each room
and a sink 𝑡𝑖 for each of the 𝑘 exits. Any room that contains evacuees will become a source. We
create an edge (𝑟𝑖, 𝑟𝑗) for each door that connects rooms 𝑟𝑖 and 𝑟𝑗 and also an edge (𝑟𝑖, 𝑡𝑗) if exit 𝑗 is
present in room 𝑟𝑖. e capacities of the arcs are estimated by the capacities of the door width and
the node capacities by the area of the room they represent. To have a more realistic model we may
add additional nodes and arcs for stairways and scale their capacity, as proposed by Chalmet, Francis
and Saunders [CFS82].

Raster-based NetworkModels. For our purposes we use a more detailed approach that is based
on the given rasterized structure for the cell size 40cm × 40cm. Generally, each cell can be repre-
sented by a node which leads to very large models. To generate more tractably sized instances we
combine several (rectangular) clusters of cells together to one node. Assume we are given the cells
of the cellular automaton 𝒞 as defined above. We create one vertex for each of the cells and use𝑉 ≔ 󶁂𝑣𝑖𝑗 | 𝑐𝑖𝑗 ∈ 𝒞󶁒 as the set of vertices. We connect nodes that that lie next to each other vertically
or horizontally and therefore define the set of edges to be𝐸 ≔ 󶁂(𝑣𝑖𝑗, 𝑣𝑘ℓ) 󶙢 𝑣𝑖𝑗, 𝑣𝑘𝑙 ∈ 𝑉, |𝑖 − 𝑘| = 1 and 𝑗 = ℓ, or 𝑖 = 𝑘 and |𝑗 − ℓ| = 1󶁒.
us, we get a very dense network in which any vertex has at most 4 adjacent vertices that directly
corresponds to the cellular automaton. It allows detailed flow computations with the drawback of
huge instance sizes which makes the model impracticable in practice. We do not add diagonal arcs
because it reduces the accuracy. Each cell should model one evacuee standing on it, however more
arcs on the same space increases density modelled by a flow over time. Furthermore the ability to
model arc lengths of 1 and ≈ 1.4 is only possible with smaller step sizes leading to higher throughput.

Rectangle Raster. We decrease density by aggregating some cells to rectangular areas and use
one node for each area. We assume that the nodes are positioned in the centre of their associated
rectangle and nodes are connected if the respective rectangles meet at their boundary. Because evac-
uees will not take detours via the centre of a rectangle in reality we want to avoid that the rectangles
deviate too far from being square. More formally, a rectangle with width 𝑤 and height ℎ should
satisfy |𝑤 − ℎ| ≤ 1.

(a) Simple modelling. (b) Raster-based networkmodel. (c) Rectangle raster.

Figure 3.5: ree possibilities to model a room with a single exit, two evacuees and an obstacle as a
network flow model.
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OptimalRectanglePositioning. equestion of how to place the rectangles within the area gives
rise to an interesting research question of its own. e problem of finding a minimum number of
rectangles covering an orthogonal polygon is already 𝒩𝒫-hard, even if the rectangles are allowed to
overlap. However, these problems tend to behave well in the sense that it is easy to compute solutions
with small gaps to the optimum using primal dual approximation algorithms [HL07]. We approach
the problem using a simple heuristic. We start in the upper le corner of the orthogonal polygon
and try to extend the first free cell by a rectangle that is as big as possible (and still obeys the above
constraint regarding its size). We then iterate through all fields of the polygon and skip fields that
are already covered by a rectangle. More formally, the following algorithm 3.2 describes the process.
Notice that the actual implementation within the soware tool  is more sophisticated and takes
areas with different semantics such as assignment areas and stairs into account. e former contain
evacuees in the beginning and should cover a well defined region to place sources while the latter
changes walking speed which leads to longer transit times on arcs.

Algorithm 3.2: Rectangular network
Input: Raster nodes 𝑉 = {𝑣11,… , 𝑣𝑚𝑛} belonging to one room 𝑟 of the building geometry.

Output: Partitioning of the geometry into rectangular areas belonging to nodes.
Initialize𝑀𝑖𝑗 ≔ 0 for all 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛.
For 𝑖 ∈ {1, 2,… ,𝑚}:

For 𝑗 ∈ {1, 2,… , 𝑛}:
- If𝑀𝑖𝑗 ≠ 0 continue with the next iteration for 𝑗 + 1.
- Search an𝑛 ∈ ℕ0maximally such that𝑀𝑖+𝑘,𝑗+ℓ = 0 for 𝑘, ℓ ∈ {0, 1,… , 𝑛}.
- If the 𝑛 × 𝑛 square can be extended to the right such that𝑀𝑖+𝑘,𝑗+𝑛+1 = 0
for 𝑘 ∈ {0, 1,… , 𝑛 + 1} set 𝑤 ≔ 𝑛 + 1, other wise set 𝑤 ≔ 𝑛.

- If the 𝑛 × 𝑛 square can be extended below such that𝑀𝑖+𝑛+1,𝑗+𝑘 = 0 for𝑘 ∈ {0, 1,… , 𝑛 + 1} set ℎ ≔ 𝑛 + 1, other wise set ℎ ≔ 𝑛.
- Create node 𝑣 and assign the rectangle from 󶀡𝐶 ⋅ (𝑖 − 1), 𝐶 ⋅ (𝑗 − 1)󶀱 to󶀡𝐶 ⋅ (𝑖 + ℎ − 1), 𝐶 ⋅ (𝑗 + 𝑤 − 1)󶀱 as area(𝑣).
- Set𝑀𝑖+𝑘,𝑗+ℓ ≔ 1 for 𝑘 ∈ {0, 1,… , ℎ}, ℓ ∈ {0, 1,… ,𝑤} and |𝑤 − ℎ| ≤ 1.

Transit Times. Nodes are placed in the centre of their respective rectangles and connected via
an arc if the rectangles meet at the boundary. e transit times are set to the rounded euclidean
distances. e walking speed changes on stairs (depending of the direction). We scale the transit
times by the above mentioned factors of 0.36 and 0.45 for downward and upward arcs, respectively.
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Reaction Times. e evacuation scenario allows to define a reaction time for persons. In our
network flowmodel this time is modelled by the introduction of an additional single source node for
each flow unit. is node is connected with the original source with a single arc having a transit time
such that the flowunit arrives at the starting node not earlier as the specified reaction time. e travel
time of each source-sink path is increased by the time equivalent to the reaction time of the evacuee
corresponding to the flow unit in the source. Due to increased path length it is possiblethat the time
horizon increases drastically. However, we can neglect such effects on the path length because due to
the R C T T C A 5.1 described in Section 5.3, we can
assume without loss of generality that the shortest flow carrying path has a travel time of 0 and that
the time horizon is decreased accordingly. us the influence on the running time due to modelling
reaction times in a network flow model can be kept small if reaction times are chosen reasonably.

3.2 Exit Assignments

e easiest possibility to influence the course of an evacuation is to assign exits to the evacuees and
let them choose their paths freely. e idea behind the approach is, that evacuees typically will not
divide in optimal way but rather behave ineffectively. We expect most evacuees in real life scenarios
decide to take the exit they were coming from or just follow some other evacuees. It is also likely
that they choose the shortest exit. In this section we define exit assignments for evacuees and analyse
changes in the egress time with simulations in simple scenarios.
Definition 3.1 (Exit assignment). Let ℰ be the set of exits of an evacuation model and ℐ be the set
of evacuees. An exit assignment is a function 𝑎 ∶ ℐ → ℰ that assigns the exit each evacuee should
take in an evacuation scenario. ◁
Shortest Paths Assignments. A natural variant to assign evacuees to exits is to assign each of
them to a nearest exit.We can define a nearest exit assignment in two possible ways: If a network
flowmodel is given, shortest paths in the network can be used to assign sources to sinks; in a cellular
automaton the potential values also define a nearest exit for each cell. Shortest paths assignments𝑎𝑆𝑃 based on a rough network flow model where one node may cover a larger area can be imprecise
because all evacuees in one node have to take the same exit. We give the algorithm to compute net-
work shortest paths exit assignments as introductory example but use cellular automaton potentials
in the final experiments. In Section 3.2.2 we briefly compare the two approaches.
Algorithm 3.3: Shortest Paths Exit Assignments
Input: Network Flow Model 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏 ≥ 0, 𝑆+, 𝑆−).
Output: Shortest Paths Exit Assignment 𝑎𝑆𝑃.

1. For each source in 𝒩 :
a) Compute a shortest path tree.
b) Let 𝑡 ∈ 𝑆− be the sink that minimizes dist(𝑠, 𝑡).
c) For each evacuee 𝑖 belonging to 𝑠, set 𝑎𝑆𝑃(𝑖) ≔ 𝑡.

2. Return 𝑎𝑆𝑃.
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Minimum Cost Flow Assignments. e minimum cost flow assignment 𝑎𝑀𝐶 uses a more ad-
vanced method than simply using shortest paths but still works on small static networks. e idea
is that we only want to assign evacuees to exits ignoring the actual network structure and therefore
use a bipartite graph consisting only of the sources and sinks of the network model.
We define supplies for the sinks that distribute the evacuees among the exits proportionally to

the estimated capacity. By capacity we think of the amount of flow that can reach an exit in each
step. e relative capacity of the exits (compared to each other) is computed by maximum flow
computations in the static network. We also have to define costs for the arcs in the bipartite graph.
An arc connecting nodes 𝑠 ∈ 𝑆+ and 𝑡 ∈ 𝑆− should represent the time necessary for a flow unit to
travel from the given source to the given exit. We therefore use the shortest path distances as costs
and an infinite capacity.

Algorithm 3.4:Min Cost Flow Exit Assignments
Input: Network Flow Model 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−).
Output: Exit Assignment 𝑎𝑀𝐶.

1. Compute shortest paths distances dist(𝑠, 𝑡) between all source-sink pairs (𝑠, 𝑡) ∈𝑆+ × 𝑆−.
2. For each sink assigned to an exit 𝑡𝑒 compute cap(𝑡𝑒) ≔ 󶙡𝑓󶙡 for a maximum flow 𝑓

in the network 𝒩 = (𝐺, 𝑢, 𝑆+, 𝑡𝑒).
3. Define a bipartite graph 𝐺′ ≔ (𝑉′, 𝐸′) with nodes 𝑉′ ≔ 𝑆+ ⊍ 𝑆− and arcs 𝐸′ ≔{(𝑠, 𝑡) | 𝑠 ∈ 𝑆+, 𝑡 ∈ 𝑆−}. Define costs 𝑐′ ∶ 𝐸′ → ℕ0, capacities 𝑢′ ∶ 𝐸′ → ℕ0, and

balances 𝑏′ ∶ 𝑉′ → ℤ by setting𝑐′(𝑒) ≔ dist(𝑠, 𝑡),𝑢′(𝑒) ≔ ∞,
for all arcs 𝑒 = (𝑠, 𝑡) ∈ 𝐸′ and

𝑏′(𝑣) ≔ 󶀂󶀊󶀚𝑏(𝑣) if 𝑣 ∈ 𝑆+,cap(𝑣)∑𝑤∈𝑆− cap(𝑤)󶀡∑𝑤∈𝑆+ 𝑏(𝑤)󶀱, else.
for all nodes 𝑣 ∈ 𝑉′.

4. Compute a minimum cost transshipment 𝑓 on 𝐺′.
5. Extract the exit assignment from the computed transshipment.

First, we calculate a maximum flow for every sink in the network to estimate the capacities of the
sinks. e network for the following minimum cost computation uses these estimated capacities
for the sinks and has infinite capacity on all edges. More precisely, our procedure is as follows: Let(𝐺 = (𝑉, 𝐴), 𝑢, 𝜏, 𝑏) be a network, with 𝑆+ and 𝑆− denoting the sources and sinks, respectively, as
defined by the balance function. e following Algorithm 3.4 describes the procedure to generate
an exit assignment by minimum cost capacities.
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Earliest Arrival Assignments. Following our discussion in Chapter 2, exit assignments based
on earliest arrival flows seem to be a rather good choice. We denote the exit assignment that as-
signs each evacuee the exit that it would reach in an earliest arrival transshipment by 𝑎𝐸𝐴𝑇. In the
multi-commodity case earliest arrival transshipments do not necessarily exist. However, due to the
definition based on an actual earliest arrival transshipment 𝑎𝐸𝐴𝑇 still allows for an earliest arrival
flow. While an assignment based on earliest arrival flows should be optimal in the evacuation, this
may not be the case in practice. e pattern is only achieved by a flow that follows the correct paths
through the network. If evacuees do not follow these optimal paths, they may arrive with delay.

Algorithm 3.5: Earliest Arrival Exit Assignments
Input: Network Flow Model 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏 ≥ 0, 𝑆+, 𝑆−).
Output: Earliest Arrival Exit Assignment 𝑎𝐸𝐴𝑇.

1. Compute an integral earliest arrival transshipment in 𝒩 with Algorithm 2.3.

2. Let 𝑥 be a path decomposition of the earliest arrival transshipment

3. For each path 𝑃 with positive flow 𝑥(𝑃) > 0:
a) Let (𝑠,… , 𝑡, 𝑡∗) be the nodes visited by 𝑃, i. e., it starts at a source 𝑠 and uses

a sink 𝑡 as last but one node before reaching the super sink 𝑡∗.
b) Assign exit 𝑡 to 𝑥(𝑃) evacuees belonging to the area of 𝑠.

Best Response Assignments. Other concepts than network flow models can be used to define
exit assignments, too. Ehtamo et al. [EHH+] propose a game theoretic approach that is based on
response functions. ey model the exit selection as an 𝑁-player game where the strategy of the
evacuees consists of choosing an exit. e evacuees try to choose the strategy that gives the largest
payoff value in response to the strategies chosen by all other evacuees. e strategy selection is iter-
ated several times and converges to a Nash equilibrium. For more details on general game theoretic
concepts and the existence and computation of Nash equilibria see for example the text books by
Nisan et al. [NRT+07], Osborne [Osb04] or Fudenberg and Tirole [FT91].
Ehtamo et al. [EHH+] give a basic instruction on how to compute the payoff value. We concretize

the calculation by defining the following formula. e payoff value of a selected exit ideally should be
equal to the evacuation time, which consists of a weighted sum of the moving time and the queueing
time at the exit. Any evacuee tries to minimize the evacuation time and thus minimizes its payoff.
As we do not have the exact numbers, we estimate both, the moving time and the queuing time to
compute the estimated evacuation time. For the moving time we take pot𝑒(𝑐(𝑖))speed(𝑖) , where 𝑐(𝑖) denotes
the cell on which evacuee 𝑖 is standing and speed(𝑖) refers to its speed. us pot𝑒(𝑐(𝑖)) denotes the
distance of an evacuee 𝑖 from exit 𝑒. Notice that the estimate is rather rough as the speed may not
be obtained in crowded areas. To estimate the queuing time we use 𝑞𝑎(𝑖) as the number of evacuees
that are “in front” of a given evacuee 𝑖 following the exit assignment 𝑎. Using cap(𝑒) as the estimated
capacity of an exit per time (as already used for minimum cost flow exit assignments), we define the
estimated queuing time to be 𝑞𝑎(𝑖)cap(𝑒) . For our experiments, weweight both parts of the evacuation time
equally strong because it is not immediately clear which of the values should be preferred. When the
method is applied for any evacuation scenario in practice, the values may be adjusted to the given
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situation. It might very well be the case that the area around exits is safer and thus queuing at exits
may be preferred over walking through an hazardous building. On the other hand big crowds at exits
create the risk of panic if people wait too long. is discussion leads to the following Algorithm 3.6
for computing an exit assignment based on best responses.
Let𝐾 be the set of exits and 𝑘 ∈ 𝐾 be one of the exits. Let the distance (in means of floor potential

value) for evacuee 𝑖 to 𝑘 be denoted by 𝑑𝑘(𝑖), the number of evacuees heading to exit 𝑘 by 𝑞𝑘, the
capacity of the exit by 𝑐𝑘 and 𝑣𝑚𝑎𝑥 the speed of the evacuees. en the payoff for the selected exit 𝑘
for evacuee 𝑖 is defined as𝑝(𝑘, 𝑖) ≔ 12󶀥𝑞𝑘𝑐𝑘 + 𝑑𝑘(𝑖)𝑣𝑚𝑎𝑥󶀵
Each evacuee chooses the exit 𝑘∗(𝑖) with 𝑝(𝑘∗, 𝑖) = min󶁁𝑝(𝑘, 𝑖) | 𝑘 ∈ 𝐾󶁑 that minimizes the value

for 𝑝(𝑘, 𝑖) and the process is iterated. It turns out that the process converges very fast, aer very few
iterations a Nash equilibrium is reached.

Algorithm 3.6: Best Response Exit Assignments
Input: Building Model.

Output: Exit Assignment 𝑎𝐵𝑅.
1. Initiate exit assignment 𝑎𝐵𝑅 arbitrarily, e. g., randomly or by setting 𝑎(𝑖)𝐵𝑅 ≔ 𝑒

such that pot𝑒(𝑐(𝑖)) is minimal for all exits 𝑒 ∈ ℰ .
2. For all evacuees 𝑖 ∈ ℐ: Let 𝑞𝑎𝐵𝑅(𝑖) ≔ |󶁁𝑖′ ∈ ℐ | 𝑎𝐵𝑅(𝑖) = 𝑎𝐵𝑅(𝑖′)󶁑|. Set𝑎′𝐵𝑅(𝑖) ≔ argmin𝑒∈ℰ 󶁅12󶀥𝑞𝑎𝐵𝑅(𝑖)cap(𝑒) + pot𝑒(𝑖)speed(𝑖)󶀵󶁕.
3. If 𝑎′𝐵𝑅(𝑖) = 𝑎𝐵𝑅(𝑖) for all evacuees 𝑖 ∈ ℐ, return 𝑎′𝐵𝑅, else set 𝑎𝐵𝑅 ≔ 𝑎′𝐵𝑅 and

continue with step 2.

3.2.1 Experiment Scenarios

We compared the four propositions for exit assignments described above on a set of instances that
can be problematic. Each instance focuses on a situation that can occur within a building. ey
are designed in such a way that they are as simple as possible and still cause the problem to avoid
introduction of additional dependencies. All instances basically consist of a long stretched room
with exits at either of the short sides. e common concept is that all evacuees are crowded in a
single area somewhere in between the exits. Any optimal evacuation strategy just has to assign an
optimumproportion of the evacuees to both sides. For each of the scenarios there is a corresponding
figure with exits in green and an assignment area in blue.

Overestimation of Exit Capacities. e first instance depicted in Figure 3.6 highlights the influ-
ence of exit capacities on the evacuation. e crowd of evacuees is positioned exactly in the middle
between the two exits, one of which is very wide while the other is rather small. An optimum evac-
uation plan would send more than half of the evacuees to the larger exit.
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Figure 3.6: Test scenario with two exits (in green) of different capacity. e evacuees reside exactly
in in between the exits in the blue area.

Figure 3.7: Two exits at very different distances. e exit on the le is much closer to the evacuees.

Exit Distances. Not only capacities, but also different distances of exits impose difficulties on the
exit selection. e scenario in Figure 3.7 addresses this situation. Both exits are very wide and have
the same capacity which is not limiting outflow, but all evacuees are very near to one of the exits. An
algorithm creating good exit assignments should send all evacuees to the near exit. We expect that
the scenario will be difficult for minimum cost exit assignments, because Algorithm 3.4 divides the
evacuees proportionally.

Obstacles. Earliest arrival transshipments should be able to compute the optimal assignment in
general. However, the transshipment takes into account the different routes through the network.
is information is lost if evacuees are only given the information which exit to take. e instance
depicted in Figure 3.8 is designed to test this phenomenon by using some pillars as obstacles. On
one side the pillar forces all evacuees to take a long way, on the other side there is a narrow path
through the obstacles. e exit behind the narrow path is closer to the evacuees, such that a good
exit assignment should balance between sending more people on the short way and thereby risking
a jam and sending more evacuees to the distant exit.

Shared Bottlenecks. As last scenario we consider shared bottlenecks as depicted in Figure 3.9.
Again, the evacuees are located in themiddle but now each side has two exits. On the le side each of
the exits has a very limited capacity while on the right side there is a bottleneck that limits the inflow
into both of the exits. e instance models a situation, where aer an emergency staircase the avail-
able routes split into two actual exits. is scenario should be very well suited for exit assignments
based on earliest arrival flows, as the optimal flow sends only few people in either of the exits sharing
a common bottleneck. Approaches based only on the capacity of the exit have problems if they do
not detect that the two exits on the right side share a common bottleneck.
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Figure 3.8: Two exits with different kinds of obstacles in front of them. e pillars on the right side
allow for a narrow path such that evacuees will not take the detour around the obstacles.

Figure 3.9: Four exits on two opposite sides. e exits on the le side each have a unique entry while
the two exits on the right side share a single bottleneck.

3.2.2 Computational Study

All of the exit assignments are implemented using the network flow algorithms provided by 
and are made available as plugins to the soware tool . For the above scenarios we computed the
optimal assignment, performed 200 simulation runs and measured the arrival curve for each run.
For the simulationwewant to exclude asmany influences as possible and thus use simple rules for the
simulation. Basically, any evacuee moves with the same speed and gets a fixed potential assigned for
the exit the evacuee is supposed to go to. However, the fixed assignment to an exit creates blockage
in front of the exits for the scenario comprising shared bottlenecks because the two exits are very
near to each other. To avoid the blockages it is crucial that the movement rules allow the evacuees
to swap as described above in Section 3.1.2.

Comparison of Simulation Runs. For all simulation runs of a given scenario we compute the
average arrival curves and compare them with each other. e comparison based on the average
arrival curve is justified, because the variance in the simulation runs is not very big in most cases.
In all of our experiments the average arrival curve and the median arrival curve lie remarkably near
together. Also, the significant area containing 90% of all arrival curves is very narrow. e scenario
with the widest significant area is the shared bottlenecks scenario which has a higher variability
due to the mentioned blockage. Figure 3.11 depicts maximum, minimum, average, median and
significant areas of this worst-case scenario (cf. Figure 3.9) and the scenario with exits of different
capacity (cf. Figure 3.6), which we use as example for a common scenario.

Assignmentof Potentials. Whenwe have computed an exit assignmentwe have tomap the evac-
uees in the evacuation that belong to a source to actual positions in the rectangular area correspond-
ing to the source. Placing evacuees arbitrarily in nodes covering a big area may induce the following
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Figure 3.10: An example rasterization of a long corridorwith two exits on either sides. e corridor is
the network flowmodel version of the instance used for overestimation of exit capacities
in Section 3.2 depicted in Figure 3.6.

problem (especially on our test instances that are long but narrow): If half of the evacuees assigned
to a source should head right and the other half heads le, it is wise to place the individuals heading
le in the le half of the node area and vice versa for the right half.
Shortest path exit assignments computed by a network induce another problem. In contrast to

network flows that specify a target sink for each flow units, a shortest path defines a single sink for
all evacuees starting in a sink. As an example consider the generated graph for the first scenario
evaluating exits with different capacities. e generated graph for this scenario is depicted in Fig-
ure 3.10. It contains three sources, one of which covers a very large area containing the majority of
evacuees. It is easy to see that a fraction of the evacuees in the area should go to the le exit, how-
ever, due to the shortest path computation all of them head to the right exit which is the shortest
exit for all three sources. A finer graded distinction is achieved if we use potential values to define
shortest paths as they define a shortest path for each cell. e difference between the two approaches
is depicted in Figure 3.12. Due to this results we also use the potential values to simulate shortest
paths exit assignments because we do not want to penalize the shortest path approach.

Results

We will briefly discuss the results of the simulation runs of the proposed approaches with respect
to the given scenarios. It always improves evacuation times if an approach that not only takes the
closest exits into account is used in the simple scenario that only incorporates different exit capaci-
ties (see Figure 3.15). is is not surprising as the shortest path distances ignore exit capacities. e
minimum cost approach does not only consider the exits but also computes the width of the bottle-
neck when reaching an exit from a particular starting point. us it can not only handle examples
as described in Figure 3.6 but also buildings that include structures such as staircases. e game
theoretic best response dynamics approach also competes quite well and is mostly as good as the
better flow approaches. e approach suffers slightly in the scenario with distant exits (Figure 3.7)
and in the difficult scenario with shared bottlenecks (Figure 3.9).

Minimum Cost Flow Exit Assignments. e minimum cost approach does not care about the
distances between evacuees and exits and thus may fail if there are wide exits very far away. e
same problem arises if a lot of exits share the same bottleneck. is is because the algorithm does
not take into account that evacuees heading to one of these exits may meet at the bottleneck and
create a jam. Figure 3.16 reveals that minimum cost flow assignments perform worse than shortest
paths for distant exits. ese effects are especially serious in this example because the exits have
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Figure 3.11: Arrival metrics for two scenarios for shortest path based exit assignments. As a typi-
cal scenario we use the simple scenario with exits of different capacity, the worst case
scenario is given by shared bottlenecks.

practically no capacity limit. Minimum cost exit assignments should behave better if the exits are
narrower.

Earliest Arrival Exit Assignments. e earliest arrival approach uses an optimal flow over time
and thus does not suffer from these problems. By taking the temporal aspect into account it detects
bottlenecks and exactly balances between the capacity and the distance of an exit. Figures 3.16 and
3.14 show the superior performance of the earliest arrival approach in the situations described as
critical for the minimum cost approach. Notice also that the earliest arrival approach is the only
approach dealing correctly with the shared bottleneck.
A possible error of assignments computed by an earliest arrival flow is more subtle. While the

earliest arrival transshipment is optimal for the given network model, evacuees in the simulation
need to follow exactly the routes of a path decomposition of the earliest arrival flow. However, the
only information the agents in our simulation receive is the exit they are supposed to take.
us, we see a different behaviour: In the cellular automaton model (and probably also in reality)

people try to get to their desired exit as fast as possible and choose the shortest path to get there. If
the earliest arrival transshipment has decided that a lot of people should go to an exit reachable by
many different ways of different length, all people will take the shortest one and jam somewhere at
a bottleneck on the path. Subsequently, the evacuation takes significantly longer than the earliest
arrival transshipment expected. Figure 3.13 shows that the minimum cost approach should be pre-
ferred for such situations and that the earliest arrival approach does not significantly perform better
than shortest paths.

Discussion of Exit Assignments. We have seen that network flows greatly help to compute good
exit assignments but the approaches are still in an early state of development and thus have some
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Figure 3.12: Exit assignments only based on network models of evacuation scenarios send evacuees
to wrong exits.

disadvantages. We can achieve best results if all approaches are applied and the best exit assignment
is chosen by testing all assignments in a simulation. Further research can be done in the direction
to develop an algorithm preceding the best approach, e. g., by considering the network structure.
e gained exit assignments can also be used as initial distributions for iterative heuristics, like

the best response dynamic approach, to decrease the number of necessary iterations. e perfor-
mance of our approaches can also be improved by using network flow techniques to gain gain better
approximations of the real capacity of exits. By using the values cap(𝑡𝑒) gathered by a maximum
flow computation in the best response exit assignments the results improve significantly. It would
also be the task of further research to improve the solutions based on network algorithms. We have
seen that the algorithms have different weaknesses, and it is an interesting question whether the ap-
proaches can be combined to reduce their disadvantages. Furthermore, especially for earliest arrival
transshipments, it would be nice to force the algorithm to avoid routes that evacuees are unlikely to
follow.

Personal EscapePlans. Evenmore interesting is the questionwhether amore direct way to derive
evacuation plans from network flows helps to develop a better evacuation plan compared to the case
of exit assignments. To improve the egress time we may force evacuees to use specific routes. is
may not seem feasible at first glance, however, due to the more common availability of devices such
as smartphones, this approach may become practicable in the near future. It can easily be applied
in city wide evacuation scenarios where evacuees should use their own cars. However, as people
usually do not behave perfectly, additional ideas are needed to fully use the strength of network
flow computations. Within upcoming intelligent response systems, i. e., systems that react to the
actual situation during the evacuation process, personal routes and also exit assignments can be
changed. e existing approaches so far only compute optimal flows. Itmight be a good idea to try to
respect human behaviour and useNash flows over time as introduced byKoch and Skutella [KNS11].
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Figure 3.13: Comparison of the exit assignments on the instance depicted in Figure 3.8. e in-

stancemeasures the effectiveness of the algorithm if there exits paths to exits of different
lengths, but with limited capacity.
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Figure 3.14: Comparison of the exit assignments on the instance depicted in Figure 3.6. e instance

measures how the algorithms cope with exits that lie behind a shared bottleneck (effec-
tively limiting the exit capacity to the capacity of the bottleneck). e earliest arrival
approach is slightly worse in the beginning, however, it is the single best approach in
the last part of the evacuation process.
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Figure 3.15: Comparison of the exit assignments on the instance depicted in Figure 3.6. e instance

measures how the algorithms cope with exits of different capacity.
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Figure 3.16: Comparison of the exit assignments on the instance depicted in Figure 3.7. e instance

measures how the algorithms cope with exits having different distances to evacuees.
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Evacuations would benefit from such approaches when for a given instance the earliest arrival flow
equals (or at least: does not deviate much from) a Nash flow. It is still an open question on which
instances these flows are equal. Instances can then be changed over time such that only paths that are
also optimum paths in an equilibrium are available, e. g., by blocking. Such a procedure resembles
toll strategies in algorithmic game theory and first research into this direction is due to Bhaskar,
Fleischer and Anshelevich [BFA11].

3.3 Practice Example

e department for fire safety of the Technische Universität Berlin arranges fire drills for one of the
larger buildings, the so-called Telefunkenhochhaus. We used two of those sessions in 2009 and 2014
to collect real data of an evacuation scenario to compare it with our result based on simulation in
the cellular automaton and the result of an earliest arrival flow computation. e results are used
to prove the accuracy of the simulation approach and to verify that instances generated by the the
automated conversion described in Section 3.1.4 allow for reasonable results.

The Evacuation Setting. To compare the results of our approaches withmeasured results we first
need to collect data. To allow for reasonable results we need both, the outcome of the evacuation
and the starting data. We briefly describe our methods and show where we have to make reasonable
guesses as result of limited resources. e Telefunkenhochhaus is a 22-storey building consisting
mainly of offices and seminar rooms inhabited by university students and scientific research staff. In
an evacuation scenario the inhabitants are evacuated using two main stairwells on the eastern and
western outer faces of the building. e main entrance is only reachable from the first floor and by
elevators and is thus not used in an evacuation process. We collected data similar to the approach
taken by Chalmet, Francis and Saunders [CFS82]. Outside of the building we measured arrival
times for each of the exits, times for different exits are synchronized by the launching of the fire drill.
Each of the evacuees was assigned a number when leaving the building such that further information
could be retrieved in an interview later without disturbing the evacuation process. Unfortunately,
it was not possible to provide each person with their number, especially when larger groups arrived
at the exits. When it was possible the evacuees were asked for the room where they started and its
floor in the building. However, many evacuees did not remember the room they were coming from
so that we could not use this information. In the end the starting floor of 80% of the evacuees was
known together with the information which of the two emergency exits they had chosen. We didn’t
have enough personal resources to collect starting positions in the second fire test evacuation.

Defining theModel. e evacuation scenario is modelled in the  soware suite. e building
geometry was modelled aer plans that were provided by the department for fire safety. e starting
positions of the evacuees are distributed randomly depending on the number of inhabitants on each
floor. Due to the fact that we do not know the starting position of some evacuees, we had to come
up with an estimation. We did this by assuming such evacuees started in the same floor as evacuees
arriving approximately at the same time. e surveyed and our final floor distribution is depicted in
Figure 3.17. We expect the evacuees to have some reaction time until they start with the evacuation
process. is time consists of realizing that a fire alarm has started and preparing for evacuation,
e. g., by following the official guidelines to close windows and doors or to pack personal belongings.
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Figure 3.17: Comparison between the surveyed floor distribution and the estimated distribution
used in the simulation/optimization runs.

We also expect colleagues in the same office to wait for each other. is is in accordance with our
observation that the first evacuees needed more than a minute to arrive at the exit and then arrive
clustered into small groups. For each evacuee we draw a normally distributed random reaction time
in seconds with mean 𝜇 = 85 and variance 𝜎2 = 30 which fits best to the measured arrival times
and does not seem too unrealistic. Our experiments revealed, that it does not influence the results
much, if the speeds of persons are derived by the age, because the variability of speeds is not very
high for the test population. We therefore use a fixed speed of 1.51m s−1 for each evacuee using data
provided by Weidmann [Wei93].

Simulation andOptimization. eevacuationmodel was transformed into a cellular automaton
and into a network model using rectangle rasterization. e complete cellular automaton model
including an example distribution of the evacuees is depicted in Figure 3.18a. As for the experiments
in Section 3.2 the simulation was repeated 200 times. In each repetition, evacuees were distributed
according to the floor distribution and exit selection in the observed test evacuation.
e automatically generated network flowmodel consists of 6465 nodes and 23 170 including the

individual start nodes and double edges to model that flow units can move in both directions of an
arc. e model is depicted in Figure 3.18b. e final size of the time-expanded network depends
on the transit times which is correlated with the speed of flow. Although both models are derived
from the same evacuation model, they differ and cellular automaton steps do not directly relate with
time steps in the discrete time-expanded network. We compare the influence of the modelling by
an artificial scenario that only involves a single evacuee residing at the very top of the building. In
the cellular automaton, the individual covers a distance of 570m while a flow unit from the same
position only travels 467m (within the errors induced to rounding). Tomake themodels comparable
we decided to increase all transit times by 10 percent. e evacuees in the simulation have an average
speed of 1.51m s−1 and therefore flow needs approximately 0.265 s to travel along one arc with unit
transit time.
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(a) Cellular Automaton model. (b) Graph model.

Figure 3.18: e test evacuation instance as cellular automaton and network flow model within the
visualization of the  soware.

Using the above transit time scaling, the optimal time horizons for all our optimization runs lie
in the interval [1588, 1619]. To estimate the time horizon beforehand, we use the bounds derived in
Observation 2.8. Aer the transit time transformation, the estimated time horizon lies in the interval[1200, 1600] for all our runs. Notice, that the rough upper bound does not influence the running
time if algorithms are implemented carefully. is is the case for Tjandra’s implicit successive shortest
path algorithm [Tja03] and the successive shortest path algorithm in the increasing time-expanded
network. We need to reserve space for the larger time-expanded network. is was no problem
for the instance depicted here. Using the bounds the time-expanded networks of instances for the
Telefunkenhochhaus typically comprise 10 344 000 nodes and 36 840 300 edges.
Results. Both observed arrival curves, the simulated result and the obtained earliest arrival curve
are depicted in Figure 3.19. e evacuation runs took place at 2nd September, 2009 and 29th April,
2014 and involved 369 and 365 inhabitants leaving the two emergency exits, respectively. e total
evacuation time for the first evacuation run is 8.5min while the second run was about 20 s faster.
e simulation generally follows the measured arrival curves, however simulation results are too
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Figure 3.19: Results of a test evacuation, simulation using the cellular automaton model and com-
parison to with the earliest arrival flow.

fast at the beginning in the second and third minute of the evacuation process. Aerwards, the
simulation results lie in between the two measured outcomes. We consider the results very good,
compared to the fact that we did not know the actual distribution of evacuees into rooms and the
actual reaction times. e simulation also is a bit too fast in the lastminute of the evacuation process.
From personal observation of the evacuation process, this might be the result of few evacuees having
a very large reaction time. ey only start evacuation aer request from staff of the department of
fire safety and such behaviour is not covered by the simulation.
e earliest arrival flow (aer adjusting travel times as mentioned above) gives similar results in

the beginning. In the beginning, the results of the earliest arrival flow are even better than the results
of the simulation runs. However, aer 6min, the earliest arrival pattern grows much faster than the
actual and the simulated pattern such that the total evacuation time is 1min better than themeasured
time. is discrepancy might have the same reason as for the simulations.

Discussion. e results of the simulation and optimization runs show that both are able to give
accurate results even for larger evacuation scenarios. e automatic room conversion proves to be
practical. Besides the accuracy the algorithms are fast on huge instances. It is also easy to implement
the rasterization on top of existing evacuation tools that use cellular automata. e algorithms are
also not limited to square cells, but also work on hexagonal cells. However, as a further direction of
research amore clever rasterization process may be desired. Another improvement is the estimation
of the actual transit times with much higher accuracy by using a cellular automaton itself.
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(a) 1st (ground) floor. (b) 2nd floor.

(c) 3rd floor. (d) 4th floor.

(e) 5th floor. (f) 6th floor.

(g) 7th floor. (h) 8th floor.

(i) 9th floor. (j) 10th floor.

(k) 11th floor. (l) 12th floor.

Figure 3.20: ZET automatically generated floor plan.
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3 Evacuation Simulation and Optimization

(m) 13th floor. (n) 14th floor.

(o) 15th floor. (p) 16th floor.

(q) 17th floor. (r) 18th floor.

(s) 19th floor. (t) 20th floor.

(u) 21th floor.

Figure 3.20: ZET automatically generated floor plan.
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4 Approximating Earliest Arrival Flows

It is well known that earliest arrival transshipments do not exist in general on
instances containing more than one sink. Approximation algorithms that ap-
proximate feasibility of earliest arrival flows have only rarely been studied so far.
In this chapter we analyse the effectiveness of time-approximate earliest arrival
flows and value-approximate earliest arrival flows. In the former, for flow it is al-
lowed to arrive a certain factor later, while in the latter model the amount of flow
arriving in each point in time is approximated, which we consider more useful in
evacuation scenarios in general. We present a general approximation framework
for this case and study implementations for the classical setting where we show
that the algorithm allows good approximations in both the discrete and continu-
ous setting and present a constant approximation-algorithmwith tight lower and
upper bounds. We also extend the results to multi-commodity flows over time.

Publication Remark: Some of the results in this chapter are joint work with
Martin Groß, Daniel R. Schmidt, andMelanie Schmidt and have been published
in [GKS+12]. e publication was awarded Best Student Paper at the European
Symposium of Algorithms 2012.

In transportation models that are based on network flow over timemodels, it is a natural question
to ask for earlies arrival flows, not only in the special case of evacuation scenarios. e general idea
behind earliest arrival is the following: If some flowhas to be sent (eitherwithin a given time horizon,
or the demand is given specifically), it is oen better if flow arrives earlier. is can be motivated by
several reasons. In the evacuation scenario the available evacuation time is not specified, and it is
better if at each point in timemore evacuees are safe. But in general transportation problems it is just
as natural to ask for the earliest arrival property. From the economic point of view, transportation
creates cost and it may be cheaper, if goods arrive earlier. Also, consider a big online mail order
company. If deliveries are assigned to routes in such a way that they arrive as early as possible, the
customers are likely to be happy.
Following from our discussion in Section 2.4, we know already that earliest arrival flows exist

and that they can be computed exactly in pseudo-polynomial time in many cases. For non-negative
travel times, earliest arrival flows exist in general, if only a single sink is given [Fle01; BS09]. For
zero travel times the result can be extended in such a way that earliest arrival flows exists in all
networks containing a single source or a single sink. is is, because in instances with zero travel
times the arc directions can be inverted without changing the resulting arrival pattern. A complete
characterization of the class of graphs allowing for an earliest arrival transshipment, regardless of
the arc capacities and supplies and demands is due to Schmidt and Skutella [SS14].

Rating of Arrival Patterns. By non-existence of earliest arrival flows we mean that there is no
feasible single flow for a given instance that is maximum at each point in time. Notice, that obviously
for each point in time there exists a flow that sends as much as possible for this point in time. For a
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4 Approximating Earliest Arrival Flows

given flow over time we are interested in measuring its quality. is is not only useful in cases where
no earliest arrival flow exists, but also in other settings. Examples for these kind of approximations
are given in [HT94; FS07; GS12a; BK07].
e quality of a given arrival pattern can bemeasured in different ways. We consider twomeasure-

ments: Time-approximations allow flow arrive too late; value-approximations approximate the flow
value at each point in time. Notice that (motivated by our application of evacuation) we consider
worst-case approximation factors. On a more general level one may also ask for cumulated approxi-
mationmeasurements. Consider two flows, the first sends one unit of flow less at almost every point
in time, while the second sends two units of flow less, but only in a very small time interval.

Outline of the Chapter. In Section 4.1 we begin with an introduction to quality measurements of
earliest arrival flows, give some examples and show simple facts. We continue with discussing time-
approximations in Section 4.2, show existence of a constant 4-approximation factor and a lower
bound of 2 for this case. In Section 4.3 we establish a framework for value approximate flows. We
then use the framework to derive constant approximation algorithms for standard network flows
and multi-commodity flows. For the special case of zero travel times we show how the algorithm
can be implemented in polynomial time. We conclude this chapter by showing the existence of an
algorithm that approximates the optimal earliest arrival pattern for a given instance, which can be
better than the constant bound guaranteed by the algorithm from Section 4.3, in Section 4.4. is is
important because if the instance is not a worst-case scenario the real approximation factor might
be much better than the bounds we establish in Section 4.3.

4.1 Approximate Earliest Arrival Flows

It is easy to see that earliest arrival flows do not exist in graphs containing several sinks. e reason
is fairly simple: It may very well be that flow on paths arriving at a sink 𝑡 at time 𝜃 blocks all paths
arriving at another sink 𝑡′ at the same time. If the earliest arrival time at the first sink 𝑡 is maintained,
all blocked flow units have to wait to reach 𝑡′ and thus fail to satisfy the earliest arrival pattern at the
optimal arrival time for 𝑡′. e fan graph of Example 4.1 is a simple network having this property.
We will use it throughout the chapter as counter example to derive lower bounds. In the scenario
with zero-transit times the situation is not so clear. All paths have total zero travel time, hence the
above situation cannot occur as easily. When two paths use a common arc, the capacity of the shared
arc serves as a bottleneck also for the maximum flow and thus flow that has to wait does not arrive
too late. In fact, for zero travel times earliest arrival transshipments exist always in instances having
a single source. As an introduction to instances that do not allow for an earliest arrival flow, we
consider two examples.
Example 4.1 (Fan graph). As an example we consider the fan graph with 𝑘 sinks. e graph contains
two additional nodes 𝑠 and 𝑣 and the edges (𝑠, 𝑣) and (𝑣, 𝑡𝑖) for all 𝑖 ∈ {1, 2,… , 𝑘}. e travel time on
arc (𝑣, 𝑡𝑖) to sink 𝑖 is defined as 𝑖 − 1. us, in the example it is possible to send 𝑖 units of flow up to
time 𝜃. However, flow that should arrive at sink 𝑡𝜃 at time 𝜃 must use arc (𝑠, 𝑣) at time 0 making it
impossible to maximize flow at two points in time. Figure 4.1a depicts an instance of the fan graph for𝑘 = 3. e general example and the pattern are depicted in Figure 4.5.
While the fan graph requires non-zero travel times on the arcs, similar instances exist for the case
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4.1 Approximate Earliest Arrival Flows

𝑠𝑠 v 𝑡1 𝑡2 𝑡30 0

1

2

(a) e fan graph for 𝑘 = 3. e transit times are as specified in the
figure.

𝑠14

𝑠22

𝑡1 -2

𝑡2 -4

(b) A simple instance with
zero travel times.

Figure 4.1: Examples that do not allow for an earliest arrival flow. e capacities are unit capacities.

of zero-travel times. However, in this case it is necessary to have multiple sources and sinks, and the
smallest example needs exactly two terminals of each type.

Example 4.2. We consider the instance with two sources 𝑠1 and 𝑠2 and two sinks 𝑡1 and 𝑡2 as depicted
in Figure 4.1b. All arcs have a transit time of 0 and a capacity of 1. From both sources it is possible
to send one unit of flow to each sink in one time step. e existence of an earliest arrival flow in the
network depends how the supplies and demands are distributed among the terminal nodes. Consider
the case 𝑏𝑠1 = −𝑏𝑡2 = 4 and 𝑏𝑠2 = −𝑏𝑡1 = 2. It is possible to satisfy the balances within two time steps.
A quickest transshipment sends three units of flow at time 𝜃 = 1 and 𝜃 = 2 as depicted in Figure 4.2a.
However, this pattern does not send as much flow as early as possible. By sending greedily as much flow
as possible an additional unit of flow can be sent along arc (𝑠2, 𝑡1). us, four units of flow arrive at
time 𝜃 = 1. Because the supplies and demands of 𝑠2 and 𝑡1 are satisfied aer sending a maximum flow
in the first time step, the last two flow units have to be sent along arc (𝑠1, 𝑡2) which requires another two
time steps. To satisfy the earliest arrival property, we have to send four units of flow in the beginning,
but also have to send six units of flow within time 𝜃 = 2. is is a contradiction and thus no earliest
arrival flow exists in the instance.

Approximation of Earliest Arrival Flows. e non-existence of earliest arrival transshipments
in the case of multiple sinks gives rise to the question, whether earliest arrival transshipments can
be approximated. We consider two kinds of approximation. e first relaxes the time, i. e., we are
allowed to send the flow by a factor later than the optimal pattern requires. e second approxima-
tion relaxes the value, i. e., we only have to send a given factor of the maximum flow at each given

2

1

-1

-2

𝑇 = 1
0

0

-0

-0

𝑇 = 2

(a) A quickest transshipment within
time horizon 𝑇 = 2.

2

0

-0

-2

𝑇 = 1
1

0

-0

-1

𝑇 = 2
0

0

-0

-0

𝑇 = 3

(b) A transshipment within time horizon 𝑇 = 3 sending as
much flow as possible in the first time step.

Figure 4.2: Two feasible solutions in the discrete setting for the zero travel time instance depicted in
Figure 4.1b.
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point in time.
Definition 4.3 (𝛼-time-approximation). Given an earliest arrival pattern 𝑝∗ for a time horizon 𝑇,
a flow over time 𝑓 is an 𝛼-time-approximation, if at every point in time 𝜃 ∈ [0, 𝑇[ we require󶙡𝑓󶙡𝜃 ≥ 𝑝∗󶀥𝜃𝛼󶀵,
i. e., at least asmuch flow is sent to the sinks until 𝜃 aswas possible at time 𝜃𝛼 . If the flow is additionally
delayed by a constant 𝑐 > 0, i. e.,󶙡𝑓󶙡𝜃+𝑐 ≥ 𝑝∗󶀥𝜃𝛼󶀵,
we say that 𝑓 is a 𝑐-delayed 𝛼-earliest arrival transshipment. ◁
Time-approximation allows flow to be late. is notation has proven to be useful for finding

approximation algorithms for the earliest arrival transshipment, for example the (1 + 𝜀)-algorithm
by Fleischer and Skutella [FS07]. However, we are more interested in the value at each point in time.
e information “Aer two hours, at least as many persons are secure, as were possible aer one hour”
does not give all the information that we wish for in evacuation scenarios. is leads to the following
definition.
Definition 4.4 (𝛽-value-approximation). Given an earliest arrival pattern 𝑝 for a time horizon 𝑇, a
flow over time 𝑓 is a 𝛽-value-approximation, if at every point in time 𝜃 ∈ [0, 𝑇[ we require󶙡𝑓󶙡𝜃 ≥ 𝑝∗(𝜃)𝛽 ,
i. e., at least a 𝛽-fraction of maximum possible flow is sent until 𝜃. ◁
Value approximations allow similar approximation algorithms for the E A T-

 P relaxing the feasibility. Value approximation algorithms have been presented
by Hoppe and Tardos [HT94].
By specifying a desired approximation factor 𝛼 or 𝛽, we have a fixed corridor in which feasible

approximate flows can lie. If a flow 𝑓 is both, an 𝛼-time and a 𝛽-value-approximation, we also say
the flow is an (𝛼, 𝛽)-time-value-approximation of the earliest arrival pattern. An example of both
approximation objectives is depicted in Figure 4.3.
In the remainder of the chapter we will analyse the possible values for 𝛼 and 𝛽 by giving approx-

imation algorithms and also lower bounds. Most of the results hold for both, the discrete and the
continuous flowmodels. We will therefore first discuss some properties that allow us to relate results
for the two flow models.

Continuous andDiscreteApproximate Earliest Arrival Flows. Any flow in the continuous time
model induces a flow in the discrete timemodel that has an identical flow value at each integer point
in time. e discrete flow can be computed by sending the cumulated continuous flow of one time
step as a whole:
Lemma4.5. A network that does not allow for an 𝛼-time-approximate (𝛽-value-approximate) earliest
arrival transshipment in the discrete time model does also not allow for an 𝛼-time-approximate (𝛽-
value-approximate) earliest arrival transshipment in the continuous time model.
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4.1 Approximate Earliest Arrival Flows

𝜃

󶙡𝑓󶙡

1 2 3 4 5 6
12
3

0

𝛼 = 2

(a) An 𝛼 = 2-example.

𝜃

󶙡𝑓󶙡

1 2 3 4 5 6
12
3

0
𝛽 = 2

(b) A 𝛽 = 2-example.

Figure 4.3: Examples of earliest arrival approximations. e grey area is valid for the given approxi-
mation factor. Any flow whose arrival curve lies within the area is a feasible approxima-
tion. e upper curve equals the pattern.

Proof. Let 𝒩 be a network that does not allow for an 𝛼-time / 𝛽-value-approximate earliest arrival
transshipment in the discrete time model. We assume there is an 𝛼-time / 𝛽-value approximate
earliest arrival transshipment 𝑓 in 𝒩 in the continuous time model with time horizon 𝑇. us, the
flow value satisfies 󶙡𝑓󶙡𝜃 ≥ 𝑝∗󶀡 𝜃𝛼󶀱 or 󶙡𝑓󶙡𝜃 ≥ 𝑝∗(𝜃)𝛽 , respectively, for all points in time. In particular this
holds for all 𝜃 ∈ {1,… , 𝑇}.
We define a flow 𝑓 in the discrete time model by cumulating the flow between the integral points

in time and define𝑓′(𝑒, 𝜃) ∶= 󵐐𝜃0 𝑓(𝑒, 𝜉) 𝑑𝜉 − 󵐐𝜃−10 𝑓(𝑒, 𝜉) 𝑑𝜉 = 󵐐𝜃𝜃−1 𝑓(𝑒, 𝜉) 𝑑𝜉
for all 𝜃 ∈ {1,… , 𝑇} and 𝑒 ∈ 𝐸. e flow equals the total flow on an arc 𝑒 within a time interval[𝜃 − 1, 𝜃[.𝑓′ is feasible in the discrete time model and satisfies 󶙡𝑓′󶙡𝜃 = 󶙡𝑓󶙡𝜃 for all 𝜃 ∈ {1,… , 𝑇} since𝜃󵠈𝜏=1𝑓′(𝑒, 𝜏) = 𝜃󵠈𝜏=1󵐐𝜏0 𝑓(𝑒, 𝜉) 𝑑𝜉 − 󵐐𝜏−10 𝑓(𝑒, 𝜉) 𝑑𝜉 = 󵐐𝜃0 𝑓(𝑒, 𝜉) 𝑑𝜉 − 0
holds for all 𝑒 ∈ 𝐸. Notice also that the earliest arrival pattern 𝑝∗ in the continuous model is at least
as large as the earliest arrival pattern ̂𝑝∗ for the discrete time model as any discrete flow induces a
continuous flow with the same value. is gives󶙡𝑓′󶙡𝜃 = 󶙡𝑓󶙡𝜃 ≥ 𝑝∗󶀥𝜃𝛼󶀵 ≥ ̂𝑝∗󶀥󶃅𝜃𝛼󶃕󶀵
and 󶙡𝑓′󶙡𝜃 = 󶙡𝑓󶙡𝜃 ≥ 𝑝∗(𝜃)𝛽 ≥ ̂𝑝∗(𝜃)𝛽 ,
for the time- and value-approximation, respectively.
us, 𝑓′ is an 𝛼-time / 𝛽-value approximate earliest arrival flow in the discrete time model, which

is a contradiction to our initial assumption.
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4 Approximating Earliest Arrival Flows

Wenowprove a lemma showing that also upper bounds can be transferred from the discretemodel
to the continuous model. However, we will lose a factor of 𝜀 in the time-approximation.
Lemma 4.6. Let 𝑓 be an 𝛼-time-𝛽-value-approximate earliest arrival flow in the discrete time model,
with 𝜀 as the length of a time step, in a network which has no flow arriving before time 1. en there
exists a (1 + 𝜀)𝛼-time-𝛽-value-approximation in the continuous time model.

Proof. We interpret 𝑓 as a continuous flow over time that sends flow at a constant rate during a
time step. e value-guarantee is satisfied up to time 1, since no flow can arrive earlier. For all later
points in time 𝜃 that are multiples of 𝜀, we know that 󶙡𝑓󶙡𝜃 ≥ 𝑝∗󶀡𝜃/𝛼󶀱𝛽 . Furthermore, we know that 𝑝∗
is monotonically increasing. is means that for a point in time 𝜃 ∈ ]𝑘𝜀, (𝑘 + 1)𝜀[ , 𝑘 ∈ ℕ we know
that 󶙡𝑓󶙡(𝑘+1)𝜀 ≥ 𝑝∗󶀡(𝑘+1)𝜀/𝛼󶀱𝛽 ≥ 𝑝∗󶀡𝜃/𝛼󶀱𝛽 . us, the approximation guarantee gets worse by a constant value
of 𝜀. Since no flow arrives before time 1, this gives a factor of at most (1 + 𝜀).
Connections Between the Approximation Objectives. e time- and value-approximation
models differ and we investigate relations between them. Ideally, we would like to establish a re-
sult that directly relates 𝛼-time and 𝛽-value transshipments. For example, any 𝛽-value-approximate
flow can be sent 𝛽-times to send enough demand to establish an 𝛼-approximation with time horizon𝛽𝑇∗, where 𝑇∗ is the optimal time horizon. However, it is not clear that the 𝛽-value-approximate
flow satisfies a 1𝛽 -fraction of the demands of each terminal, such that the flow can be sent repeatedly.
If we additionally require a structure on the convexity of the earliest arrival pattern, we can establish
such a relation. Before stating the results, we will briefly recall some basic definitions.
Definition 4.7 (Concavity and convexity). Let 𝑓 ∶ ℝ → ℝ be a function. en 𝑓 is concave if𝑓(𝜉𝑥1 + (1 − 𝜉)𝑥2) ≥ 𝜉𝑓(𝑥1) + (1 − 𝜉)𝑓(𝑥2)
holds for all 𝑥1, 𝑥2 ∈ ℝ, 𝜉 ∈ [0, 1]. 𝑓 is convex if𝑓(𝜉𝑥1 + (1 − 𝜉)𝑥2) ≤ 𝜉𝑓(𝑥1) + (1 − 𝜉)𝑓(𝑥2)
holds for all 𝑥1, 𝑥2 ∈ ℝ, 𝜉 ∈ [0, 1]. ◁
Observe, that if an arrival pattern is concave, flow has to arrive from time 0 on, i. e.,, the network

must contain a shortest path of zero travel time. Wewill now show that any𝛼-time-approximate flow
with a concave arrival pattern is also a value approximate flow and that any𝛽-value-approximate flow
with a convex arrival pattern is also a time-approximate flow.
Lemma 4.8. Let 𝑝∗ be an earliest arrival pattern and 𝑓 be a feasible transshipment. en, if 𝑝∗ is
concave and 𝑓 is an 𝛼-time approximation, it is also a 𝛽 = 𝛼-value-approximation, and if 𝑝∗ is convex
and 𝑓 is a 𝛽-value approximation, it is also an 𝛼 = 𝛽-time-approximation.

Proof. For the first statement, let 𝛼 > 0. First we show that for any concave non-decreasing function𝑝 ∶ ℝ≥0 → 𝑋 ⊆ ℝ≥0 with 𝑝(0) ≥ 0 then holds𝑝(𝑥)𝛼 ≤ 𝑝󶀤𝑥𝛼󶀴 ≤ 𝑝(𝑥).
By definition of concavity𝑝(𝑥)𝛼 ≤ 𝑝(𝑥)𝛼 + 󶀤1 − 1𝛼󶀴𝑝(0) ≤ 𝑝󶀤𝑥𝛼 + 󶀤1 − 1𝛼󶀴 ⋅ 0󶀴 = 𝑝󶀤𝑥𝛼󶀴 (4.1)
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holds. e second inequality follows from the monotonicity of 𝑝. Hence, Equation 4.1 holds and
the given flow pattern 𝑝𝑓 also is 𝛽 ≔ 𝛼-value-approximate.
Let now the pattern be concave and 𝛽 > 0. Any convex function 𝑝 ∶ ℝ≥0 → 𝑋 ⊆ ℝ≥0 with𝑝(0) = 0 satisfies𝑝󶀤𝑥𝛽󶀴 ≤ 𝑝(𝑥)𝛽 ≤ 𝑝(𝑥).

Again, by definition of convexity we have𝑝󶀥𝑥𝛽󶀵 = 𝑝󶀥𝑥𝛽 + 󶀥1 − 1𝛽󶀵 ⋅ 0󶀵 ≤ 𝑝(𝑥)𝛽 + 󶀥1 − 1𝛽󶀵𝑝(0) = 𝑝(𝑥)𝛽 .
e last equality holds for any arrival pattern because there is no flow arriving up to time 0. Hence,
a given 𝛽-value-approximate pattern 𝑓 is also 𝛼 ≔ 𝛽-time-approximate.

e lemma states a transfer of upper bounds, but it can be used in the inverse direction to establish
lower bounds, too. If a concave instance does not allow for a 𝛽-value-approximation, there also does
not exist an 𝛼 = 𝛽-time-approximation. Notice that for the first statement of the lemma, there must
be flow reaching a sink at time zero to apply the lemma, because otherwise at the point in time when
the first flow arrives at a sink, concavity is violated.

4.2 Time-approximate Earliest Arrival Flows

We will first discuss the existence of time approximations. Only few results exist, that show the ex-
istence of a time-approximation. Based on time condensation Fleischer and Skutella [FS07] gain an
FPTAS for theQ FP, andGroß and Skutella [GS12a] use the technique for com-
puting generalized flows over time. Baumann and Köhler [BK07] compute a 4-time-approximation
for networks with flow dependent transit times. e technique is applied by Groß to the multi-
commodity setting with commodity dependent transit times [Gro09]. However, despite these al-
ready existing results, time-approximation is not a really useful tool for the scenario of approximat-
ing earliest arrival flows. It is easy to see that there is always a 𝑇-time-approximate earliest arrival
flow, though.
Observation 4.9. ere is always a 𝑇-time-approximate earliest arrival flow in the discrete and con-
tinuous time model, where 𝑇 + 1 is the time horizon of the quickest transshipment, if no flow arrives
before time 1. 𝑇 is also a lower bound.
Proof. In the network in Figure 4.4, it is possible to have two units of flow arriving at time 𝑇 or
one at time 1 and one at time 𝑇2, implying that an 𝛼-approximate earliest arrival flow has to satisfy𝑓(⌈𝛼⌉) = 1 and𝑓(⌈𝛼𝑇⌉) = 2 (in the discrete timemodel). is is impossible unless 𝛼 ≥ 𝑇. e same
holds in the continuous time model by Lemma 4.5.
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𝑠1 𝑠2𝑡1
𝑡2

𝑇 − 1 𝑇2 − 1
0 𝑇 − 1

Figure 4.4: Counter example providing a lower bound of 𝑇. Edges have unit capacities, the supplies
and demands are 1 and −1, respectively.

Single-source Networks. In the special case of networks with only one source, we give improved
lower and upper bounds on the best possible time-approximation guarantee. e upper bound fol-
lows from the work of Baumann and Köhler [BK07]: ey describe a technique that splits the time
horizon into exponentially growing intervals in which they compute independent flows over time.
Demand and supply vectors create a dependence between the intervals (which is why this does not
work for multiple sources and sinks), but for the case of only one source, this dependence does not
worsen the approximation guarantee compared to their original result.
Theorem 4.10. For networks with one source 𝑠, there is always a 4-time-approximate earliest arrival
transshipment in the discrete time model. e same is true in the continuous time model if the shortest
travel time from 𝑠 to any sink is positive.
Proof. To prove the bound, we apply the interval stacking technique used for computing value-
approximate 𝑠-𝑡-earliest arrival flows with flow dependent transit times in [BK07].
First, assume that 𝑇 = 2𝑘 − 1 for some 𝑘 ∈ ℕ≥1, i. e., in particular 𝑇 > 0. We partition the time

frame {1,… , 𝑇} into exponentially growing intervals 𝐼𝑖 ∶= [2𝑖−1, 2𝑖+1−1[ for 𝑖 ∈ {0,… , 𝑘−1}. Notice
that the length length(𝐼𝑖) of interval 𝑖 is exactly 2𝑖. In the following, we compute a flow 𝑓𝑖 to be sent
during interval 𝐼𝑖 and prove that the resulting compound flow is in fact the desired approximation.
For this, let 𝑏𝑖𝑡 be the remaining demand of sink 𝑡 ∈ 𝑆− at the beginning of the 𝑖-th interval, i. e.,
before 𝑓𝑖 is to be sent. We assume without loss of generality that the shortest path from 𝑠 to any
sink 𝑡 has length at least 1 with respect to the transit times; this can be achieved by scaling since we
assume that there is no length 0 path from 𝑠 to any sink.
We now construct a flow 𝑓𝑖 for 𝑖 ≥ 0 that is to be sent within interval 𝐼𝑖. Let 𝑓∗𝑖 be a maximum

flow with time horizon length(𝐼𝑖) with respect to the original demands 𝑏𝑡. Notice, that 𝑓∗𝑖 can be
sent completely within interval 𝐼𝑖, if the flow is shied such that it starts later. We compute a path
decomposition of 𝑓∗𝑖 and denote by 𝓟∗𝑖 (𝑡) the paths that 𝑓∗𝑖 uses to send flow into sink 𝑡, for all𝑡 ∈ 𝑆−. We want to send flows 𝑓1, 𝑓2,… , 𝑓𝑘 one aer another. erefore, for 𝑓𝑖, we possibly cannot
send all flow that is possible according to the max flow 𝑓∗𝑖 if some flow was sent earlier. us, we
define the flow 𝑓𝑖 as the flow that arises from 𝑓∗𝑖 by decreasing the flow along paths in 𝓟∗𝑖 (𝑡) in total
by 𝑏𝑡 − 𝑏𝑖𝑡 ≥ 0 for all 𝑡 ∈ 𝑆−.
Observe now, that the compound flow 𝑓 ≔ 𝑓1, 𝑓2,… , 𝑓𝑘 is a multiple deadline flow for the dead-

lines 1, 3, 7,… , 2𝑘 − 1, i.e. for the ends of all intervals. is is true because 𝑓∗𝑖 is a maximum flow
over time for the time horizon length(𝐼𝑖) and by the above construction, the compound flow sends
at least as much flow as 𝑓∗𝑖 . Hence, if we let 𝐼 be the largest interval that ends before time 𝜃 ≥ 1 and
define 𝛼𝜃 to be 𝜃length(𝐼) , we get that
92



4.2 Time-approximate Earliest Arrival Flows

󶙡𝑓󶙡𝜃 ≥ 𝑝󶀡length(𝐼)󶀱 = 𝑝󶀥 𝜃𝛼𝜃󶀵.
For 0 ≤ 𝜃 < 1, we get an approximation guarantee of 1, since no flow can reach the sinks before

time 1 by our above assumption. is motivates setting 𝑎𝜃 ≔ 1 for 𝜃 ∈ [0, 1[. We thus obtain an𝛼-approximation with 𝛼 ≔ max{𝛼𝜃 | 𝜃 ∈ [0, 𝑇[}. It remains to show that 𝛼𝜃 ≤ 4 for all 𝜃 ≤ 𝑇. Notice
that for every 𝜃 ∈ 𝐼𝑖, it holds 𝜃 < 2𝑘+1 − 1 and thus𝛼𝜃 < 2𝑖+1 − 12𝑖−1 = 4 − 12𝑖−1 ≤ 4.
In the second step we extend the construction to general 𝑇. Let 𝑘 be the smallest integer such that𝑇 ≤ 2𝑘+1−1. We build the first 𝑘 intervals 𝐼0,… , 𝐼𝑘−1 as in the above construction, thus partitioning

the time frame [0, 2𝑘 − 1[. Additionally, we now add a (𝑘 + 1)-th interval 𝐼𝑘 ∶= [2𝑘 − 1, 𝑇[. We still
have that 󶙡𝑓󶙡𝜃 ≥ 𝑝󶀡 𝜃𝛼𝜃 󶀱 for all 𝜃 ≤ 𝑇 as above. Also, for 𝜃 ∈ 𝐼0,… , 𝐼𝑘−1, it still holds 𝛼𝜃 ≤ 4 by the
same calculation as before. Finally, if 𝜃 ∈ 𝐼𝑘, then still 𝜃 < 2𝑘+1 − 1 holds and thus we have 𝛼𝜃 < 4.
e same technique can be applied in straightforward fashion to obtain the result for the discrete

time model; however, we do not need to assume a positive source-sink path length in this case.

If the path with shortest travel time to any sink has a length of zero we cannot use the interval
stacking technique used in the proof ofeorem 4.10. However, it is possible to find a time approx-
imation that comprises an additional additive delay.
Corollary 4.11. ere is an 𝜀-delayed 4-time-approximate earliest arrival transshipment𝑓𝜀 in the con-
tinuous model for networks with a single source and any 𝜀 > 0. More precise, the flow satisfies󶙡𝑓󶙡𝜃+𝜀 ≥ 𝑝∗󶀥𝜃4󶀵.
Proof. We first show how to compute a flow 𝑓𝛿 satisfying 󶙡𝑓𝛿󶙡𝜃+4⋅𝛿 ≥ 𝑝󶀢𝜃4󶀲 for 𝛿 > 0 and then choose𝛿 accordingly.
We create a new network 𝒩 ′ based on the given instance 𝒩 with source 𝑠 by adding a new super

source 𝑠∗ and connecting it via the edge (𝑠∗, 𝑠), and moving all supplies from 𝑠 to 𝑠∗ accordingly.
Any flow in the new network 𝒩 ′ corresponds to a flow in 𝒩 that is delayed by 𝛿 > 0. Let

𝑝𝛿(𝜃) = 󶁇0 𝜃 ≤ 𝛿𝑝∗(𝜃 − 𝛿) 𝜃 > 𝛿
denote the delayed earliest arrival pattern in 𝒩 ′.
We can now use eorem 4.10 to compute the 4-time-approximate earliest arrival flow 𝑓𝛿 in 𝒩 .

For any 𝜃 ∈ [0, 𝑇[ it now holds that 󶙡𝑓𝛿󶙡𝜃+4⋅𝛿 = 𝑝𝛿󶀢 𝜃+4⋅𝛿4 󶀲 = 𝑝∗󶀡𝜃4 + 𝛿 − 𝛿󶀱 = 𝑝∗󶀢𝜃4󶀲.
By choosing 𝛿 ≔ 𝜀4 we get the statement for 󶙡𝑓𝜀󶙡𝜃+𝜀.
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𝑠𝑘 𝑣
𝑡1 -1𝑡2 -1𝑡3 -1⋮𝑡𝑘 -1
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(a) An examplewith a single source and 𝑘 sinks. Arcs have
unit capacity and the depicted transit time. Supplies
and demands are 𝑘 and −1, respectively.
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(b) e discrete and continuous patterns for

the network. Both patterns are equal at
integral points in time.

Figure 4.5: Counter example providing lower bounds for both 𝛼-time and 𝛽-value approximate ear-
liest arrival flows.

Lower Bounds for Time-approximate Earliest Arrival Flows. Wewill use the network depicted
in Figure 4.5 to show a lower bound for 𝛼-time approximations, and later in Section 4.3 also to show
the corresponding lower bound for 𝛽-value approximations of earliest arrival flows.
In the following, we need a notion of weighted sum of arrival times. To get this, we weight each

flow unit by its arrival time. Let 𝑥 be a path flow. en theweighted sum of arrival times is defined
as Ξ𝑥 ≔ 󵠈𝑃∈𝓟 𝑇󵠈𝜃=1𝑥𝑃(𝜃) ⋅ 󶀡𝜃 + 𝜏(𝑃)󶀱.
For a given edge flow, we compute the corresponding weighted sum of arrival times Ξ𝑓 ≔ Ξ𝑥 as the
weighted sum of arrival times of a corresponding path decomposition 𝑥.
In order to prove the existence of the lower bound, we show a connection between the weighted

sum of arrival times and the number of demands sent by the flow in the network depicted in Fig-
ure 4.5. Let therefore 𝑓 be a flow in the discrete time model and 𝑥 be a path decomposition of 𝑓
with 𝓟𝑓 being the set of paths with positive flow value. For 𝑃 ∈𝓟𝑓 we denote by 𝜎(𝑃) the point in
time where 𝑓 starts to send flow along 𝑃 and by 𝜏(𝑃) the length of 𝑃. If 𝑓 sends 𝐵 units of flow, then
the weighted sum of arrival times Ξ𝑒 of 𝑓 is at least ⌊𝐵⌋2 + ⌊𝐵⌋.
Lemma4.12. Let𝑓 be a flow in the discrete timemodel that lives on a fan graphwith 𝑘 sinks connected
via travel times 1, 2,… , 𝑘. If 𝑓 sends 𝐵 units of flow, then the weighted sum of arrival times Ξ𝑓 𝑓 with
a path decomposition 𝑥 satisfies

Ξ𝑓 ≥ 2 ⋅ ⌊𝐵⌋󵠈𝑖=1 𝑖 = ⌊𝐵⌋2 + ⌊𝐵⌋.
Proof. Let 𝑓 be a flow on the network in Figure 4.5. We will first decompose 𝑓. Let 𝑃𝑖 be the path(𝑠, 𝑣, 𝑡𝑖) to sink 𝑡𝑖 and 𝑃𝑖(𝜃) ≔ 󶙡𝑓𝑖,𝜃󶙡, where 󶙡𝑓𝑖,𝜃󶙡 equals the amount of flow that 𝑓 starts to send to
sink 𝑡𝑖 at time 𝜃. We also define 𝑇̃ to be the last time at which 𝑓 starts sending flow to a sink.
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By this definition, we can write Ξ𝑓 = ∑𝑘𝑖=1∑𝑇̃𝜃=1 𝑃𝑖(𝜃) ⋅ (𝜃 + 𝑖). It follows thatΞ𝑓 = 𝑘󵠈𝑖=1 𝑇̃󵠈𝜃=1𝑃𝑖(𝜃) ⋅ (𝜃 + 𝑖)= 𝑘󵠈𝑖=1 𝑇̃󵠈𝜃=1𝑃𝑖(𝜃) ⋅ 𝜃 + 𝑘󵠈𝑖=1 𝑇̃󵠈𝜃=1𝑃𝑖(𝜃) ⋅ 𝑖≥ ⌊𝐵⌋󵠈𝜃=1 𝜃 + ⌊𝐵⌋󵠈𝑖=1 𝑖= ⌊𝐵⌋2 + ⌊𝐵⌋.
e inequality is due to the fact, that we have to use at least ⌊𝐵⌋ paths and have to send flow out of
the source for at least ⌊𝐵⌋ time units, which we use as a lower bound for the two sums.

For the lower bound, we consider the network in Figure 4.5. We already know by Lemma 4.12
that the weighted sum of arrival times Ξ𝑓 satisfiesΞ𝑓 ≥ ⌊𝐵⌋2 + ⌊𝐵⌋
if 𝑓 is a flow in this network with flow value 𝐵. Additionally, every 𝛼-time-approximate earliest
arrival flow 𝑓 satisfiesΞ𝑓 ≤ 𝑘󵠈𝑖=1⌈𝛼 ⋅ (𝑖 + 1)⌉ ≤ 2𝑘 + 𝑘󵠈𝑖=1 𝛼𝑖
because 𝛼 ≥ 1, thus implying the following theorem.
Theorem 4.13. For every 𝛼 < 2, there exists a dynamic network with a single source that does not
allow for an 𝛼-time-approximate earliest arrival flow. is holds in the discrete and continuous time
model.

Proof. Let 𝑓 be an 𝛼-time-approximate flow on the network in Figure 4.5. e arrival pattern for
the instance described in Figure 4.5 is given by 𝑝∗(𝑖) = 𝑖 − 1, for 𝑖 = 1,… , 𝑘 + 1. is means that at
least 𝑖 flow units must arrive at the sinks up to time ⌈𝛼 ⋅ (𝑖 + 1)⌉. is implies that we can bound Ξ𝑓
from above byΞ𝑓 ≤ 𝑘󵠈𝑖=1⌈𝛼(𝑖 + 1)⌉ ≤ 2𝑘 + 𝑘󵠈𝑖=1 𝛼𝑖.
Together with Lemma 4.12, we get𝑘󵠈𝑖=1 𝛼𝑖 ≥ 2 𝑘󵠈𝑖=1 𝑖 − 2𝑘⇔ 𝛼 ≥ 2 − 2𝑘𝑘(𝑘 + 1)/2 = 2 − 4𝑘 + 1.
us, for every 𝛼 < 2, there exists a 𝑘 such that the above example does not allow for an 𝛼-time-
approximate earliest arrival flow.
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ZeroTransit Times. Wewill shortly review the special case of zero transit times. Onemight expect
to gain better approximation results for this restricted class of instances. However, even in the case
of zero transit times, time-approximation is hopeless formultiple sources and sinks. is is unlike to𝛽-value-approximations, which allow for a simple form of approximation in the case of zero transit
times that can also be implemented to have polynomial running time.
Let 𝑇∗ be the time horizon of a quickest flow in 𝒩 . In the discrete time model, there exists

always an 𝛼 = 𝑇∗-time-approximate earliest arrival transshipment, because the quickest flow has
this approximation guarantee as there is no flow arriving before time one (the same also holds in the
continuous timemodel if no flow can arrive before time one). is cannot be improved much, as we
see in the next lemma, and the general continuous case does not allow for any approximation.
Lemma 4.14 (Lower bound for zero transit times). Let 𝑇∗ be the time horizon of a quickest trans-
shipment for a given earliest arrival transshipment instance.
For every 𝛼 ≤ 𝑇∗2 , there exists a network such that it does not allow for an 𝛼-time-approximate earliest

arrival flow in the discrete time model.
For every finite𝛼, there exists a network such that it does not allow for an𝛼-time-approximate earliest

arrival flow in the continuous time model.

Proof. We consider the family of instances 𝐼𝐶,𝑈 for 𝐶,𝑈 ∈ ℝ depicted in Figure 4.6. For the first
lower bound, we only use instances of the form 𝐼𝐶,𝐶 for 𝐶 ∈ ℝ.
All supplies and demands can be satisfied in time 𝐶. In order to satisfy all demands, which any𝛼-time-approximation has to do eventually, we must not use the edge (𝑠1, 𝑡2) as all supply in 𝑠1 is

needed to satisfy the demand of 𝑡1.
erefore, any 𝛼-time-approximation has to send flow using only the edges (𝑠1, 𝑡1) and (𝑠2, 𝑡2),

leading to flow arriving at the sinks with a rate of 2 until all flow units have been sent at time 𝐶.
However, it is possible to send 𝐶 + 1 flow units until time 1 by sending 𝐶 − 1 flow units through(𝑠1, 𝑡2) in addition to using (𝑠1, 𝑡1) and (𝑠2, 𝑡2). An 𝛼-time-approximation cannot send 𝐶 + 1 flow
units before time 𝐶+12 , yielding a lower bound of 𝑇+12 > 𝑇∗2 for𝛼 because the time horizon of a quickest
flow for this instance is 𝑇⋆ ≔ 𝐶. erefore there are no 𝛼 ≤ 𝑇∗2 -time approximations for this family
of instances.
For the bound in the continuous model, consider the general family of instances 𝐼𝐶,𝑈 and notice

that an 𝛼-time-approximation cannot send 𝐶 flow units before time 𝜃 ≔ 𝐶2 . However, we can now
send𝐶 units using (𝑠1, 𝑡2) in 𝜃′ ≔ 𝐶𝑈 time. For𝐶 → ∞, 𝜃′ converges to 0 and thus 𝛼 ≥ 𝜃𝜃′ →∞.
Lemma 4.15 (Upper bound for zero transit times). Let 𝑇∗ be the time horizon of a quickest trans-
shipment for a given dynamic network. en there exists a 𝑇∗-time-approximate earliest arrival flow

𝑠1𝐶 𝑡1 −𝐶
𝑠2𝐶 𝑡2 −𝐶

1
𝑈
1

Figure 4.6: Instance 𝐼𝐶,𝑈 with zero transit times 𝜏 ≡ 0. Capacities are as specified on the edges,
supplies and demands are as given next to the nodes.
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in any network in the discrete time model.

Proof. Let𝑓 be a quickest flow for a given instance. By definition,𝑓 satisfies all supplies anddemands
in time 𝑇∗. In the discrete time model, we do not have flow arriving before time 1. Since 𝑓 sends all
possible flow at time 𝑇∗, 𝑓 is an 𝛼 = 𝑇∗-time-approximation.

Notice that the examples can be modified such that all sources can reach all sinks by adding the
edge (𝑠2, 𝑡1) with capacity 𝐶−1. e existence of this edge makes the analysis slightly more involved
but does not change the result.

4.3 A Constant Approximation Framework

In this section we will establish a general approximation framework based on a simple idea that al-
lows for constant value-approximate earliest arrival flows, if certain conditions are met. In Sections
4.3.1 and 4.3.3 we will show that concrete implementations of the framework allow for constant ap-
proximations in the classical settings of earliest arrival transshipments, but also in themore elaborate
setting of multi commodity flows.
So far, to the best of the author’s knowledge, value-approximation of flows over time has not been

studied, although it is the more intuitive form of approximation: At each point in time, we wish to
approximate the maximum amount of flow at this time. We will see, that this notion of approxima-
tion is surprisingly strong, as it allows for 2-approximations in the general case of multiple sinks and
sources, in contrast to time-approximation.

Increasing Time-expanded Networks. We establish a general algorithm based on time expan-
sion for discrete flows over time. In contrast to known algorithms, we use time-expanded networks
of increasing time horizon and start with a network𝒩 1 that only contains the original graph. Wewill
iteratively compute network flows in the increasing time-expanded networks𝒩 𝜃 for 𝜃 ∈ {1, 2,… , 𝑇}
for some 𝑇 large enough. is leads us to the general framework for value-approximate earliest ar-
rival flows in Algorithm 4.1.

Obviously, we cannot prove any runtime bound for the algorithm as its runtime heavily relies on
the computation of feasible flows 𝑓𝑖 in step 4. Observe also, that the flow 𝑓𝑖 has to remain the same
in 𝒩 𝑖+1 which is a fairly strong requirement. Due to the time expansion, we expect any concrete
implementation of the general algorithm to have super-polynomial running time. We will see con-
crete implementations later in Sections 4.3.1 and 4.3.3, and see that in the special case of zero transit
times, the implementation can be improved to be polynomial.
e construction of a flow satisfying a specific value-approximation factor in step 4 is the crucial

aspect for proving correctness of the algorithm. If such a flow can be found, any flow that is returned
by the algorithm is a 𝑐-value-approximate earliest arrival flow.
Observation 4.16. A concrete implementation of Algorithm 4.1 computes a 𝑐-value-earliest arrival
flow for the given instance, if such a flow exists.

Proof. Because we have a concrete implementation given, we can assume there exists the algorithm
required in step 4 in the computation. e additional requirements make sure that the computed
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Algorithm 4.1: General 𝑐-value-approximate Earliest Arrival Flow Algorithm
Input: An instance ⟨𝐼⟩ of a network flow problem in any flow over time model, possibly with

additional constraints, that allows for time expansion, 𝑐 ∈ ℝ.
Output: A 𝑐-value-approximate flow over time or the statement that such a flow does not exist.

1. Define an increasing time expanded version 𝒩 𝑖 of the network specified by ⟨𝐼⟩.
is may be either for a sufficient time bound 𝑇, or dynamically increasing.

2. Set 𝑖 ≔ 1 and compute a maximum flow 𝑓1 in 𝒩 1 according to the constraints of
the model.

3. Let 𝑖 be the current step and 𝑓𝑖 be a feasible flow in 𝒩 𝑖.
4. Compute a feasible maximum flow 𝑓𝑖+1 for the given model in 𝒩 𝑖+1 subject to the

following additional constraints:󶙡𝑓𝑖+1󶙡𝜃 ≥ 1𝑐 󶙡𝑓𝜃,∗󶙡,
where 𝑓𝜃,∗ is a maximum flow for time horizon 𝜃. If no such flow can be found,
return for infeasible instance.

5. If all demands are satisfied by 𝑓𝑖+1 or it is not possible to send additional flow
because all reachable sinks have satisfied demands, return 𝑓𝑖+1. Otherwise, set𝑖 ≔ 𝑖 + 1 and continue with 2.

flow is indeed a 𝑐-value-approximation.

Existence Criterion. e general algorithm allows to check for existence for a given approxima-
tion factor 𝑐. However, we are more interested in an algorithm that always computes a feasible flow,
preferably with a best possible upper bound. is is easily achieved by changing step 4 to act greedily
as described in the following. Instead of requiring the flow to achieve at least a 1𝑐 -fraction of themax-
imum amount of flow, we can just enforce that the flow value for earlier points in time is not allowed
to be changed later. us, proving an upper bound of 𝑐 only requires that the flow computed in each
iteration is upper bounded by 𝑐. is leads to the following general greedy-value-approximation
earliest arrival flow algorithm.

e modified greedy version of the algorithm does not send exactly a 𝑐-fraction of the maximum
flow any more, but possibly more. erefore we cannot give a general bound on the approximation
quality, this has to be proven for each concrete implementation. However, we can state the following
lemma that gives a hint of what type of bound should be proven for any concrete implementation.
Lemma4.17. If the computed flows in each iteration satisfy 󶙡𝑓𝑖,∗󶙡 ≥ 1𝑐 ⋅󶙡𝑓𝑖,∗󶙡, where𝑓𝑖,∗ is amaximum
flow for time horizon 𝑖 in the given model, then Algorithm 4.2 computes a 𝑐-value-approximate earliest
arrival flow for the given instance.
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Algorithm 4.2: General Greedy Value-approximate Earliest Arrival Flow Algorithm
Input: An instance ⟨𝐼⟩ of a network flow problem in any flow over time model, possibly with

additional constraints, that allows for time expansion.

Output: A value-approximate flow over time.

1. Define an increasing time expanded version 𝒩 𝑖 of the network specified by ⟨𝐼⟩.
is may be either for a sufficient time bound 𝑇, or dynamically increasing.

2. Set 𝑖 ≔ 1 and compute a maximum flow 𝑓1 in 𝒩 1 according to the constraints of
the model.

3. Let 𝑖 be the current step and 𝑓𝑖 be a feasible flow in 𝒩 𝑖.
4. Compute a feasible maximum flow 𝑓𝑖+1 for the given model in 𝒩 𝑖+1 subject to the

following constraints:󶙡𝑓𝑖+1󶙡𝜃 = 󶙡𝑓𝜃󶙡,
where 𝑓𝜃 are the computed flows in time steps 𝜃 ≤ 𝑖.

5. If all demands are satisfied by 𝑓𝑖+1 or it is not possible to send additional flow
because all reachable sinks have satisfied demands, return 𝑓𝑖+1. Otherwise, set𝑖 ≔ 𝑖 + 1 and continue with 2.

Proof. In each time step 𝑖, the computed flow sends at least a fraction of 1𝑐 󶙡𝑓𝑖,∗󶙡 by assumption of the
lemma. Step 4 ensures, that any consecutively computed flows send at least as much flow in earlier
time steps, and thus the computed flow is indeed a 𝑐-value-approximate earliest arrival flow.

In the remainder of the section we will see two examples how the greedy algorithm can be imple-
mented such that the implementation is practically usable and the result is good enough. We will
complement the upper bounds with according lower bounds at least for the case of classical flows
over time.

4.3.1 Classical Flows

For the case of classical flows, i. e., flows with only one commodity and constant transit times, we
show that the G G V- E A F A 4.2
can be implemented to produce 2-value-approximate earliest arrival transshipments. For flows in the
classical model, the requirements in step 4 of the general algorithm can be easilymet: e discussion
in Section 1.2 shows, that augmenting path algorithms are a possible way to compute maximum
flows over time in a residual network. We can force such an algorithm to ensure capacities in a time-
expanded network by simply removing residual arcs (𝑡∗𝑖 , 𝑡𝜃𝑖 ) connecting super terminals to temporal
copies of sinks for past times. If the flow value on the residual copy cannot be changed, the flow at
earlier times cannot be reduced. Notice, that it is not necessary to remove also the according forward
arc, as the algorithm sendsmaximumflows and flow on the arc is therefore not changed. An example
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4 Approximating Earliest Arrival Flows

of the situation is given in Figure 4.7c. is leads to the following concrete implementation of the
general greedy constant approximation framework.

Algorithm 4.3: Greedy 2-value-approximate Earliest Arrival Flow Algorithm
Input: A dynamic network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−), and 𝑏 supplies and demands.

Output: 2-value-approximate earliest arrival flow.

1. Create an increasing time-expanded network 𝒩 𝑇 for a sufficient time bound.

2. Set 𝑖 ≔ 1 and compute a maximum flow 𝑓1 in 𝒩 1.
3. Let 𝑖 be the current iteration, 𝑓𝑖 be the computed flow for time 𝑖 that is feasible in𝒩 𝑖, and ℛ𝑖+1 be the (static) residual network induced by 𝑓𝑖 in the time-expanded

network𝒩 𝑖+1. Define a new networkℛ′𝑖+1 by deleting all edges of the form (𝑡∗𝑖 , 𝑡𝜃𝑖 )
for 𝜃 ∈ {1, 2,… , 𝑖} and all 𝑡 ∈ 𝑆−.

4. Augment𝑓𝑖 by 𝑠∗-𝑡∗-paths inℛ′𝑖+1 as long as such paths exist. Denote the resulting
flow by 𝑓𝑖+1.

5. If no sink is reachable any more or all demands ∑𝑠∈𝑆+ 𝑏𝑠 are satisfied, return 𝑓𝑖+1.
Otherwise, set 𝑖 ≔ 𝑖 + 1 and continue with 3.

Notice, that step 4 is the computation of a maximum flow in the modified residual time-expanded
networkℛ′𝑖+1, and as such satisfies the requirements of step 4 in the general greedy framework from
Algorithm 4.2. To prove a constant bound for the value-approximation guarantee, we have to prove
a statement that allows us to use Lemma 4.17. In fact, it is true that the maximum flow and the
computed flows in each iteration differ at most by a factor of 2. e idea to see this is fairly simple:
If it is possible to send more flow than we actually have done, this must be the case by using some of
the removed arcs. is means, that for every flow unit that is possible to be sent, another flow unit
at an earlier point in time is blocking. us we have a factor of two. is is stated in the following
lemma.
Lemma 4.18. Let 𝑓𝜃,∗ be a maximum flow for time horizon 𝜃 and 𝑓𝜃 be the flow computed by Algo-
rithm 4.3. en it holds that󶙡𝑓𝜃,∗󶙡 ≤ 2 ⋅ 󶙡𝑓𝜃󶙡.
Proof. Weconsider the difference flow that emerges from subtracting the flow𝑓𝜃 from themaximum
flow𝑓𝜃,∗ in a step of the algorithm. Let𝑔 ≔ 𝑓𝜃,∗−𝑓𝜃 be the difference flow that originates by sending(𝑓𝜃,∗ − 𝑓𝜃) on a forward arc 𝑒, if the value is positive, and sending −(𝑓𝜃,∗ − 𝑓𝜃) on reverse arcs 𝑒 if
the value is negative. Notice that for the flow values we now have 󶙢𝑓𝜃,∗󶙢 = 󶙢𝑓𝜃󶙢 + 󶙡𝑔󶙡.
e constructed flow 𝑔 is a valid flow in the residual network ℛ𝜃, but not necessarily in ℛ′𝜃.

Consider any path 𝑃 in the path decomposition of 𝑔. is path sends an additional unit of flow, that
is not sent by 𝑓𝜃. Because 𝑓𝜃 is a maximum flow and the path augmenting algorithm has not found
another path, 𝑃must be an 𝑠∗-𝑡∗-path using one of the deleted edges.
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Notice now, that the total value of these paths is bounded by 𝑓𝜃, because only residual arcs (cor-
responding to flow units that have arrived at an earlier time) were removed. us we have 󶙡𝑔󶙡 ≤ 󶙢𝑓𝜃󶙢
and consequently 󶙢𝑓𝜃,∗󶙢 ≤ 󶙢𝑓𝜃󶙢 + 󶙢𝑓𝜃󶙢 = 2 ⋅ 󶙢𝑓𝜃󶙢.
Theorem 4.19. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network, and 𝑏 supplies and de-
mands. enAlgorithm 4.3 computes a 2-value-approximative earliest arrival flow in𝒩 in the discrete
time model.

Proof. Observe that Algorithm 4.3 is a concrete implementation of the G G V-
 E A F A 4.2. Due to the bound 󶙢𝑓𝜃,∗󶙢 ≤ 2 ⋅ 󶙢𝑓𝜃󶙢 from
Lemma4.18we can apply Lemma4.17 proving that the resulting flow is in fact a 2-value-approximate
earliest arrival flow.

Algorithm 4.3 has a pseudo-polynomial running time and only works in the discrete time model.
However, together with the FPTAS described in Section 4.4 we obtain an efficient approximation.
Example 4.20 (Time-expanded Fan Graph). We consider the fan graph for 𝑘 = 3 as depicted in
Figure 4.1a. e time-expanded network in the beginning, and aer the first and second iteration of
Algorithm 4.3 are depicted in Figure 4.7.
ere is one path with zero travel time to copy 𝑡11 of the first sink that is used in step 2 for the initial

maximum flow computation. When the available time horizon is increased, it is possible to send one
unit of flow in the residual network. However, the augmenting path (as depicted in Figure 4.7c) would
use the reverse arc created by the first maximum flow computation. us, the path is not augmented
and for time 𝜃 = 2 we miss the maximum flow value by the one flow unit already sent at time 1.
Algorithm 4.3 only works in the discrete model. However, there still is a 2-value approximate

earliest arrival flow in the continuous model that loses additionally a bit with respect to the time
approximation.
Corollary 4.21. ere exists a (1 + 𝜀, 2)-time-value-approximate earliest arrival transshipment in the
continuous model.

Proof. Consider the flow computed by Algorithm 4.3, that is a 2-value-approximate earliest arrival
flow byeorem 4.19. en Lemma 4.6 directly gives the result.

4.3.2 Lower Bounds for Value-approximate Earliest Arrival Flows

ere exist simple examples of networks with only one source that provide also a lower bound of
two. We will use the family of fan graphs depicted in Figure 4.5 to show that for any 𝛽 < 2 there
exists an instantiation for some 𝑘, such that the network does not allow for a 𝛽-value-approximate
earliest arrival transshipment.
Theorem 4.22. For every 𝛽 < 2, there exists a dynamic network with only one source that does not
allow for a 𝛽-value-approximate earliest arrival flow in the discrete and continuous time model.

Proof. Consider the fan graph as depicted in Figure 4.5. e earliest arrival pattern is given by𝑝∗(𝜃) = 𝜃 − 1 for 𝜃 ∈ {1, 2,… , 𝑘 + 1} for both time models and is convex. eorem 4.13 states that
there is no 𝛼-time-approximation for any 𝛼 < 2. By Lemma 4.8 we know that a value-approximate
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𝑠∗1 𝑡∗1 𝑡∗2 𝑡∗3
𝑡∗ 𝑡∗

𝑠0 𝑡11 𝑡12 𝑡13
𝑠1 𝑡21 𝑡22 𝑡23
𝑠2 𝑡31 𝑡32 𝑡33

(a) e time-expanded fan graph for 𝑘 = 3 and time horizon 𝑇 = 3.

𝑠∗1 𝑡∗1 𝑡∗2 𝑡∗3
𝑠∗ 𝑡∗

𝑠0 𝑡11 𝑡12 𝑡13
𝑠1 𝑡21 𝑡22 𝑡23
𝑠2 𝑡31 𝑡32 𝑡33

(b) e network 𝒩 1 (all nodes and edges completely below the dashed grey line) as part of the
time-expanded network. e dashed path is the 𝑠∗-𝑡∗-path that is augmented in the first
iteration.

𝑠∗1 𝑡∗1 𝑡∗2 𝑡∗3
𝑠∗ 𝑡∗

𝑠0 𝑡11 𝑡12 𝑡13
𝑠1 𝑡21 𝑡22 𝑡23
𝑠2 𝑡31 𝑡32 𝑡33

(c) e network 𝑅2 (all nodes and edges completely below the dashed grey line) as part of the
time-expanded network. e dashed path (which is the only existing 𝑠∗-𝑡∗-path) cannot
be augmented in 𝑅′2, as the dashed backward (𝑡∗1 , 𝑡11)-edge does not exist there.

Figure 4.7: e time-expanded network for the fan graph with 𝑘 = 3 with time horizon 𝑇 = 3 and
the first two iterations of Algorithm 4.3.

102



4.3 A Constant Approximation Framework

earliest arrival transshipment would imply the existence of a time-approximate transshipment with
the same factor. us, no 𝛽-value-approximation is possible for any 𝛽 < 2.
Zero Transit Times. We will simplify the Greedy 2-value-approximate Earliest Arrival Flow Al-
gorithm 4.3 for the special case of zero transit times. e algorithm computes a maximum flow that
is added to the flow 𝑓𝜃 in step 4. Due to the fact that all arcs only lie within a time layer, e. g., they
have the form 𝑒 = (𝑣𝜃, 𝑤𝜃) for some time 𝜃, the max flow computation is mostly independent from
the previously computed flow in earlier time layers. As long as the supplies and demands are not
depleted, the same flow can be sent in each time. us we can repeatedly use the same static flow
that can be computed in the original network until a source runs out of supply or a sink’s demand
is satisfied. is can not happen too oen and we can calculate the time, when this will happen. In
total, this yields a polynomial algorithm.

Algorithm 4.4: Zero Travel Time Value-approximate Earliest Arrival Algorithm
Input: An instance 𝒩 = (𝑉, 𝐸, 𝑢, 𝜏, 𝑆+, 𝑆−) of the earliest arrival flow problem with zero

transit times 𝜏𝑒 ≡ 0 and node balances 𝑏.
Output: A 𝛽 = 2-value-approximation for the given instance.

1. Define new balances 𝑏′𝑣 ≔ 𝑏𝑣 and set 𝜃 ≔ 1.
2. Compute a static maximum transshipment 𝑓𝜃 respecting 𝑏′.
3. Determine the maximal amount of times 𝑟𝜃 the static flow 𝑓𝜃 can be sent until a

source or sink runs empty:𝑟𝜃 ≔ min󶁃󶃃 𝑏′𝑠|𝑓𝜃|󶃓 󶙣 𝑠 ∈ 𝑆+, 𝑏′𝑠 > 0󶁓 ∪󶁃󶃃 −𝑏′𝑡|𝑓𝜃|󶃓 󶙣 𝑡 ∈ 𝑆−, 𝑏′𝑡 < 0󶁓.
4. Update the balances according to the flow 𝑓𝜃 sent:𝑏′𝑠 ≔ 𝑏′𝑠 − 𝑟𝜃 ⋅ ex󶀡𝑓𝜃󶀱 for 𝑠 ∈ 𝑆+ with 𝑏′𝑠 > 0,𝑏′𝑡 ≔ 𝑏′𝑡 + 𝑟𝜃 ⋅ ex󶀡𝑓𝜃󶀱 for 𝑡 ∈ 𝑆− with 𝑏′𝑡 < 0.
5. If 𝑏′ ≠ 0, set 𝜃 ≔ 𝜃 + 1 and continue with 2.

6. Output the flow over time that sends 𝑓𝜃 starting at ∑𝜃−1𝑗=1 𝑟𝜃 for 𝑟𝜃 time units.

For zero transit times, a maximum flow with time horizon 𝑇 with supply / demands is equivalent
to a static maximum flow in the network in which all edges are multiplied by 𝑇 and the supplies /
demands are represented by edges to super terminals. To show that the flow computed by the above
algorithm is a 2-value-approximation, consider the residual network of the computed flow in the
“multiplied” network, in which again the reverse edges of the super terminal edges are deleted.
Theorem 4.23. Algorithm 4.4 computes a 2-value-approximate earliest arrival flow in dynamic net-
works with zero travel times.
e flow can be computed with at most 𝐵 static maximum flow computations in the continuous
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time model and at most 𝐵 log 𝑏𝑚𝑎𝑥 static maximum flow computations in the discrete time model, with𝐵 ≔ |𝑆+ ⊍ 𝑆−| being the number of terminals and 𝑏𝑚𝑎𝑥 ≔ max{|𝑏𝑣| | 𝑣 ∈ 𝑆+ ⊍ 𝑆−} being the largest
supply or demand.

Proof. Wehave to show that the algorithm computes a feasible flow. At the beginning of step 3, there
is at least one terminal which still has supply or demand. Because 𝑓𝜃 is a maximum transshipment
respecting 𝑏′, the number of iterations 𝑟𝜃 is at least 1. By definition of 𝑟𝜃, the new values for supplies
and demands computed in step 4 are feasible.
We show that the computed flow is indeed a 2-value approximate earliest arrival flow. Observe,

that a maximum flow over time with zero transit times with time horizon 𝑇 can be computed in the
extended network𝒩 ′ that contains𝑇 copies of each arc andwhose supplies and demands are shied
to newly introduced super terminals. e network has a one on one correspondence between an arc
copy 𝑒𝜃 and the copy of the arc (𝑣𝜃, 𝑤𝜃) on time layer 𝜃 in the time-expanded network. To prove
the bound, consider the computed flow in the residual network of 𝒩 ′ with respect to 𝑓 in which
the reverse edges of the super terminal edges are deleted. is leads to the same argument as in the
proof of eorem 4.19.
e algorithmperforms one staticmaximumflow calculation per step. e choice of 𝑟𝜃 guarantees

that at least one source or sink runs empty in every iteration in the continuous model, ensuring that𝑏′ = 0 aer 𝐵 iterations. Note that in the discrete time model, we have to choose an integer 𝑟𝜃, so we
get ⌊𝑟𝜃⌋ compared to the continuous case. is means that we have sent more than half of the supply
or demand of a terminal since otherwise, we could have send 𝑓𝜃 at least one more time. is leads
to at most log(𝑏𝑚𝑎𝑥) + 1 iterations per terminal, since our capacities and balances are integral.

Lower Bounds for Zero Travel Times. In the following, we show that 𝛽 = 2 is best possible even
in the case of zero transit times. For this purpose, we again use time-expanded networks. Recall
from eorem 4.19 that in a time-expanded network, we have copies of the network in each time
step and super-terminals that send flow into the layers or receive flow from the layers, respectively.
Notice that due to zero-transit times, there are no edges between time layers.

Feasibility. e existence of a 𝛽-approximate earliest arrival flow can be related to a solution in
a time-expanded network if the arrival pattern is known. is can be done for example by a linear
program which then can be used to verify existence of approximate flows. We can then use duality
theory to identify instances that do not allow for feasible value-approximate earliest arrival flows.

Problem: Earliest Arrival Approximation Feasibility

Instance: A dynamic network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏 ≡ 0, 𝑆+, 𝑆−) with zero
transit times, supplies and demands for the sources and sinks 𝑏 ∶𝑉 → ℝ, approximation factor 𝛽.

Task: Decide, whether a𝛽-value-approximate earliest arrival flow exists
in 𝒩 .

To further investigate this problemwe need some notations. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏 ≡ 0, 𝑆+, 𝑆−)
be a dynamic network with zero travel times and 𝒩 𝑇 = (𝐺 = (𝑉𝑇, 𝐸𝑇), 𝑢𝑇, 𝑆+𝑇, 𝑆−𝑇) the corre-
sponding time-expanded network. Let 𝓟𝜃 be the set of 𝑠∗-𝑡∗-paths in 𝒩 𝑇 that use node copies 𝑣𝜃
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in time layer 𝜃 for each node 𝑣 ∈ 𝑉 in the underlying static network. In the case of zero travel times𝓟𝜃 ∩𝓟𝜃′ = ∅ holds for two points in time 𝜃 ≠ 𝜃′ because paths do not leave their respective
layer. We denote the set of all paths by 𝓟 ≔ ⋃𝑇𝜃=1𝓟𝜃. For an earliest arrival pattern 𝑝∗ we define𝑝′ ∶ {1, 2,… , 𝑇} → ℝ to be the slope of the arrival pattern between two time steps, i. e.,𝑝′(𝜃) ≔ 󶁇𝑝∗(1) if 𝜃 = 1,𝑝∗(𝜃) − 𝑝∗(𝜃 − 1) else.

Using these preliminary definition we now define the following linear program, which corre-
sponds to the E A A F P.

max 0, (EAA)
s.t. 󵠈𝑃∈𝒫∶𝑒∈𝒫 𝑥𝑃 ≤ 𝑢𝑒 for all 𝑒 ∈ 𝐸𝑇,󵠈𝑃∈𝒫𝜃 𝑥𝑃 ≥ 𝑝′(𝜃)𝛽 for all 𝜃 ∈ {1,… , 𝑇},𝑥𝑃 ≥ 0 for all 𝑃 ∈ 𝒫 .

e dual of the linear program is the E A C P P which is speci-
fied in the following LP formulation.

min 󵠈𝑒∈𝒩𝑇 𝑦𝑒𝑢𝑒 − 𝑇󵠈𝜃=1 𝑝′(𝜃)𝛽 𝑧𝜃, (EAC)

s.t. 󵠈𝑒∈𝑃𝑦𝑒 − 𝑧𝜃 ≥ 0 for all 𝜃 ∈ {1,… , 𝑇}, 𝑃 ∈ 𝒫𝜃,𝑦𝑒 ≥ 0 for all 𝑒 ∈ 𝐸𝑇,𝑧𝜃 ≥ 0 for all 𝜃 ∈ {1,… , 𝑇}.
Notice that (EAA) basically consists of the path formulation for network flows in a time-expanded

network. e LP additionally ensures, that at each point in time the arriving amount is exactly the
necessary fraction of 1𝛽 to get a 𝛽-approximate flow as solution. In order to show that the LP defines
exactly the feasible instances, we use the following observation that shows how flow can be shied
to later points in time and still remains feasible.
Observation 4.24 (Observation 5 in [SS14]). Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏 ≡ 0, 𝑆+, 𝑆−) be a dynamic
network with zero transit times and 𝑓 be a feasible transshipment in 𝒩 that sends a (static) flow 𝑓𝜃
at each point in time 𝜃 ∈ {1, 2,… , 𝑇}. Let 𝜃1 < 𝜃2 ∈ {1, 2,… , 𝑇} with 󶙡𝑓𝜃1 󶙡 ≥ 󶙡𝑓𝜃2 󶙡. en, for any𝑥 ∈ 󶁡󶙡𝑓𝜃2 󶙡, 󶙡𝑓𝜃1 󶙡󶁱 there exist two static network flows ̂𝑓𝜃1 and ̂𝑓𝜃2 with󶙡 ̂𝑓𝜃1 󶙡 = 𝑥, and󶙡 ̂𝑓𝜃2 󶙡 = 󶙡𝑓𝜃1 󶙡 − 𝑥 + 󶙡𝑓𝜃2 󶙡,
such that replacing 𝑓𝜃1 by ̂𝑓𝜃1 and 𝑓𝜃2 by ̂𝑓𝜃2 results in a feasible transshipment with the same value
as 𝑓.
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Proof. For the given 𝑥 ∈ 󶁡󶙡𝑓𝜃2 󶙡, 󶙡𝑓𝜃1 󶙡󶁱 and any 𝑎 ∈ [0, 1] we define a feasible flow ̂𝑓 by setting the
flow values for each point in time 𝜉 as

̂𝑓 ≔ 󶀂󶀒󶀒󶀊󶀒󶀒󶀚
̂𝑓 𝜉 ≠ 𝜃1, 𝜃2,𝑎𝑓𝜃1 + (1 − 𝑎)𝑓𝜃2 𝜉 = 𝜃1,(1 − 𝑎)𝑓𝜃1 + 𝑎𝑓𝜃2 𝜉 = 𝜃2.̂𝑓 is feasible because it is a convex combination of two feasible flows. e result follows by setting𝑎 ≔ 𝑥−󶙡𝑓𝜃2 󶙡󶙡𝑓𝜃1 󶙡−󶙡𝑓𝜃2 󶙡 ∈ [0, 1].

We can now prove that (EAA) in fact decides whether an instance is feasible.
Lemma 4.25. A 𝛽-value-approximation in a network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏 ≡ 0, 𝑆+, 𝑆−) with zero
transit times and supplies and demands 𝑏 exists if and only if (EAA) has a feasible solution.
Proof. Any feasible solution of (EAA) obeys capacity constraints, satisfies flow conservation and
sends at least 𝑝′(𝜃)𝛽 in every step 𝜃 ∈ {1, 2,… , 𝑇} by construction of the LP as path based network
flow (cf. Definition 2.2). Feasible solutions can therefore be transformed into 𝛽-value-approximate
earliest arrival flows.
e reverse direction is not immediately clear, because the constraint in the LP requires that in

each time step at least 1𝛽 times the increase in the earliest arrival pattern is sent. However, a 𝛽-value
approximate earliest arrival flow is allowed to send more flow earlier and less flow later on. In the
following, we will show that every 𝛽-value-approximation can be modified to send exactly 1𝛽𝑝′(𝜃)
flow at each point in time 𝜃 by shiing flow from earlier time steps to later time steps, which then
induces a feasible solution of (EAA).
We know that 󶙡𝑓1󶙡 ≥ 𝑝′(1)𝛽 because 𝑓 is 𝛽-value approximate. For an arbitrary time step 𝜃, we

ensure that the 𝛽-condition holds by shiing flow from time steps 1, 2,… , 𝜃 − 1 to time step 𝜃,
if necessary. We do so by (repeatedly) choosing an 𝑓𝜉 for an adequate 𝜉 ∈ {1, 2,… , 𝜃 − 1} with󶙡𝑓𝜉󶙡 > 𝑝′(𝜉)𝛽 and applying Observation 4.24 to 𝑓𝜉 and 𝑓𝜃 with 𝜃 ≔ 󶙡𝑓𝜉󶙡 − 𝑝′(𝜉)𝛽 . We repeat this until󶙡𝑓𝜃󶙡 ≥ 𝑝′(𝜃)𝛽 . e time steps before 𝜃 must carry enough flow to establish this procedure, because
otherwise 𝜃󵠈𝜉=1󶙡𝑓𝜉󶙡 < 𝜃󵠈𝜉=1 𝑝′(𝜃)𝛽 = 𝑝∗(𝜃)𝛽
holds, which is a contradiction to 𝑓 being 𝛽-value-approximate.

Using duality we can also establish a feasibility criterion for the dual problem.
Lemma 4.26. A 𝛽-value-approximation in a network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏 ≡ 0, 𝑆+, 𝑆−) with zero
transit times and supplies and demands 𝑏 exists if and only if (EAC) is bounded.
Proof. By Lemma 4.25 we know that a 𝛽-approximate earliest arrival flow exists, if and only if (EAA)
has a feasible solution. Observe that (EAC) is the corresponding dual program, and that setting all
variables to 0 is a feasible solution of the dual, hence the primal LP is feasible if the dual is bounded.
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Before stating the main result that 2 is also a lower bound for the best possible approximation
factor for the case with zero-transit times, we will consider the following motivating example.
Example 4.27. Wewill define a class of dynamic networks using ℓ as a parameter for both the number
of sources and sinks in the network, and 𝑘 as a parameter for their respective capacities. We then
define 𝒩ℓ,𝑘 = (𝑉ℓ,𝑘, 𝐸ℓ,𝑘, 𝑢, 𝜏0, 𝑆+, 𝑆−) by using nodes 𝑉ℓ,𝑘 ≔ {𝑠𝑖, 𝑡𝑖 | 𝑖 ∈ {0, 1,… , ℓ}}, edges 𝐸ℓ,𝑘 ≔⋃ℓ𝑖=0󶁂(𝑠𝑖, 𝑡𝑗) 󶙢 𝑗 ∈ {𝑖, 𝑖 + 1,… , ℓ}󶁒, sources 𝑆+ ≔ ⋃ℓ𝑖=0 𝑠𝑖, sinks 𝑆− ≔ ⋃ℓ𝑖=0 𝑡𝑖, capacities 𝑢(𝑠𝑖,𝑡𝑗) ≔ 𝑘𝑗−𝑖 for
all (𝑠𝑖, 𝑡𝑗) ∈ 𝐸 and balances 𝑏𝑠𝑖 ≔ 𝑘ℓ, 𝑏𝑡𝑖 ≔ −𝑘ℓ for all 𝑖 ∈ {0, 1,… , ℓ}. Figure 4.8 depicts the instances𝒩1,𝑘, 𝒩2,𝑘 and 𝒩3,𝑘.
e idea behind the construction of 𝒩ℓ,𝑘 is that maximizing the flow for different time steps requires

flow to be sent from different sources to different sinks, making it impossible to extend a maximum flow
for one time step to be (nearly) maximal for all time steps. Consider network 𝒩3,𝑘 with 𝑘 sources and𝑘 sinks, as depicted in Figure 4.8c. To maximize the flow aer one time step, 𝑠0 must send (nearly)𝑘3 units of flow to sink 𝑡3. Maximizing the flow at time 𝑘 requires 𝑠0 to send its 𝑘3 flow units into 𝑡2
instead of 𝑡3, while 𝑠1 sends its flow to 𝑡3. For time step 𝑘2, the destination sinks are again completely
different: Now 𝑠2 can also send 𝑘3 flow units (to 𝑡3) but only if 𝑠1 instead sends its supply to 𝑡2 and 𝑠0
sends flow to sink 𝑡1. Finally, to maximize the flow at time 𝑘3, every source 𝑠𝑖 has to send its supply
to the corresponding sinks 𝑡𝑖. Alltogether, for each of the points in time 1, 𝑘, 𝑘2 and 𝑘3, the source-sink
pairs that have to be used are completely different.

𝑠0
𝑡0
1

𝑠1
𝑡1

𝑘 1

(a) e instance𝒩1,𝑘.
𝑠0
𝑡0
1

𝑠1
𝑡1

𝑘 1

𝑠2
𝑡2

𝑘2 𝑘 1

(b) e instance 𝒩2,𝑘.
𝑠0
𝑡0
1

𝑠1
𝑡1

𝑘 1

𝑠2
𝑡2

𝑘2 𝑘 1

𝑠3
𝑡3𝑘3𝑘2 𝑘 1

(c) e instance 𝒩3,𝑘.
Figure 4.8: Example of the instances 𝒩ℓ,𝑘 for ℓ = 1, 2, 3. e supplies and demands are defined to be𝑘ℓ.
Theorem 4.28. For every 𝛽 < 2, there exists a network with zero transit times which does not allow
for a 𝛽-value-approximate earliest arrival flow.

Proof. We show that for the family of networks 𝒩ℓ,𝑘 with supplies and demands 𝑏 as described in
Example 4.27, for every 𝛽 < 2, there is an ℓ and a 𝑘, such that the corresponding instance of (EAA)
is unbounded.
Consider an instance of dynamic network𝒩ℓ,𝑘. ese instances require flow to be sent fromdiffer-

ent sources to different sinks to maximize flow at different points in time. A 𝛽-value-approximation
algorithm can mediate between the different time steps by only partly sending the maximum flow,
but the more sources and sinks we have, the more conflicting source-sink pairs come into play that
make the mediation harder. We will see that for every 𝛽 < 2, there are values for ℓ and 𝑘 such that
this mediation has to fail.
We prove this by the technique outlined above the theorem: We define values 𝑧𝜃 such that we can

find a cut with costs less than ∑𝑘ℓ𝜃=1 𝑧𝜃 ⋅ 𝑝′(𝜃) which ensures that for all 𝜃, every path in 𝓟𝜃 is cut
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at least 𝑧𝜃 times. As time horizon we choose 𝑇 = 𝑘ℓ. us, our time-expanded graph contains 𝑘ℓ
copies of 𝒩ℓ,𝑘, and (EAC) has 𝑘ℓ variables 𝑧𝑖. We define𝑧𝜃 ≔ ℓ + 1 − ⌈log𝑘 𝜃⌉
for 𝜃 ∈ 󶁁1, 2,… , 𝑘ℓ󶁑, i. e., 𝑧1 = ℓ + 1, 𝑧2 = ⋯ = 𝑧𝑘 = ℓ, 𝑧𝑘+1 = ⋯𝑧𝑘2−1 = ℓ − 1, …, 𝑧𝑘ℓ−1 = 2, 𝑧𝑘ℓ = 1.
Now notice that in every network 𝒩ℓ,𝑘, we can always send 𝑘ℓ units of flow in the first time step

using the edge (𝑠0, 𝑡ℓ). Furthermore, for 𝑟 ∈ {1, 2,… , ℓ + 1}, at time 𝑘𝑟−1 we can use all edges (𝑠𝑖, 𝑡𝑗)
with 𝑗 − 𝑖 = ℓ + 1 − 𝑟. Each of these 𝑟 arcs has a capacity of 𝑘ℓ+1−𝑟 and can be used for 𝑘𝑟−1 time
steps to send a total amount of 𝑟 ⋅ 𝑘ℓ units of flow. We can actually send a bit more flow, but this is
sufficient to see that 𝑝(𝑘𝑟−1) ≥ 𝑟 ⋅ 𝑘ℓ for 𝑟 ∈ {1,… , ℓ + 1}. us, it holds that𝑘ℓ󵠈𝜃=1 𝑧𝜃 ⋅ 𝑝′(𝜃) = ℓ+1󵠈𝑟=1 𝑘𝑟−1󵠈𝜃=1 𝑝′(𝜃) = ℓ+1󵠈𝑟=1𝑝(𝑘𝑟−1) ≥ ℓ+1󵠈𝑟=1 𝑟 ⋅ 𝑘ℓ = (ℓ + 1)(ℓ + 2)2 𝑘ℓ.
What remains is to define the 𝑦-variables for a solution of (EAC). Note that we have a 𝑦-variable

for each edge of the time-expanded LP; so we have variables for each copy of an edge in a time
layer and also variables for the edges connecting the time layers to the super-terminals 𝑠𝑖 ∈ 𝑆+𝑇 and𝑡𝑖 ∈ 𝑆−𝑇. Figure 4.9 shows a schematic depiction of the time expansion. We begin by defining values
for the latter edges, i. e., the edges connecting the super-terminals to the time layers. ese edges cut
paths through different copies simultaneously. Without loss of generality, we assume that ℓ is odd.
We set 𝑦(𝑠∗,𝑠𝑟) ≔ 󶁇 ℓ+12 − 𝑟 𝑟 ∈ 󶁂0,…, ℓ−12 󶁒,0 else,
for arcs connecting the sources, and for the arcs connecting the sinks we set𝑦(𝑡𝑟,𝑡∗) ≔ 󶁇𝑟− ℓ−12 𝑟 ∈ 󶁁 ℓ−12 + 1,… , ℓ󶁑,0 else.
Because each of these arcs has a capacity equal to the demand of 𝑘ℓ, this incurs costs of

ℓ−12󵠈𝑟=0󶀤ℓ + 12 − 𝑟󶀴𝑘ℓ + ℓ󵠈𝑟= ℓ−12 +1󶀤𝑟 − ℓ − 12 󶀴𝑘ℓ = 2 ℓ+12󵠈𝑦=1𝑦 ⋅ 𝑘ℓ = (ℓ + 1)(ℓ + 3)2 𝑘ℓ.
By this choice we have cut each path at least once; paths arriving in the first half of the available time
are cut on the source side, the other paths are cut on the sink side. is is sufficient for the time
layers 𝑘ℓ−1 + 1 to 𝑘ℓ. e paths through time layers 1 to 𝑘ℓ−1 have to be cut at least twice, which is
already the case for all paths except those going through 󶀢𝑠 ℓ−12 , 𝑡 ℓ−12 󶀲 or 󶀢𝑠 ℓ−12 +1, 𝑡 ℓ−12 +1󶀲 because the
sum of their 𝑦 values is only 1. We can fix this by setting 𝑦𝑒 = 1 for arc copies 𝑒 = 󶀢𝑠𝜃ℓ−12 , 𝑡𝜃ℓ−12 󶀲 and𝑒 = 󶀢𝑠𝜃ℓ−12 +1, 𝑡𝜃ℓ−12 +1󶀲 for time 𝜃 ∈ 󶁁1,… , 𝑘ℓ−1󶁑, as all paths that have to be cut again use one of these
edges. Each of these edges has a capacity of 1 and there are 2𝑘ℓ−1 of these edges, yielding costs of2𝑘ℓ−1.
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In general, we have to cut the paths in the copies 1 up to 𝑘ℓ−𝑚 at least 𝑚 + 1 times. Note that a
path through the edge (𝑠𝑖𝑟1 , 𝑡𝑖𝑟2) for 𝑖 ∈ {1,… , 𝑘ℓ−𝑚}, 𝑟1 ≤ 𝑟2, is already cut at least 𝑟2 − 𝑟1 + 1 times by
the way we cut the edges connecting the sources and sinks to the super-terminals. us, only paths
going through an edge 𝑒 = 󶀢𝑠𝑖𝑟1 , 𝑡𝑖𝑟2󶀲with 𝑟2 −𝑟1 ≤ 𝑚−1 are not cut sufficiently oen. For these edges𝑢𝑒 = 𝑘𝑟2−𝑟1 ≤ 𝑘𝑚−1 holds. us, we set 𝑦𝑒 = 𝑚 + 1 for all those edges, inducing additional costs less
than ℓ3 ⋅ 𝑘𝑚−1 ⋅ 𝑘ℓ−𝑚 = ℓ3 ⋅ 𝑘ℓ−1 because𝑚 ≤ ℓ and we have at most ℓ2 edges within each copy. Now
it holds that 1𝛽 𝑘ℓ󵠈𝑖=1 𝑧𝑖 ⋅ 𝑝′(𝑖) < (ℓ + 1)(ℓ + 3)2 𝑘ℓ + 𝒪󶀡ℓ3𝑘ℓ−1󶀱⇔ 1𝛽 (ℓ + 1)(ℓ + 2)2 𝑘ℓ < (ℓ + 1)(ℓ + 3)2 𝑘ℓ + 𝒪󶀡ℓ3𝑘ℓ−1󶀱⇔ 1𝛽 (ℓ + 1)(ℓ + 2)2 < (ℓ + 1)(ℓ + 3)2 + 𝒪󶀥ℓ3𝑘 󶀵⇔ 1𝛽 < 12 ⋅ ℓ + 3ℓ + 2 + 𝒪󶀤 ℓ𝑘󶀴 = 12 + 12ℓ + 2 + 𝒪󶀤 ℓ𝑘󶀴
us, for every 1𝛽 > 12 , there exist values for 𝑘 and ℓ such that the network has no 𝛽-approximate
earliest arrival flow. For 1𝛽 = 12 + 𝜀, first set ℓ such that 1/2ℓ+2 < 𝜀2 , and then set 𝑘 such that 𝑐′ ⋅ ℓ𝑘 < 𝜀2 for
the constant 𝑐′ hidden in 𝒪󶀢 ℓ𝑘󶀲.
Implementation Hints

e algorithm mainly consists of computing iterative maximum flows over time in the increasing
time-expanded networks. However, when computing the maximum flow the used algorithm has to
be modified, such that the flow in earlier points in time is not decreased. is can be easily achieved
by using an augmenting path algorithm, such as the algorithms from Ford and Fulkerson, or Ed-
monds and Karp. Notice that these algorithms behave as the S S P A-
 on increasing networks if arcs connecting sinks with super sinks exist in the current time
step. is implies a practical improvement over the standard implementation, but does not im-
prove theoretical worst-case running time. However, it can be implemented within a single network
flow computation using the parametric push-relabel algorithm by Gallo, Grigoriadis, and Tarjan
[GGT89].

Increasing Time-expandedNetworks. Residual increasing time-expanded networks can be im-
plemented in a forward star data structure with additional properties. e forward star representa-
tion of a network is a commonly used representation that is memory efficient. In contrast, changes
in the network structure need linear time. For an introduction see for example Section 2.3 in the text
book by Ahuja, Magnanti and Orlin [AMO93]. e network structure remains constant during the
run of the value-approximate earliest arrival flow algorithm such that the disadvantage is negligible.
An increasing network can be simulated by ordering arcs and disabling later time layers. We

assume that arcs with higher index point to node layers for later points in time. By storing an index
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𝜃 = 1 𝜃 = 2 𝜃 = 𝑘

𝑠∗

𝑡∗

𝑠0

𝑡0

𝑠1

𝑡1

𝑠2

𝑡2

𝑠3

𝑡3

⋯

Figure 4.9: e network 𝒩3,𝑘 from Figure 4.8c within the time expansion as defined in Definition
2.4 and used in the proof of eorem 4.28.

for each node denoting the last currently visible outgoing arc, higher levels are ignored by algorithms
using the network. Each time layer has to be activated once only. Because this is done successively
from layer 1 to 𝑇 the updates of the network structure can be implemented in amortized linear
time. Such an approach can significantly speed up a simple S S P approach
in the time expanded network, because the nodes for higher time layers are ignored by the shortest
path algorithm. e technique simulates Tjandra’s [Tja03] algorithm computing an earliest arrival
transshipment but is easier to implement because it does not use functions to represent flow values
on arcs for different points in time.

4.3.3 The Framework for Multi-commodity Flows

We now investigate how the results for the classical case for a single commodity from Section 4.3.1
can be transferred to the case of multiple commodities. First, observe that the typical examples
for the classical case also work as counter examples for the existence in the multi-commodity case.
We also briefly discuss that the same technique used to prove the constant approximation factor in
Lemma 4.18 cannot easily extended to the case of multi-commodity flows. However, we see that 𝑘
and 2𝑘-value-approximate earliest arrival flows exist.
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Non-existence. Multi-commodity flows are an extension of the classical problem and thus the
existence of earliest arrival flows is not guaranteed. e fan graph from Example 4.1 is a counter
example for an instance with 𝑘 commodities, each of which has a supply and demand of 1. A counter
example for zero travel times is depicted in Figure 4.10. Notice, that these instances are as simple as
possible and each commodity sends flow from a single source to a single sink.

Multi-commodity Greedy Algorithm. First observe, that a naive transformation of the G
-- E A F A 4.3 to the multi-commodity case
does not work. Assume that in step 5 of the algorithm we compute a maximum multi-commodity
flow in the residual network which satisfies that flow already sent in earlier time steps does not
change, which is the algorithm’s behaviour. It therefore fails to send any constant approximation for
the instance depicted in Figure 4.11. During the first iteration, it would send a flow unit of com-
modity 1 from the le to the right side, thus blocking any other flow arriving at time 2 making any
result an𝑀-value-approximate flow. However, if the algorithm only sends 12 unit in the first itera-
tion, it achieves a 2-value-approximate flowwhich is best possible in the instance. Notice, that the𝑀
sources and sinks can be combined such that the algorithm also fails in cases where each commodity
has a single source-sink pair.

ConstantMulti-commodity Approximation. e above discussion shows, that it does not work
to simply exchange the maximum flow computation with a multi-commodity maximum flow com-
putation in the time expanded network. However, we can use the approach used in Section 2.4 and
compute several single-commodity flows in networks with scaled capacities. By splitting the in-
stance and computing 𝑘 approximate single-commodity earliest arrival transshipments it is possible
to get an approximate multi-commodity earliest arrival transshipment.

Algorithm 4.5:Multi-commodity Value Earliest Arrival Approximation Algorithm

Input: 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) with 𝑘 commodities 𝐾 and supplies and demands 𝑏𝑖,𝑣.
Output: A 2𝑘-value-approximate multi-commodity earliest arrival transshipment.

1. Define scaled capacities 𝑢′𝑒 ≔ 𝑢𝑒𝑘 for each arc 𝑒 ∈ 𝐸 and sets of sources and sinks are
defined 𝑆+𝑖 ≔ 󶁁𝑠 ∈ 𝑆+ | 𝑏𝑖,𝑠 > 0󶁑 and 𝑆−𝑖 ≔ 󶁁𝑡 ∈ 𝑆− | 𝑏𝑖,𝑡 < 0󶁑, respectively.

2. Create 𝑘 scaled dynamic networks 𝒩𝑖 = (𝐺 = (𝑉, 𝐸), 𝑢′, 𝜏, 𝑆+𝑖 , 𝑆−𝑖 ).
3. Compute value-approximate earliest arrival transshipments 𝑓𝑖 in 𝒩𝑖 for each com-

modity 𝑖 ∈ 𝐾 using Algorithm 4.3 with the respective supplies and demands 𝑏𝑖.
4. Return the multi-commodity flow 𝑓 ≔ (𝑓1, 𝑓2,… , 𝑓𝑘).

Theorem 4.29. Algorithm 4.5 computes a 2𝑘-value-approximate earliest arrival transshipment on
instances for the multi-commodity earliest arrival transshipment with 𝑘 commodities.

Proof. e flow computed by the algorithm is feasible. Any 𝑘 flows of the splitted instances can be
combined to another feasible flow because ∑𝑖∈𝐾 𝑓𝑖,𝑒 ≤ ∑𝑖∈𝐾 𝑢𝑒𝑘 = 𝑢𝑒 holds at each point in time.
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𝑠1
𝑠2

𝑡1
𝑡2

𝐴 ∶ +1
𝐵 ∶ +1𝐶 ∶ +1

𝐴 ∶ −1𝐵 ∶ −1
𝐶 ∶ −1

Figure 4.10: A simple instance for theM-EAFP. Each
commodity has only one source and one sink and has to ship one unit of flow.

Scaling does not affect flow conservation. Scaling of instances loses a factor of 𝑘 in the max flow
for each point in time thus also losing a factor of 𝑘 for the earliest arrival transshipment. Using
Algorithm 4.3 gives a 2-approximation of the best possible for the scaled instance. e result is a2𝑘-value-aproximate earliest arrival transshipment.

e analysis of Algorithm 4.5 is tight the sense, that there are instances on which the result is
only a 2𝑘 approximation. To see this, consider an instance that consists of 𝑘 copies of the fan graph,
each containing the source and sinks for one commodity. e best approximation factor on this
instance is 2 because the approximate flow fromeorem 4.22 can be sent independently in each of
the copies. However, the algorithm only returns a 2𝑘-approximation. However, on instances which
only contain a single sink and a single source for each commodity, the analysis can be improved.
Corollary 4.30. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏 ≥ 0, 𝑆+, 𝑆−) be a dynamic network with a set 𝐾 of 𝑘 com-
modities and supplies and demands 𝑏𝑖,𝑣. If 󶙡󶁁𝑣 ∈ 𝑉 | 𝑏𝑖,𝑣 < 0󶁑󶙡 = 1 for each commodity 𝑖 ∈ 𝐾, then
Algorithm 4.5 computes a 𝑘-value-approximate earliest arrival flow.

Proof. Each of the 𝑘 generated scaled instances 𝒩𝑖 = (𝐺 = (𝑉, 𝐸), 𝑢′, 𝜏, 𝑆+𝑖 , 𝑆−𝑖 ) allows for an earliest
arrival transshipment due toeorem 2.18. e combined flow hence loses at most a factor of 𝑘 due
to the scaling.

Lower Bounds

From the instance in Figure 4.11 we develop a generalized class of instances for which we can show
lower bounds for value-approximate earliest arrival transshipments for any 𝑘 ∈ ℕ. e class we

𝐴 ∶ +1
𝐵 ∶ +1

𝐵 ∶ −1

𝐵 ∶ +1

𝐵 ∶ −1

𝐵 ∶ +1

𝐵 ∶ −1

⋯
⋯
𝐵 ∶ +1

𝐵 ∶ −1
𝐴 ∶ −10 0 0 0 0

1 1 1

Figure 4.11: A simple multi-commodity instance with 2 commodities. e first has a supply of one
at the le node that has to be shipped to the right node. e second commodity has𝑀 sources with 1 supply each that have to be shipped to𝑀 sinks. e arcs are labelled
with their respective transit times.
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4.3 A Constant Approximation Framework

define uses a set of 𝑘 commodities such that they all share arcs with low capacity. We first consider
a small example and then define the general class of instances.
Example 4.31. Consider the instance with 2 commodities depicted in Figure 4.12. e instance con-
sists of the graph with node set 𝑉 = {𝑠11, 𝑠12, 𝑠12, 𝑡11, 𝑡12, 𝑡22, 𝑣12, 𝑣22, 𝑤12, 𝑤12} and edges 𝐸 = {(𝑠11, 𝑣12), (𝑠12, 𝑣12),𝑒12 = (𝑣12, 𝑤12), (𝑤12, 𝑡12), (𝑤12, 𝑣22), (𝑠22, 𝑣22), 𝑒22 = (𝑣22, 𝑤22), (𝑤22, 𝑡22), (𝑤22, 𝑡11)}. All arcs have capacity of 1,
the supplies and demands are 1 and −1 for the source and sinks, respectively. e arcs leading to the
sinks have transit time of 1, all other arcs have zero transit times.
emaximumflow for time horizon𝑇 = 1 is 1, the flowunit is sent along path𝑃 = (𝑠11, 𝑣12, 𝑤12, 𝑣22, 𝑤22,,𝑡11) with total transit time 1. For a time horizon of 𝑇 = 2, all units can be sent. At the beginning flow

from commodity 𝐵 is sent along paths (𝑠12, 𝑣12, 𝑤12, 𝑡12) and (𝑠22, 𝑣22, 𝑤22, 𝑡22). At time 1 again the zero travel
time path 𝑃 is used to send the remaining flow of commodity 𝐴 from 𝑠11 to 𝑡21.
e best possible approximation for this instance is a 53 -value-approximate earliest arrival flow. Such

a flow can be realized by sending 35 = 0.6 units of flow along 𝑃 in the first time step and sending 25 = 0.4
at time 1. e remaining capacity of the arcs 𝑒12 and 𝑒12 will be used by sending another 25 flow unit from𝑠12 to 𝑡12 and 𝑠22 to 𝑡22 each. Optimality can be verified by checking the dual value of the multi-commodity
variant of the linear program (𝛽∗-EAT) that we discuss in the next section.

Class of Instances. We now define instances 𝐺𝑘𝑘 that do not allow for a 𝑘 − 1 approximate earliest
arrival flow. All instances 𝐺1𝑘 are the same for any 𝑘 ∈ ℕ and only consist of a single arc 𝑒11 = (𝑠11, 𝑡21)
connecting the source and sink of the first commodity. We iteratively create graph 𝐺𝑖+1𝑘 from graph𝐺𝑖𝑘 due to the following iterative process.
Consider each arc 𝑒𝑗𝑖 = 󶀡𝑣𝑗𝑖−1, 𝑤𝑗𝑖−1󶀱 for 𝑗 = 1,… , 𝑖. We remove the arc from the graph and introduce

new intermediate vertices 𝑣1𝑖+1, 𝑤1𝑖+1,… , 𝑣𝑘𝑖+1, 𝑤𝑘𝑖+1. We add new edges 𝑒𝑗𝑖+1 = 󶀡𝑣𝑗𝑖+1, 𝑤𝑗𝑖+1󶀱 for 𝑗 =1,… , 𝑘 and also connect 𝑤𝑗−1𝑖+1 with 𝑣𝑗𝑖−1 for 𝑗 = 1,… , 𝑘 + 1. 𝑘 new sources 𝑠𝑗𝑖+1 are connected with𝑣𝑗𝑖+1, and nodes𝑤𝑗𝑖+1 is connected with sink 𝑡𝑗𝑖+1 for 𝑗 = 1,… , 𝑘. Such a part is depicted in Figure 4.13.
e recursive procedure defines graphs𝐺𝑘𝑘 with 𝑘𝑗−1 sources/sinks for commodity 𝑗 ∈ {1, 2,… , 𝑘}

and the maximum flow that can be send within a time horizon of 𝜃 is∑𝜃𝑖=1 𝑘𝑖−1. With this definition
we now see that the graph of Example 4.31 is actually 𝐺22. Because the flow values that can be sent
by the commodities grow exponentially with the time, we can show a lower bound of 𝑘−1 for graph𝐺𝑘𝑘. e idea is the following: Paths of commodity 𝑖 have a travel time of 𝑖. If a given fraction of
them should be sent until this time, the flow has to start at time 0 to arrive in time. erefore, the
capacity of the arcs 𝑒𝑗𝑖 becomes the limiting factor for the flow value. Any flow sent from 𝑠𝑗𝑖 to 𝑡𝑗𝑖 for

𝑠12𝐵 ∶ +1
𝑡12𝐵 ∶ −1

𝑣12 𝑤12
𝑠22𝐵 ∶ +1
𝑣22 𝑤22

𝑡22𝐵 ∶ −1
𝑠11𝐴 ∶ +1 𝑡11 𝐴 ∶ −10 00

1
0𝑒12 0 0𝑒22 1

0

Figure 4.12: e graph 𝐺2 for two commodities. 2 − 1 = 1 iterations have been done introducing𝐾 = 2 source and sink pairs.
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4 Approximating Earliest Arrival Flows

commodity 𝑖 at time 1 blocks 𝑘 times as much flow from commodity 𝑖 + 1, 𝑘2 times as much flow
from commodity 𝑖 + 2 and so on. We formalize this in the following theorem.
Theorem 4.32. For any 𝑘 ∈ ℕ, there exists a network with 𝑘 commodities that does not allow for a𝑘 − 1-value-approximate earliest arrival multi-commodity flow.

Proof. Consider a graph 𝐺𝑘𝑘 for the given 𝑘 ∈ ℕ. e pattern for 𝐺𝑘𝑘 with 𝑘 commodities is 𝑝∗(𝜃) =𝑘𝜃−1𝑘−1 for 𝜃 ∈ {1, 2,… , 𝑘}. To get a 𝑘 − 1-value-approximate flow, 1𝑘−1 flow units have to be sent on
the 𝑠1-𝑡1-path for commodity 1 at the first time step 𝜃 = 1. Consider now any 𝜃 ∈ {2, 3,… , 𝑘} and
assume that for time 𝜃 − 1 a 𝑘 − 1-value-approximate flow has been computed. at is, 1𝑘−1 𝑘𝜃−1−1𝑘−1
flow units are already sent. To get the desired approximation factor, we have to send1𝑘 − 1𝑘𝜃−1 − 1𝑘 − 1𝑘𝜃 − 2 = (𝑘 − 1)𝑘𝜃 − 2𝑘 − 1 = 𝑘𝜃−1𝑘 − 1
flow units in addition. ere are 𝑘𝜃−1 paths between source 𝑠𝜃 and sink 𝑡𝜃 available that start sending
flow at time 1 and reach the sinks within a time horizon of 𝜃. ese paths can be used to send𝑘𝜃−1𝑘𝜃−1 = 1𝑘−1 additional flow on each of the available paths using up the remaining capacity of arcs 𝑒𝑗𝑘.
is only works 𝑘 − 1 times until the edges have no capacity le and no paths can be used to send
the necessary flow for time horizon 𝜃 = 𝑘.
Observe that in fact we can send a little more flow up to time 𝜃 for 𝜃 ≥ 2. We can use flows on

paths in later time steps to send more of the remaining supplies from the sources. However, it is not
possible to send all of the demands one time step later. If we assume it would be possible to send𝑘𝜃−2−1𝑘−1 units of flow up to time 𝜃, we still need a fraction of 1𝑘 in each step (but the first). is also
needs a flow for 𝜃 = 𝑘 that requires little more capacity than is available.

Practical Behaviour. For a practical study of the optimal approximation value 𝛽∗ on instances𝐺𝑘𝑘
we have to create the graph. Graphs like𝐺𝑘𝑘 basically consisting of a single path can be easily specified
by a sequence of numbers in ℤ. Each element in the sequence then stands for a node on the path.
If entry 𝑎𝑛 in the sequence is positive, a source is connected to node 𝑣𝑛, negative entries represent a
sink reachable by 𝑣𝑛. We also use |𝑎𝑛| as transit times for negative sequence entries. e graph 𝐺22
depicted in Figure 4.12 can be represented as (0, 1, -1, 1, -1, 0) and the graph 𝐺33 from Figure 4.14c is
represented by the sequence (0, 1, 2, -2, 2, -2, 2, -2, -1, 1, 2, -2, 2, -2, 2, -2, -1, 1, 2, -2, 2, -2, 2, -2, -1, 0). Using
such a sequence that can be easily generated recursively a graph data structure can be built without
necessity of deleting edges.

𝑣𝑗𝑖−1 𝑣1𝑖 𝑤1𝑖 𝑣2𝑖 𝑣2𝑖 𝑣3𝑖 𝑤𝑘𝑖 𝑤𝑗𝑖−1⋯𝑠1𝑖 𝑠2𝑖 𝑠𝑘𝑖

𝑡1𝑖 𝑡2𝑖 𝑡𝑘𝑖
0 0𝑒1𝑖 0 0𝑒2𝑖 0 0𝑒3𝑖 0𝑒𝑘𝑖 00 0 0

𝑖 𝑖 𝑖
Figure 4.13: e gadget used to generate the graph𝐺𝑗. It contains𝐾 source-sink pairs, each of which

has one connecting path with travel time 𝑗.
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4.4 Instance Optimal Approximation

𝒌 2 3 4 5𝛽′ 0.6 0.452 174 0.328 548 0.249 62𝛽∗ 1.666 67 2.211 54 3.0437 4.0061
gap ≈6.6667 × 10−1 ≈2.1154 × 10−1 ≈4.3697 × 10−2 ≈6.0902 × 10−3

Table 4.1: Optimal bounds for the graphs 𝐺𝑘𝑘 for 𝑘 ∈ {2, 3, 4, 5} computed as optimal solution of a
path based LP-formulation similar (𝛽∗-EAT).

Denote the best possible approximation factor by 𝛽∗. It can be computed using the (pseudo-
polynomially large) linear program (𝛽∗-EAT) that we will analyse in detail in the next section. See
Table 4.1 for the optimal values 𝛽′ = 1𝛽∗ for the instances 𝐺22, 𝐺33, 𝐺44 and 𝐺55. e optimal value
approximate flow for𝐺22 is 𝛽∗ = 53 as we have alreadymentioned in Example 4.31. e gap converges
very fast against 0. ere is no 𝑘 − 1-value approximate earliest arrival flow, but for any 𝜀 > 0 there
is a 𝑘 ∈ ℕ such there exists a graph 𝐺𝑘𝑘 that allows for a 𝑘 − 1 + 𝜀-value-approximate earliest arrival
flow. As a last observation we see that the same approximation factor can be reached for the case of
a single source and sink for each commodity.
Corollary 4.33. e lower bound for instances with single source and sink pair for each commodity is𝑘 − 1.
Proof. Consider the modified graph 𝐺̃𝑘𝑘 which is the result of combining all sources and sinks for
the same commodity, i. e., we combine the sources 𝑠1𝑖 ,… , 𝑠𝑖𝑘𝑖 for commodity 𝑖 to a single source 𝑠𝑖
and the same for the sinks. For each point in time 𝜃 ∈ {1, 2,… , 𝑘} the flow values 󶙢 ̃𝑓󶙢𝜃 = 󶙡𝑓󶙡𝜃 for
two flows in ̃𝑓 in 𝐺̃𝑘𝑘 and 𝑓 in 𝐺𝑘𝑘. Observe now that the same arguments as in eorem 4.32 also
hold.

4.4 Instance Optimal Approximation

In Section 4.3 we described algorithms for computing value-approximate earliest arrival flows in the
single-commodity case and gave instances which allow no better approximation. us, our algo-
rithms are best possible in the sense that no better approximation guarantee is possible in general.
However, for a given instance, a better value-approximation might be achievable. In the remainder
of this chapter we will show existence of such better approximations for instances having a single
commodity.
We now focus on approximating the optimal value-approximation factor in the continuous setting

under the relaxation that flowmay arrive later by a factor (1 + 𝜀). is is equivalent to computing an
earliest arrival flow approximation that is (1+𝜀)-time approximate and (1+𝜀)𝛽∗-value approximate,
where 𝛽∗ is the best possible value approximation factor. We present a pseudo-polynomial exact
algorithm in the discrete time model and a fully polynomial time approximation scheme for both
time models.
e generic 𝑐-V-EA FA4.1 togetherwith time-

expanded networks for increasing time horizons can be used to decide for an arbitrary 𝛽, if a 𝛽-
value-earliest arrival flow in a given instance exists. Together with a binary search framework the
optimal value can be computed (or at least approximated with arbitrary precision) in theory. Such
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𝐴 ∶ +1 𝐴 ∶ −1
(a) e initial graph 𝐺13 for one commodity.

𝐴 ∶ +1
𝐵 ∶ +1

𝐵 ∶ −1
𝐵 ∶ +1

𝐵 ∶ −1
𝐵 ∶ +1

𝐵 ∶ −1
𝐴 ∶ −11 1 1

(b) e graph 𝐺23 with two commodities.
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(c) e final graph 𝐺33 for three commodities.

Figure 4.14: Iterative process to generate graph𝐺33. Between each pair of source and sinks three pairs
additional terminals for the next commodity are inserted in each step.

an implementation does achieve an algorithm that can be used in practice. Already one solution of
a flow in a time-expanded network may take long time such that it is not feasible to call it within a
binary search framework.
In the discrete setting, we can extend the linear programming formulation of the earliest arrival

flow problem such that it can be used to approximate the optimum approximation value. We can
solve the E A A F P for a given approximation fac-
tor by transforming the maximization objective into a constraint (similar to what we have done in
the path formulation (EAA)). We therefore add󵠈𝑡∈𝑆− 󵠈𝑒∈𝛿−𝑡 𝜃−𝜏𝑒󵠈𝜉=0 𝑥𝑒,𝜉 ≥ 𝑝∗(𝜃)𝛽 (4.2)

as additional (non-linear) constraint. Maximizing 𝛽 now computes the optimal approximation fac-
tor 𝛽∗. To formulate the linear program, we use the inverse 𝛽′ = 1𝛽 of the value-approximation
guarantee that we are looking for. Let the dynamic network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) with
supplies and demands 𝑏 be an instance of the earliest arrival flow problem. Let 𝑇 be a bound for
the feasible time horizon, for example as given by Observation 2.8. Assume further, that we are
given the earliest arrival pattern 𝑝∗. We then can use the following linear program using variables
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4.4 Instance Optimal Approximation𝑥𝑒,𝜃 for the flow on arc copies of 𝑒 ∈ 𝐸 in the time-expanded network to compute the best possible
value-approximation.

max 𝛽′, (𝛽∗-EAT)
s.t. 󵠈𝑒∈𝛿+𝑣 𝜃󵠈𝜉=0𝑥𝑒,𝜉 − 󵠈𝑒∈𝛿−𝑣 𝜃−𝜏𝑒󵠈𝜉=0 𝑥𝑒,𝜉 ≤ max{0, 𝑏𝑣} for all 𝑣∈𝑉, 𝜃∈{1,… , 𝑇},
󵠈𝑒∈𝛿+𝑣 𝜃󵠈𝜉=0𝑥𝑒,𝜉 − 󵠈𝑒∈𝛿−𝑣 𝜃−𝜏𝑒󵠈𝜉=0 𝑥𝑒,𝜉 ≥ min{0, 𝑏𝑣} for all 𝑣∈𝑉, 𝜃∈{1,… , 𝑇},𝑥𝑒,𝜃 ≤ 𝑢𝑒 for all 𝑒∈𝐸, 𝜃∈{1,… , 𝑇},󵠈𝑡∈𝑆− 󵠈𝑒∈𝛿−𝑡 𝜃−𝜏𝑒󵠈𝜉=0 𝑥𝑒,𝜉 ≥ 𝛽′𝑝∗(𝜃) for all 𝜃∈{1,… , 𝑇},𝑥𝑒,𝜃 ≥ 0 for all 𝑒∈𝐸, 𝜃∈{1,… , 𝑇}.

Observe that using the inverse 𝛽′makes (𝛽∗-EAT) indeed a linear program. e following lemma
states that the LP in fact can be used to compute the optimal approximation factor (in pseudo-
polynomial time).
Lemma 4.34. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) with with supplies and demands 𝑏𝑣 be an instance
for the earliest arrival transshipment problem. en a 𝛽∗-value-approximate earliest arrival flow can
be computed in pseudo-polynomial time in the discrete model, where 𝛽∗ is the best possible factor such
that a value-approximation exists.

Proof. We start with building the linear program (𝛽∗-EAT) and computing an optimal solution.
By construction of the LP, a solution is a 1𝛽′ -value-approximate earliest arrival flow. Any feasible
flow over time 𝑓 in the discrete time model can be transferred into a solution of the LP by setting𝑥𝑒,𝜃 = 𝑓(𝑒, 𝜃). Hence we obtain the best possible approximation factor 𝛽∗ ≔ 1𝛽′ by solving this
LP.

Computing theOptimal TimeApproximation. Ideally, we would like to use the same technique
to compute the optimal value 𝛼∗ such that an 𝛼∗-time-approximate earlist arrival transshipment
exits. Unfortunately, this is not possible. To see this, we try to optimize the time-approximation by
replacing constraint (4.2) regarding the value-approximation factor by the corresponding constraint

󵠈𝑡∈𝑆− 󵠈𝑒∈𝛿−𝑡 𝜃−𝜏𝑒󵠈𝜉=0 𝑥𝑒𝜉 ≥ 𝑝∗󶀣𝜃𝛼󶀳 (4.3)

for the time-approximation factor.
Using (4.3), we can set up a program to compute the optimal approximation factor 𝛼∗. However,

in contrast to the case of value approximation, the result is not a linear program due to the new
inequality (4.3) which is non-linear. Replacing 𝛼 by 𝛼′ = 1𝛼 does not suffice in this case because
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4 Approximating Earliest Arrival Flows

the pattern 𝑝∗ is not a linear function in general. e constraint system to compute the optimal
time-approximate factor is given in the program (𝛼∗-EAT).

min 𝛼, (𝛼∗-EAT)
s.t. 󵠈𝑒∈𝛿+𝑣 𝜃󵠈𝜉=0𝑥𝑒𝜉 − 󵠈𝑒∈𝛿−𝑣 𝜃−𝜏𝑒󵠈𝜉=0 𝑥𝑒𝜉 ≤ max{0, 𝑏𝑣} for all 𝑣∈𝑉, 𝜃∈{1,… , 𝑇},
󵠈𝑒∈𝛿+𝑣 𝜃󵠈𝜉=0𝑥𝑒𝜉 − 󵠈𝑒∈𝛿−𝑣 𝜃−𝜏𝑒󵠈𝜉=0 𝑥𝑒𝜉 ≥ min{0, 𝑏𝑣} for all 𝑣∈𝑉, 𝜃∈{1,… , 𝑇},𝑥𝑒𝜃 ≤ 𝑢𝑒 for all 𝑒∈𝐸, 𝜃∈{1,… , 𝑇},󵠈𝑡∈𝑆− 󵠈𝑒∈𝛿−𝑡 𝜃−𝜏𝑒󵠈𝜉=0 𝑥𝑒𝜉 ≥ 𝑝∗󶀣𝜃𝛼󶀳 for all 𝜃∈{1,… , 𝑇},𝑥𝑒𝜃 ≥ 0 for all 𝑒∈𝐸, 𝜃∈{1,… , 𝑇}.

Continuous Model. It is not possible to simply solve the problem in the continuous time model
similarly since the flow rate into an edge can change at infinitely many points in time. However, we
can discretize time into small intervals, i. e., smaller than 1, in which flow rates are considered to
be constant to approximate continuous flows by discrete flows (up to arbitrary precision). For such
a discretization it is possible to compute the approximate flow in a version of (𝛽∗-EAT) which is
larger by the same factor as the desired precision. We can avoid the blow-up due to discretization
by using geometric time condensation, a technique introduced by Fleischer and Skutella [FS07] to
approximate earliest arrival flows in polynomial time. Time condensation combines several time
steps into one layer to shrink the necessary size of the time-expanded network. e flow on an
arc between condensed layers is then averaged into a feasible flow on the arc copies in the original
network. e discretization cannot be done uniformly for earliest arrival flows because it must be
fine graded to approximate the behaviour of an optimal flow in early time steps. However, a rough
discretization is enough for later time steps. We show how the technique can be used to compute
value-approximative earliest arrival flows.

Definition 4.35 (Condensed Time-expanded Network). Let 𝐿 ≔ (𝜃1, 𝜃1,… , 𝜃𝑘) be a sorted list of
points in time with 𝜃1 < 𝜃2 < ⋯ < 𝜃𝑘−1 < 𝜃𝑘 = 𝑇.
Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏 ≥ 0, 𝑆+, 𝑆−) be a network with integral time horizon 𝑇 ∈ ℤ≥0, and

optionally also supplies and demands for each vertex 𝑣 ∈ 𝑉 and each commodity 𝑖 ∈ 𝐾, denoted by𝑏𝑖,𝑣. e condensed time-expanded network 𝒩 𝐿 ≔ (𝐺 = (𝑉𝐿, 𝐸𝐿), 𝑢𝐿, 𝑠∗, 𝑡∗) is defined as follows.
e set of nodes consists of 𝑘 copies of the original network, a super source 𝑠∗ and super sink 𝑡∗ and
also the original terminal nodes, that is,𝑉𝐿 ≔ 󶁁𝑣𝜃 󶙡 𝑣 ∈ 𝑉, 𝜃 ∈ {𝜃1, 𝜃2,… , 𝜃𝑘}󶁑 ∪ 𝑆+ ∪ 𝑆− ∪ {𝑠∗, 𝑡∗}.
A copy of an arc 𝑒 = (𝑣, 𝑤) starting at time 𝜃𝑞 in node 𝑣 𝑞 may not reach node copy 𝑤 𝑞+𝜏𝑒 , because
time 𝜃𝑞 + 𝜏𝑒 is not contained in the list 𝐿. We therefore add rounded arcs that connect 𝑣𝑞 with node
copy 𝑤𝑟(𝑞,𝑒) where 𝑟(𝑞, 𝑒) is the next available time aer 𝜃𝑞 + 𝜏𝑒 in 𝐿.
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𝐸𝑇 ≔󶀂󶀒󶀊󶀒󶀚𝑒𝑞 = 󶀡𝑣𝑞, 𝑤𝑟(𝑞,𝑒)󶀱 󶙀󶙐󶙘 𝑒 = (𝑣, 𝑤) ∈ 𝐸,𝑞 ∈ 󶁂𝑞 | 𝜃𝑞 ∈ 𝐿, 𝜃𝑞 + 𝜏𝑒 ≤ 𝜃𝑘󶁒,𝑟(𝑞, 𝑒) = min󶁂𝑟 | 𝜃𝑟 ∈ 𝐿, 𝜃𝑞 + 𝜏𝑒 ≤ 𝜃𝑟󶁒 󶀃󶀓󶀋󶀓󶀛∪ 󶁂(𝑠∗𝑖 , 𝑠) 󶙢 𝑖 ∈ 𝐾, 𝑠 ∈ 𝑆+𝑖 󶁒 ∪ 󶁂(𝑠, 𝑠𝜃) | 𝑖 ∈ 𝐾, 𝑠 ∈ 𝑆+𝑖 , 𝜃 ∈ {1, 2,… , 𝑇}󶁒∪ 󶁂(𝑡, 𝑡∗𝑖 ) 󶙢 𝑖 ∈ 𝐾, 𝑡 ∈ 𝑆−𝑖 󶁒 ∪ 󶁂(𝑡𝜃, 𝑡) | 𝑖 ∈ 𝐾, 𝑡 ∈ 𝑆−𝑖 , 𝜃 ∈ {1, 2,… , 𝑇}󶁒
If node storage is desired, we additionally add holdover arcs between node copies belonging to
intermediate nodes of the original network𝐻 ≔ 󶁃󶀡𝑣𝑞, 𝑣𝑞+1󶀱 󶙣 𝑣 ∈ 𝑉 \ 󵠎𝑖∈𝐾 𝑆+ ⊍ 𝑆−, 𝑣 ∈ {1,… , 𝑘 − 1}󶁓,
and set 𝐸𝐿 ≔ 𝐸𝐿 ∪𝐻 in this case. Arc capacities of copies of arcs are scaled, while other capacities
depend on node balances. If no node balances are given, the capacities are defined as𝑢𝑇𝑒′ ∶=󶁇𝑢𝑒󶀢𝜃𝑞+1 − 𝜃(𝑞)󶀲 if 𝑒′ = 𝑒𝑞∞ else

for all 𝑒′ ∈ 𝐸𝑇.
With node balances they are defined as

𝑢𝑇𝑒′ ∶=󶀂󶀒󶀒󶀒󶀒󶀊󶀒󶀒󶀒󶀒󶀚
𝑢𝑒󶀢𝜃𝑞+1 − 𝜃(𝑞)󶀲 if 𝑒′ = 𝑒𝑞,𝑏𝑖,𝑠 𝑒′ = (𝑠∗𝑖 , 𝑣),−𝑏𝑖,𝑡 𝑒′ = (𝑡, 𝑡∗𝑖 ),∞ else,

for all 𝑒′ ∈ 𝐸𝐿.
◁

We say that 𝐿 is an increasing list, if 𝜃𝑖 − 𝜃𝑖−1 ≤ 𝜃𝑖+1 − 𝜃𝑖 holds for all 𝑖 = 2, 3,… , 𝑘, e. g., each
condensed layer covers at least as much time than the prior ones. We call the corresponding time-
expanded network 𝒩 𝐿 increasing condensed time-expanded network. Observe that standard
time-expanded networks as defined in Definition 2.4 are equal to time-expanded networks with
the list of time layers 𝐿 = (1, 2,… , 𝑇), i. e., in this case 𝒩 𝐿 =𝒩 𝑇 holds.
e following two lemmas relate flows over time with flows in condensed time-expanded net-

works. More precisely, any flow in an increasing time-expanded network 𝒩 𝐿 corresponds to a flow
over time in the original network. ese flows have equal values at the times specified in the list 𝐿.
For the other direction, there is a slightly weaker version. Here we have that a flow over time in the
network in which all transit times are increased by 𝜃𝑘 − 𝜃𝑘−1 induces a static flow of the same value
in the condensed network 𝒩 𝐿.
Lemma 4.36 (Lemma 5.2 in [FS07]). Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network and𝐿 = (𝜃0, 𝜃1,… , 𝜃𝑘) be an increasing list of time points. Let 𝑓 be a static flow in the in the increasing
time-expanded network 𝒩 𝐿. en there exists a corresponding flow over time 𝑓′ in 𝒩 such that󶙡𝑓′󶙡𝜃𝑖 = 󶙡𝑓󶙡𝜃𝑖 for all 𝑖 = 1, 2,… , 𝑘.
Lemma 4.37 (Lemma 5.3 in [FS07]). Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network and𝐿 = (𝜃0, 𝜃1,… , 𝜃𝑘) be an increasing list of time points. Let ′ be a flow over time that completes before
time 𝜃𝑘 in the network 𝒩 ′ with increased transit times 𝜃′ ≔ 𝜃 + Δ with Δ ≔ 𝑇 − 𝜃𝑘. en there is a
corresponding static flow over time in the increased time-expanded network 𝒩 𝐿 with the same value.
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Geometrically Condensed time-expandeded Networks. For our purposes we use a specific
type of condensed time-expanded networks which comprise time layers whose size doubles every
few layers. ese networks allow to approximate flow changes very detailed in early time steps end
gets rougher the nearer time reaches the time horizon. e name is referencing to the geometric
series whose terms are increasing by the same factor, similar to the size of the time layer in the
condensed network.
Definition 4.38 (Geometrically Condensed Time-expanded Network). Let a dynamic network𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏 ≥ 0, 𝑆+, 𝑆−) with non negative travel times and 𝑛 ≔ |𝑉| nodes be given. Let𝑝≔ 󶃂 2𝑛𝜀2 󶃒. We then define𝐿 ≔ ( 1, 2, … , 𝑝,𝑝 + 1, 𝑝 + 2, … , 2𝑝,2(𝑝 + 1), 2(𝑝 + 2), … , 4𝑝,4(𝑝 + 1), 4(𝑝 + 2), … , 8𝑝,⋮2ℓ−1(𝑝 + 1), 2ℓ−1(𝑝 + 2), … , 2ℓ𝑝)
as the geometrically increasing list of time points and the corresponding geometrically condensed
time-expanded network 𝒩 𝐿. ◁
Smoothing. We will briefly describe the smoothing technique introduced by Fleischer and Sku-
tella [FS07]. A feasible flow in the time condensed network may not be feasible in the original net-
work due to the rounded transit times. If the time discretization is well chosen, however we can
compute a feasible flow with a slightly larger time horizon. For each point in time, the flow value
is smoothed by setting it to the average flow of a given flow over time. e averaging introduces
two types of errors. It elongates the necessary time horizon and also exceeds the arc capacities. In
contrast to the original flow for the smoothed flow we can show that both errors are not too large
and can be bounded. e following lemma shows a slightly weaker variation of Proposition 4.7 a)
in [FS07] that is tailored such that it can be used in the context of earliest arrival flows with multiple
sinks1.
Lemma 4.39. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network and 𝑓 be a flow without
waiting that finishes by time 𝑇 and Δ = 𝜀2𝑇𝑛 and𝐷 ≔ 󶙡𝑓󶙡 the value of 𝑓.
en there is a flow of value 1(1+𝜀)𝐷 in the network 𝒩 in which all transit times are increased by Δ

with time horizon (1 + 𝜀)2𝑇.
Proof. Let 𝓟 be the set of all source-sink paths. We can transform the flow 𝑓 into a flow ̃𝑓 that has
a larger time horizon (1 + 𝜀)𝑇 by scaling it down and sending it longer on the paths. is yields a
path flow ̃𝑓𝑃 for 𝑃 ∈𝓟. For a given point in time 𝜃 we can calculate the flow value into an arbitrary
arc 𝑒 = (𝑣, 𝑤) ∈ 𝐸 by summing up flow on paths through 𝑒 that reach 𝑒 early enough, i. e.,̃𝑓(𝑒, 𝜃) = 󵠈{𝑃∈𝓟|𝑒∈𝑃} ̃𝑓󶀢𝑃, 𝜃 − 𝜏(𝑃[→,𝑣])󶀲.
1e original result by Fleischer and Skutella shows that smoothing can be applied without losing a small factor of the
flow value. However, this is not transferable to the case of earliest arrival flows in networks with multiple sinks.
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We smooth the flow by averaging flow within a time window with size 𝜀𝑇. us we get a flow with
the same value which needs 𝜀𝑇 time units longer. For for 𝑃 ∈𝓟 we define the smoothed path floŵ𝑓𝑃 as ̂𝑓(𝑃, 𝜃) ≔ 1𝜀𝑇 󵐐𝜃𝜃−𝜀𝑇 ̃𝑓(𝑃, 𝜉) 𝑑𝜉
for each time in 𝜃 ∈ [0, (1 + 𝜀)𝑇 + 𝜀𝑇[. It is easy to check that ̂𝑓 obeys capacities of the arcs and the
total amount of flow sent on an arbitrary path 𝑃 ∈𝓟 is equal in ̃𝑓 and ̂𝑓, i. e., ̂𝑓 sends𝐷 flow units.
Now, define new rounded transit times 𝜏′𝑒 ≔ 𝜏𝑒 + Δ for each arc 𝑒 ∈ 𝐸. Because the arc lengths

differ by 𝜏′𝑒 − 𝜏𝑒 = Δ for complete paths 0 ≤ 𝜏′(𝑃) − 𝜏(𝑃) ≤ 𝑛Δ = 𝜀2𝑇 holds. More precise,0 ≤ 𝜏′(𝑃[→,𝑣]) − 𝜏󶀢𝑃[→,𝑣]󶀲 ≤ 𝜀2𝑇
holds for each path 𝑃 ∈𝓟 and each arc 𝑒 = (𝑣, 𝑤) ∈ 𝐸 on 𝑃. We can interpret ̂𝑓 as flow over time in
the network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏′, 𝑆+, 𝑆−). Observe, that ̂𝑓 is not necessary a feasible flow, because
due to the increased transit times flow travelling along an arc at different time steps in the original
flow ̃𝑓may now flow on the arc at the same time. We bound the error, i. e., the amount of flow that
potentially violates the arc capacity of 𝑒 = (𝑣, 𝑤) ∈ 𝐸 at any point in time 𝜃 ∈ [0, (1 + 𝜀)𝑇 + 𝜀𝑇+ 𝜀2𝑇[
by ̂𝑓(𝑒, 𝜃) = 󵠈{𝑃∈𝓟|𝑒∈𝑃} ̂𝑓󶀢𝑃, 𝜃 − 𝜏′󶀢𝑃[→,𝑣]󶀲󶀲= 1𝜀𝑇 󵠈{𝑃∈𝓟|𝑒∈𝑃}󵐐𝜃−𝜏′󶀢𝑃[→,𝑣]󶀲𝜃−𝜏′󶀢𝑃[→,𝑣]󶀲−𝜀𝑇 ̃𝑓(𝑃, 𝜉) 𝑑𝜉≤ 1𝜀𝑇 󵠈{𝑃∈𝓟|𝑒∈𝑃}󵐐𝜃−𝜏󶀢𝑃[→,𝑣]󶀲𝜃−𝜏󶀢𝑃[→,𝑣]󶀲−𝜀2𝑇−𝜀𝑇 ̃𝑓(𝑃, 𝜉) 𝑑𝜉= 1𝜀𝑇 󵐐𝜃𝜃−𝜀2𝑇−𝜀𝑇 󵠈{𝑃∈𝓟|𝑒∈𝑃} ̃𝑓󶀢𝑃, 𝜉 − 𝜏󶀢𝑃[→,𝑒]󶀲󶀲 𝑑𝜉= 1𝜀𝑇 󵐐𝜃𝜃−𝜀2𝑇−𝜀𝑇 ̃𝑓(𝑒, 𝜉) 𝑑𝜉≤ 𝜀2𝑇 + 𝜀𝑇𝜀𝑇 𝑢𝑒= (1 + 𝜀)𝑢𝑒.
us, by dividing flow ̂𝑓 by (1 + 𝜀) we get a feasible flow that satisfies a (1 + 𝜀)-fraction of the

demands 𝐷 in 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏′, 𝑆+, 𝑆−) with a time horizon of (1 + 𝜀)𝑇 + 𝜀𝑇 + 𝜀2𝑇 = (1 +𝜀)2𝑇.
Value-approximate Earliest Arrival Flows. We can combine the linear program (𝛽∗-EAT) with
the technique of time condensation to show how a 𝛽∗-value-approximate earliest arrival flow can be
approximated, where𝛽∗ is the best possible approximation value. Similarly to (𝛽∗-EAT) corresponds
to a time-expanded network, we can define an LP that corresponds to a geometrically condensed
time-expanded network. Using the smoothing technique and the lemmas that allow us to transfer
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flows between the original network and the condensed time-expanded networks, we can show that
a flow in the condensed linear program approximates an optimal flow by additionally losing a bit in
the time approximation.
Theorem 4.40. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) with with supplies and demands 𝑏 be an instance
for the earliest arrival transshipment problem and 𝜀 > 0 with 1𝜀 integral. en, a 󶀡1 +𝒪(𝜀)󶀱-time- and(1 + 𝜀)𝛽∗-value-approximate earliest arrival transshipment can be computed in the continuous time
model, where 𝛽∗ is the best value-approximation possible for the given instance. is can be done with
a running time polynomial in the input size and 𝜀−1.
Proof. Weuse geometrically condensed time-expanded variant of (𝛽∗-EAT) to compute the optimal
approximation value. Without loss of generality, we assume a sufficiently fine discretization of time.
A discussion, how the discretization can be chosen is contained in the proof of Lemma 5.1 of [FS07].
e condensed time-expanded network𝒩 𝐿 contains layers that are geometrically spread over [0, 𝑇[,
with more layers near 0 and less layers near 𝑇. e geometrical spread ensures that the resulting
network has the necessary precision for an FPTAS, but is still polynomial in the input size and 1𝜀 .
e resulting network has the following form, with 𝜃0,… , 𝜃𝑟 ∈ 𝐿 denoting the time points, at which
the time layers are placed.

max 𝛽′,
s.t. 󵠈𝑒∈𝛿+𝑣 𝑥𝑒 − 󵠈𝑒∈𝛿−𝑣 𝑥𝑒 ≤ max{0, 𝑏𝑣} for all 𝑣 ∈ 𝑉,󵠈𝑒∈𝛿+𝑣 𝑥𝑒 − 󵠈𝑒∈𝛿−𝑣 𝑥𝑒 ≥ min{0, 𝑏𝑣} for all 𝑣 ∈ 𝑉𝐿,𝑥𝑒𝑖 ≤ 𝑢𝑒(𝜃𝑖+1 − 𝜃𝑖) for all 𝑒𝑖 ∈ 𝐸𝐿,|𝑥|𝜃 ≥ 𝛽′𝑝∗(𝜃) for all 𝜃 ∈ 𝐿,𝑥𝑒 ≥ 0 for all 𝑒 ∈ 𝐸𝐿.

e constraints regarding the amount of flow |𝑥|𝜃 ensures that enough amount of flow reaches the
sinks until time 𝜃. By construction, an optimal solution (𝛽′, 𝑥) to this LP contains a static flow 𝑥 in
the 𝐿-time-expanded network that obeys balances, flow conservation and capacities. Furthermore,
it offers the best value-approximation 𝛽 = 1/𝛽′ possible at all time points 𝜃 ∈ 𝐿.
Let 𝐷 ≤ ∑𝑣∈𝑆+ 𝑏𝑣 be an amount of demands and 𝑇 be the minimal time to send a 1𝛽∗𝑑 fraction

of them, where 𝛽∗ is the minimal value such that a 𝛽∗-value-approximate flow exists. We show the
following: ere is a flow that sends 1(1+𝜀) 1𝛽∗𝑑 flow units in a time window of 󶀡1 + 𝒪(𝜀)󶀱𝑇.
We consider the sub-network of 𝒩 𝐿 that covers (1 + 𝜀)2𝑇 time steps. We define a sub-list of these

time layers by setting 𝑘′ ≔ min󶁁𝑖 󶙡 𝜃𝑖 ≥ (1 + 𝜀)2𝑇󶁑 and 𝐿′ ≔ (0 = 𝜃0, 𝜃1,… , 𝜃𝑘′). en, 𝒩 𝐿′ is the
increasing time-expanded network that is obtained from 𝒩 𝐿 by removing all nodes 𝑣𝜃 with 𝜃 ≥ 𝑘′
in upper time layers together with their incident arcs.
Let Δ ≔ 𝜃𝑘′ − 𝜃𝑘′−1. By definition of 𝑇 there is a 𝛽∗-value-approximate flow that sends 𝐷𝛽 units of

flow in 𝒩 up to time 𝑇.
Let 𝑘 − 1 and 𝑘 be two consecutive points in time. By definition of 𝐿 we have 𝜃𝑘 = 2𝑗(𝑝 + 𝑞) and𝜃𝑘−1 = 2𝑗(𝑝 + 𝑞 − 1) for some 𝑗 ∈ {0,… , ℓ − 1} and 𝑞 ∈ {1,… , 𝑝}. en the following holds.𝜃𝑘′ − 𝜃𝑘′−1 = 2𝑗(𝑝 + 𝑞) − 2𝑗(𝑝 + 𝑞 − 1) = 2𝑗 ≤ 2𝑗 + 2𝑗𝑞𝑝 = 2𝑗(𝑝 + 𝑞)𝑝 = 𝜃𝑘′𝑝 .
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Let Δ ≔ 𝜃𝑘′ − 𝜃𝑘−1. If we assume without loss of generality that 𝜃𝑘′ ≤ 2𝑇, by definition of 𝑝 and the
above calculation we can bound Δ byΔ = 𝜃𝑘′ − 𝜃𝑘−1 ≤ 𝜃𝑘′𝑝 ≤ 2𝑇󶃂 2𝑛𝜀2 󶃒 ≤ 𝜀2𝑇𝑛 .
ere is a flow of value𝐷 in 𝒩 by assumption. Lemma 4.39 implies that there is a flow in network𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏′, 𝑆+, 𝑆−) in which all transit times are increased by 𝛿. By Lemma 4.37, this

implies that there is a flow of value 1(1+𝜀) 1𝛽∗𝐷 in 𝒩 𝐿′ .
us, an optimal solution of the condensed linear program at least makes sure that a flow value

of 1(1+𝜀) 1𝛽∗𝐷 has been sent until time layer 𝑘′ − 1. e corresponding flow over time in network 𝒩
then sends at least 1(1+𝜀) 1𝛽∗𝐷 units of flow by time 𝜃𝑘′ by Lemma 4.36. us, this flow is a (1 + 𝜀)-𝛽∗-
value-approximate flow which violates time constraints by at most 1 + 𝒪(𝜀).
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5 Negative Travel Times

Network flows over time have been studied inmany settings, all of which include
non-negative travel times. However, there has been no study of flows in scenar-
ios where the input instances already contain arcs with negative travel times. We
consider different cases that occur if negative travel times are allowed. We estab-
lish a connection to flow problems where arcs are only available aer a release
date and can be used only until a deadline. For these problems we classify which
instances can still be solved in polynomial time. For the case of quickest trans-
shipments we give a simple approximation algorithm that computes temporally
repeated paths and exceeds the optimal time horizon atmost by a factor of (2+𝜀).
As an application we present the M  T P that can

be solved for bipartite graphs by a reduction to the M F  T
P. e reduction generates instances with negative travel times and arc
release dates. ose instances do not provide a polynomial time algorithm. We
complement the result by stating that the M  T P is𝒩𝒫-hard.

Publication Remark. A preliminary version of the results in this chapter has
been published as extended abstract in [BKM+12].

So farmany generalizations of network flow over time problems have been proposed and analysed.
egeneralizations share the property that they all use integral or sometimes rational transit times on
the arcs. In this chapter we study a generalization of network flows over time problems by allowing
travel times to be negative. We discuss how negative travel times can be incorporated into flows
over time and how they influence the complexity of the M F  T P and
Q T P.
Despite of the general motivation to complete the landscape of flow over time problems there is

also a more practical motivation to review negative travel times. Residual graphs for flows over time
typically contain arcs with negative transit times (more precise, the backwards arc have the negative
travel time of the original arc). e case is usually not considered independently due to the strong
connection between arcs and their reverse arcs. However, this is a special variant of a more general
task: We are given a network together with a feasible flow over time and the task is to send as much
flow as possible between some new sources and sinks. To the best of the author’s knowledge, the
only work that uses negative travel times is by Tjandra [Tja03]. He studies a bicriteria version of the
shortest paths problem with time varying properties and also allows negative travel times on arcs.
If arcs are allowed to have negative travel times, instances may become harder and we will see

that even theM F T P becomes𝒩𝒫-hard under these circumstances.
However, the actual hardness of instances can vary a lot, depending on the absolute value of the
negative travel times. In this chapter we assume that arcs may have negative travel times, however,
flow is not allowed to be on arcs before time zero. Problem instances become hard to solve if there
are source-sink paths that cannot be used in the complete available time interval, i. e., if flow starting
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5 Negative Travel Times

at time zero would flow into the negative time range. Negative travel times do not hinder solutions in
time-expanded networks, but in contrast to the case of non-negative travel times, one cannot derive
fully polynomial-time approximation schemes by using time condensation.

Matchings over Time. Recently, a lot of research has been done on how other combinatorial
problems can be extended to temporal settings. Works on this topic include the extension of the
abstract flow problem to abstract flows over time [KMP14] and the more general framework by
Adjiashvili et al. [ABW+14]. With the M  T P, we present another tem-
poral version of the traditional matching problem. In this variant, nodes connected by an arc can
be matched at some point in time (probably more than once). An arc prescribes a time interval that
has to pass between the two points in time at which the adjacent nodes are matched. If we consider
this time span as transit time, we can model the situation as a network flow over time in bipartite
graphs, where waiting is not allowed.
Matchings over time are, for example, important whenever jobs need to be assigned to pairs of

processors with the additional constraint that exactly a given amount of time has to lie between the
two processing steps. In this model, each processor can be identified with a node, and the jobs with
the edges of 𝐺. e delay 𝜏𝑒(𝑣)models some setup time needed for processor 𝑣 to be able to process
job 𝑒. In particular, whenever job 𝑒 = {𝑣, 𝑤} needs to be processed on 𝑣 for at least 𝜏𝑒 time steps
before 𝑤 can start working on it, this could be modelled by setting 𝜏𝑒(𝑣) = 0 and 𝜏𝑒(𝑤) = 𝜏𝑒. In
this setting a maximum matching over time maximizes the number of processed jobs. e model
can easily be extended to hypergraphs, e. g., graphs in which an edge connects more than two nodes.
However, we leave this setting as an interesting direction for future research.

Flow Storage in Intermediate Nodes. e possibility of waiting in intermediate nodes and its
influence is an important property in the context of flows over time. For the traditional M
F  T P and the Q T P optimal solutions do not
need flow to wait in intermediate nodes. e same is true for many more network flow problems.
However, this is not the case for the M- F  T P, where the
possibility of waiting induces a different maximum flow value [GS12b]. We have seen similar results
for networks with arc release dates and deadlines in Section 2.3. We see a relation between release
dates/deadlines and negative travel times: If node storage in intermediate nodes is allowed, themax-
imum flow value at a given time horizonmay be higher in networks with negative travel times. Also,
the problem becomes 𝒩𝒫-hard if waiting is not permitted.

Ouline of the Chapter. In Section 5.1 we introduce negative travel times, study the influence
of waiting and discuss how the hardness of flow over time problems changes. We will see that the
Q T P with general travel times can be solved in polynomial time
if waiting in intermediate nodes is allowed. e problem does not necessarily become hard when
negative travel times are introduced, we discuss which classes permit polynomial time solutions in
Section 5.2. We see connections to the classical variant of M F  T and prove
that the introduction of “a little” negativity does not destroy the structure of the problem. In Sec-
tion 5.3 we show that the Q T P with negative travel times can be
approximated if we exceed the time horizon by a factor of 2. We achieve the result by an applica-
tion of an approximation algorithm by Fleischer and Skutella [FS07], which computes temporally
repeated solutions. e M  T P is introduced in Chapter 5.4. We use a
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reduction of the problem to M F  T that uses both negative travel times and
arc release dates to solve it for bipartite graphs.

5.1 Model Definition and Hardness

If negative travel times are allowed on arcs, not only the upper bound 𝑇 on the available time, but
also the lower bound 0 becomes a limitation for flow on arcs. In Definition 2.1 we take care of this
by forbidding flow on arcs before time 𝜃 < |𝜏𝑒| for negative 𝜏𝑒 on an arc 𝑒. is means that there can
be no flow before time 0 on any arc. is fits to the applications where we are either given a network
containing some flow already and to the setting of the M  T P which we
describe later in Section 5.4.
One might also think of an alternative possibility to define flows with negative travel time. Con-

sider the path formulation of network flows and assume that it is still allowed to use any path directly
from the beginning. Flow on these paths thenmay reach into times before time 0, but not arbitrarily
(if paths are simple). is model is essentially equal to the traditional model of non-negative travel
times and will therefore not further discuss it.
We call a dynamic network whose transit times 𝜏𝑒may be negative a network with general transit

times. Recalling from Definition 2.1 a feasible flow in a network with general transit times omits
capacities of arcs, satisfies (weak) flow conservation, and respects 𝑓𝑖(𝑒, 𝜃) ≔ 0 for all𝜃 ∈ ]0, 0 − min{0, 𝜏𝑒}[ ∪ ]𝑇 − max{0, 𝜏𝑒}, 𝑇[
in the continuous setting. In the discrete setting no flow is allowed on arcs for all𝜃 ∈ {𝑛 ∈ ℕ | 𝑛 < 1 − min{0, 𝜏𝑒}} ∪{𝑛 ∈ ℕ | 𝑛 > 𝑇 − max{0, 𝜏𝑒}}.
The Influence of Waiting. e possibility of storing flow units in intermediate nodes is a relax-
ation of the flow conservation constraints. Any feasible flow that does not wait in intermediate nodes
is still a feasible flow, if waiting is allowed. In most typical flow problems waiting is not necessary
and optimal solutions without waiting exist. Ford and Fulkersons classical algorithm for the max-
imum flow over time problem generates temporally repeated optimal solutions that do not need
waiting at intermediate nodes [FF58]. For the Q T P, Hoppe and
Tardos [HT00] have introduced a generalized notion that still allows for a temporally repeated so-
lution without waiting in intermediate nodes. Also for the E A F it is possible
to compute optimal solutions that do not need waiting in intermediate nodes. e same holds for
many additional variants of network flow problems.
In contrast, there are flow over time problems that are affected if flow storage is not allowed. e

M- F  T P exhibits the property that letting flow wait allows
to send flow faster in total [GS12b; HHS07]. Only recently, Groß and Skutella [GS15] showed a tight
bound of 2 for the speed-up factor of waiting. Similar, by Lemma 2.13 and eorem 2.15 we know
that the maximum amount of flow that can be sent within a given time horizon differs if storage of
flow is allowed or not. Furthermore, if waiting is not permitted, computing a maximum flow for a
given time horizon becomes 𝒩𝒫-hard. We will show that similar results hold for negative travel
times.
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Example 5.1. As an example for the implications of forbidding waiting, consider the instance depicted
in Figure 5.1. It consists of two arcs 𝑒1 = (𝑠, 𝑣) and 𝑒2 = (𝑣, 𝑡) with travel times 𝜏𝑒1 = 0 and 𝜏𝑒2 = −1
and capacities 𝑢𝑒1 = 1 and 𝑢𝑒2 = 2, and the time is discrete. As a feasible flow over time is not allowed
to send flow into any arc before time 0, arc 𝑒 = (𝑣, 𝑡) with a negative travel time of −1 can only be used
from time 1 on. If the shortest path distance dist(𝑠, 𝑣) is smaller and waiting is allowed it is possible to
send additional flow earlier to 𝑣 that waits before continuing to the sink. Within a time horizon 𝑇 = 3
a maximum flow with value 2 can be sent if flow waits at node 𝑣 for one time step. If waiting is not
allowed, the path (𝑠, 𝑣, 𝑡) cannot be used at time 0. us, the flow value arriving at the sink up to time𝑇 is 1 at most.

Cycles. If we require flow units not to wait, automatically flow runs in cycles in optimal solutions.
As waiting is not allowed, flow can simulate waiting by travelling a cycle and coming back later. is
behaviour is already known from other flow over time problems that allow for better solutions if
flow storage in intermediate nodes is forbidden [GS15]. An example of such a scenario is given in
Figure 5.2b. Flow starting at time 0 at the source can use the cycle at 𝑣 to wait one time unit. is
is necessary, because arc (𝑣, 𝑡) can only be used from time 2 onwards. us, waiting allows to send
2 units of flow instead of one unit of flow within a time horizon 𝑇 = 2 in the continuous model.
An instance containing a negative cycle is depicted in Figure 5.2a. It is possible to send 2 units of
flow within a time horizon of 𝑇 = 4. One unit of flow can be sent by using the non-simple path(𝑠, 𝑢, 𝑣, 𝑤, 𝑣, 𝑤, 𝑡). is path can be used for one time step to send one unit of flow in total. It uses arc(𝑣, 𝑤) twice, once at time 3 and once at time 2. A second unit of flow can be sent using (𝑠, 𝑢, 𝑤, 𝑡) also
from time 0 on. Both paths cannot be used longer as otherwise they would violate the time horizon
bound.

5.1.1 Hardness

ere is a strong connection between network flowswith arc release dates and deadlines as described
inChapter 2.3.1 and network flows over timewith general transit times. We can transform a network
with arcs and release dates into a network with general transit times without mortal arcs such that
flows in the two networks correspond to each other. Basically it is enough to introduce additional
preceding arcs for an arc having positive arc release date or deadline smaller than the time horizon.

Connection to Release Dates and Deadlines. By adding arcs with negative travel times we can
enforce availability of some paths only aer or before a given point in time. Consider a pair of edges𝑒1𝑒2 with 𝜏𝑒1 + 𝜏𝑒2 = 0. Let 𝑃 be a path in the network containing 𝑒1𝑒2 as consecutive edges and let𝑒2 be the only arc with negative travel time. en, 𝑒2 can only be used aer time |𝜏𝑒2 | which models
a scenario with an arc release date. e maximum flow value ∑𝑒∈𝑃 𝜏𝑒 − |𝜏𝑒2 | that can be sent over 𝑃
is reduced by the absolute value of the travel time of 𝑒2.

𝑠 𝑣 𝑡𝜏 = 0𝑢 = 1 𝜏 = −1𝑢 = 2
Figure 5.1: A network allowing for different maximum flow value if waiting in intermediate nodes

is allowed.
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𝑠 𝑢 𝑣 𝑤 𝑡𝜏 = 0𝑢 = 2 𝜏 = 3 𝜏 = 1 𝜏 = −2
𝜏 = 1 𝜏 = 2

(a) A negative cycle.

𝑠 𝑣 𝑡𝜏 = 0𝑢 = 1 𝜏 = −1𝑢 = 2
𝜏 = 1𝑢 = 1

(b) A negative cycle.

Figure 5.2: Influence of cycles.

Lemma 5.2. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network with additional arc release
dates 𝑟𝑒 and deadlines 𝑑𝑒.
ere is a dynamic network 𝒩 ′ with general travel times without release dates and deadlines such

that any feasible flow 𝑓 in 𝒩 corresponds to a feasible flow 𝑓′ in 𝒩 ′, and vice versa.
Proof. For each arc 𝑒 = (𝑣, 𝑤) we introduce three additional nodes 𝑣1, 𝑣2 and 𝑣3 in 𝒩 ′ and replace𝑒 by the sequence 𝑒1 = (𝑣, 𝑣1)𝑒2 = (𝑣1, 𝑣2)𝑒3 = (𝑣2, 𝑣3)𝑒4 = (𝑣3, 𝑤) with the same capacity 𝑢𝑒. We set
the travel times of the new arcs to 𝜏𝑒1 ≔ −𝑟𝑒, 𝜏𝑒2 ≔ 𝑇 − 𝑑𝑒 + 𝑟𝑒, 𝜏𝑒3 ≔ −𝑇 + 𝑑𝑒, and 𝜏𝑒4 ≔ 𝜏𝑒. An
example of the construction is depicted in Figure 5.3a.
e total transit times of the arc sequence is −𝑟𝑒 + 𝑇 − 𝑑𝑒 + 𝑟𝑒 − 𝑇 + 𝑑𝑒 + 𝜏𝑒 = 𝜏𝑒. us we can

exchange flow between feasible flows 𝑓 in 𝒩 and 𝑓′ in 𝒩 ′, if the arc sequence and 𝑒 are used at the
same time. is is the case, as because of 𝜏𝑒1 = −𝑟𝑒, no flow can enter the arc sequence before the
release time 𝑟𝑒. Flow entering aer the deadline 𝑑𝑒 would leave arc 𝑒2 aer the time horizon 𝑇.
us, for a pair of corresponding flows 𝑓 and 𝑓′ in 𝒩 and 𝒩 ′, respectively, we have 𝑓(𝑒, 𝜃) =𝑓′(𝑒4, 𝜃).
As a consequence, we see that flow problems with negative travel times becomes 𝒩𝒫-hard if

waiting in intermediate nodes is forbidden.
Corollary 5.3. e M F  T and the Q T P be-
come 𝒩𝒫-hard if negative travel times are allowed and flow cannot be stored in intermediate nodes.

Proof. We can reduce decision variants of both problems to their variants with arc release dates
and deadlines which are 𝒩𝒫-hard by eorem 2.15. For the reduction we convert instances with
deadlines and release dates according to Lemma 5.2.

−𝑟𝑒 𝑇 − 𝑑𝑒 + 𝑟𝑒 −𝑇 + 𝑑𝑒 𝑒𝜏𝑒
(a) Transit times are depicted on top of the arcs. All arcs have

the same capacity 𝑢𝑒.−𝑟𝑒 𝑟𝑒 𝜏𝑒
(b) e reduction can be simplified if no dead-

lines are specified.

Figure 5.3: Reduction from instances with release dates and deadlines to negative travel times.
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So, hardness follows directly from the hardness of theM F T Pwith
mortal arcs. Moreover, by a simple direct reduction to the P P we can also see that
the M F  T P is inapproximable if the time horizon cannot be relaxed.
Lemma 5.4. Assuming 𝒫 ≠ 𝒩𝒫 , the value of a maximum flow over time with general travel times
without waiting in intermediate nodes is not approximable for any 𝑐 > 0 within given time horizon 𝑇,
if waiting is not allowed.

Proof. We reduce P to the M F  T with negative travel times. Let𝑎1,… , 𝑎𝑛 be a partition instance and 𝐴 = 12 ∑𝑛𝑖=1 𝑎𝑖. We create a graph as depicted in Figure 5.4.
Arcs 𝑒𝑖 have transit time 𝑎𝑖 and arcs 𝑎𝑖 have zero travel time for 𝑖 = 1, 2,… , 𝑛.
For time horizon 𝑇 ≔ 𝐴 + 1 each path can only be used at most once because the first two arcs

need the maximal possible time. e last arc can only be used if the travel time of the beginning
of the path sums up to 𝐴, e. g., the decision of using edges 𝑒𝑖 or 𝑒𝑖 corresponds to a solution for the
P P. us, within time 𝑇 it is possible to send exactly one unit of flow if and only
if the P instance is a yes-instance.
e inapproximability now follows from the gap producing technique. Assume the existence of

a 𝑐-approximation algorithm. For any yes-instance, the solution value is greater than 1𝑐 , while any
no-instance has an optimal value of 0, allowing us to decide P.

e reduction tells us, that we have at least to relax feasibility if we want to approximate the max-
imum flow over time problem with general transit times.

5.1.2 Solving the Problem with Waiting

If waiting is allowed, we can reduce the M F  T P with general transit
times to the Q T P. is follows the same ideas as the reduction of
the variant with arc release dates and deadlines we have seen in Section 2.3. We replace each arc𝑒 with a negative travel time −𝜏𝑒 by the construction depicted in Figure 5.5. erefore, we get an
additional pair of source and sink and revert the direction of the arc. In the following two lemmas
we show that we can compute flows with equal flow values at existing terminal nodes in the new
network, and also we can transform any feasible transshipment satisfying the demands of the new
terminals back into a feasible flow in the original network.
e following intuition stands behind introducing the additional pair of terminals: It is possible

to send the supply 𝑢𝑒 ⋅ (𝑇−𝜏𝑒) from the new source to the sink using the arc exactly in the given time
horizon 𝑇. e value equals the maximal possible amount of flow that can travel along 𝑒. If flow
would use the arc with negative travel time at some time 𝜃, this flow can be redirected to the new

⋯T-1 -T+1
𝑒1𝑒1

𝑒2𝑒2
𝑒𝑛𝑒𝑛 -T+1

Figure 5.4: Graph used to reduce M F  T with general travel times to P-
.
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𝑣 𝑤
𝑠𝑒

𝑡𝑒

𝑢𝑒 ⋅ (𝑇 − 𝜏𝑒)

−𝑢𝑒 ⋅ (𝑇 − 𝜏𝑒)

0𝜏𝑒0
Figure 5.5: e construction that replaces arc 𝑒 in the reduction to Q T.

sink thus freeing the flow units at the source at time 𝜃 − 𝜏𝑒, hence simulating the arc with negative
travel times.
Lemma 5.5. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network, 𝑒 = (𝑣, 𝑤) an arc in 𝒩 with
negative travel time, 𝑓 a flow in 𝒩 that satisfies the balances 𝑏 within the time horizon 𝑇. Let 𝒩 =(𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network, 𝑒 = (𝑣, 𝑤) an arc in 𝒩 with negative travel time, 𝑓 a
flow in 𝒩 that satisfies the balances 𝑏 within the time horizon 𝑇. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−)
be a dynamic network, 𝑒 = (𝑣, 𝑤) an arc in 𝒩 with negative travel time, 𝑓 a flow in 𝒩 that satisfies
the balances 𝑏 within the time horizon 𝑇.
Let 𝒩 ′ be a network in which 𝑒 = (𝑣, 𝑤) is replaced by the path 󶀡(𝑠𝑒, 𝑤), (𝑤, 𝑣), (𝑣, 𝑡𝑒)󶀱with two new

terminal nodes 𝑠𝑒 and 𝑡𝑒 having supplies and demands 𝑢𝑒 ⋅ (𝑇 − 𝜏𝑒) and −𝑢𝑒 ⋅ (𝑇 − 𝜏𝑒), respectively.
en, there exists a flow 𝑓′ in 𝒩 ′ that satisfies the same balances and additionally satisfies the

balances at the new terminals 𝑠𝑒 and 𝑡𝑒. If the original flow did not use flow storage, 𝑓′ does not use
flow storage.

Proof. We have to send flow from the new source and to the new sink whenever possible and define𝑓′ as follows.
𝑓′󶀡(𝑠𝑤, 𝑤), 𝜃󶀱 ≔ 󶁇𝑢𝑒 for 𝜃 ∈ [0, 𝑇 − 𝜏𝑒[0 for 𝜃 ∈ [𝑇 − 𝜏𝑒, 𝑇[𝑓′󶀡(𝑣, 𝑡𝑣), 𝜃󶀱 ≔ 󶁇𝑢𝑒 for 𝜃 ∈ [𝜏𝑒, 𝑇[0 for 𝜃 ∈ [0, 𝜏𝑒[𝑓′󶀡(𝑤, 𝑣), 𝜃󶀱 ≔ 󶁇𝑢𝑒 − 𝑓(𝑒, 𝜃 + 𝜏𝑒) for 𝜃 ∈ [0, 𝑇 − 𝜏𝑒[0 for 𝜃 ∈ [𝑇 − 𝜏𝑒, 𝑇[

e definition of f ’((w,v),฀) is due to the fact that flow in 𝑓 entering 𝑒 at time 𝜃 can be redirected to𝑡𝑣 and the flow arriving at 𝑤 at time 𝜃 − 𝜏𝑒 can be taken from 𝑠𝑤. For the other arcs 𝑎 ∈ 𝐸 \ {𝑒} we
have equal flow value 𝑓′(𝑎, 𝜃) ≔ 𝑓(𝑎, 𝜃) for 𝜃 ∈ [0, 𝑇[.
As 𝑓′ equals 𝑓 at all nodes but 𝑣 and 𝑤, we only have to check validity of the flow at these nodes.

e arc capacities are respected by definition. For flow conservation at 𝑣 it is enough to check that
the balance of the summands for the three edges whose flow values are changed (or new) are zero.
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At time 𝜃 we have the following accumulated change in flow conservation:󶀥󵐐𝜃−𝜏𝑒0 𝑓′((𝑤, 𝑣), 𝜉) 𝑑𝜉󶀵 − 󶀦−󵐐𝜃0 𝑓(𝑒, 𝜉) 𝑑𝜉 + 󵐐𝜃𝜏𝑒 𝑢𝑒 𝑑𝜉󶀶=󵐐𝜃−𝜏𝑒0 𝑢𝑒 − 𝑓(𝑒, 𝜉 + 𝜏𝑒) 𝑑𝜉 + 󵐐𝜃𝜏𝑒 𝑓(𝑒, 𝜉) 𝑑𝜉 − 󵐐𝜃𝜏𝑒 𝑢𝑒 𝑑𝜉=󵐐𝜃−𝜏𝑒0 𝑢𝑒 − 𝑓(𝑒, 𝜉 + 𝜏𝑒) 𝑑𝜉 + 󵐐𝜃−𝜏𝑒0 𝑓(𝑒, 𝜉 + 𝜏𝑒) 𝑑𝜉 − 󵐐𝜃−𝜏𝑒0 𝑢𝑒 𝑑𝜉= 0.
e same calculation can be done for 𝑤. Here, we have to take care that we do not integrate aer

time 𝑇 − 𝜏𝑒:󶀦󵐐𝜃+𝜏𝑒0 𝑢𝑒 − 󵐐𝜃𝜏𝑒 𝑓(𝑒, 𝜉) 𝑑𝜉󶀶 − 󶀥󵐐𝜃0 𝑓′((𝑤, 𝑣), 𝜉) 𝑑𝜉󶀵= 󵐐𝜃0 𝑢𝑒 𝑑𝜉 − 󵐐𝜃+𝜏𝑒𝜏𝑒 𝑓(𝑒, 𝜉) 𝑑𝜉 − 󵐐𝜃0 𝑢𝑒 − 𝑓(𝑒, 𝜉 + 𝜏𝑒) 𝑑𝜉= 󵐐𝜃+𝜏𝑒𝜏𝑒 𝑢𝑒 𝑑𝜉 − 󵐐𝜃+𝜏𝑒𝜏𝑒 𝑓(𝑒, 𝜉) 𝑑𝜉 − 󵐐𝜃+𝜏𝑒𝜏𝑒 𝑢𝑒 − 𝑓(𝑒, 𝜉) 𝑑𝜉= 0.
ere is no flow on each of the new arcs aer time 𝑇 − 𝜏𝑒, and thus the extension of the integrals to𝑇 is feasible and the result remains 0.

In contrast to the result proven in Lemma 5.5, it is not possible to create the equivalent flow in
the original network from a feasible flow in the modified network. e reason is the following: It
may be that flow arrives before time |𝜏𝑒| at 𝑣, which already then is redirected to 𝑡𝑒. Only if waiting
is allowed it is possible to modify the flow in a way such that the corresponding flow in the original
network uses 𝑒 with the negative transit time at a later point in time.
Lemma 5.6. Let 𝒩 ′ be a dynamic network in which one arc 𝑒 is replaced by the construction from
Figure 5.5. en it is possible to send flow satisfying the same balances in a network 𝒩 in which 𝑒 with
negative travel time −𝜏𝑒 is present if waiting in intermediate nodes is allowed.

Proof. In a feasible transshipment in 𝒩 ′, flowmay arrive at node 𝑣 before time 𝜏𝑒 which is then sent
forward to the sink 𝑡𝑣. However, it is clear that the total amount of flow that arrives at 𝑣 and travels
to 𝑡𝑣 is limited by 𝑢𝑒 ⋅ (𝑇 − 𝜏𝑒) and that the capacity of 𝑒 is sufficient to send this flow.
First we create a new transshipment 𝑓∗ with changed flow values to satisfy certain requirements.

We set𝑓∗󶀡(𝑣, 𝑡𝑣), 𝜃󶀱 ≔ 0 for 𝜃 ∈ [0, 𝜏𝑒[ and𝑓∗󶀡(𝑣, 𝑡𝑣), 𝜃󶀱 ≔ 𝑢𝑒 for 𝜃 ∈ [𝜏𝑒, 𝑇[. is is always possible,
as the amount of flow has to be sent anyway and flow units maybe have to wait. In the same manner
we define 𝑓∗󶀡(𝑠𝑤, 𝑤), 𝜃󶀱 ≔ 𝑢𝑒 for 𝜃 ∈ [0, 𝑇 − 𝜏𝑒[ and 0 otherwise. We also send the flow on arcs𝑒 ∈ 𝛿+(𝑤) as early as possible. e flow 𝑓∗ remains feasible if waiting is allowed.
Based on the new flow 𝑓∗ we now define 𝑓(𝑒, 𝜃) ≔ 𝑢𝑒 − 𝑓∗󶀡(𝑤, 𝑣), 𝜃 − 𝜏𝑒󶀱 for 𝜃 ≥ 𝜏𝑒 and all other

flow values on arcs as in𝑓∗. Nowwe have a flow of the type as we created in Lemma 5.5 which sends
flow from 𝑠𝑤 to 𝑡𝑣 as early as possible, the same equations hold and the total flow balance at 𝑣 and𝑤
does not change.
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With these two lemmas it is possible to show the following theorem:
Theorem 5.7. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑠, 𝑡) be a dynamic network. e M F 
T P with negative travel times in 𝒩 can be solved in (strongly) polynomial time, if waiting
is allowed.

Proof. We create a network 𝒩 ′ by replacing each arc 𝑒 with negative transit time −𝜏𝑒 by the path󶀡(𝑠𝑒, 𝑤), (𝑤, 𝑣), (𝑣, 𝑡𝑒)󶀱with twonew terminal nodes 𝑠𝑒 and 𝑡𝑒 having supplies and demands𝑢𝑒 ⋅(𝑇−𝜏𝑒)
and −𝑢𝑒 ⋅ (𝑇 − 𝜏𝑒), respectively.
For given supply 𝑏𝑠 ≔ 𝑏 of the original source and a demand 𝑏𝑡 ≔ −𝑏 of the original source we

can compute a quickest transshipment in 𝒩 ′. To find the maximum value 𝑏 such that a transship-
ment exists we use binary search. e algorithm becomes strongly polynomial, if we use Meggido’s
parametric search framework fromeorem 1.1 instead.
Once themaximum 𝑏 is found, the value is returned asmaximumflow. If the actual flow is desired,

we create a flow over time according to the proof of Lemma 5.6.

5.2 Polynomial Special Cases

ehardness reductions in Lemma 5.4 and Figure 5.4 and the construction of feasible flows respect-
ing negative travel times from extended graphs as described in Lemma 5.6 all show the same problem
if waiting is not allowed:1 It may be possible that flow takes a path too early and thus has to wait be-
fore continuing on the path. Clearly, this problem cannot occur on instances with non-negative
transit times.
With this intuition we can specify the amount of “negativity” that is still allowed for some arcs,

such that instances can still be solved in polynomial time. Following from our considerations, it
shall not be possible to reach arcs before the time they are usable, e. g., for an arc 𝑒 with negative
travel time −𝜏𝑒 a shortest path to tail(𝑒) has at least a travel time of |𝜏𝑒|. Taking a path based view on
flows gives us a second restriction. Consider an 𝑠-𝑡-path in a classical dynamic network. e path
can be used immediately from time 0 on until time 𝑇 − ∑𝑒∈𝑃 𝜏𝑒. In the classical network scenario,
any maximum network flow within time horizon 𝑇 can also be solved by computing a flow in the
network based on the reverse graph ⃖⃖𝐺. To maintain this property, the constraint on shortest paths
to a node 𝑣 must also hold in ⃖⃖𝐺. Paths satisfying this property can then be used to the maximum
time 𝑇 − ∑𝑒∈𝑃 𝜏𝑒. is motivates the following definition.
Definition 5.8. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) be a dynamic network with general transit
times 𝜏𝑒. We say that the network has almost non negative transit times, if for all 𝑃 ∈ 𝓟 and𝑣 ∈ 𝑃 the following two conditions hold𝜏󶀡𝑃[𝑠,𝑣]󶀱 ≥ 0 (N1)𝜏󶀡 ⃖⃖𝑃[𝑣,𝑡]󶀱 ≥ 0. (N2)◁
Property (N1) requires all 𝑠-𝑣-Paths in the network to have a positive transit time, i. e., each path

can be used directly from the beginning on and flow does not have to wait at intermediate nodes.
(N2) does exactly the same but for opposite directions, hence a dynamic network satisfies (N2) if
1is is also the same problem for instances with mortal edges as described in Lemma 2.13.
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and only if the network based on the reverse graph ⃖⃖𝐺 satisfies (N1). Figure 5.6 shows a network
satisfying (N1), but not (N2) because path (𝑡, 𝑤, 𝑣, 𝑠) in the reversed graph can only be used from
time 1 on.
We nowdefine the (non-negative) reward that specifies how long a path in a networkwith negative

travel times can be used. For positive transit times, for a path 𝑃 the reward equals 𝑇 − 𝜏(𝑃). is
is the same value that is used in the minimum cost flow approach in Algorithm 2.1. For a path 𝑃
we define 𝜏−(𝑃) ≔ −min𝑣∈𝑃󶁂𝜏󶀡𝑃[𝑠,𝑣]󶀱󶁒 ≥ 0 as the first point in time that 𝑃 can be used to send flow
without violating the constraints. Similarly we define 𝜏+(𝑃) ≔ max𝑣∈𝑃󶁂𝜏󶀡𝑃[𝑠,𝑣]󶀱󶁒 ≥ 0. e value
denotes the time interval in which we cannot use the path before the upper bound 𝑇. e reward of
a path is then defined as 𝑟𝑇(𝑃) ≔ max{0, 𝑇 − 𝜏−(𝑃) − 𝜏+(𝑃)}. Notice that the maximum reward can
be gained if the transit times are almost non-negative.
Observation 5.9. In a dynamic network whose transit times are almost non-negative the reward sat-
isfies 𝑟(𝑃) = 𝑇 − 𝜏(𝑃).
Proof. Because of (N1), all 𝑠-𝑣-sub-paths have non-negative sumof travel time and therefore 𝜏−(𝑃) =0. If (N2) holds, the maximum is achieved for the complete path. Hence, we have 𝜏+(𝑃) = 𝜏(𝑃) in
this case.

e observation indicates that in such (relatively constrained) networks optimal solutions that
can be expressed as temporally repeated flows do still exist. Two networks that do not allow for
temporally repeated solutions are depicted in Figure 5.7. An example that does neither satisfy (N1)
nor (N2) is depicted in Figure 5.7a, the example in Figure 5.7b satisfies (N1) but not (N2). e paths
using arcs with transit times different from 0 cannot be used in the complete time interval and thus
optimal solutions enforce that the zero travel time path has to be used in different time intervals.
For the instance in Figure 5.7b the zero travel time path through the middle is used at the beginning
up to time 𝑇4 and again aer time 34𝑇 in an optimal solution. Notice that the instance in Figure 5.7a
allows a solution in which all paths are only used in a single time interval. However, the paths are
not used with their maximum reward. In the following we will prove our intuition that exactly in
networks with almost non-negative transit times a maximum flow over time (without waiting in
intermediate nodes) can be computed in polynomial time.

Reduced Costs Transit Time Conversion. An implementation of the S S
P A can benefit from so-called reduced costs. If all costs on arcs are replaced with
reduced costs, they become non-negative. us, more efficient algorithms such as Dijkstra’s algo-
rithm can be used to compute the shortest paths. We will use the same approach to transform the
transit times in our networks. We will see that a flow in the network with reduced costs transit times
corresponds to a flow in the original network. Additionally, the transformation has the advantage
that the shortest paths have a total length of 0. erefore the technique can be used to reduce the
size of time-expanded networks.

𝑠 𝑣 𝑤 𝑡𝜏 = 5 𝜏 = −3 𝜏 = 2
Figure 5.6: A network satisfying property (N1), but not property (N2).
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𝑇 − 𝑇2
− 𝑇2 𝑇

(a) In an optimal solution the zero transit
time path is used for one time step.

𝑇/2 −𝑇/2 𝑇/4 −𝑇/4
𝑇/4 −𝑇/4 𝑇/2 −𝑇/2

(b) e zero transit time path is activated
twice in an optimal solution.

Figure 5.7: Instances without a temporally repeated solution. Arcs are assumed to have unit capacity,
transit times are as denoted near the arcs. All other arcs have zero transit time.

Algorithm 5.1: Reduced Costs Transit Time Conversion
Input: 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑠, 𝑡) with almost non-negative transit times.

Output: New travel times 𝜏′ ≥ 0.
1. Compute shortest paths distances dist(𝑠, 𝑣) from the source 𝑠 to all nodes 𝑣 ∈ 𝑉.
2. Compute transit times 𝜏′𝑒 ≔ 𝜏𝑒 + dist(𝑠, 𝑣) − dist(𝑠, 𝑤) for each arc 𝑒 = (𝑣, 𝑤).
3. Return 𝜏′.

e dynamic network 𝒩 ′ = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏′, 𝑠, 𝑡) with new reduced costs transit times 𝜏′ as
computed by the algorithm satisfies the following property.
Lemma 5.10. Let 𝜋𝑣 ≔ dist(𝑠, 𝑣) be a feasible potential and 𝜏′𝑒 ≔ 𝜏𝑒 + 𝜋𝑣 − 𝜋𝑤 for each arc 𝑒 ∈ 𝐸 be
new travel times. e distance 𝜏󶀡(𝑠,… , 𝑣)󶀱 for each 𝑠-𝑣-path in 𝒩 ′ equals 𝜏󶀡(𝑠,… , 𝑣)󶀱 − 𝜋𝑣 for each𝑣 ∈ 𝑉.
Proof. Let 𝑃 be an 𝑠-𝑣-path in 𝒩 ′. en for the total transit time of a path𝜏(𝑃) = 󵠈𝑒∈𝑃 𝜏′𝑒 = 󵠈𝑒∈𝑃󶀢𝜏𝑒 + 𝜋head(𝑒) − 𝜋tail(𝑒)󶀲 = 󶀣󵠈𝑒∈𝑃 𝜏𝑒󶀳 + 𝜋𝑠 − 𝜋𝑣
holds. With 𝜋𝑠 = 0 the lemma follows.

As a consequence, a temporally repeated flow in 𝒩 ′ with a time horizon reduced by 𝜋𝑡 has an
equal value as the same flow if sent temporally repeated in the original network with the larger time
horizon. Notice, that the flow not necessarily is feasible due to the transformed transit times.
Observation 5.11. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑠, 𝑡) be a dynamic network with almost non-negative
transit times and 𝒩 ′ the network with reduced costs transit times 𝜏′ and 𝓟 a set of paths.
en the value of a flow resulting from temporally repetition of the paths in 𝓟 in 𝒩 with time

horizon 𝑇 equals the value of the flow resulting from temporally repetition of the paths in 𝓟 in 𝒩 ′
with time horizon 𝑇 − 𝜋𝑡.
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Proof. e transit times are almost non-negative. Together with Lemma 5.10 the value of the tem-
porally repeated flow is then󵠈𝑃∈𝓟′(𝑇 − 𝜋𝑡) − 𝜏′(𝑃) = 󵠈𝑃∈𝓟′(𝑇 − 𝜋𝑡) − (𝜏(𝑃) − 𝜋𝑡) = 󵠈𝑃∈𝓟′ 𝑇 − 𝜏(𝑃).
us, the value of a maximum flow in the original network can be computed by applying Algo-

rithm 2.1 by Ford and Fulkerson to generate a temporally repeated flow in the new network if this is
feasible. e following lemma guarantees that any (edge) flow over time can be transferred between
the two networks.
Lemma 5.12. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑠, 𝑡) be a dynamic network with almost non-negative transit
times and let 𝑓′ be an edge flow in the network 𝒩 ′ with transit times 𝜏′ computed as reduced costs by
Algorithm 5.1. Let 𝜋𝑣 be a shortest path potential for nodes 𝑣 ∈ 𝑉. Define 𝑓 as𝑓󶀡(𝑣, 𝑤), 𝜃󶀱 ≔ 󶁅 0 𝜃 ∈ [0, 𝜋𝑣[,𝑓′󶀡(𝑣, 𝑤), 𝜃 − 𝜋𝑣󶀱 𝜃 ∈ [𝜋𝑣, 𝑇[.
en, 𝑓 is a feasible flow over time in 𝒩 .

Proof. It remains to show that 𝑓 is a feasible flow. Obviously capacities are respected because 𝑓′ is
a feasible flow and there is no flow le on arcs aer time 𝑇. We have to show that flow conservation
holds. Let 𝑣∗ be a node and 𝜋𝑣∗ its potential. For 𝜃 ≥ 𝜋𝑣∗ the following holds.󵠈𝑒=(𝑣,𝑤)∈𝛿−(𝑣∗)𝑓(𝑒, 𝜃 − 𝜏𝑒) − 󵠈𝑒∈𝛿+(𝑣∗)𝑓(𝑒, 𝜃)= 󵠈𝑒=(𝑣,𝑤)∈𝛿−(𝑣∗)𝑓′(𝑒, 𝜃 − 𝜏𝑒 − 𝜋𝑣) − 󵠈𝑒∈𝛿+(𝑣∗)𝑓′(𝑒, 𝜃 − 𝜋𝑣∗)= 󵠈𝑒=(𝑣,𝑤)∈𝛿−(𝑣∗)𝑓′(𝑒, 𝜃 − 𝜏𝑒 − 𝜋𝑣 − 𝜋𝑣∗ + 𝜋𝑤) − 󵠈𝑒∈𝛿+(𝑣∗)𝑓′(𝑒, 𝜃 − 𝜋𝑣∗)= 󵠈𝑒=(𝑣,𝑤)∈𝛿−(𝑣∗)𝑓′󶀡𝑒, 𝜃 − 𝜋𝑣∗ − (𝜏𝑒 + 𝜋𝑣 − 𝜋𝑤)󶀱 − 󵠈𝑒∈𝛿+(𝑣∗)𝑓′(𝑒, 𝜃 − 𝜋𝑣∗)= 󵠈𝑒=(𝑣,𝑤)∈𝛿−(𝑣∗)𝑓′(𝑒, 𝜃 − 𝜋𝑣∗ − 𝜏′𝑒) − 󵠈𝑒∈𝛿+(𝑣∗)𝑓′(𝑒, 𝜃 − 𝜋𝑣∗)
e last equality follows from the flow conservation at time 𝜃 − 𝜋𝑣∗ at node 𝑣∗. For earlier times
there is no flow reaching 𝑣∗ and also not leaving. Flow conservation holds for 𝑓, because 𝑓′ is a
feasible flow by the precondition. Hence, 𝑓 is a feasible flow over time.

Putting the pieces together, we can compute a maximum flow over time in networks with almost
non negative transit times.
Theorem 5.13. e values of a maximum flow over time in 𝒩 with time horizon 𝑇 and 𝒩 ′ with
reduced costs transit times and time horizon 𝑇 − 𝜋𝑡 are equal if the original transit times 𝜏 are almost
non-negative travel times. A maximum network flow can be computed in strongly polynomial time.
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Proof. By Lemma 5.12 feasible flows between 𝒩 and 𝒩 ′ correspond to each other. We therefore
can compute a maximum flow over time in 𝒩 ′. Together with Observation 5.11 it follows that a
temporally repeated flow over time in 𝒩 ′ is also feasible for 𝒩 .
e computation of the reduced transit times by Algorithm 5.1 can be done using the Moore-

Bellman-Ford-Algorithm in strongly polynomial running time in 𝒪󶀡|𝑉| ⋅ |𝐸|󶀱. e temporally re-
peated flow can be computed by a single minimum cost flow computation in strongly polynomial
time in 𝒪󶀡|𝐸| log |𝐸|(|𝐸| + |𝑉| log |𝑉|)󶀱.
It is necessary to have almost non-negative transit times on the arcs to apply the above technique,

i. e., the properties (N1) and (N2) both have to be satisfied. Otherwise it is still possible to compute
the reduced costs to get non-negative transit times, however feasible flows can not be transferred
between networks with the two types of transit times.
Example 5.14. As an example, we consider the network depicted in Figure 5.8. e network consists
of the nodes 𝑉 = {𝑠, 𝑣, 𝑤, 𝑡} and the arcs 𝐸 = {𝑒1 = (𝑠, 𝑤), 𝑒2 = (𝑠, 𝑣), 𝑒3 = (𝑣, 𝑤), 𝑒4 = (𝑤, 𝑡)} with
transit times 𝜏𝑒1 = 1, 𝜏𝑒2 = 𝑀, 𝜏𝑒3 = −𝑀 and 𝜏𝑒4 = 0 for some integral𝑀 < 𝑇. e actual value of
a maximal flow depends of the capacities on the arcs. e optimal solution based on a minimum cost
flow always uses the path (𝑒2, 𝑒3, 𝑒4) independently of the capacities. If the capacity of 𝑒4 is not 1, the
flow is not feasible in the original network.
e same happens in the class of instances we used in the 𝒩𝒫-hardness proof in Lemma 5.4 that is

depicted in Figure 5.4. Consider two instances for the P P consisting of the elements{1, 2, 3} and {2, 2, 2} which are feasible and infeasible, respectively. Aer the transformation of transit
times is applied on the graphs resulting from the reduction the two instances cannot be distinguished.

Reducing the Time Horizon. Applying the reduced costs transit time transformation also has
practical implications on instances with non-negative transit times. e reduction can be applied
to reduce the necessary time horizon, because the reduction decreases the travel time of the short-
est path to 0. Also, the reduction remains feasible if an approximation scheme that increases the
necessary transit time by (1 + 𝜀) is applied.
Lemma 5.15. Let 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑠, 𝑡) be a dynamic network with almost non-negative transit
times. Let 𝐴 be a (1+𝜀)-approximation algorithm of the time horizon, i. e., 𝐴 solves the problem with
non negative travel times for a time horizon of (1+𝜀)𝑇 instead of𝑇 for the Q F/M
F  T/M E A F P.
en solving the problem using algorithm 𝐴 and transforming back the solution creates a solution

𝑠
𝑣

𝑤 𝑡
𝜏 = 𝑀 𝜏 = −𝑀

𝜏 = 1
𝜏 = 0

(a) e shortest path 𝑠𝑣𝑤𝑡 can be used in the first𝑇 −𝑀 time steps.

𝑠
𝑣

𝑤 𝑡
𝜏′ = 0 𝜏′ = 0

𝜏′ = 1
𝜏′ = 0

(b) e (shortest) path 𝑠𝑣𝑤𝑡 has a transit time of
0 and can thus be used in all time steps.

Figure 5.8: e application of the cost reduction on a graph that does not satisfy (N2).
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5 Negative Travel Times

exceeding the time horizon by a factor of (1 + 𝜀) of the optimal time horizon of the original problem.

Proof. Assume 𝑇 is the optimum time horizon. Let 𝑑 be the length of a shortest 𝑠-𝑡-path in 𝒩 =(𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑠, 𝑡). In the transformation from the solution in the transformed network 𝒩 ′ =(𝐺 = (𝑉, 𝐸), 𝑢, 𝜏′, 𝑠, 𝑡), we elongate the transit time of each path by 𝑑. us, the time horizon by
approximating in the transformed network is (1+𝜀)(𝑇′)+𝑑 = (1+𝜀)(𝑇−𝑑)+𝑑 = 𝑇−𝑑+𝜀𝑇−𝜀𝑑+𝑑 =𝑇 + 𝜀𝑇 − 𝜀𝑑 ≤ 𝑇 + 𝜀𝑇 = (1 + 𝜀)𝑇.
Corollary 5.16. e Q F P and the M E A T-
 P with a single sink can be approximated if transit times are almost non-negative.

Proof. We compute reduced costs transit times by invoking Algorithm 5.1. e Q F
P can be solved using a (1 + 𝜀)𝑇-time-approximate algorithm, e. g., the one by Fleischer and
Tardos [FT98]. e E A T P can be approximated using the
algorithm from Fleischer and Skutella [FS07]. e solutions can be transferred back without losing
time by Lemma 5.15.

If the transit times are non-negative, the same reduction can be applied and achieves practical
improvements for algorithms based on temporally repeated flows. e transit time reduction is
implemented in the soware suite  and used for the examples in Section 3.

5.3 Approximating

By Corollary 5.4 we know that the M F  T P with general transit times
can not be approximated. However, it is possible to approximate the flow value if we additionally
relax the time constraint. us we can compute a transshipment that exceeds the time horizon by
a factor of (2 + 𝜀) similar to an algorithm by Fleischer and Skutella for the Q T-
 P [FS07]. To show the bound we have to use length bounded network flows. For the
computation of those flows we need length bounded shortest paths.

5.3.1 Length Bounded Shortest Paths

A simple scenario motivating length bounded shortest paths might be planning tours with a rented
car. e renter might e. g., have signed a kilometer limit of 𝑇 for the driven distance and has to pay
a penalty if the distance is exceeded. Now, the renter wants to plan a tour from the base location 𝑠 to
some destination 𝑡. Because time is very valuable, the trip should be as fast as possible. So the target
is the following: From all 𝑠-𝑡-paths that are no longer than 𝑇 find the one with the shortest travel
time.
Formalizing the scenario we are given a graph 𝐺 = (𝑉, 𝐸) with arc length ℓ𝑒 and costs 𝑐𝑒 for each

arc 𝑒 ∈ 𝐸, and a length bound 𝑇. For a path 𝑃 in 𝐺, we denote the length by ℓ(𝑃) ≔ ∑𝑒∈𝑃 ℓ𝑒, and the
cost by 𝑐(𝑃) ≔ ∑𝑒∈𝑃 𝑐𝑒. A 𝒌-length bounded path is a path 𝑃 satisfyingℓ(𝑃) = 󵠈𝑒∈𝑃 ℓ𝑒 ≤ 𝑘.
e L B S P P consists of finding a 𝑇-length bounded path

with minimal costs. e problem is sometimes also referred to as R S P
P.

138



5.3 Approximating

Problem: Length Bounded Shortest Path

Instance: Graph 𝐺 = (𝑉, 𝐸) with lengths ℓ𝑒, costs 𝑐𝑒 for each 𝑒 ∈ 𝐸 and a
length bound 𝑇 > 0.

Task: Find a 𝑇-length bounded path 𝑃minimizing the cost𝑐(𝑃) ≔ 󵠈𝑒∈𝑃 𝑐𝑒.
e L B S P P has been studied already in the 1960s. With

non-negative arc lengths on general graphs, or on acyclic graphs the problem can be easily solved
in pseudo-polynomial time using dynamic programming [Jok66; WG65]. However, the problem is𝒩𝒫-complete.
Observation 5.17 (Hardness of the Length Bounded Shortest Path Problem [GJ79]). For a given
length 𝑇 and a cost value 𝐶 it is 𝒩𝒫-hard to decide if a 𝑇-length bounded path with cost of at most 𝐶
exists.

Proof. e problem can be reduced to the P P2 using the graph depicted in Fig-
ure 5.9. For a given P instance 𝑎1,… , 𝑎𝑛 we set the length bound to 󶀡𝑇 ≔ 12 ∑𝑛𝑖=1 𝑎𝑖󶀱 + 1.
Each path has to use some of the upper arcs with length ℓ𝑒𝑖 ≔ 𝑎𝑖 but no costs and some of the lower
arcs with no length but costs 𝑐𝑒𝑖 ≔ 𝑎𝑖. us, an instance for the P P is feasible if
and only if the shortest path has exactly length and cost 𝑇.
e L B S P P problem can be approximated efficiently and

fully polynomial-time approximation schemes have been developed by Hassin [Has92] and War-
burton [War87]. Hassin’s FPTAS is based on scaling the (pseudo-polynomial) dynamic program.
Since then, the algorithms have been improved and current research tries to find fast algorithms
solving the problem. State of the art (1 + 𝜀)-approximation algorithms have runtimes of 𝒪̃(𝑛𝑚)
[LR01; GRK+12]. e latest improvement of Bernstein [Ber12] reduces the time complexity for a
fully polynomial approximation scheme in the undirected case to 𝒪̃󶀤𝑚󶀡2/𝜀󶀱𝒪󶀢󵀄log(𝑛) log log(𝑛)󶀲󶀴.
2A similar reduction to the K P due to Megiddo is presented in [HZ80]. is reduction uses the knap-
sack size as length bound.

⋯ℓ𝑒1
𝑐𝑒1

ℓ𝑒2
𝑐𝑒2

ℓ𝑒𝑛
𝑐𝑒𝑛

Figure 5.9: e graph used for the reduction from the P P to the LB
S P P.
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5 Negative Travel Times

Solving Length Bounded Shortest Path by Dynamic Programming. In the following we will
shortly describe the dynamic program for the L B S P P based
on different length bounds as presented by Joksch [Jok66]. e main ingredient of the dynamic
program is the Bellman equationmin󶁅𝑓(𝑣, 𝜃 − 1), min𝑒=(𝑢,𝑣)∈𝐸∶𝜃−ℓ𝑒≥0{𝑓(𝑢, 𝜃 − ℓ𝑒) + 𝑐𝑒}󶁕. (5.1)

It stores the minimum cost at which we are able to reach a given node 𝑣 at a specific time 𝜃. is is
either possible by taking over costs from the earlier time step 𝜃 − 1 or by reaching 𝑣 via an arc (𝑢, 𝑣)
such that its travel time is not too long.

Algorithm 5.2: Dynamic Program for L B S P
Input: Acyclic graph 𝐺 = (𝑉, 𝐸) with lengths ℓ𝑒 ∈ ℕ0, costs 𝑐𝑒 ∈ ℝ for 𝑒 ∈ 𝐸, and a length

bound 𝑇 ∈ ℕ.
Output: A shortest (in terms of costs 𝑐𝑒) 𝑇-length bounded path.

1. Initialize the table 𝑓(𝑣, 𝜃) with𝑓(𝑠, 0) ≔ 0,𝑓(𝑠, 𝜃) ≔ ∞ for 𝜃 = 1, 2,… , 𝑇,𝑓(𝑣, −1) ≔ ∞ for 𝑣 ∈ 𝑉 \ {𝑠}.
2. Solve table 𝑓(𝑣, 𝜃) dynamically using the equation𝑓(𝑣, 𝜃) ≔ min󶁅𝑓(𝑣, 𝜃 − 1), min𝑒=(𝑢,𝑣)∈𝐸∶𝜃−ℓ𝑒≥0{𝑓(𝑢, 𝜃 − ℓ𝑒) + 𝑐𝑒}󶁕

for 𝑣 ∈ 𝑉 \ {𝑠}, 𝜃 ∈ {0, 1,… , 𝑇}.
3. Compute a shortest path by backtracking in the table 𝑓.

e optimal cost of a 𝑇-bounded path is stored in the table at position 𝑓(𝑡, 𝑇) aer step 2 and
the optimum shortest path can be reconstructed backwards until the source is reached. e total
runtime of the algorithm is 𝒪󶀡|𝐸| ⋅ 𝑇󶀱. It can be extended to support negative arc lengths easily
by changing the Bellman equation. It is also possible to extend the algorithm to the case of general
graphs (containing cycles) if the arc lengths remain non-negative. However, the introduction of both
negative arc lengths and cycles leads to non-simple paths as optimal solutions.

Adaptation to Negative Travel Times withoutWaiting. We will use the length bounded short-
est path problem as subroutine in an approximation algorithm for quickest flow with negative travel
time without intermediate node storage. We will use the path returned as solution by a 𝑇-bounded
shortest path instance to augment flow. For this purpose, we have to slightly change the algorithm.
e Bellman equation (5.1) allows the cost of a shortest path to be taken from the previous time step
as 𝑓(𝑣, 𝜃−1), or by using an arc (𝑢, 𝑣). However, taking the solution from an earlier time step means
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in fact waiting at a node to reach another node at a later point in time. is is only allowed in the
source and sink. To account for this we have to change the equation for intermediate nodes; for the
sink it is still allowed to take over earlier solutions. Additionally, we have to take care not to exceed
the allowed time steps due to negative travel times.
is update the dynamic program from Algorithm 5.2 as follows to use it in the setting with neg-

ative arc lengths without waiting. e algorithm accepts arcs with negative length, but only accepts
them if using them would not lead to paths entering the negative time range or exceed the length
bound 𝑇. is is ensured by the modified Bellman equationmin󶁅 min𝑒=(𝑢,𝑣)∈𝐸∶𝜃−ℓ𝑒∈[0,𝑇[{𝑓(𝑢, 𝜃 − ℓ𝑒) + 𝑐𝑒}󶁕, (5.2)

for intermediate nodes which only takes into account arcs that reach vertex 𝑣 exactly at time 𝜃 that
are used within within the interval [0, 𝑇]. e equation for the sink 𝑡 remains unchanged. is leads
to the following Algorithm 5.3.

Algorithm 5.3: Dynamic Program for the L B S P with negative arc
lengths
Input: Acyclic graph 𝐺 = (𝑉, 𝐸) with lengths ℓ𝑒 ∈ ℤ, costs 𝑐𝑒 ∈ ℝ for 𝑒 ∈ 𝐸, and a length

bound 𝑇 ∈ ℕ.
Output: A shortest (in terms of costs 𝑐𝑒) 𝑇-length bounded path.

1. Initialize the table 𝑓(𝑣, 𝜃) with𝑓(𝑠, 0) ≔ 0,𝑓(𝑠, 𝜃) ≔ ∞ for 𝜃 = 1, 2,… , 𝑇,𝑓(𝑣, −1) ≔ ∞ for 𝑣 ∈ \{𝑠}.
2. Solve the table 𝑓(𝑣, 𝜃) dynamically using the equations𝑓(𝑣, 𝜃) ≔ min󶁅 min𝑒=(𝑢,𝑣)∈𝐸∶𝜃−ℓ𝑒∈[0,𝑇[{𝑓(𝑢, 𝜃 − ℓ𝑒) + 𝑐𝑒}󶁕

for 𝑣 ∈ 𝑉 \ {𝑠, 𝑡}, 𝜃 ∈ 0, 1,… , 𝑇, and𝑓(𝑡, 𝜃) ≔ min(𝑣𝑖,𝑡)∈𝐸󶁅𝑓(𝑡, 𝜃 − 1), min𝑒=(𝑣𝑘,𝑡)∶𝜃−ℓ𝑒∈[0,𝑇[󶁁𝑓(𝑣𝑘, 𝜃 − ℓ𝑒) + 𝑐𝑒󶁑󶁕
for 𝜃 ∈ 0, 1,… , 𝑇.

3. Compute a shortest path by backtracking in the table 𝑓.
Example 5.18. As an example consider the graph depicted in Figure 5.10 with node set {𝑠, 𝑣, 𝑤, 𝑥, 𝑡}.
e graph contains two possible 𝑠-𝑡-paths; the upper path (𝑠, 𝑥, 𝑡) with total cost 6 and the lower path(𝑠, 𝑣, 𝑤, 𝑥, 𝑡) with total cost of 5. Due to the requirement that waiting is not allowed the path can only
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be taken from time 2 on and requires a time horizon of at least 4 due to the negative arc lengths. e
table computed by the dynamic program from Algorithm 5.3 is the following.𝑡 ∞ ∞ 6 5 5 5 5 5 5 5𝑥 ∞ ∞ 6 5 5 5 5 5 6 6𝑤 ∞ 3 3 3 3 3 − − − −𝑣 ∞ ∞ ∞ 2 2 2 2 2 2 2𝑠 − 0 0 0 0 0 0 0 0 0−1 0 1 2 3 4 5 6 7 8
Arcs denote which entries are considered for the computation of entries for a given node and time. e
optimal cost of 5 is only possible to reach if the table entry at index (𝑤, 4) is available which is referred
to by the first dashed arc, thus enforcing a time horizon of 𝑇 = 4.
Approximating Length Bounded Shortest Path. We now derive an approximation algorithm
for the L B S P P in the following way: For a given bound 𝑇, we
compute a shortest path that may be a little longer, more precisely, the length is bounded by (1+𝜀)𝑇.
Due to the relaxation, all former shortest paths are still valid solutions, thus the cost of the returned
path is at most the cost of a 𝑇-length bounded shortest path.
We solve the dynamic program by modifying arc lengths in a way that resembles time condensa-

tion but in the table of the dynamic program. First, we prove a lemma that allows us to compress
the table in some situations. Assume all arcs have a length that is a multiple of Δ > 1. In the table
computed by the dynamic program only columns with indices that are multiples of Δ will contain
other values than infinity (with exception of the row belonging to the target node). If all arc lengths
are divided by Δ, the table also shrinks by a factor of Δ, and we can ignore the redundant rows.
Lemma5.19. Let𝐺 = (𝑉, 𝐸)with lengths ℓ𝑒 ∈ ℤ, costs 𝑐𝑒 ∈ ℝ for 𝑒 ∈ 𝐸, and a length bound 𝑇 > 0 be
an instance for the 𝑇-length bounded shortest path problem with general lengths having the property
that all arc length ℓ𝑒 = ℓ′𝑒 ⋅ Δ are multiples of Δ. It is possible to compute a 𝑇-length bounded path in
time 𝒪󶀡|𝐸| ⋅ 𝑇Δ󶀱
Proof. Calculate an 𝑇Δ -length bounded shortest path on an instance with path lengths ℓ′𝑒.

𝑠
𝑣 𝑤

𝑥 𝑡
ℓ = 1𝑐 = 6

ℓ = 2𝑐 = 2 ℓ = −4𝑐 = 1 ℓ = 2𝑐 = 2
ℓ = 0𝑐 = 0

Figure 5.10: Example instance for the L B S P P with negative
arc lengths. For a time horizon𝑇 ∈ {1, 2, 3} the upper path is the optimal as solution, for
larger time horizons the lower path is also available and used in the optimal solution.
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Consider any 𝑇-length bounded path 𝑃. an the length of 𝑃 is󵠈𝑒∈𝑃 ℓ′𝑒 ⋅ Δ = Δ ⋅ 󵠈𝑒∈𝑃 ℓ′𝑒 ≤ 𝑇.
Division by Δ shows that 𝑃 is 𝑇Δ -length bounded with the new arc lengths.

To compute (1 + 𝜀)-length bounded shortest paths we round up all arc length to a multiple of 𝜀𝑇𝑛 .
e length of each (simple) path can increase at most by a factor of 𝜀𝑇, as it cannot contain more
arcs than the number of nodes in the graph, which also necessitates the increase of the length bound.
Due to the scaling, the table of the dynamic program becomes sparse, and hence we can apply the
previous lemma. As a consequence we get the following theorem.
Theorem 5.20. For an instance of the L B S P P, it is possible in
polynomial time to find a (1+𝜀)𝑇-bounded path having at most the costs of a shortest𝑇-bounded path.
Proof. Define Δ ≔ 𝜀𝑇𝑛 . We scale all edge length to the next multiple of Δ by setting ℓ′𝑒 ≔ 󶃢 ℓ𝑒Δ 󶃲 ⋅ Δ.
Any 𝑇-length bounded path 𝑃 is then bounded by

󵠈𝑒∈𝑃 ℓ′𝑒 = 󵠈𝑒∈𝑃󶃤ℓ𝑒Δ󶃴 ⋅ Δ ≤ 󵠈𝑒∈𝑃 ℓ𝑒 + 󵠈𝑒∈𝑃Δ ≤ 𝑇 + 𝑛 ⋅ Δ = 𝑇 + 𝑛𝜀𝑇𝑛 = (1 + 𝜀)𝑇.
Executing the dynamic program 5.3 with bound (1 + 𝜀)𝑇 returns a path with costs at most of the

costs of a shortest 𝑇-bounded path. All transit times are multiples of Δ, thus by Lemma 5.19 we can
scale the instance again to have time horizon of (1+𝜀)𝑇Δ and return the solution of this instance. e
new length bound is (1+𝜀)𝑇Δ = (1+𝜀)𝑇𝑛𝜀𝑇 = (1+𝜀)𝜀 𝑛 which is polynomial in the input size and 1𝜀 .
5.3.2 Quickest Flows with Negative Travel Times

Using the FPTAS for 𝑇-bounded shortest paths, we develop a simple 󶀡(2+𝜀)𝑇󶀱-time-approximation
algorithm for Q T with general transit times 𝜏𝑒 ∈ ℤ and bounded costs𝐶 ∈ ℝ≥0. e result uses techniques developed by Fleischer and Skutella [FS07].
Even for M F  T, it is not possible to find temporally repeated solutions.

However, if only paths 𝑃 are used that are short enough such that the maximum reward 𝑟𝑇(𝑃) can
be gained in a temporally repeated solution, it is possible to satisfy all demands with only doubling
the necessary time horizon.
Definition 5.21 (𝑇-length bounded flow). Let 𝑓𝑖 be a static multi-commodity flow satisfying node
balances 𝑏𝑖 at terminals 𝑆+𝑖 ⊍ 𝑆−𝑖 for each commodity 𝑖 ∈ 𝐾. e flow 𝑓𝑖 is called 𝑻-length bounded,
if for each commodity the flow 𝑓𝑖 can be decomposed into a path flow 󶀡𝑥𝑖𝑃󶀱𝑃∈𝓟𝑖 , such that all flow
carrying paths 𝑃 with 𝑥𝑖𝑃 > 0 satisfy 𝑟𝑇󶀡𝑥𝑖𝑃󶀱 > 0 and are available within time horizon 𝑇.
Let 𝐺 = (𝑉, 𝐸) be a directed graph with costs 𝑐𝑒, capacities 𝑢𝑒, and arc length 𝜏𝑒 ∈ ℝ≥0 for arcs𝑒 ∈ 𝐸. Let 𝑠, 𝑡 ∈ 𝑉 be the source and sink and 𝑑 a demand. A length bounded flow is a path flow 𝑥𝑃

for 𝑃 ∈𝓟 that can send all demands from the source to the sink. ◁
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Problem: Length Bounded Flow

Instance: A dynamic network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−) with general
transit times, demands and supplies 𝑏𝑣, costs 𝑐𝑒 and a length
bound 𝑇 > 0.

Task: Find a 𝑇-length bounded path flow 𝑥 that minimizes the costs𝑐(𝑥) ≔ 󵠈𝑃∈𝓟󵠈𝑒∈𝑃 𝑐𝑒 ⋅ 𝑥𝑃.
Linear Programming Formulation. We propose a linear programming formulation to solve the
LB FP. Without loss of generality we assume that each commodity only
uses one source 𝑠𝑖 and sink 𝑡𝑖. Otherwise, create supersources and supersinks for each commodity
as in the extended network (cf. Definition 1.5).
Let 𝓟𝑠𝑖𝑡𝑖 be the set of all source-sink paths for commodity 𝑖. We then define

𝓟𝑇𝑖 ≔ 󶁁𝑃 ∈𝓟𝑠𝑖𝑡𝑖 󶙡 𝑟𝑇(𝑃) > 0󶁑
to be the set of paths that are usable within time horizon 𝑇.
We extend the path based flow formulation from Definition 1.7 to set up a linear program for the

multi-commodity case. For each commodity, flow can be sent on paths from 𝓟𝑇𝑖 and the sum of
flow must satisfy the demands 𝑑𝑖 = −𝑏𝑡𝑖 . e costs on paths are defined as 𝑐𝑃,𝑖 ≔ ∑𝑒∈𝑃 𝑐𝑒,𝑖is leads
us to the following linear program to compute a length bounded multi-commodity minimum cost
flow.

min 󵠈𝑖∈𝐾 󵠈𝑃∈𝓟𝑇𝑖 𝑐𝑃,𝑖𝑥𝑖𝑃, (MCF-LB)

s.t. 󵠈𝑖∈𝐾 󵠈𝑃∈𝓟𝑇𝑖 ∶𝑒∈𝑃𝑥𝑖𝑃 ≤ 𝑢𝑒 for all 𝑒 ∈ 𝐸,𝑥𝑖𝑃 ≥ 0 for all 𝑖 ∈ 𝐾, 𝑃 ∈𝓟𝑇𝑖 .
By dualization and some algebraic rearranging we get the corresponding dual, which does not

need an exponential number of variables any more but instead incorporates an exponential number
of constraints.

max 󵠈𝑖∈𝐾 𝑑𝑖𝑧𝑖 − 󵠈𝑒∈𝐸 𝑢𝑒𝑦𝑒, (NP-LB)

s.t. 󵠈𝑒∈𝑃𝑦𝑒 + 𝑐𝑒,𝑖 ≥ 𝑧𝑖 for all 𝑃 ∈𝓟𝑇𝑖 ,𝑧𝑖 ≥ 0 for all 𝑖 ∈ 𝐾.
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Wewill now combine the results to compute a length bounded flow that violates the allowed bound
by at most a factor of (1 + 𝜀) using the technique from Fleischer and Skutella [FS07].
Lemma 5.22. Let 𝑥𝑖𝑃 be a path decomposition of a 𝑇-length bounded multi-commodity flow with
commodities 𝑖 ∈ 𝐾 with costs 𝑐(𝑥).
For every 𝜀 > 0, there exists a feasible (1 + 𝜀)𝑇-length bounded static multi-commodity flow 𝑥′ with

lower costs 𝑐(𝑥′) ≤ 𝑐(𝑥). e flow 𝑥′ can be computed in polynomial time in the input size and 1𝜀 .
Proof. If there exists a polynomial solvable separation problem that we can use to find violating
constraints of (NP-LB), we could use eorem 1.3 to solve the dual program in polynomial time.
e only type of constraints is violated if there is a path in 𝓟𝑇𝑖 such that the costs of the path is larger
than 𝑧𝑖. is is equivalent to check whether the shortest 𝑇-length bounded (with probably negative
arc lengths) has a cost of less than 𝑧𝑖. Unfortunately this is 𝒩𝒫-hard, but eorem 5.20 allows us
to find an approximate (1 + 𝜀)𝑇-length bounded path whose cost is are bounded from above by the
cost of a shortest path in 𝓟𝑇𝑖 .
We can now use the equivalence of optimization and separation to find a solution of a relaxed

version of (NP-LB) that may contain additional constraints for paths of length at most (1 + 𝜀)𝑇.
If we turn the dual solution into a solution for the corresponding (relaxed) variant of the primal
linear program (MCF-LB), we get a path based flow with minimum costs that uses paths in 𝓟(1+𝜀)𝑇𝑖
for each commodity. As the solution space is relaxed, the solution has no higher costs than the
optimum solution of (MCF-LB).

Scalingof Flows. Central point of the approximation algorithm is the fact that any static𝑇-length
bounded path flow satisfying some demands 𝑑 can be converted to a flow over time that satisfies
demands with value 𝑇 ⋅ 𝑑 by doubling the time horizon. e idea is straight forward: e length of
each flow carrying path is bounded by 𝑇, so the original demands can be satisfied within time 𝑇. If
the flow is sent for 𝑇 time units, the satisfied demands are also scaled by 𝑇.
Lemma 5.23. Let 𝑥 be a 𝑇-length bounded multi-commodity path flow satisfying a fraction 𝑏𝑖𝑇 of the
demands for each commodity with total costs 𝑐(𝑥) ≤ 𝐶𝑇 .
en there exists a path flow 𝑥′ with time horizon 2𝑇 that satisfies all supplies and demands 𝑏𝑖 with

costs at most 𝐶.
Proof. We send flow of value 𝑥𝑖𝑃 into path 𝑃 for time 𝑇 beginning at the earliest point in time. For
defining the actual flow over time 𝑓𝑖, we define a temporary flow aŝ𝑓𝑖(𝑃, 𝑒, 𝜃) ≔ 󶁆 𝑥𝑖𝑃 if 𝜃 ∈ [𝜏−(𝑃) + 𝜏󶀡[𝑃𝑠𝑖,tail(𝑒)]󶀱, 𝜏−(𝑃) + 𝜏󶀡[𝑃𝑠𝑖,tail(𝑒)]󶀱 + 𝑇[,0 otherwise.
Flow can enter 𝑃 first at time 𝜏−(𝑃) waiting in intermediate nodes is not allowed. e flow arrives at
arc 𝑒 aer time 𝜏󶀡[𝑃𝑠𝑖,tail(𝑒)]󶀱. Using this notation, we can define𝑓𝑖(𝑒, 𝜃) ≔ 󵠈𝑃∈𝑃𝑖∶𝑒∈𝑃 ̂𝑓𝑖(𝑃, 𝑒, 𝜃)
to be the solution flow having the desired properties. 𝑓 satisfies󵠈𝑖∈𝐾𝑓𝑖(𝑒, 𝜃) = 󵠈𝑖∈𝐾 󵠈𝑃∈𝑃𝑖∶𝑒∈𝑃 ̂𝑓𝑖(𝑃, 𝑒, 𝜃) ≤ 󵠈𝑖∈𝐾 󵠈𝑃∈𝑃𝑇𝑖 ∶𝑒∈𝑃𝑥𝑖𝑃 ≤ 𝑢𝑒
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and therefore respects capacities. 𝑓 also satisfies strict flow conservation. Let 𝑣 be an intermediate
node, i. e., on any path 𝑃 using node 𝑣, there are arcs 𝑒, 𝑒′ with head(𝑒) = 𝑣 = tail(𝑒′). ese arcs by
definition satisfy ̂𝑓𝑖(𝑃, 𝑒, 𝜃 − 𝜏𝑒) = ̂𝑓(𝑃, 𝑒′, 𝜃). In total󵠈𝑖∈𝐾 󵠈𝑒∈𝛿−(𝑣)𝑓𝑖(𝑒, 𝜃 − 𝜏𝑒) = 󵠈𝑖∈𝐾 󵠈𝑒∈𝛿−(𝑣) 󵠈𝑃∈𝑃𝑖∶𝑒∈𝑃 ̂𝑓𝑖(𝑃, 𝑒, 𝜃 − 𝜏𝑒)= 󵠈𝑖∈𝐾 󵠈𝑒′∈𝛿+(𝑣) 󵠈𝑃∈𝑃𝑖∶𝑒′∈𝑃 ̂𝑓𝑖(𝑃, 𝑒′, 𝜃) = 󵠈𝑖∈𝐾 󵠈𝑒′∈𝛿+(𝑣)𝑓𝑖(𝑒′, 𝜃)
holds. e demands of source 𝑠𝑖 are satisfied due to󵠈𝑒∈𝛿+(𝑠𝑖)󵐐2𝑇0 𝑓𝑖(𝑒, 𝜉) 𝑑𝜉 = 󵠈𝑒∈𝛿+(𝑠𝑖) 󵠈𝑃∈𝓟𝑇𝑖 ∶𝑒∈𝑃󵐐𝜏−(𝑃)+𝑇𝜏−(𝑃) 𝑥𝑖𝑃 𝑑𝜉 = 𝑇 ⋅ 1𝑇𝑏𝑠𝑖 = 𝑏𝑠𝑖 .
e same computation holds for the costs, so the costs of 𝑓 are bounded by 𝐶.
Algorithm 5.4: Length Bounded Approximation for the Q T P
Input: A dynamic network 𝒩 = (𝐺 = (𝑉, 𝐸), 𝑢, 𝜏, 𝑆+, 𝑆−), supplies and demands for the

sources and sinks 𝑏 ∶ 𝑉 → ℝ, costs 𝑐𝑒,𝑖 together with a cost bound 𝐶, a time horizon𝑇 ∈ ℕ and the precision 𝜀 > 0.
Output: A flow over time satisfying all supplies and demands within time horizon (2 + 𝜀)𝑇 that

is bounded by costs 𝐶, if exists. Otherwise, there is no flow within time horizon 𝑇.
1. Compute a static (1 + 𝜀)𝑇-length bounded path flow 𝑥 that satisfies a 1𝑇 -fraction of

the supplies anddemandswith costs atmost 𝑐(𝑥) ≤ 𝐶𝑇 if such a flow exists, otherwise
return without solution.

2. Compute a flow with time horizon (2 + 𝜀)𝑇 using Lemma 5.23 and return it.

Using a binary search frame work we can compute a flow over time that exceeds the optimal time
horizon by just a factor of 2 + 𝜀.
Theorem5.24. A solution for the Q T P (with multiple commodities)
with bounded costs on instances without negative cycles that does not need flow storage and that exceeds
the optimal makespan by at most a factor (2 + 𝜀) for 𝜀 ∈ ]0, 4] can be computed in polynomial time.

Proof. Let 𝑇∗ be the minimal makespan that is necessary to ship all supplies. For an arbitrary 𝛿 > 0
we can use Algorithm 5.4 to find a (1 + 𝛿)-approximation of the timespan in time 𝒪󶀡log(𝑇∗𝛿 )󶀱 by
dividing the time interval in small steps of length 𝛿 and calling the algorithm in a binary search
framework. Aer the binary search we get a value 𝑇 with𝑇∗ ≤ 𝑇 ≤ (1 + 𝛿)𝑇∗.
If we call Algorithm 5.4 with the approximative length bound 𝑇 and precision 𝛿we get a flow over

time with makespan(2 + 𝛿)𝑇 ≤ (2 + 𝛿)(1 + 𝛿)𝑇∗ ≤ (2 + 3𝛿 + 𝛿2)𝑇∗.
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To achieve the desired approximation guarantee we have to chose 𝛿 such that(2 + 3𝛿 + 𝛿2)𝑇∗ ≤ (2 + 𝜀)𝑇∗.
e inequality holds for 𝛿 ≔ 𝜀4 .
Corollary 5.25. eM F  T P with general transit times without nega-
tive cycles can be approximated such that for a given time horizon 𝑇 at least as much flow can be sent
as is possible for time 𝑇2+𝜀 for 𝜀 ∈ ]0, 4].
Proof. We use binary search to find the maximum amount of flow 𝑏 that can be sent from sources
to sinks within time 𝑇 using the algorithm described in eorem 5.24. A feasible flow has a time
horizon of 𝑇 and sends at least as much flow as was possible to send within a time of 𝑇2+𝜀 .
Tightness. e approximation factor given by eorem 5.24 is tight if we are restricted to use
temporally repeated solutions. Consider the example with 𝑘 sources and a single sink depicted in
Figure 5.11. Any temporally repeated flow based on a static flow loses a factor 2 in the time horizon
to send the same amount of flow. An optimal flow can send 𝑘 units of flow within a time horizon of𝑇 = 𝑘 if one flow unit is sent from each source to the sink. e 𝑘 units share the arc (𝑤, 𝑡) at disjoint
time steps. However, any static flow can send at most one unit of flow over the limiting bottleneck
arc, thus needing additional 𝑘 − 1 time steps to send the 𝑘 units of flow.
Extensions. In the proof of Lemma 5.4 we used the class of instances depicted in Figure 5.4 to
prove that the M F  T P can not be approximated if the network con-
tains negative travel times. However, the instances do neither satisfy (N1) nor (N2). Another type
of networks that can be used to prove 𝒩𝒫-hardness of the problem is depicted in Figure 5.12. is
class of instances satisfies (N1), e. g., all paths can be used directly from the beginning on. However,
yes-instances of P only increase the maximum flow value form 𝑇 to 𝑇+ 1 which does not
allow to prove an inapproximability factor. erefore, it is an open question if there exists an ap-
proximation algorithm for themaximumflow value within a given time horizon for instances whose
transit times satisfy exactly one of (N1) or (N2).

𝑠1𝑠2𝑠3⋮
𝑠𝑘

𝑣1𝑣2𝑣3⋮
𝑣𝑘

𝑤 𝑡
𝑘 − 1
𝑘 − 1
𝑘 − 1
𝑘 − 1

−𝑘 + 1−𝑘 + 2−𝑘 + 3
0

0

Figure 5.11: An example showing that the bound proven ineorem 5.24 is tight.

147



5 Negative Travel Times

Better Approximation Factors. e approximation algorithm in this section is based on tempo-
rally repetition of a static (length bounded) flow. is allows to approximate the Q T-
 P and to compute a time-approximate maximum flow. For problems with non-
negative transit times better approximation results are achieved by using condensed time-expanded
networks. We conjecture that it is not possible to achieve good approximation results by using only
simple forms of time condensation such as geometric time condensation as used in Section 4.4. e
approximation bounds rely on the fact that optimal solutions do not need non simple paths, but
such paths are necessary as we have seen. A strong hint in that direction is the network depicted in
Figure 5.13. Networks with non-negative transit times have the property that a (single-commodity)
flow sending 𝐷 units of flow within a time horizon of 𝑇 can be scaled such that it sends 𝛿𝐷 units
of flow within a time horizon of 𝛿𝑇 for any 𝛿 > 0. is property is not true for the network in the
figure. It is possible to send 3 units of flow within a time horizon of 𝑇 = 3, however it is not possible
to send additional flow within a time horizon of 𝑇 = 4.3
Sequence Rounded Time Condensation. A promising direction to achieve good approximate
solutions seems to be the sequence rounded time condensation technique which was introduced by
Groß and Skutella [GS12b] to approximate the M M- F  T
P that also requires non simple paths in optimal solutions. For this problem they also show
that the scaling of flow does not work. To apply their technique one first has to show that the con-
densed network remains polynomially small if more sequences are added which is necessary for
negative transit times. Second, one has to prove that smoothing of flows in the condensed network
still results in a feasible flow in the original network. e approximation algorithm by Groß and
Skutella also relies on solving a dynamic program to find violated constraints. As last ingredient one
therefore has to show that the appropriate S P is still solvable in polynomial time
for negative sequences.

5.4 Matchings over Time

Temporal extensions of combinatorial optimization problems have not been studied in many areas
of combinatorial optimization. e most famous example, flows over time, is the main topic of
this thesis. Another field which produces problems that naturally have a temporal dimension is
scheduling theory, where time oen is inherent to problems (see e. g., [Pin12] for an introduction
and overview to scheduling). Recently, Adjiashvili et al. [ABW+14] introduced a general model
for time-expanded versions of packing problems. We now introduce the M  T
3is property is proven in Lemma 4.8 in [FS07].

⋯𝑇 − 𝐿 −𝑇 + 𝐿
𝑇 − 1 −𝑇 + 1

𝑒1
𝑒1

𝑒2
𝑒2

𝑒𝑛
𝑒𝑛 𝑇 − 𝐿 − 1 −𝑇 + 𝐿 + 1

Figure 5.12: A direct reduction for maximum flow over time with general travel times to partition.
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Figure 5.13: Viaolation of Lemma 4.8.

P, a generalization of the well known M P that lies in the intersection of
network flows and scheduling and see how network flows can be used to solve a special case of the
problem.
For our version of matchings over time we assume that each edge 𝑒 = {𝑣, 𝑤} has different delays𝜏𝑒(𝑣) and 𝜏𝑒(𝑤) at both incident nodes. If the arc is activated at some time 𝜃, aer the respective

delay times it is matched once to 𝑣 at time 𝜃 + 𝜏𝑒(𝑣) and to node 𝑤 at time 𝜃 + 𝜏𝑒(𝑤). As we want
to compute a matching, at each point in time only one edge can be matched to a node. Notice that
this idea allows that arcs can be activated in arbitrary time steps and that nodes can be matched to
different arcs in each time step. In contrast to this definition, Adjiashvili et al. [ABW+14] propose
a different variant to extend the matching problem into the temporal dimension. ey assume that
arcs can be matched to nodes without any delay, however an edge 𝑒 has an assigned production time𝜏𝑒 that requires the edge to be matched at times {𝜃, 𝜃 + 1,… , 𝜃 + 𝜏𝑒 − 1}, if it is activated at time 𝜃.
We now definematchings over timemore formally.
Definition 5.26 (Matching over Time). Let𝐺 = (𝑉, 𝐸) be an undirected graph, 𝑇 ∈ ℕ, and let 𝜏𝑒(𝑣)
be delays for each edge 𝑒 ∈ 𝐸 and node 𝑣 incident to 𝑒.
A matching over time is a set of edge-time tuples 𝑀 = 󶁁(𝑒, 𝜃) 󶙡 𝑒 ∈ 𝐸, 𝜃 ∈ {1, 2,… , 𝑇}󶁑 that

satisfies the following requirements. For an edge-time tuple (𝑒, 𝜃) edge 𝑒 = {𝑣, 𝑤} saturates node 𝑣 at
time 𝜃+𝜏𝑒(𝑣) and at node𝑤 at time 𝜃+𝜏𝑒(𝑤). ematching over time has to obey the time horizon,
e. g., max{𝜃 + 𝜏𝑒(𝑣), 𝜃 + 𝜏𝑒(𝑤)} ≤ 𝑇
holds for all (𝑒 = {𝑣, 𝑤}, 𝜃) ∈ 𝑀. For a feasible matching we require that at each time 𝜃, at most one
edge is incident to each node 𝑣 ∈ 𝑉, e. g.,𝑀 should satisfy|{(𝑒, 𝜉) ∈ 𝑀 | 𝑒 ∈ 𝛿(𝑣) ∧ 𝜉 + 𝜏𝑒(𝑣) = 𝜃}| ≤ 1. ◁

Problem: Matching over Time

Instance: An undirected graph 𝐺 = (𝑉, 𝐸), a time horizon 𝑇, and delays𝜏𝑒(𝑣) for each edge 𝑒 = {𝑣, 𝑤} ∈ 𝐸.
Task: Compute a matching over time𝑀 that maximizes |𝑀|.
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Simple Cases. We first consider a simple case that is easy to solve. If all delays 𝜏𝑒(𝑣) ≡ 0 are
zero for all edges 𝑒 ∈ 𝐸 and nodes 𝑣 ∈ 𝑉 the matchings are independent in each time step and the
cardinality of𝑀 can be maximized by computing a static maximum matching𝑀𝑠 on graph 𝐺 =(𝑉, 𝐸) and set𝑀 ≔ {(𝑒, 𝜃) | 𝑒 ∈ 𝑀𝑠 ∧ 𝜃 ∈ {1, 2,… , 𝑇}}. A solution of this type resembles temporally
repeated flows in the sense that a solution is repeated for all feasible time steps. However, we will
see that such solutions do not exist in general and that the problem is 𝒩𝒫-hard already for bipartite
graphs.

time-expandedMatchings. Generally, a matching over time can be computed in an undirected
time-expanded graph that is defined the following way (cf. also Definition 2.4). For a given time
horizon 𝑇 we create 𝑇 copies of every node and use𝑉𝑇 ≔ 󶁁𝑣𝜃 󶙡 𝑣 ∈ 𝑉, 𝜃 ∈ {1, 2,… , 𝑇}󶁑
as node set. e edge copies connect node copies with respect to their delay time, e. g.,𝐸𝑇 ≔ 󶁄𝑒𝜃 = (𝑣𝜃+𝜏𝑒(𝑣), 𝑤𝜃+𝜏𝑒(𝑤)) 󶙤 𝑒 = (𝑣, 𝑤) ∈ 𝐸,max{𝜃 + 𝜏𝑒(𝑣), 𝜃 + 𝜏𝑒(𝑤)} ≤ 𝑇 󶁔.
Lemma 5.27. Let 𝐺 = (𝑉, 𝐸) be an undirected graph, 𝑇 a time horizon and 𝜏𝑒(𝑣) delays for each
edge 𝑒 ∈ 𝐸. en a static matching𝑀𝑠 in the time-expanded graph 𝐺𝑇 = (𝑉𝑇, 𝐸𝑇) corresponds to a
matching over time𝑀 in 𝐺 with same value |𝑀𝑠| = |𝑀| and vice versa.
Proof. Let 𝑀𝑠 be a static matching in 𝐺𝑇. Define 𝑀 ≔ 󶁂(𝑒, 𝜃) | 𝑒𝜃 ∈ 𝑀𝑠󶁒. en 𝑀 is a feasible
matching over time. Because 𝑒𝜃 is only present in 𝐸𝑇 ifmax{𝜃+𝜏𝑒(𝑣), 𝜃+𝜏𝑒(𝑤)} ≤ 𝑇, each edge-time
tuple (𝑒, 𝜃) obeys the time horizon. For the matching property consider a node copy 𝑣𝜃. Because𝑀𝑠
is a matching, we have 󶙢󶁂𝑒𝜃 ∈ 𝑀𝑠 | 𝑒𝜃 ∈ 𝛿(𝑣𝜃)󶁒󶙢 = 1. Assume now, that two edges in𝑀 are matched
to 𝑣 at time 𝜃, e. g., there exist tuples (𝑒1, 𝜉1) and (𝑒2, 𝜉2) in𝑀 with 𝜉1 + 𝜏𝑒1(𝑣) = 𝜃 = 𝜉2 + 𝜏𝑒2(𝑣).
However, this is not possible because then 𝑒𝜉11 and 𝑒𝜉22 would be present in𝑀𝑠 violating the matching
property at 𝑣𝜃. e other direction follows by the same arguments.

Example 5.28. As an example we consider a simple instance on the vertex set 𝑉 = {𝑎1, 𝑎2, 𝑏1, 𝑏2} and
the edge set 𝐸 = {𝑒1 = (𝑎1, 𝑏1), 𝑒2 = (𝑎1, 𝑏2), 𝑒3 = (𝑎2, 𝑏2)} as depicted in Figure 5.14a. Arc (𝑎1, 𝑏1)
is available from the beginning and has a delay of 1 at 𝑏1, arc (𝑎1, 𝑏2) has delays of 3 and 2 at 𝑎1 and𝑏2, respectively. Finally, arc (𝑎2, 𝑏2) is only available from time 3 onwards because both delay times are
equal.

Temporally RepeatedMatchings. emaximummatching over time in the example has a value
of 7 and one possible solution is depicted in Figure 5.14c. Observe, that the solution in the figure is
not temporally repeated in the sense that the solution does not only contain edges that are matched
at every possible time. However, the matching over time𝑀 = {(𝑒1, 1), (𝑒1, 2), (𝑒1, 3), (𝑒1, 4), (𝑒3, 1),(𝑒3, 2), (𝑒3, 3)} has this property. Analogously to maximum network flows such a solution can be
constructed by a static weighted matching. Let us define edge weights 𝑤𝑒 ≔ 𝑇 − max{𝜏𝑒(𝑣), 𝜏𝑒(𝑤)}.
en the weight represents how oen an arc can be used in amatching over time. For a time horizon
of 𝑇 = 5, in the example we have 𝑤𝑒1 = 4, 𝑤𝑒2 = 2, and 𝑤𝑒3 = 3 and the maximum weighted static
matching with this weights is𝑀𝑠 = {𝑒1, 𝑒2} generating the above matching over time𝑀.
150



5.4 Matchings over Time

However, in contrast to flows over time there are not always temporally repeated optimal match-
ings. e instance depicted in Figure 5.14b does not allow for an optimal temporally repeated solu-
tion. Assume a time horizon 𝑇 = 2. en the maximum weighted matching is𝑀𝑠 = {𝑒2, 𝑒4} with
a total weight of 4. However, the maximum matching over time𝑀 = {(𝑒1, 0), (𝑒2, 1), (𝑒3, 0), (𝑒4, 0),(𝑒5, 0)} has a value of 5.
BipartiteGraphs. Staticmatchings can be reduced to static network flows by a well known reduc-
tion, see for example the text book by Burkard, dell’Amico, and Martello [BdAM09]. We now apply
a similar technique in the temporal setting. Let an instance for the    P
be given including a bipartite graph 𝐺 = (𝑉 = 𝐴⊍𝐵, 𝐸), a time horizon 𝑇 and arc delays 𝜏𝑒(𝑣). We
define the correspondingmatching over time network 𝒩 ′ as follows. As vertex set𝑉′ ≔ 𝑉⊍ {𝑠} ⊍ {𝑡}
we take the original vertices together with an additional source and sink. We direct all arcs from set𝐴 to set 𝐵 and connect the source to nodes in 𝐴 and the nodes in 𝐵 with the sink, e. g.,𝐸′ ≔ {(𝑎, 𝑏) ∈ 𝐸 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ∪ {(𝑠, 𝑎) | 𝑎 ∈ 𝐴} ∪ {(𝑏, 𝑡) | 𝑏 ∈ 𝐵}.
We define the parameter for arcs 𝑒 = (𝑎, 𝑏) for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 as follows. e transit time is
set to 𝜏′𝑒 ≔ 𝜏𝑒(𝑏) − 𝜏𝑒(𝑎), which might be negative. Additionally, we set the release date of 𝑒 to𝑟𝑒 ≔ min{𝜏𝑒(𝑎), 𝜏𝑒(𝑏)}+1. e transit times and release dates of arcs connected to the source or sink
are set to zero and we do not impose deadlines. All edge capacities 𝑢′𝑒 are unit capacities.
Lemma 5.29. Let 𝐺 = (𝑉 = 𝐴⊍𝐵, 𝐸) be a bipartite graph, 𝑇 be a time horizon and 𝜏𝑒(𝑣) be edge
delays for all edges 𝑒 ∈ 𝐸 and 𝑣 incident to 𝑒. Let 𝒩 ′ = (𝐺 = (𝑉′, 𝐸′), 𝑢′, 𝑠, 𝑡) be the corresponding
matching over time network. en, a discrete maximum flow over time with arc release dates and
negative travel times that without waiting in intermediate nodes in 𝒩 ′ corresponds to a matching over
time with the same value.

Proof. Let 𝑓 be a feasible discrete network flow over time respecting release dates, arc capacities
and possibly negative travel times. Because the capacity is limited to 1 on all arcs and the network
structure guarantees that the path decomposition only contains paths of the form (𝑠, 𝑎, 𝑏, 𝑡) for some𝑎 ∈ 𝐴, 𝑏 ∈ 𝑏. Especially, at most one flow unit can reach node 𝑎 at time 𝜃. Because the flow does not
use waiting in intermediate nodes, the flow unit immediately continues along arc 𝑒 = (𝑎, 𝑏). Based
on this observations we define a matching over time𝑀 ≔ 󶁁(𝑒, 𝜃 + min{𝜏𝑒, 0} − 𝑟𝑒 + 1) | 𝑓(𝑒, 𝜃) = 1󶁑.
We verify that the activation dates are feasible by checking the definition. For arcs with positive

travel times 𝜏𝑒 ≥ 0 the activation time reduces to 𝜃−𝑟𝑒+1 ≥ 1 because no flow is on 𝑒 before the release
date. For arcs with negative travel time 𝜏𝑒 < 0 , we get 𝜃+𝜏𝑒 −𝑟𝑒 +1 = 𝜃+𝜏𝑒(𝑤)−𝜏𝑒(𝑣)−𝜏𝑒(𝑤)+1 =𝜃 − 𝜏𝑒(𝑣) + 1 ≥ 1 as start date, because no flow is on 𝑒 before 𝜏𝑒(𝑣) due to the negative travel time
and the release date.
If flow is on 𝑒 = (𝑎, 𝑏) at time 𝜃, the arc is matched to 𝑎 at time 𝜃 ≤ 𝑇 by definition of𝑀 and

feasibility of the flow over time with time horizon 𝑇. Similarly, the edge is matched with 𝑏 at time𝜃 + 𝜏𝑒(𝑤) ≤ 𝑇, as can be verified by inserting the definition. us, the matching over time𝑀 obeys
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𝑎1 03𝑎2 2
𝑏11
𝑏22 1

(a) e numbers at the nodes incident to
edges denote their respective delays.𝑎1 00𝑎2 10𝑎3 0

𝑏11
𝑏20 0
𝑏31 0

𝑒1𝑒2𝑒3𝑒4𝑒5
(b) An instance that does not allow for a

temporally repeated solution.
(c) A maximum matching over time for

the given instance.

Figure 5.14: e    P instance from Example 5.28 and a time-expanded
solution.

the time horizon. Finally, also at any point in time at most one edge is matched to any node. is
follows for 𝑎 ∈ 𝐴 by definition of𝑀 as the inflow is limited by one. In the same way, a node 𝑏 with
two matched arcs would imply two units of flow arriving at 𝑏 at the same time which is not possible
due to flow conservation and the fact that waiting in intermediate nodes is not allowed.

Polynomial Solvability. In contrast to the results on network flows with release dates in Sec-
tion 2.3 and on flows over time with negative travel times earlier in this chapter the reduction in
Lemma 5.29 does not provide a polynomial algorithm in general. If all arcs in the generated network
have no release dates and positive transit times, a solution can be computed using Algorithm 2.1.
Notice, that for those instances the solution is also temporally repeated and thus can be represented
in polynomial size. It is easy to check whether an instance for the    P

𝑟𝑒 = 1𝜏′𝑒 = −2𝑟𝑒 = 0𝜏 ′𝑒 = 1𝑟𝑒 = 2𝜏′𝑒 = 0
Figure 5.15: e generated matching over time network for the instance depicted in Figure 5.14a.

e release dates and transit times not depicted are zero, the capacities are 1 for all arcs.

152



5.4 Matchings over Time

allows for such a solution. is is the case if and only if either 𝜏𝑒(𝑎) = 0 for all 𝑎 ∈ 𝐴 holds, or𝜏𝑒(𝑏) = 0 for all 𝑏 ∈ 𝐵. ere is also no polynomial algorithm in general, unless 𝒫 =𝒩𝒫 .
Theorem 5.30. e    P is weakly 𝒩𝒫-hard, even if the input graph is
bipartite.

Proof. Let 𝑎1, 𝑎2,… , 𝑎𝑛 be the values of the  instance in sorted order, i. e., 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤𝑎𝑛. We define a time horizon 𝑇 ≔ 𝐴2 + 1. For the reduction we define a bipartite graph such as
depicted in Figure 5.16. We use 2𝑛 + 2 nodes 𝑣𝑖 and 𝑤𝑖 for 𝑖 = 0, 1,… , 𝑛 + 1. For each number 𝑎𝑖 in
the  instance we connect vertices 𝑣𝑖 and𝑤𝑖 with two parallel arcs 𝑒𝑖 and 𝑓𝑖. We also create
arcs 𝑧𝑖 ≔ (𝑣𝑖, 𝑤𝑖+1) for 𝑖 = 0, 1,… , 𝑛 + 1 and two arcs 𝑔 ≔ (𝑣0, 𝑤0) and ℎ ≔ (𝑣𝑛+1, 𝑤𝑛+1). e edges𝑓𝑖 are equipped with delays 𝜏𝑓𝑖(𝑣𝑖) ≔ 0 and 𝜏𝑓𝑖(𝑤𝑖) ≔ 𝑎𝑖 and we set 𝜏𝑔(𝑣0) ≔ 𝜏ℎ(𝑣𝑛+1) ≔ 0. All other
edge delays are set to zero.
e idea behind the reduction is as follows. We would like to use edges 𝑔 and ℎ and define a

perfect matching for a yes-instance. e former arc is connected with 𝑤0 at time 0, while the latter
is connected at 𝑣𝑛+1 at time 𝑇. We try to find a path starting in 𝑔 and ending in ℎ that skips exactly
the 𝐴2 time steps in between. Only arcs 𝑒𝑖 have a different delay, thus skipping time refers to selecting
an element 𝑎𝑖 into a solution of the P P, and we show that we reach time layer 𝑇 if
and only if the P instance is feasible.
We start by observing the following fact. Let 𝜃 ∈ {2, 3,… , 𝑇−1} be a time step and for 𝑖 < 𝑗 nodes𝑤𝑖 and 𝑣𝑗 are being matched by arcs 𝑒𝑖 and 𝑓𝑗 at times 𝜃 − 𝑎𝑖 and 𝜃, respectively. We then can match

all nodes (besides the unreachable nodes 𝑣0 and 𝑤𝑛+1) at time 𝜃. To achieve this we match nodes𝑤0 to 𝑣𝑖 by activating arcs 𝑧1,… , 𝑧𝑖−1 at time 𝜃. 𝑤𝑖 and 𝑣𝑗 are already matched by assumption. We
match the intermediate nodes by activating arcs 𝑒𝑖+1,… , 𝑒𝑗−1. Finally, the last nodes 𝑤𝑗+1,… , 𝑣𝑛+1
can be matched by taking arcs 𝑧𝑗,… , 𝑧𝑘. On the other hand, if no vertices are matched by time 𝜃,
we can match all of those vertices by activating arcs 𝑧0,… , 𝑧𝑛 at time 𝜃.
Now, let 𝐼 ⊆ {1, 2,… , 𝑛} denote the indices of values in a feasible solution for a yes-instance with

the following property: Whenever two or more elements 𝑎𝑖 have the same value, the one(s) with
smaller index are chosen. is is possible without loss of generality. Let 𝜋 be a permutation, such
that 𝐼 = {𝜋1, 𝜋2,… , 𝜋𝑘}. We define levels for each element in the solution by 𝐿(𝑖) ≔ ∑𝑗<𝑖 𝑎𝜋𝑗 + 1.
We add 󶀡𝑓𝜋𝑖 , 𝐿(𝑖)󶀱 to the matching over time. Consider a point in time 𝜃 = 𝐿(𝑖) = 𝐿(𝑖 − 1) + 𝑎𝜋𝑖 for𝑖 = 1,… , 𝑘. Due to our matching of 𝑓𝜋𝑖 and 𝑓𝜋𝑖−1 two nodes 𝑤𝜋𝑖−1 and 𝑣𝜋𝑖 are matched at time 𝜃.
Because of the assumed ordering of the elements we have 𝜋𝑖−1 < 𝜋𝑖 and therefore our observation
allows us to match all other nodes at time 𝜃. At time 𝜃 = 1 exactly one node 𝑣𝜋1 is already matched.
We can match nodes 𝑣1,…𝑤𝜋1−1 and 𝑤𝜋1 ,… , 𝑣𝑛+1 by matching appropriate 𝑒𝑗 and 𝑧𝑗. At time 𝑇
exactly one node 𝑤𝜋𝑘 is matched already. By selecting appropriate edges 𝑒𝑗 and 𝑧𝑗 we can match the
nodes 𝑤0,… , 𝑣𝜋𝑘 and 𝑣𝜋𝑘+1,… ,𝑤𝑛. For the remaining time steps with 𝜃 ≠ 𝐿(𝑖) for all 𝑖 from 2 to 𝑇,
we can match all nodes by taking arcs 𝑧𝑗 as described above. Now, the only unmatched nodes are 𝑣0

𝑣0𝑇 𝑤00 𝑣100 𝑤10𝑎1 𝑣200 𝑣30𝑎2 … 𝑣𝑛00 𝑤𝑛0𝑎𝑛
0𝑣𝑛+1 𝑇𝑤𝑛+1𝑔 𝑧0

𝑒1
𝑓1 𝑧1

𝑒2
𝑓2

𝑒𝑛
𝑓𝑛 𝑧𝑛 ℎ

Figure 5.16: e reduction of the M  T P to the P P.
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at time 𝑇, 𝑤0 at time 1, 𝑣𝑛+1 at time 𝑇, and𝑤𝑛+1 at time 1. ese last two node pairs can be matched
by adding (𝑔, 1) and (ℎ, 1) to the matching over time. us we have matched all nodes at all possible
times.
Conversely, every perfect matching that matches all nodes to edges at all possible times defines a

solution of a given P instance. erefore (𝑔, 1) has to be in the matching and 𝑧1 cannot be
matched at time 0. We cannot match all nodes at time 1 by only taking arcs 𝑒𝑗, because then node𝑣𝑛+1 would remain unmatched. erefore some arc𝑓𝑗 has to be selected at time 1. We define 𝜋1 ≔ 𝑗.
e remaining arcs at time 1 (apart from𝑤𝑛+1) can only be matched by selecting arcs 𝑧𝜋1 ,… , 𝑧𝑛. In
particular, no other edge 𝑓𝑗 can be contained in the matching over time. Assume now the first 𝑖
edges 𝑓𝜋1 ,… , 𝑓𝜋𝑖 have been matched already. At level 𝐿(𝑖) node 𝑤𝜋𝑖 is matched. Observe that it is
only possible to match all node copies 𝑣0,… , 𝑣𝜋𝑖 by including arcs 𝑧0,… 𝑧𝜋𝑖−1 into the matching. If
another edge 𝑒𝑗 or 𝑓𝑗 with 𝑗 < 𝜋𝑖 is included in the matching at least 𝑤0 remains unmatched. Also,
not all elements can be matched by selecting only arcs 𝑒𝑗 for 𝑗 > 𝜋𝑖. erefore, exactly one arc 𝑓𝑗 is
contained in the matching over time for time 𝐿(𝑖). Define 𝜋𝑖+1 ≔ 𝑗. We continue in this way until
we have 𝐿(𝑘) = 𝑇. e edges in the last point in time can be matched using the same arguments, but
because no further arcs of type 𝑓𝑗 can be selected, node 𝑣𝑛+1 is not matched by arc 𝑧𝑛, but insteadℎ has to be contained in the matching. e elements {𝑎𝜋1 ,… , 𝑎𝜋𝑘} form a feasible solution of the
 instance.

𝑇 = 1𝑇 = 2
𝑇 = 3𝑇 = 4

𝑣0 𝑤0 𝑣1 𝑤1 𝑣2 𝑤2 𝑣3 𝑤3 𝑣4 𝑤4

𝑔 𝑧0 𝑒1/𝑓1 𝑧1 𝑒2/𝑓2 𝑧2 𝑒3/𝑓3 𝑧3 ℎ
Figure 5.17: An example of the reduction for a P instance with 𝑎0 = 1, 𝑎1 = 2 and 𝑎3 = 3.

e graph corresponds to the time-expanded matching graph. e matching arcs are
the solid arcs.
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6 Abstract Flows over Time

Abstract networks and abstract flows are a generalization of classical network
flows by Hoffman [Hof74]. e model generalizes the notion of paths that re-
places the underlying network structure. Paths are a linearly ordered sets sat-
isfying the switching axiom. Hoffman used the model to analyse the minimal
structural properties necessary to retrieve a Max-Flow=Min-Cut-eorem.
We present an algorithm that computes lexicographically abstract maximum

flows. e algorithm is then used to prove existence of abstract earliest arrival
flows. e result is complemented by an algorithm that computes value-approxi-
mate earliest arrival flows.

Publication Remark: Parts of this chapter are joint work with Jannik Ma-
tuschke and Britta Peis and appeared in [KMP14].

econcept of abstract flowswas introduced byHoffman [Hof74] when he reviewed the first proof
of theMax-Flow=Min-Cut-eorem by Ford and Fulkerson [FF56] again. He noticed that the (non-
constructive) proof does not make use of many of the typical structural properties of networks. is
is in contrast to their (constructive) proof given later [FF62], which also leads to the class of aug-
menting path algorithms. As typical structures we see for example the possibility to switch between
two 𝑠-𝑡-paths 𝑃 and 𝑄 that share an arc 𝑒: ere is a path starting with arcs on 𝑃 until 𝑒 and then
continues with the arcs of𝑄 aer 𝑒. e same is true for a path starting in𝑄 that switches to𝑃 aer 𝑒.
Ford and Fulkerson’s proof uses a relaxed version of this property which motivates the so-called

switching axiom: For two paths that cross in a common element, there is another path that only
contains elements of the beginning of𝑃 and the end of𝑄. However, the path is not required to use all
of the elements (not even the common element 𝑒) and it is totally possible that the elements appear in
different order. In the general model there still is an Abstract-Max-Flow=Min-Cut-eorem, which
states that abstract flows remain totally dual integral.
Similar to the proof of the Max-Flow=Min-Cut-eorem in [FF56], the results in [Hof74] are of

a theoretical nature and do not allow for a direct polynomial algorithm. In the abstract flow model
we cannot search through the set of paths because it is too large in general. Instead, a polynomial
abstract flow algorithmmay call a separation oracle. It was a long open question, whether a polyno-
mial algorithm computing an (integral) maximum abstract flow exists until McCormick [McC96]
presented a polynomial primal-dual algorithm for the unweighted case. e algorithm was ex-
tended to the general case with additional weights on paths by Martens and McCormick [MM08].
Martens [Mar07] applies the algorithms to compute unsplittable abstract network flows.
In the spirit of abstract flows, further abstractions based on uncrossing axioms have been pro-

posed. For the case of lattice polyhedra, corresponding totally dual integral results have been es-
tablished by Hoffman and Schwarz [HS78], Gröflin and Hoffman [GH82] and Hoffman [Hof78].
Similar results on switchdec polyhedra are due to Gaillard [Gai97]; see also the survey due to Schri-
jver [Sch84].
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6 Abstract Flows over Time

Abstract Flows over Time. Despite the level of abstraction in Hoffman’s model, many interest-
ing results from classical theory of flows can be taken over into the abstract setting. Abstract flows
over time are a generalization of abstract flows in which elements are assigned a travel time that is
necessary for flow to pass along the element. In this setting it is possible to derive similar results as
Ford and Fulkerson [FF58] showed for the M F  T P problem. Sub-
sequently, we are interested whether there are also abstract flows over time that have the earliest
arrival property. An earliest arrival transshipment is a flow that also satisfies supplies and demands
that are given for first and last elements on paths. If the paths do not all start and end in the same
element, earliest arrival transshipments do not exist since they are a generalization of network flows
over time.

Outline of the Chapter. In Section 6.1 we begin with an introduction into the field of abstract
flows and abstract flows over time. We present two possibilities to define time-expanded abstract
networks and show some basic structural properties of abstract networks. Lexicographically max-
imum abstract flows are introduced in Section 6.2. We develop an algorithm that computes such
flows for sequences of sources (or sinks) that adhere to a certain order. In Section 6.3 we introduce
the abstract version of earliest arrival flows. We show that such flows exist in general and can be
computed using the lexicographically maximum flow algorithm. We then add a notion of supplies
and demands for source elements and sink elements and show that 2-value-approximate abstract
earliest arrival flows exist.

6.1 Introduction to Abstract Flows

In this section we introduce Hoffman’s abstract network flow model and extend it to a temporal
setting by adding transit times. Furthermore we introduce an abstract version of time expansion
and show some properties of abstract networks.
Definition 6.1 (Abstract network). Let 𝐸 be a finite ground set of elements and 𝓟 ⊆ 𝒫(𝐸) be a
family of paths. In an abstract path system (𝐸,𝓟) each path 𝑃 ∈ 𝓟 has a linear order ≤𝑃 of its
elements and weights 𝑟𝑃 ∶𝓟→ ℚ≥0.
For a given path 𝑃 and two elements 𝑎 <𝑃 𝑒 we say 𝑎 is le of 𝑒, and for 𝑎 >𝑃 𝑒 we say that 𝑎 is

right of 𝑒. e elements up to 𝑒 and beginning at 𝑒 are defined as𝑃[→𝑒] ≔ {𝑎 ∈ 𝑃 | 𝑎 ≤𝑃 𝑒}, and 𝑃[𝑒→] ≔ {𝑎 ∈ 𝑃 | 𝑎 ≥𝑃 𝑒}.
Observe that these sub-paths include element 𝑒. We denote the elements on 𝑃 that are le of 𝑒 and
right of 𝑒 by𝑃[→𝑒[ ≔ {𝑎 ∈ 𝑃 | 𝑎 ≤𝑃 𝑒}, and 𝑃]𝑒→] ≔ {𝑎 ∈ 𝑃 | 𝑎 ≥𝑃 𝑒}.
e first element first(𝑃) of a path 𝑃 is the element 𝑒 such that 𝑒 ≤𝑃 𝑎 for all 𝑎 ∈ 𝑃. Correspondinglylast(𝑃) denotes the last element 𝑒, which satisfies 𝑒 ≥𝑃 𝑎 for all 𝑎 ∈ 𝑃.
Two paths 𝑃 and𝑄 cross at element 𝑒 if 𝑒 ∈ 𝑃∩𝑄. An abstract path system satisfies the switching

axiom if for any two paths 𝑃 and 𝑄 crossing in element 𝑒 there is a path that only uses elements at
the beginning of 𝑃 and at the end of 𝑄 and vice versa for elements at the beginning of 𝑄 and at the
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6.1 Introduction to Abstract Flows

end of 𝑃. More formally, both sets 󶁂𝑅 ∈𝓟 | 𝑅 ⊆ 𝑃[→𝑒] ∪𝑄[𝑒→]󶁒 and 󶁂𝑅 ∈𝓟 | 𝑅 ⊆ 𝑄[→𝑒] ∪𝑃[𝑒→]󶁒
are non-empty. We then define the switch paths of 𝑃 and 𝑄 to be𝑃 ×𝑒 𝑄 ∈ argmax󶁁𝑟𝑃 󶙡 𝑅 ∈𝓟, 𝑅 ⊆ 𝑃[→𝑒] ∪𝑄[𝑒→]󶁑 (6.1)

and 𝑄 ×𝑒 𝑃 ∈ argmax󶁁𝑟𝑃 󶙡 𝑅 ∈𝓟, 𝑅 ⊆ 𝑄[→𝑒] ∪𝑃[𝑒→]󶁑. (6.2)

An abstract path system that satisfies the switching axiom together with capacities 𝑢𝑒 ∶ 𝐸 → ℚ+
on the edges is an abstract network. ◁
e notation generalizes classical networks as defined in Section 1.2. For a given network 𝒩 =(𝐺, 𝑢, 𝑠, 𝑡) the set of arcs 𝐸 together with the set of all 𝑠-𝑡-paths defines an abstract network if we

assume 𝑟𝑃 ≡ 1 for all paths. e switch of two paths 𝑃 and 𝑄 at 𝑒 is then the classical intersection of
paths where we start with 𝑃 until 𝑒 and continue with the arcs on𝑄. Notice that the definition of an
abstract path system does not require any relation between the order of the elements on paths. If 𝑃
and 𝑄 both contain elements 𝑒 and 𝑓, it is totally possible that 𝑒 <𝑃 𝑓 on 𝑃 but 𝑒 >𝑄 𝑓. Also, it is
not necessary that the switch path 𝑃 ×𝑒 𝑄 uses all of the elements in 𝑃[→𝑒] ∪𝑄[𝑒→].
Example 6.2. We consider two examples of abstract networks. Figure 6.1a depicts the network (𝐸,𝓟)
with elements𝐸 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} and paths𝓟 = {(𝑎, 𝑐, 𝑒), (𝑎, 𝑐, 𝑑, 𝑒), (𝑎, 𝑏, 𝑐, 𝑒), (𝑎, 𝑏, 𝑑, 𝑒)}. We depict
the elements as circles and paths as edges connecting them, but the presentation should not be confused
with regular graphs. All paths start and end in the same networks, such that the network very much
resembles classical networks. However, there is a difference. Element 𝑐 is in the intersection of 𝑃 ≔(𝑎, 𝑐, 𝑑, 𝑒) ∩ 𝑄 ≔ (𝑎, 𝑏, 𝑐, 𝑒), but the only possible choice for the switch is 𝑃 ×𝑐 𝑄 = (𝑎, 𝑏, 𝑑, 𝑒) and not(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) which does not exist in the network.
As a second example we consider the abstract network depicted in Figure 6.1b with ground set{1, 2, 3, 4, 𝑎, 𝑏, 𝑐, 𝑑} and the paths {(1, 2, 3, 4), (𝑎, 2, 𝑏), (𝑐, 3, 𝑑), (1, 𝑏), (1, 𝑑), (𝑎, 4), (𝑐, 4)}. e network

features paths starting in more than one element and therefore resembles a network with multiple
sources and sinks. Notice that both paths (𝑎, 2, 𝑏) and (𝑐, 3, 𝑑) cross with path (1, 2, 3, 4) but there
is no path starting with 𝑎 and ending with 𝑑.
Abstract Flows. An abstract flow is an assignment 𝑥𝑃 ∶ 𝓟 → ℚ≥0 that respects the capacities
such that 󵠈𝑃∈𝓟∶𝑒∈𝑃𝑥𝑃 ≤ 𝑢𝑒

𝑎 𝑏 𝑐 𝑑 𝑒
(a) An abstract network.

1 2 3 4

a

b

c

d

(b) Another abstract network.

Figure 6.1: Two abstract networks that are not equivalent to a classical network.
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6 Abstract Flows over Time

holds for each element 𝑒 ∈ 𝐸. We define the W A F P with the objec-
tive of maximizing the (weighted) flow value.

Problem: Weighted Abstract Flow

Instance: An abstract network (𝐸,𝓟), capacities 𝑢𝑒 and path weights 𝑟𝑃.
Task: Find an abstract flow 𝑥 that maximizes󵠈𝑃∈𝓟 𝑟𝑃 ⋅ 𝑥𝑃.

e special case with unit weights 𝑟 ≡ 1 is the A F P.

While the unweighted A F P is a generalization of the M F
P (in the path formulation), the weighted version of the problem is a generalization of the
M C F P. e problem can be written as a linear program in the following
way.

max 󵠈𝑃∈𝓟 𝑟𝑃 ⋅ 𝑥𝑃, (WAF)

s.t. 󵠈𝑃∈𝒫∶𝑒∈𝑃 ≤ 𝑢𝑒 for all 𝑒 ∈ 𝐸,𝑥𝑃 ≥ 0 for all 𝑃 ∈ 𝒫 .
e dual of the linear program is the W A C P which is specified in

the following LP formulation. We denote the special case with unit weights 𝑟𝑃 ≡ 1 by A
C P.

min 󵠈𝑒∈𝐸𝑦𝑒𝑢𝑒, (WAC)

s.t. 󵠈𝑒∈𝑃𝑦𝑒 ≥ 𝑟𝑃 for all 𝑃 ∈𝓟,𝑦𝑒 ≥ 0 for all 𝑒 ∈ 𝐸.
Supermodularity. In contrast to the case of classical network flows the pair of linear and dual
program is not totally dual integral. However, if we restrict the possible values for the weights, in-
teger optimum solutions exist in case of integral weights and capacities. e path weights 𝑟𝑃 are
supermodular if𝑟𝑃×𝑒𝑄 + 𝑟𝑄×𝑒𝑃 ≥ 𝑟𝑃 + 𝑟𝑄
holds for two crossing paths 𝑃,𝑄 ∈𝓟 with 𝑒 ∈ 𝑃 ∩𝑄. If the weights are supermodular, the abstract
version of the Max-Flow=Min-Cut-eorem holds.
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Theorem 6.3 (Abstract Max-Flow=Min-Cut [Hof74]). Let (𝐸,𝓟) be an abstract network with inte-
gral capacities 𝑢𝑒 ∈ ℤ+ on the elements and supermodular weights 𝑟𝑃 on paths 𝑃 ∈𝓟. en, the dual
linear programs (WAF) and (WAC) have integer optimum solutions.
Let (𝐸,𝓟) be an abstract network. We consider all elements 𝑡 ∈ 𝐸 that are either first or last

elements on any path 𝑃 ∈ 𝓟 to be a source or sink, respectively. We denote both source elements
and sink elements as terminal elements.

6.1.1 Maximum Abstract Flow

Abstract networks are typically huge in size. We consider the number of paths |𝓟| as possibly expo-
nential in the number of elements𝑚 ≔ |𝐸| of the ground set. erefore, the running time function
of an efficient algorithm cannot include |𝓟| as parameter. However, as an algorithm has to access
paths somehow, we also allow the algorithm to use oracle calls. For a given set of elements, a call
to the oracle returns (at most) one path that only uses elements contained in the set, possibly un-
der certain additional restrictions. Under this conditions, a polynomial-time algorithm solving the
A F P is due to McCormick [McC96]. In the following we briefly describe the
algorithm’s basic ideas.

Oracles. Let𝑦 ∈ ℚ𝑚+ be a dual solution of (WAC). e oracle𝐎sep returns a violating path𝑃 ∈𝓟
with∑𝑒∈𝑃 𝑦𝑒 < 𝑟𝑃 together with the order<𝑃 of elements and the path weight 𝑟𝑃, or verifies that every
path 𝑃 ∈𝓟 is dual feasible, i. e.,∑𝑒∈𝑃 𝑦𝑒 ≥ 𝑟𝑃 holds for each path. e oracle solves the S
P for (WAF) and by the equivalence of optimization and separation [GLS88] it can be used
to solve the W A F P in strongly polynomial time. However, the ap-
proach does not lead to integral solutions even if the linear programs (WAF) and (WAC) are totally
dual integral.
In the unweighted case with 𝑟𝑃 ≡ 1 for all paths 𝑃 ∈𝓟 we can use a simpler variant of the oracle.

Let 𝑄 ⊆ 𝐸 be a set of elements. e oracle𝐎 returns a violating path 𝑃 ∈𝓟 together with the order<𝑃 of its elements such that 𝑃 ⊆ 𝑄, or verifies that there is no path contained in 𝑄.
Computing an Abstract Maximum Flow. McCormick’s algorithm is a primal-dual generaliza-
tion of the classical augmenting path maximum flow algorithm. e structure of an abstract path
system is not as simple as in classical networks, such that using a labelling algorithm in some kind
of residual network is not possible. Instead, the AM FAmaintains
a candidate set for an abstract minimum cut as solution of the dual problem. e algorithm then
calls𝐎 to verify that the candidate set is in fact a feasible dual solution. If this is the case, the primal
solution is a maximum abstract flow. Otherwise, the oracle returns a violating path. e returned
violated paths are then combined to an augmenting structurewhich allows to improve the flow value.
Definition 6.4 (Augmenting Structure). Let (𝐸,𝓟) be an abstract network and 𝑥 be an abstract
flow. An augmenting structure is a sequence (𝑄+1 , 𝑃−1 , 𝑄+2 , 𝑃−2 ,… ,𝑄+𝑘+1) of 𝑘 negative paths 𝑃−𝑖 ∈𝓟
and 𝑘 + 1 positive paths 𝑄+𝑖 ∈𝓟 for some 𝑘 ∈ ℕ0 satisfying the following properties.
ere are 𝑘 elements 𝑒−𝑖 such that 𝑒−𝑖 ∈ 𝑄+𝑖 ∩ 𝑃−𝑖 for 𝑖 = 1,… , 𝑘 and also 𝑘 elements 𝑒+𝑖 such that𝑒𝑖+ ∈ 𝑃−𝑖 ∩𝑄𝑖+1 for 𝑖 = 1,… , 𝑘. e elements satisfy 𝑒−𝑖 <𝑄+𝑖 𝑒+𝑖 and 𝑒−𝑖+1 <𝑄+𝑖+1 𝑒+𝑖 . e initial and final

parts of the paths overlap, i. e.,𝑄+𝑖 [→𝑒−𝑖 ] ⊆ 𝑃−𝑖 [→𝑒−𝑖 ] for for the initial elements and𝑄+𝑖+1[𝑒+𝑖 →] ⊆ 𝑃−𝑖 [𝑒+𝑖 →]
holds for the final elements for 𝑖 = 1,… , 𝑘.
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e flow value on negative paths can be reduced, i. e., 𝑥𝑃𝑖 > 0 for 𝑖 = 1,… , 𝑘. On the middle
part of positive paths flow can be augmented, i. e., the elements between 𝑒−𝑖+1 and 𝑒+𝑖 on paths𝑄+𝑖 and
also the final part of 𝑄+1 and the initial part of 𝑄+𝑘+1 are not saturated. More formally, any element𝑒 ∈ 𝑄+1 [𝑒−1→], 𝑒 ∈ 𝑄+𝑘+1[→𝑒+𝑘 ] or 𝑒 ∈ 𝑄+𝑖 \ 𝑄+𝑖 [→𝑒−𝑖 ] \ 𝑄+𝑖 [𝑒+𝑖−1→] has strictly positive capacity le. ◁
e idea of an augmenting structure is to augment flow on positive paths and reduce flow on

negative paths. Elements on initial and final parts of paths occur in both types of paths, such that
their flow value is not changed in the process. However, on the middle elements of negative paths𝑃−𝑖 , the flow value is reduced and on themiddle parts of positive paths𝑄+𝑖 the flow value is increased.
e elements 𝑒+𝑖 and 𝑒−𝑖 are contained in the candidate set 𝐿 of a cut. en, the augmenting structure
proves that the candidate set was not feasible.
e framework of McCormick’s algorithm is given in Algorithm 6.1. All details on the computa-

tion of the algorithmare omitted becausewe only use the algorithmas a sub-routine in the remainder
of the chapter. e above test of dual feasibility is performed in step 2a). For a thorough description
of the algorithm see [McC96].

Algorithm 6.1: Abstract Maximum Flow Algorithm
Input: Abstract network (𝐸,𝓟), possibly an initial solution 𝑥0.
Output: Abstract maximum flow 𝑥.

1. Initialize 𝑥 ≔ 𝑥0, if an initial solution is given. Otherwise initialize 𝑥 as the zero
flow.

2. While 𝑥 is not optimal:
a) Compute an augmenting structure 𝐴𝑆. If no such structure exists, return 𝑥.
b) Determine 𝛿 ∈ ℕ such that all paths in𝐴𝑆 can be augmented/decreased by 𝛿.
c) For each path 𝑃+ ∈ 𝐴𝑆, set 𝑥𝑃+ ≔ 𝑥𝑃+ + 𝛿.
d) For each path 𝑄− ∈ 𝐴𝑆, set 𝑥𝑄− ≔ 𝑥𝑄− − 𝛿.

6.1.2 Abstract Flows over Time

Analogously to classical networks we add a temporal dimension to abstract flows and define the time
expansion of abstract path systems. Let 𝜏 be non-negative transit times assigned to the elements𝑒 ∈ 𝐸. e transit time for an element denotes the time that is necessary for flow to pass along it.
Let 𝑒 and 𝑓 with 𝑒 <𝑃 𝑓 be two consecutive elements on path 𝑃. Flow travelling through 𝑒 at time 𝜃
then continues travelling along 𝑓 at time 𝜃 + 𝜏𝑒.
In the following we introduce two variants of time expansion of an abstract network. e ground

set of both path systems consists of temporal copies of the original elements (for a given time hori-
zon). e first variant consists of copies of the paths in the original network starting at different
times (therefore using different temporal copies of the elements). is construction, however, does
not yield an abstract network because the switching property is not satisfied. We then allow flow to
wait before flowing through elements and add more paths to reflect this. e resulting path system
then is actually an abstract network.
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6.1 Introduction to Abstract Flows

Temporal Paths. Let (𝐸,𝓟) be an abstract network with capacities 𝑢𝑒 ∈ ℚ+ and transit times𝜏𝑒 ∈ ℤ+ on the elements 𝑒 ∈ 𝐸 and let 𝑇 ∈ ℤ+ be a time horizon. Similar to the time expansion of
classical networks (cf. Definition 2.4) we create 𝑇 copies of the elements which we identify with the
intervals ]0, 1], ]2, 2],… , ]𝑇 − 1, 𝑇] and define the time-expanded ground set as𝐸𝑇 ≔ 󶁁𝑒𝜃 󶙡 𝑒 ∈ 𝐸, 𝜃 ∈ {1, 2,… , 𝑇}󶁑.
Flow that is sent along a path 𝑃 starting at time 𝜃 enters element 𝑒 ∈ 𝑃 at time 𝜃 + ∑𝑎∈𝑃[→𝑒[ 𝜏𝑎. For
any 𝑃 ∈𝓟 and 𝜃 ∈ {1, 2,… , 𝑇}we define the temporal path 𝑃𝜃 to consist of the element copies that
flow travels through if sent into 𝑃 at time 𝜃, i. e.,𝑃𝜃 ≔ 󶁃𝑒𝜉 ∈ 𝐸𝑇 󶙣 𝑒 ∈ 𝑃, 𝜃 + ∑𝑎∈𝑃[→𝑒[𝜏𝑎 = 𝜉󶁓.
e order of the elements in 𝑃𝜃 is the same as in 𝑃 thus we have 𝑎𝜉 <𝑃𝜃 𝑒𝜉′ if and only if 𝑎 <𝑃 𝑒.
Finally, the time-expanded paths

𝓟𝑇𝜃 ≔ 󶁃𝑃𝜃 󶙣 𝑃 ∈𝓟, 𝜃 ∈ {1, 2,… , 𝑇}, 𝜃 + ∑𝑒∈𝑃 𝜏𝑒 ≤ 𝑇󶁓
are all temporal paths that arrive early enough, i. e., at the latest at time 𝑇.
Crossing of Temporal Paths. e abstract path system (𝐸𝑇,𝓟𝑇𝜃 ) is not an abstract network be-
cause it does not satisfy the switching properties (6.1) and (6.2). At first glance, thismight be surpris-
ing because in classical network flows, time-expanded networks are indeed networks again by con-
struction. However, the definition of 𝓟𝑇𝜃 ignores the fact that it introduces additional intersections
of paths at different times. It is possible that there is no path satisfying the switching axiom (6.1).
Example 6.5 (Time-expanded Path System that is not an Abstract Network). Consider the ground
set 𝐸 ≔ {𝑠, 𝑎, 𝑏, 𝑡} and set of paths 𝓟 ≔ {𝑃,𝑄, 𝑅, 𝑆} with 𝑃 = (𝑠, 𝑎, 𝑏, 𝑡), 𝑄 = (𝑠, 𝑏, 𝑎, 𝑡), 𝑅 = (𝑠, 𝑎, 𝑡),
and 𝑆 = (𝑠, 𝑏, 𝑡). Observe that (𝐸,𝓟) is an abstract network satisfying both switching properties (6.1)
and (6.2).
Assume now that the elements have unit transit times 𝜏𝑒 ≡ 1. en, the temporal paths 𝑃0 and 𝑄1

intersect in the temporal copy 𝑏2 of element 𝑏. To satisfy the requirements for abstract networks there
must be a path contained in 𝑃0[→𝑏2] ∪𝑄1[𝑏2→] = {𝑠0, 𝑎1, 𝑏2, 𝑎3, 𝑡4} which is not the case.
Time-expanded Abstract Networks. We now extend the path system by adding further paths
that solve the conflict shown in Example 6.5. e problem, which is introduced by simply taking
all temporal copies as path system, is that the copies of elements may be used at the wrong time.
is is the case even if there is a path satisfying the switching axiom in the underlying static abstract
network. In the example, every path could serve as switch 𝑃 ×𝑏 𝑄 (if the path weights are set ac-
cordingly). If we want to use a temporal copy of 𝑃 as possible path, aer using copy 𝑏2 we have to
use 𝑡3 as next element, however, the crossing of 𝑃0 with 𝑄1 requires us to use element 𝑡4. We will
solve this problem by introducing waiting periods 𝜎 for each path that allow for flow to hold on for
an arbitrary number of time steps before travelling through the next element.
Definition 6.6 (Time-expanded Abstract Network). Let (𝐸,𝓟) be an abstract network with ca-
pacities 𝑢𝑒 ∈ ℚ+ and transit times 𝜏𝑒 ∈ ℤ+ and let 𝑇 ∈ ℤ+ be a time horizon. We again use
the time-expanded ground set 𝐸𝑇 ≔ 󶁁𝑒𝜃 󶙡 𝐸 ∈ 𝐸, 𝜃 ∈ {1, 2,… , 𝑇}󶁑. Let 𝑃 ∈ 𝓟 be a path and
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6 Abstract Flows over Time𝜎 ∶ 𝑃 → {1, 2,… , 𝑇} be waiting periods for each of the elements of 𝑃. Flow travelling along 𝑃 that
adheres to the waiting pattern 𝜎 waits 𝜎𝑎 time units before flowing through an element 𝑎 ∈ 𝑃 and
thus enters element 𝑒 ∈ 𝑃 at time ∑𝑎∈𝑃[→𝑒[(𝜎𝑎 + 𝜏𝑎) + 𝜎𝑒. e temporal path with intermediate
waiting 𝑃𝜎 is defined to be𝑃𝜎 ≔ 󶁃𝑒𝜉 ∈ 𝐸𝑇 󶙣 𝑒 ∈ 𝑃,∑𝑎∈𝑃[→𝑒[(𝜎𝑎 + 𝜏𝑎) + 𝜎𝑒 = 𝜉󶁓.
eorder of the elements contained in𝑃𝜎 is 𝑎𝜉 <𝑃𝜎 𝑒𝜉′ if and only if 𝑎 <𝑃 𝑒. e set of time-expanded
paths

𝓟𝑇𝜎 ≔ 󶁃𝑃𝜎 󶙣 𝑃 ∈𝓟, 𝜎 ∈ {1, 2,… , 𝑇}𝑃, ∑𝑒∈𝑃(𝜎𝑒 + 𝜏𝑒) ≤ 𝑇󶁓
consists of all temporal paths with intermediate waiting that arrive within the time horizon 𝑇. en(𝐸𝑇,𝓟𝑇𝜎 ) forms the time-expanded abstract network of (𝐸,𝓟). ◁
It can easily be seen that 𝓟𝑇𝜃 ⊆ 𝓟𝑇𝜎 because each path 𝑃𝜃 is equivalent to a path 𝑃𝜎 with 𝜎 ≔(𝜃, 0,… , 0). We now show that the time-expanded abstract network is actually an abstract network

if the underlying static network satisfies the following property. Let 𝑃,𝑄 ∈ 𝓟 be two paths with a
common element 𝑒 ∈ 𝑃 ∩ 𝑄 and 𝑅 ≔ 𝑃 ×𝑒 𝑄. An abstract network preserves the order if for any
pair of elements 𝑎, 𝑏 ∈ 𝑅 ∩ 𝑃[→𝑒] with 𝑎 <𝑃 𝑏 or 𝑎, 𝑏 ∈ 𝑅 \ 𝑃[→𝑒] with 𝑎 <𝑄 𝑏, also 𝑎 <𝑅 𝑏 holds.
Lemma 6.7. Let (𝐸,𝓟) be an abstract network that preserves the order on the paths. en the path
system 𝓟𝑇𝜎 is an abstract network.

Proof. Let 𝑃𝜋 and 𝑄𝜌 be two paths in 𝓟𝑇𝜎 with waiting patterns 𝜋 and 𝜌 that intersect at element𝑒𝜃. en the underlying paths cross in the static network at element 𝑒 and there is a path 𝑅 ≔𝑃 ×𝑒 𝑄. Because the network preserves the order of the paths, 𝑅 contains elements of 𝑃 and 𝑄 in
the same order but probably leaves out some of the elements. We can define waiting periods before
the elements on 𝑅 according to the transit times of the skipped elements on 𝑃 and 𝑄 such that the
temporal copies of elements used by 𝑅, 𝑃 and 𝑄, respectively, are the same. Let 𝑅 = 𝑒1 <𝑅 𝑒2 <𝑅⋯ <𝑅 𝑒𝑘 be the elements of 𝑅 in their respective order. We then define 𝜎 appropriately such that it
skips the omitted elements by waiting.

𝜎(𝑒1) ≔ 󶀂󶀊󶀚∑𝑎∈𝑃[→𝑒1[(𝜏𝑎 + 𝜋𝑎) + 𝜋𝑒1 if 𝑒1 ∈ 𝑃,∑𝑎∈𝑄[→𝑒1[(𝜏𝑎 + 𝜌𝑎) + 𝜋𝑒1 if 𝑒1 ∈ 𝑄,
and for 𝑖 = 2,… , 𝑘

𝜎(𝑒𝑖) ≔ 󶀂󶀒󶀒󶀊󶀒󶀒󶀚
∑{𝑎∈𝑃|𝑒𝑖−1<𝑃𝑎<𝑃𝑒𝑖}(𝜏𝑎 + 𝜋𝑎) + 𝜋𝑒𝑖 if 𝑒𝑖 ∈ 𝑃,∑𝑃]𝑒𝑖−1→](𝜏𝑎 + 𝜋𝑎) + ∑𝑄[→𝑒𝑖[(𝜏𝑎 + 𝜌𝑎) + 𝜌𝑒𝑖 if 𝑒𝑖−1 ∈ 𝑃, 𝑒𝑖 ∈ 𝑄,∑󶁁𝑎∈𝑄|𝑎𝑖−1<𝑄𝑎<𝑄𝑎𝑖󶁑(𝜏𝑎 + 𝜌𝑎) + 𝜌𝑒𝑖 if 𝑒𝑖−1, 𝑒𝑖 ∈ 𝑄 ∈ 𝑃.

Due to the precondition that the underlying static network preserves the order of elements 𝜎 is
well defined and 𝑅𝜎 ∈ 𝓟𝑇𝜎 is a path in the time-expanded abstract path system that satisfies the
switching property for𝑃𝜋×𝑒𝜃𝑄𝜌. Analogously it can be shown that there is a path𝑄𝜌×𝑒𝜃𝑃𝜋 contained
in 𝓟𝑇𝜎 .
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6.1 Introduction to Abstract Flows

Abstract Maximum Flow over Time. An abstract flow over time is an assignment 𝑥 ∶ 𝓟𝑇𝜎 →ℝ≥0 that assigns a flow value to each path such that󵠈󶁁𝑃𝜎∈𝓟𝑇𝜎 󶙡𝑒𝜃∈𝑃𝜎󶁑 𝑥𝑃𝜎 ≤ 𝑢𝑒
holds for all temporal copies of elements 𝑒𝜃 in the time-expanded ground set 𝐸𝑇. Hence, a flow
over time respects the capacities of elements at each point in time. e value |𝑥| of a flow over time
is defined as ∑{𝑃𝜎∈𝓟𝑇𝜎 } 𝑥𝑃𝜎 . Analogously to the case of classical flows over time we can define an
abstract cut over time as a subset 𝐶 ⊆ 𝐸𝑇 of the time-expanded ground set such that𝑃𝜎 ∩ 𝐶 ≠ ∅
for all paths 𝑃𝜎 ∈ 𝓟𝑇𝜎 , i. e., every path in the time-expanded network is covered by the cut. e
capacity of a cut over time is ∑{𝑒𝜃∈𝐶} 𝑢𝑒.

Problem: Abstract Maximum Flow over Time

Instance: An abstract network (𝐸,𝓟), capacities 𝑢𝑒 ∈ ℚ+, path weights𝑟𝑃 ∈ ℤ+ and a time horizon 𝑇 ∈ ℤ+.
Task: Find an abstract flow over time 𝑥maximizing the flow value |𝑥|.

Theorem 6.8 (Abstract-Max-Flow=Min-Cut-over-Time-Theorem). Let (𝐸,𝓟) be an abstract net-
work, 𝜏𝑒 transit times for elements and 𝑇 a time horizon. en, the values of an abstract maximum
flow over time and the capacity of aminimumabstract cut over time are equal. ere exists amaximum
flow that does not use waiting, i. e., 𝑥𝑃 = 0 for all 𝑃 ∈𝓟𝑇𝜎 \𝓟𝑇𝜃 .
e theorem is joint workwith JannikMatuschke and Britta Peis. A proof can be found in [Mat13]

and also in [KMP14].

6.1.3 Structural Properties

If the paths in an abstract network satisfy certain constraints, we can show that the switching oper-
ation preserves the order of the elements. We start by showing that we can always choose the path
resulting from an application of ×⋅ in such a way that the two subpaths used for its construction are
not mixed.
Lemma 6.9. Let 𝑃,𝑄 ∈𝓟, 𝑒 ∈ 𝑃 ∩𝑄, then there is a path 𝑅 ⊆ 𝑃[→𝑒] ∪𝑄[𝑒→] such that 𝑎 ∈ 𝑅 ∩ 𝑃[→𝑒]
and 𝑏 ∈ 𝑅 \ 𝑃[→𝑒] implies 𝑎 <𝑅 𝑏.
Proof. Let 𝑃,𝑄 ∈𝓟 be two paths with common element 𝑒 ∈ 𝑃 ∩ 𝑄. Let 𝑅 to be a path contained in𝑃[→𝑒]∪𝑄[𝑒→] such that 󶙡𝑅\𝑃[→𝑒]󶙡 isminimal. Assume now, that there is 𝑎 ∈ 𝑅∩𝑃[→𝑒] and 𝑏 ∈ 𝑅\𝑃[→𝑒]
with 𝑏 <𝑅 𝑎. Let 𝑅′ ∶= 𝑃 ×𝑎 𝑅. Observe that 𝑅′ ⊂ 𝑃[→𝑒] ∪𝑄[𝑒→] and 𝑅′ \ 𝑃[→𝑒] ⊂ 𝑅 \ 𝑃[→𝑒] as 𝑏 ∉ 𝑅′,
which is a contradiction to the choice of 𝑅.
We call a sub-path𝑄 ⊂ 𝑃 order preserving if𝑄 is a strict subset of 𝑃 and the order <𝑄 is identical

to <𝑃 on the elements that occur in both paths.
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6 Abstract Flows over Time

Lemma 6.10. Let 𝓟 be a set of paths such that no sub-path preserves the order. en, there are no
paths 𝑃,𝑄 ∈𝓟 such that 𝑄 ⊂ 𝑃.
Proof. By contradiction assume there are two paths 𝑃,𝑄 ∈ 𝒫 with 𝑄 ⊂ 𝑃. Let 𝑃∗ be such that |𝑃∗|
is minimal among all possible choices of such a 𝑃.
For 𝑄 ⊂ 𝑃∗ define 𝑏(𝑄) ∈ 𝑄 to be the maximal element with respect to <𝑄 such that 𝑝 <𝑃∗ 𝑏(𝑄)

for all 𝑝 ∈ 𝑄[→𝑏(𝑄)[, i. e., until element 𝑏(𝑄) the order of 𝑄 is identical to that of 𝑃. Because no
sub-path preserves order, 𝑏(𝑄) cannot be the last element of 𝑄. So let 𝑎(𝑄) ∈ 𝑄 be the successor of𝑏(𝑄) in 𝑄. Notice, that this implies 𝑎 <𝑃∗ 𝑏 by definition of 𝑏(𝑄). Among all paths 𝑄 ⊂ 𝑃∗, choose𝑄∗ such that 𝑏∗ ∶= 𝑏(𝑄∗) is maximal with respect to <𝑃∗ , i. e., 𝑄∗ is the path that has the longest
common part with 𝑃∗. Let 𝑎∗ ∶= 𝑎(𝑄∗).
Now let 𝑅 ∶= 𝑄∗ ×𝑏∗ 𝑃∗. Notice that 𝑎∗ ∉ 𝑅, because 𝑎∗ >𝑄∗ 𝑏∗, and therefore 𝑅 ⊂ 𝑃∗. e order<𝑅 is identical to <𝑄∗ on the initial part 𝑄∗[→𝑏∗] ⊂ 𝑅 of 𝑅. To see this, we have to show that for all𝑐, 𝑑 ∈ 𝑅 ∩ 𝑄∗[→𝑏∗] with 𝑐 <𝑄∗ 𝑑 also 𝑐 <𝑅 𝑑 holds.
To see this, assume there are 𝑐 and 𝑑 with 𝑐 <𝑄∗ 𝑑 and 𝑑 <𝑅 𝑐. Let 𝑅′ ∶= 𝑅 ×𝑑 𝑄∗. Notice

that 𝑐 ∉ 𝑅′. By Lemma 6.9 we choose 𝑅 such that 𝑅[→𝑑] ⊂ 𝑄∗ without loss of generality. us𝑅′ ⊂ 𝑄∗ ⊂ 𝑃∗ which contradicts the choice of 𝑃∗.
By definition of 𝑏(𝑄∗), the order <𝑄∗ is identical to <𝑃∗ on 𝑄∗[→𝑏∗[ and thus <𝑅 is identical to<𝑃∗ on 𝑄∗[→𝑏∗] ⊂ 𝑅. is implies that 𝑎(𝑅) and 𝑏(𝑅) cannot be both contained in 𝑄∗[→𝑏∗[. us,𝑎(𝑅) ∈ 𝑃∗[𝑏∗→], which implies that 𝑏(𝑅) ∈ 𝑃∗]𝑏∗→] as 𝑎(𝑅) <𝑃∗ 𝑏(𝑅). However, this means 𝑏(𝑅) >𝑃∗ 𝑏∗

contradicting the choice of 𝑄∗ maximizing 𝑏∗.
Lemma 6.11. Let (𝐸,𝓟) be an abstract network such that no sub-path preserves the order and let𝑅 ≔ 𝑃 ×𝑒 𝑄.
If 𝑎, 𝑏 ∈ 𝑅 ∩ 𝑃[→𝑒] and 𝑎 <𝑃 𝑏, then 𝑎 <𝑅 𝑏. If 𝑎, 𝑏 ∈ 𝑅 \ 𝑃[→𝑒] and 𝑎 <𝑄 𝑏, then 𝑎 <𝑅 𝑏, i. e., the

network preserves order.

Proof. If 𝑎 ∈ 𝑃 ×𝑒 𝑄 ∩ 𝑃[→𝑒] and 𝑏 ∈ 𝑃 ×𝑒 𝑄 ⧵ 𝑃[→𝑒], then by Lemma 6.9 we can assume without loss
of generality that 𝑎 <𝑃×𝑒𝑄 𝑏.
For the first statement, we assume by contradiction that there exist 𝑎, 𝑏 ∈ 𝑃[→𝑒] ∩ 𝑅 with 𝑎 <𝑃 𝑏

but 𝑏 <𝑅 𝑎. en, by our above assumption, there is no 𝑐 ∈ 𝑅 \ 𝑃[→𝑒[ with 𝑐 <𝑅 𝑎. us 𝑅[𝑎→] ⊆ 𝑃
and 𝑅 ×𝑏 𝑃 ⊂ 𝑃, which is a contradiction to Lemma 6.11.
For the second statement, we assume by contradiction that there exist 𝑎, 𝑏 ∈ 𝑅 \𝑃[→𝑒] with 𝑎 <𝑄 𝑏

but 𝑏 <𝑅 𝑎. en, by assumption, there is no 𝑐 ∈ 𝑅 ∩ 𝑃[→𝑒] with 𝑐 >𝑅 𝑏. us 𝑅[𝑎→] ⊆ 𝑄 and𝑄 ×𝑎 𝑅 ⊂ 𝑄, again contradicting Lemma 6.11.

Corollary 6.12. Let (𝐸,𝓟) be an abstract network, such that no sub-path preserves the order. en
the path system 𝓟∗𝑇 is an abstract network.

Proof. is directly follows from Lemma 6.11 and Lemma 6.7.

6.2 Lexicographic Maximum Abstract Flows

We derive a similar notation for lexicographically maximum flows in the abstract setting as for the
classical flows in Definition 1.10. Using this notation we show existence of lexicographically max-
imum abstract flows and present an algorithm to compute such flows. However, in contrast to the
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6.2 Lexicographic Maximum Abstract Flows

classical case the lexicographical order of the terminals cannot be arbitrary but has to respect certain
constraints if more than one terminal node is contained in a path.

Lexicographical Order of Abstract Flows. For a terminal element 𝑒 we define the outflow (in-
flow) to be the amount of flow on paths that start (end) with 𝑒. Let (𝐸,𝓟) be an abstract network
and let 𝑥 be an abstract flow. e outflow |𝑥|+𝑠 of a source element 𝑠 is then|𝑥|+𝑠 ≔ 󵠈𝑃∈𝛿+𝑠 𝑥𝑃,
and the inflow |𝑥|−𝑡 into a sink element 𝑡 is defined to be|𝑥|−𝑡 ≔ 󵠈𝑃∈𝛿−𝑡 𝑥𝑃.
Definition 6.13 (Lexicographically Maximum Abstract Flow). Let (𝐸,𝓟) be an abstract network
and 𝑠1, 𝑠2,… , 𝑠𝑘 be an order of the source elements. Let 𝑥1 and 𝑥2 be twomaximum abstract flows in(𝐸,𝓟). We say that 𝑥1 is lexicographically larger than 𝑥2 if there exists either an ℓ ∈ {0, 1,… , 𝑘−1}
such that |𝑥1|+𝑠ℓ+1 > |𝑥2|+𝑠ℓ+1 and the outflow values |𝑥1|+𝑠𝑖 = |𝑥2|+𝑠𝑖 are equal for 𝑖 = 1, 2,… , ℓ, or all
outflows |𝑥1|+𝑠𝑖 = |𝑥2|+𝑠𝑖 are equal for 𝑖 = 1,… , 𝑘. We then also write 𝑥1 ≥𝐿 𝑥2.
If 𝑡1, 𝑡2,… , 𝑡𝑘 is an order of the sinks we have 𝑥1 ≥𝐿 𝑥2 if either |𝑥1|−𝑠ℓ+1 > |𝑥2|−𝑠ℓ+1 and |𝑥1|−𝑠𝑖 = |𝑥2|−𝑠𝑖

holds for some ℓ ∈ {0, 1,… , 𝑘 − 1} and 𝑖 = 1,… , ℓ, or |𝑥1|−𝑠𝑖 = |𝑥2|−𝑠𝑖 holds for all 𝑖 = 1, 2,… , 𝑘.
A lexicographicallymaximumabstract flow 𝑥∗ is maximum among all of those flows, i. e., 𝑥∗ ≥𝐿𝑥 for all feasible abstract flows 𝑥. ◁
For classical flowsMinieka [Min73] andMegiddo [Meg74] show that lexicographically maximum

flows exist for any order of the sources and sinks. In the abstract model the more general setting
allows that sources may appear in a different order on several paths. We will therefore restrict the
possible order. We call a sequence of terminals compatible if the terminal elements respect their
rank if more than one terminal of the same type appears on a path. For sources 𝑠1, 𝑠2,… , 𝑠𝑘 we
require that sources with higher rank appear right of sources with lower rank, e. g.,𝑃 ∈𝓟, 𝑠𝑖 ≠ 𝑠𝑗 ∈ 𝑃 ∶ 𝑗 < 𝑖 ⟹ 𝑠𝑖 ≤𝑃 𝑠𝑗. (6.3)

In contrast to sources, a compatible sequence of sinks 𝑡1, 𝑡2,… , 𝑡𝑘 has to satisfy𝑃 ∈𝓟, 𝑡𝑖 ≠ 𝑡𝑗 ∈ 𝑃 ∶ 𝑖 < 𝑗 ⟹ 𝑡𝑖 ≤𝑃 𝑡𝑗, (6.4)

e. g., sinks with higher rank appear earlier.
For a given compatible sequence of sources 𝑠1, 𝑠2,… , 𝑠𝑘 we define abstract networks (𝐸,𝓟𝑖𝑠 ) with

increasing subsets of paths 𝓟𝑖𝑠 ⊆𝓟 for 𝑖 = 1, 2,… , 𝑘. We start with 𝓟0𝑠 ≔ ∅ and then recursively
define

𝓟𝑖𝑠 ≔𝓟𝑖−1𝑠 ⊍ {𝑃 ∈𝓟 | 𝑠𝑖 = first(𝑃)}.
Correspondingly, for a compatible sequence of sinks 𝑡1, 𝑡2,… , 𝑡𝑘 we define 𝓟0𝑡 ≔ ∅ and

𝓟𝑖𝑡 ≔𝓟𝑖−1𝑡 ⊍ {𝑃 ∈𝓟 | 𝑡𝑖 = last(𝑃)}.
Each of the abstract path systems (𝐸,𝓟𝑖𝑠 ) and (𝐸,𝓟𝑖𝑡 ) for 𝑖 = 1, 2,… , 𝑘 contains the paths start-
ing and ending in the first 𝑖 sources and sinks, respectively. All of those systems are again abstract
networks and satisfy the switching axiom (6.1).
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6 Abstract Flows over Time

Lemma 6.14. Let (𝐸,𝓟) be an abstract network and 𝑠1, 𝑠2,… , 𝑠𝑘 a compatible sequence of sources.
en for each 𝑖 = 1,… , 𝑘 the abstract path system (𝐸,𝓟𝑖𝑠 ) is an abstract network. e same is true for
a compatible sequence 𝑡1, 𝑡2,… , 𝑡𝑘 of sinks and the systems (𝐸,𝓟𝑖𝑡 ).
Proof. Let 𝑃 and𝑄 be two crossing paths in 𝓟𝑖𝑠 with a common element 𝑒 ∈ 𝑃∩𝑄. We have to show
that there are paths 𝑅 ⊆ 𝑃[→𝑒] ∪𝑄[𝑒→] and 𝑅′ ⊆ 𝑄[→𝑒] ∪𝑃[𝑒→] in 𝓟𝑖𝑠 .
Because (𝐸,𝓟) is an abstract network, there is a switching path 𝑅 = 𝑃 ×𝑒 𝑄 in 𝓟. en, 𝑅 ∈𝓟𝑖𝑠

if and only if the first element of 𝑅 is one of the source elements {𝑠1, 𝑠2,… , 𝑠𝑖}. e source elementfirst(𝑅) is one of the elements 𝑃[→𝑒] ∪𝑄[𝑒→] by definition of the switching property. If the paths
satisfy first(𝑅) = first(𝑃), nothing remains to show. Otherwise, first(𝑅) is contained in 𝑃 or 𝑄, but
not the first element and first(𝑅) = 𝑠𝑗 for some 𝑗 < 𝑖 by 6.3. e same holds for the path 𝑅′ = 𝑄×𝑒 𝑃.
For a given compatible sequence 𝑡1, 𝑡2,… , 𝑡𝑘 of sink elements the same argumentation holds withlast(𝑅) instead of first(𝑅).

Lemma 6.15. Let 𝑠1, 𝑠2,… , 𝑠𝑘 be a compatible sequence of sources and let 𝑥𝑖 be a maximum abstract
flow in the network 𝓟𝑖𝑠 . If Algorithm 6.1 is executed with the abstract network 𝓟𝑖+1𝑠 and initial flow𝑥𝑖 as input, during the execution the flow value |𝑥|+𝑠𝑗 does not decrease for 𝑗 = 1,… , 𝑖.
Let 𝑡1, 𝑡2,… , 𝑡𝑘 be a compatible sequence of sources. en during the execution of the algorithm on𝓟𝑖+1𝑠 the flow value |𝑥|+𝑡𝑗 does not decrease for 𝑗 = 1, 2,… , 𝑖.

Proof. We prove the lemma by contradiction and assume there is a source 𝑠𝑗 with 𝑗 < 𝑖 + 1 whose
outflow is reduced by an augmenting structure 𝐴𝑆. If there are more of those sources we take the
most important one with respect to the given compatible sequence 𝑠1, 𝑠2,… , 𝑠𝑘.
Because the outflow value |𝑥|+𝑠𝑗 is reduced by the augmenting structure there must be a path 𝑃−ℓ

on which flow is reduced with first(𝑃−ℓ ) = 𝑠𝑗, but this 𝑠𝑗 is not the first element of any path on which
flow is increased, especially 𝑠𝑗 ≠ first(𝑄+ℓ ). We denote the source of this path by 𝑠′𝑗 ≔ first(𝑄+ℓ ). Since
in any augmenting structure 𝑄+ℓ ⊆ 𝑃−ℓ on the beginning of the paths, there are two source elements𝑠𝑗 and 𝑠′𝑗 on 𝑃−ℓ with 𝑠𝑗 <𝑃−ℓ 𝑠′𝑗 . Hence, the source element 𝑠′𝑗 has a strictly higher rank in the source
order. e outflow |𝑥|+𝑠′𝑗 cannot increase because the initial flow was lexicographically maximum on
the source elements 𝑠1,… , 𝑠𝑖 and thus there must be another path 𝑃−ℓ2 in the augmenting structure
starting at 𝑠′𝑗 . By the same argumentation there is another source element 𝑠′′𝑗 ≔ first(𝑄+ℓ2) right of𝑠′𝑗 on 𝑃ℓ2 which again has a higher rank in the source order. e procedure cannot be continued
infinitely due to the finite amount of sources and thus leads to a source element with higher rank
whose outflow increases, contradicting the assumption.
To show the result for a given sink sequence, we use the same argumentation for a given compatible

sequence 𝑡1, 𝑡2,… , 𝑡𝑘 of sinks.
Using the result of the lemma we can state the algorithm that computes a lexicographically max-

imum flow, either for a given sequence of sources or sinks. e algorithm successively computes
abstract flows in increasing networks containing an increasing number of terminal elements. Con-
sider the following Algorithm 6.2 formalizing the procedure.
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6.2 Lexicographic Maximum Abstract Flows

Algorithm 6.2: Abstract Lexicographically Maximum Flow
Input: An abstract network (𝐸,𝓟) with capacities 𝑢𝑒, weights 𝑟𝑃 ≡ 1 and a compatible

sequence of sources {𝑠1, 𝑠2,… , 𝑠𝑘} or sinks {𝑡1, 𝑡2,… , 𝑡𝑘}.
Output: A lexicographic maximal flow 𝑥.

1. Set 𝑖 = 0 and initialize 𝑥0 ≡ 0 as the zero flow on all paths.

2. Set 𝑖 ≔ 𝑖 + 1 and define the network (𝐸,𝓟𝑖𝑠 ) (or (𝐸,𝓟𝑖𝑡 ), if the input terminal
sequence consists of sinks).

3. Compute a flow 𝑥𝑖 using Algorithm 6.1 in (𝐸,𝓟𝑖𝑠 ) starting with solution 𝑥𝑖−1.
4. If 𝑖 = 𝑘 return 𝑥𝑘, otherwise continue with 2.

Theorem 6.16. Algorithm 6.2 computes a lexicographically maximum abstract flow in (𝐸,𝓟).
Proof. e algorithm works for source and sink element sequences. We prove the result for source
elements, but the same argumentation holds for sinks.
We show that flow 𝑥𝑖 is a lexicographically maximum abstract flow in (𝐸,𝓟𝑖𝑠 ) aer step 3 in the

algorithm. e statement of the theorem then follows for 𝑖 = 𝑘. e statement is obviously true for
the first iteration that computes amaximum abstract flow 𝑥1 in (𝐸,𝓟1𝑠 ) as the network only contains
one source element.
Assume by induction that 𝑥𝑖 is a lexicographically maximum abstract flow in (𝐸,𝓟𝑖𝑠 ). During

the computation of 𝑥𝑖+1 the inflow of no source element is reduced due to Lemma 6.15 and the
flow is maximum. Assume now that 𝑥𝑖+1 is not a lexicographically maximum abstract flow in the
abstract network (𝐸,𝓟𝑖+1𝑠 ). en there is a flow 𝑥′ that sendsmore flow out of the source 𝑠𝑗 for some𝑗 ∈ {1, 2,… , 𝑖}. We define the restricted flow 𝑥̂ by setting 𝑥̂𝑃 ≔ 𝑥′𝑃 for each path𝑃 ∈𝓟𝑖. e outflow
of source element 𝑠𝑗 is the same for 𝑥′ and 𝑥̂ and 𝑥̂ is a feasible abstract flow in (𝐸,𝓟𝑖) that sends
more flow out of 𝑠𝑗 than does 𝑥𝑖. is is a contradiction to 𝑥𝑖 being lexicographically maximum.

Theorem 6.17. Let (𝐸,𝓟) be an abstract network with integral arc capacities 𝑢𝑒 ∈ ℤ+ and constant
path weights 𝑟𝑃 ≡ 1. Let a compatible sequence of either sources 𝑠1, 𝑠2,… , 𝑠𝑘 or sinks 𝑡1, 𝑡2,… , 𝑡𝑘 be
given.
en there exists an abstract maximum flow 𝑥 in (𝐸,𝓟) that is lexicographically maximum on the

given sequence. is flow can be computed in polynomial time if a separation oracle is given.

Proof. e flow can be computed using Algorithm 6.2. e algorithm performs 𝑘 iterations in
each of which Algorithm 6.1 is called once as a subroutine. e algorithm can be implemented
such that it has a polynomial runtime in |𝐸| by using a separation oracle and capacity scaling tech-
niques [McC96].

Directions for Further Research. For classical network flows it is possible to compute flows that
are lexicographically maximum not only for a sequence of sources or sinks, but also for arbitrary se-
quences of both types of terminals. is has first been shown byMinieka [Min73] and independently
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by Megiddo [Meg74]. Because the existing algorithms have to be applied in the time expanded net-
work, Hoppe and Tardos [HT00] present a new algorithm that is specialized for dynamic networks.
Unfortunately, these approaches cannot be applied to compute an abstract lexicographically max-

imum flow, assuming an extended notion of a compatible sequence of terminals of both type. For
two given classical lexicographically maximum flows, one on the sources and the other on the sinks,
Minieka’s algorithm computes a flow having both patterns. is is achieved by changing the flow
along cycles such that the flow values at the terminal nodes are not changed. Hoppe’s extension uses
an extended network with additional super terminals. In this network, flow is not only sent from
sources to sinks but also shied between sources using a minimum cost flow in the residual graph.
Both approaches are based on the fact that augmenting path algorithms can be used to send flow
between terminals without changing the actual flow value.
Hence, a more advanced algorithm than McCormick’s A M F A

is necessary to compute lexicographically maximum flows for sequences of both types of terminals.
is is because Algorithm 6.1 checks dual feasibility by finding a violated constraint and computes
a possible augmenting structure that improves the primal solution. erefore the algorithm cannot
be used to shi flow between different terminals without increasing the flow value.

6.3 Earliest Arrival Abstract Flows

In this section we consider a generalization of the earliest arrival flow problem in the abstract setting.
First, we want to compute maximal abstract flows and show existence of such flows by applying the
A L M F A 6.2. If we additionally add supplies
and demands, we show that value-approximate solutions exist.

6.3.1 Existence and Lexicographic Maximum Flow Algorithm

Let (𝐸,𝓟) be an abstract path system with capacities 𝑢𝑒 ∈ ℝ+ and transit times 𝜏𝑒 ∈ ℝ≥0 on the
elements and a time horizon 𝑇 ∈ ℕ. Let 𝑥 be an abstract flow in the time-expanded path system(𝐸𝑇,𝓟𝑇𝜎 ). For any 𝜃 ∈ {1, 2,… , 𝑇} let 𝓟𝜎 ≔ 󶁁𝑃 ∈ 𝓟 󶙡 ∑𝑒∈𝑃(𝜎𝑒 + 𝜏𝑒) ≤ 𝜃󶁑 be the set of temporal
paths that require not more than 𝜃 time units to travel through them. en,|𝑥|𝜃 ≔ 󵠈𝑃∈𝓟𝜃 𝑥𝑃
defines the flow value that arrives until time 𝜃. We call 𝑥 an abstract earliest arrival flow if it max-
imizes the flow value at all points in time 𝜃 = 1,… , 𝑇, i. e., for all 𝜃 it holds that 󶙡𝑥󶙡𝜃 ≥ 󶙡𝑥𝜃󶙡 where󶙡𝑥𝜃󶙡 is the value of a maximum abstract flow over time with time horizon 𝜃.

Problem: Abstract Earliest Arrival Flow

Instance: An abstract network (𝐸,𝓟), an integral time horizon 𝑇 ∈ ℕ for𝜃 ∈ {1, 2,… , 𝑇}.
Task: Compute an abstract flow over time that maximizes |𝑥|𝜃 simulta-

neously for all points in time 𝜃.
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Foregoing Considerations. We want to use Algorithm 6.1 in the time-expanded abstract net-
work to compute an abstract earliest arrival flow. By Lemma 6.7 we know that the time-expanded
set system only is an actual abstract network if the paths preserve order. However, without loss of
generality we can restrict ourselves to networks having this property. To see this, consider two paths𝑃 and 𝑄 in an abstract network such that 𝑄 ⊂ 𝑃. If 𝑃 is order preserving, then 𝑃 is not necessary in
an optimal solution of the A E A F P. If we allow flow to have
waiting periods, any solution using𝑃 can be transformed such that𝑄 is used instead. us, the value
of the flow at a given point in time does not change and 𝑃 is not used.
By Lemmas 6.9 and 6.11 we then can assumewithout loss of generality that there do not exist strict

sub-paths 𝑄 ⊂ 𝑃 and that the order of elements is preserved on all paths. Hence, we can solve the
A E A F P for arbitrary abstract networks.
Theorem 6.18. Let (𝐸,𝓟) be an abstract network and 𝑇 ∈ ℕ be a time horizon. en, there exists
an abstract earliest arrival flow 𝑥 in (𝐸,𝓟) that may require waiting in intermediate nodes. e flow𝑥 can be computed by an application of Algorithm 6.2 in the time-expanded network (𝐸,𝓟𝑇𝜎 ).
Proof. Wesolve theAMEAFP for an instance (𝐸,𝓟)
with an application of the A L M F A 6.2. Let𝑇 be a sufficiently large time horizon and (𝐸𝑇,𝓟𝑇𝜎 ) be the time-expanded abstract network.
For each sink element 𝑡 ∈ 𝐸 in the original abstract network we now get a sink for each point in

time where a temporal copy arrives in the time-expanded network. Let 𝑡 = last(𝑃) be a sink on 𝑃.
en for each 𝜃 ∈ [𝜏(𝑃), 𝑇[ the elements (𝑒, 𝜃) are sinks for some temporal paths. We define an order(𝑒, 0),… , (𝑒, 1),… , (𝑒, 𝑇) on these sinks to compute a lexicographic maximal abstract maximum
flow in the time-expanded abstract network.
ere is no temporal path containing two sinks arriving at time 𝜃 due to the above lemma. Let𝑃𝜎, 𝑄𝜎 be temporal paths with ∑𝑎∈𝑃 𝜎(𝑎) + 𝜏(𝑎) = ∑𝑎∈𝑄 𝜎(𝑎) + 𝜏(𝑎) having different last elementslast(𝑃) ≠ last(𝑄). en 𝑅 ≔ 𝑃 ×𝑄 𝑙𝑎𝑠𝑡(𝑃) would be a sub-path of 𝑃 violating Lemma 6.10

Directions for Further Research. To compute abstract earliest arrival flows, Algorithm 6.2 is
executed on a time-expanded abstract network that contains waiting. In the setting of classical net-
work flows such a computation can be avoided. Minieka [Min73] shows that using the S
S P A in the original network and sending flow along the generalized path
decomposition temporally repeated leads to an earliest arrival flow.
is approach does not require waiting in intermediate nodes and sends flow only along temporal

copies of the original paths. A similar algorithm to the S S P A is
due toMartens andMcCormick [MM08]. eir algorithm computes a maximumweighted abstract
flow by using augmenting structures of decreasing total reward. By total reward wemean∑𝑘+1𝑖=1 𝑟𝑄+𝑖 −∑𝑘𝑖=1 𝑟𝑃−𝑖 for𝑃−𝑖 and𝑄+𝑖 being the paths contained in an augmenting structure. is resembles sending
shortest paths just in a maximization setting; the shortest path has the most reward.
It is an interesting question whether the augmenting structures that are used by Martens and Mc-

Cormick’s algorithm can be used temporally repeated over the whole time horizon.

6.3.2 Abstract Flows over Time with Supplies and Demands

Classical flows with multiple sinks do not allow for earliest arrival flows, but the flow value can be
approximated as we have seen in Section 4.3. We extend the notion of abstract earliest arrival flows
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by adding supplies and demands for source elements and sink elements, respectively.
We define 𝑆+ ≔ {𝑒 ∈ 𝐸 | ∃𝑃 ∈𝓟 ∶ 𝑒 = first(𝑃)} to be the set of source elements and similarly

define 𝑆− ≔ {𝑒 ∈ 𝐸 | ∃𝑃 ∈𝓟 ∶ 𝑒 = last(𝑃)} to be the set of sink elements. Let 𝑏+ ∶ 𝐸 → ℚ≥0 be
supplies for source elements and let 𝑏− ∶ 𝐸 → ℚ≥0 be demands for sink elements. An abstract flow
in (𝐸,𝓟) satisfies given supplies and demands if󵠈𝑃∈𝓟∶first(𝑃)=𝑒𝑥𝑃 = 𝑏+𝑒 and 󵠈𝑃∈𝓟∶last(𝑃)=𝑒𝑥𝑃 = 𝑏−𝑒
holds for source and sink elements, respectively. Observe that it is possible that an element is both,
a source element and a sink element.
Example 6.19. Consider the abstract network with elements 𝐸 ≔ {𝑑, 𝑒, 𝑓} and paths 𝓟 ≔ {𝑃1 =(𝑑, 𝑒), 𝑃2 = (𝑒, 𝑓), 𝑄 = (𝑑, 𝑓), 𝑅 = (𝑒)}. It is easy to verify that (𝐸,𝓟) actually is an abstract network.
Because last(𝑃1) = 𝑒 = first(𝑃2) element 𝑒 is both source and sink. Define balances 𝑏+𝑑 ≔ 𝑏+𝑒 ≔ 1 and
supplies 𝑏−𝑒 ≔ 𝑏−𝑓 ≔ 1. e transit times are set to 𝜏𝑑 ≔ 1, 𝜏𝑒 ≔ 0, 𝜏𝑓 ≔ 1 and the capacities are unit
capacities 𝑢 ≡ 1. It is possible to satisfy the supplies and demands within a time horizon of 2 by sending
one unit of flow each on 𝑃1 and 𝑃2.
For given supplies and demands we are interested in finding a flow over time that satisfies as much

of the balances as early as possible.

Problem: Abstract Earliest Arrival Transshipment

Instance: An abstract network (𝐸,𝓟), an integral time horizon 𝑇 ∈ ℕ for𝜃 ∈ {1, 2,… , 𝑇}, supplies 𝑏+ and demands 𝑏− for source elements
and sink elements.

Task: Compute an abstract flow over time that maximizes |𝑥|𝜃 for all
points in time 𝜃.

Restrictions and Time Expansion. If we want to compute abstract flows in time-expanded net-
works in the presence of supplies and demands we have to impose two additional restrictions. First,
we explicitly require that sub-paths preserve order. In Section 6.3.1 we assumed without loss of gen-
erality that in an abstract network (𝐸,𝓟) there are no paths that are strictly contained in longer
paths. Under this assumption Lemma 6.7 guarantees that the time-expanded network can be built.
However, the argumentation does no longer hold. If a path 𝑄 ⊂ 𝑃 is strictly contained in 𝑃 it is
required to use both paths to satisfy the demands at last(𝑄) and last(𝑃).
e second restriction is required because we have to extend our notion of time-expanded abstract

networks by additional super elements. If we want to make sure that ∑𝑃∈𝓟∶last(𝑃)=𝑒 𝑥𝑃 = 𝑏−𝑒 holds
for an element 𝑒 in the time-expanded network, we have to make sure that no more flow is sent
on temporal copies of such paths. Let 𝑒 ∈ 𝐸 a sink element. We can enforce the constraint for 𝑒
by extending all paths 𝑃 ∈ 𝓟 with last(𝑃) = 𝑒 by a super sink element 𝑡∗𝑒 . Setting the capacity to𝑢𝑡∗𝑒 ≔ 𝑏−𝑒 ensures that no flow in an abstract time-expanded network can exceed the demands. We
do the same by adding super source elements at the beginning of every path.
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Definition 6.20. Let (𝐸,𝓟) be an abstract network. Let 𝑃,𝑄 ∈ 𝓟 two paths with a common
element 𝑒 ∈ 𝑃 ∩ 𝑄. en the network is terminal respecting, if all paths 𝑅 ∈ 𝑃[→𝑒] ∪𝑄[𝑒→] satisfyfirst(𝑅) = first(𝑃) and last(𝑅) = last(𝑄). ◁
Our goal is to define an abstract variant of the G G V- E

A F A 4.2. e algorithm sends flow in increasing time-expanded networks
and avoids reduction of flow sent in earlier time steps by removing backward arcs in the residual
network. us, we have to specify a mechanism that avoids reduction of flow on abstract paths
arriving in earlier time steps. We do this by including another element into paths before the super
terminals.
Let 𝑒𝜃 be an element copy for time 𝜃 in the time-expanded network. We will extend all temporal

paths 𝑃𝜎 that contain 𝑒𝜃 as last element by an element 𝑒𝜃𝑐 that counts the amount of flow arriving at
element 𝑒 at time 𝜃. We will then use an algorithm given by Martens and McCormick [MM08] to
fix the flow value on these elements. We now formalize the definition of the time-expanded abstract
network with paths extended by counting elements and super terminals.
Definition 6.21 (Time-expanded Network with Extended Paths). Let (𝐸,𝓟) be an abstract net-
work with source elements 𝑆+ and sink elements 𝑆−. Let (𝐸𝑇,𝓟𝑇𝜎 ) be the time-expand network for
some time horizon 𝑇 ∈ ℕ.
We introduce additional super source elements 𝑠∗, super sink elements 𝑡∗ and counting elements𝑡𝑐. Combining all those elements with the original node copies, the time-expanded ground set is

defined as𝐸𝑇 ≔ 𝐸𝑇 ∪ {𝑠∗𝑒 | 𝑒 ∈ 𝑆+} ∪{𝑡∗𝑒 | 𝑒 ∈ 𝑆−} ∪ 󶁁𝑒𝜃𝑐 󶙡 𝑒 ∈ 𝑆−, 𝜃 ∈ {1, 2,… , 𝑇}󶁑.
We extend each original temporal path 𝑃𝜎 = (𝑒1, 𝑒2,… , 𝑒𝑛) ∈ 𝓟𝑇𝜎 by the corresponding super ter-
minals and a counting element. Let 𝑠 = 𝑒1 = first(𝑃𝜎) and 𝑡𝜃 = 𝑒𝑛 = last(𝑃𝜎) be the first and last
element of 𝑃𝜎, respectively. e extended path𝑃𝜎 ≔ (𝑠∗, 𝑒1, 𝑒2, 𝑒3,… , 𝑒𝑛, 𝑡𝜃𝑐 , 𝑡∗)
contains three more elements, the super source as new first element, the super sink as last element
and the counting element le of the super sink. e set of paths 𝓟̃𝑇𝜎 consists of all extended paths𝑃𝜎.◁
Lemma 6.22. Let (𝐸,𝓟) be a terminal respecting abstract network preserving the order. Let 𝜏𝑒 be
transit times for the elements and 𝑏+ supplies for source elements and 𝑏− demands for sink elements
and 𝑇 ∈ ℕ a time horizon. en, (𝐸𝑇, 𝓟̃𝑇𝜎 ) is an abstract network.

Proof. Because (𝐸,𝓟) preserves the order (𝐸𝑇,𝓟𝑇𝜎 ) is an abstract network by Lemma 6.7. We have
to show that the switching axioms (6.1) and (6.2) are satisfied by (𝐸𝑇, 𝓟̃𝑇𝜎 ). Consider two paths 𝑃𝜎
and 𝑄̃𝜎 crossing in the element 𝑒𝜃 ∈ 𝑃𝜎 ∩ 𝑄̃𝜎. e switching axiom guarantees the existence of a
path 𝑅𝜎 = 𝑃𝜎 ×𝑒𝜃 𝑄𝜎 in (𝐸𝑇,𝓟𝑇). Observe that first(𝑅𝜎) = first(𝑃𝜎) and last(𝑅𝜎) = last(𝑄𝜎) holds.
erefore, 𝑅𝜎 and 𝑃𝜎 initiate with the same super source element and 𝑅𝜎 and 𝑄̃𝜎 are extended by the
same counting element and super sink. Hence, the extended path 𝑄̃𝜎 is contained in 𝓟̃𝑇𝜎 . e same
holds for 𝑄𝜎 ×𝑒𝜃 𝑃𝜎.
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Non-existence. As the A E A T P is a general-
ization of the E A T P in the classical network flow model,
abstract flows having the earliest arrival property do not exist. As a simple example consider the
abstract network from Example 6.19. Besides the given feasible transshipment with time horizon𝑇 = 2 there is another feasible transshipment which at time 𝜃 = 1 sends one unit of flow on path𝑅 = (𝑒) and another unit of flow on path 𝑄 = (𝑑, 𝑓). e first flow unit arrives at time 1 because 𝑅
has zero transit time. e second flow unit arrives at time 3. is new solution sends one unit of flow
earlier, but needs more time to send the second flow unit. Hence, no earliest arrival transshipment
exists in the abstract network and the new solution is a 2-value-approximate flow.

Restricted Abstract Flows

We use a variant of the A F P described by Martens and McCormick [MM08]
to solve the weighted case. With the restricted variant we can approximate abstract earliest arrival
flows using the framework from Section 4.3. For a given abstract maximum flow 𝑥, we may require
for a saturated element 𝑒 that in an augmentation step of Algorithm 6.1, the flow value through 𝑒
remains unchanged.e problem can be represented by the following two modified versions of the
linear programs for abstract maximum flow and abstract maximum cut.

Restricted Abstract Flows. Let (𝐸,𝓟) be an abstract network with supermodular path weights𝑟, let 𝑥 be a feasible flow and let 𝑦 be a dual solution. Let 𝜆 ∈ ℚ be given. Assume that the following
conditions are satisfied by the given solutions. ∑𝑒∈𝑃 𝑦𝑒 = 𝑟𝑃 − 𝜆 holds for each path 𝑃 ∈ 𝓟 and𝑦𝑒 ⋅ 󶀡𝑢𝑒 − ∑𝑃∶𝑒∈𝑃 𝑥𝑃󶀱 = 0 holds for each element 𝑒 ∈ 𝐸. e conditions are relaxed optimality
conditions for (WAF) and (WAC) where 𝜆 specifies by how much solutions may deviate from the
optimum.
A dual solution for 𝑥 has to satisfy𝑦𝑒 = 0 for unsaturated elements. We denote the set of restricted

elements by ℛ ≔ 󶁁𝑒 ∈ 𝐸 󶙡 𝑦𝑒 > 0󶁑 ⊆ 𝐸. A solution of the R A M
F P is a maximum flow 𝑥 under the condition that the flow through restricted elements
remains unchanged. Such a flow can be computed as solution of the following linear program.

max 󵠈𝑃∈𝓟𝑥𝑃, (RAF)

s.t. 󵠈𝑃∈𝒫∶𝑒∈𝑃𝑥𝑃 ≤ 𝑢𝑒 for all 𝑒 ∈ 𝐸,
s.t. 󵠈𝑃∈𝒫∶𝑒∈𝑃𝑥𝑃 = 𝑢𝑒 for all 𝑒 ∈ ℛ,𝑥𝑃 ≥ 0 for all 𝑃 ∈ 𝒫 .

e dual linear program solves the R A M C P.

min 󵠈𝑒∈𝐸 ℓ𝑒𝑢𝑒, (RAC)

s.t. 󵠈𝑒∈𝑃 ℓ𝑒 ≥ 𝑟𝑃 for all 𝑃 ∈𝓟,ℓ𝑒 ≥ 0 for all 𝑒 ∈ 𝐸 \ℛ.
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Application in the Time-expanded Network. Let 𝑥𝑖 be an abstract flow over time in the time-
expanded network with extended paths (𝐸𝑖, 𝓟̃𝑖𝜎) for a time horizon 𝑖. All paths use a counting ele-
ment 𝑡𝜃𝑐 for some 𝜃 ∈ {1, 2,… , 𝑖}. Let 𝑣(𝑡𝜃𝑐 ) ≔ ∑𝑃∶𝑡𝜃𝑐∈𝑃 𝑥𝑃 be the value of flow through the counting
element. We define a new time-expanded abstract network by specifying new element capacities 𝑢′,
which remain 𝑢′𝑒 = 𝑢𝑒 for all elements 𝑒 that are not counting elements. e capacity of counting el-
ements is restricted to the flow value through them, i. e., we set 𝑢′𝑡𝜃𝑐 ≔ 𝑣(𝑡𝜃𝑐 ) for all counting elements𝑡𝜃𝑐 in the time-expanded ground set.
e flow 𝑥𝑖 remains feasible in the time-expanded abstract network with the new element capaci-

ties 𝑢′. Because all paths use exactly one of the counting elements and they are all saturated, we can
define a feasible dual solution by setting

𝑦𝑒 ≔ 󶁇𝑢′𝑒 𝑒 is a counting element0 else
for all 𝑒 ∈ 𝐸𝑖.

e flow 𝑥 and dual values 𝑦 are feasible in the larger time-expanded network 󶀢𝐸𝑖+1, 𝓟̃𝑖+1𝜎 󶀲 for
a time horizon increased by 1. We want to use the algorithm by Martens and McCormick for the
R A M F P to augment flow without removing flow on the
counting elements. To define an instance for the problem we need rewards. In the classical setting,
the Triple-Optimization-eorem [JR82] states, that an earliest arrival flow is equal to a minimum
cost flow where the costs equal the transit times. We will use the same idea and define rewards such
that they reflect the arrival time. e earlier a path arrives, the higherwe set its reward. Paths arriving
in the first time step, i. e., paths with zero travel time, have a reward of 𝑇. e reward decreases
linearly with the arrival time and paths arriving at time 𝑇 have a reward of 1. More formally, let 𝑃𝜎
be a path in the time-expanded network for time horizon 𝑇. Let last(𝑃) = 𝑡 be the sink element of
the underlying path and let 𝜃 be the arrival time of 𝑃𝜎 such that the path uses the sink element copy𝑡𝜃 and the counting element 𝑡𝜃𝑐 . We then define the reward as𝑟󶀢𝑃𝜎󶀲 ≔ 𝑇 − 𝜃 + 1
Lemma 6.23. e weight function 𝑟󶀢𝑃𝜎󶀲 ≔ 𝑇 − 𝜃 + 1 is supermodular.

Proof. Let 𝑃,𝑄 with 𝑒 ∈ 𝑃 ∩ 𝑄 and 𝑅 = 𝑃 ×𝑒 𝑄 and 𝑅′ = 𝑄 ×𝑒 𝑃. In the time-expanded network
with extended paths the switched paths satisfy last(𝑅) = last(𝑄) and last(𝑅′) = last(𝑃). erefore, 𝑅
arrives at the same time 𝜃 as 𝑄 and 𝑅′ arrives at the same time 𝜃′ as 𝑃. e statement of the lemma
then follows with𝑟(𝑃 ×𝑒 𝑄) + 𝑟(𝑄 ×𝑒 𝑃) = 𝑟(𝑅) + 𝑟(𝑅′) = 𝑇 − 𝜃 + 1 + 𝑇 − 𝜃′ + 1 = 𝑟(𝑄) + 𝑟(𝑃).
We can now combine the results and derive a greedy value-approximation algorithm for abstract

earliest arrival transshipments in increasing time-expanded networks.
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Algorithm 6.3: Greedy Abstract Value-approximate Earliest Arrival Flow Algorithm
Input: An abstract network (𝐸,𝓟) with transit times 𝜏𝑒 for the elements, supplies 𝑏+𝑒 for

sources and demands 𝑏−𝑒 for sinks.
Output: A 2-value-approximate abstract flow over time.

1. Set 𝑖 ≔ 1 and compute an abstract flow 𝑥1 in (𝐸1, 𝓟̃1𝜎 ). Define 𝜆 ≔ 1.
2. Let (𝐸𝑖+1, 𝓟̃𝑖+1𝜎 ) be the abstract time-expanded network with extended paths for

time horizon 𝑖 + 1. Define path weights 𝑟󶀢𝑃𝜎󶀲 ≔ 𝑇 − 𝜃 + 1, updated capacities

𝑢′𝑒 ≔ 󶁇𝑣(𝑡𝜃𝑐 ) if 𝑒 = 𝑡𝜃𝑐 is a counting element𝑢𝑒 else
for all 𝑒 ∈ 𝐸𝑖+1,

and dual values𝑦𝑒 ≔ 󶁇𝑟(𝑃𝜎) − 𝜆 𝑒 is a counting element on path 𝑃𝜎 ∈ (𝐸𝑖, 𝓟̃𝑖𝜎)0 else
,

for all elements 𝑒 ∈ 𝐸𝑖+1.
3. Compute an abstract flow 𝑥𝑖+1 in (𝐸𝑖+1, 𝓟̃𝑖+1𝜎 ) that is a solution for the dual prob-

lems (RAF) and (RAC) with the RAMFMC-A by Martens and Mc-
Cormick [MM08].

4. If 𝑥𝑖+1 satisfies all balances, return 𝑓𝑖+1. Else, set 𝑖 ≔ 𝑖 + 1 and continue with 2.

Before we prove the correctness of the algorithm we briefly review its behaviour when it is called
with the instance from Example 6.19. Recall that the instance does not allow for an abstract earliest
arrival transshipment.
Example 6.24. e abstract network consists of the elements 𝐸 = {𝑑, 𝑒, 𝑓} and paths 𝓟 = {𝑃1 =(𝑑, 𝑒), 𝑃2 = (𝑒, 𝑓), 𝑄 = (𝑑, 𝑓), 𝑅 = (𝑒)}. Transit times are 𝜏𝑑 = 1, 𝜏𝑒 = 0 and 𝜏𝑓 = 1. Both source
elements and sink elements have demands and supply of 2, respectively. We have already seen, that no
earliest arrival flow exists.
In the first iteration, an abstract flow 𝑥1 in the network (𝐸1, 𝓟̃1𝜎 ) is computed. In the first time layer

only element 𝑒1 is available and any maximum flow uses the path 𝑅 = (𝑠∗𝑒 , 𝑒1, 𝑒1𝑐 , 𝑡∗𝑒 ) with counting
element 𝑒1𝑐 .
Consider now the second time step. e reduced capacity for the counting element 𝑒1𝑐 is set to 𝑢′𝑒1𝑐 = 1.

Paths available at time 2 are the second copy of 𝑅 as well as the first copies of 𝑃1 and 𝑃2 which both
have a transit time of 1. Both of those arcs cannot be used to increase the flow value because both the
supply and demand of last(𝑃1) = 𝑒 = first(𝑃2) are already satisfied and flow on 𝑒1𝑐 cannot be reduced.
erefore, we have 𝑥2 = 𝑥1.
In the next iteration the first temporal copy of 𝑄 with transit time 2 is available. e last flow unit is

sent along the extended path 𝑄̃ = 󶀡𝑠∗𝑑 , 𝑑1, 𝑓 2, 𝑓 2𝑐 , 𝑡∗𝑓󶀱. At the end of the iteration, the last flow is sent
and the algorithm computed a 2-value-approximate abstract earliest arrival flow.
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Observe that an augmenting structure consisting of the three paths𝑄+1 = (𝑠∗𝑒 , 𝑒1, 𝑓 1, 𝑓 2𝑐 , 𝑡∗𝑓)𝑃−1 = (𝑠∗𝑒 , 𝑒1, 𝑒1𝑐 , 𝑡∗𝑒 )𝑄+2 = (𝑠∗𝑑 , 𝑑1, 𝑒2, 𝑒2𝑐 , 𝑡∗𝑒 )
could be used in the second iteration to improve the flow that arrives until time 2. Because 𝑒1𝑐 is
a restricted element, the call of the RAMFMC-A in step 3 does not augment the flow
value with this structure. is is also the reason why the algorithm computes a 2-value-approximate
earliest arrival flow: Any augmenting structure that can improve a flow computed by RAMFMC has
to remove flow on a counting element. We conclude with the following theorem.
Theorem 6.25. Let (𝐸,𝓟) be a terminal respecting abstract network that preserves the order. Let 𝑢𝑒
be capacities on the elements, 𝜏𝑒 transit times on the elements and 𝑏+ supplies and 𝑏− demands. en,
Algorithm 6.3 computes a 2-value-approximate earliest arrival flow.

Proof. We first have to show that 𝑦, 𝑢′ and 𝑟 are well defined such that the prerequisites for the
application of RAMFMC-A in step 3 are satisfied. ∑𝑒∈𝑃 𝑦𝑒 = 𝑟𝑃−𝜆holds by definition. For
paths 𝑃𝜎 that strictly arrive before time 𝑖 + 1 the weights satisfy 𝑟(𝑃𝜎) > 1 and therefore 𝑦𝑒 = 𝑟(𝑃𝜎) −𝜆 > 0. Due to the restriction of the capacities to 𝑢′, all counting elements 𝑒 are saturated and have a
positive dual value𝑦𝑒. Consequently𝑦𝑒 ⋅󶀡𝑢𝑒−∑𝑃∶𝑒∈𝑃 𝑥𝑃󶀱 = 0 holds. Lastly, 𝑥𝑃 ⋅(∑𝑒∈𝑃 𝑦𝑒−𝑟𝑃+𝜆) = 0 is
also satisfied. Hence, we can use the algorithm to compute optimum solutions to (RAF) and (RAC).
To show the approximation guarantee, by Lemma 4.17 we have to show that 󶙡𝑥𝑖+1󶙡 ≥ 12 󶙡𝑥𝑖+1,∗󶙡,

where 𝑥𝑖+1,∗ is the value of a maximum abstract flow over time in the time-expanded abstract net-
work 󶀢𝐸𝑖+1, 𝓟̃𝑖+1𝜎 󶀲.
Consider the computed flow 𝑥𝑖+1 in the network 󶀢𝐸𝑖+1, 𝓟̃𝑖+1𝜎 󶀲. We can use the A M-

 F A 6.1 with 𝑥𝑖+1 as an initial solution to compute the abstract maximum flow𝑥𝑖+1,∗ for time horizon 𝑖 + 1. Consider an iteration of the algorithm that augments the flow by a
positive value. e augmenting structure used for the augmentation has to use a negative path 𝑃−
that actually has a counting element in the negative segment such that the element’s flow value is
decreased by the augmentation. is is because any other augmenting structure would increase the
flow and is also valid for the R A M F P value which is a
violation to 𝑥𝑖+1 being maximal.
us, for any flow unit that is increased in the process, flow on a counting element has to be

decreased. However, the total flow value on the counting elements is a bound to the actual flow
value because each path uses such an element. Hence, we can only send as much flow as has already
been sent by 𝑥𝑖+1, and consequently 󶙡𝑥𝑖+1󶙡 ≥ 12 󶙡𝑥𝑖+1,∗󶙡.
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