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GENERALIZATIONS OF GERSHGORIN DISKS

AND POLYNOMIAL ZEROS

A. MELMAN

(Communicated by Walter Van Assche)

Abstract. We derive inclusion regions for the eigenvalues of a general com-
plex matrix that are generalizations of Gershgorin disks, along with nonsin-
gularity conditions. We then apply these results to the location of zeros of
polynomials.

1. Introduction

A well-known inclusion region for eigenvalues of matrices is the Gershgorin set,
composed of a union of disks. This result is stated in the following theorem, where
the deleted row sum R′

i of a complex n× n matrix A with elements aij is defined
as:

R′
i =

n∑
j=1

j �=i

|aij | .

The dependence of R′
i on A was left out of the notation to avoid clutter, and similar

notation will be used throughout this paper.

Theorem 1.1 (Gershgorin, [17]). All the eigenvalues of the n× n complex matrix
A are located in the union of the n disks

n⋃
i=1

ΓR
i ≡ ΓR ,

where
ΓR
i = {z ∈ C : |z − aii| ≤ R′

i} .

The following result, due to A. Brauer, is also well-known.

Theorem 1.2 (Brauer, [3]). All the eigenvalues of the n×n complex matrix A are
located in the union of the

(
n
2

)
sets

n⋃
i,j=1

i<j

BR
ij ≡ BR ,

where
BR

ij =
{
z ∈ C | |z − aii||z − ajj | ≤ R′

iR
′
j

}
(i �= j) .
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2350 A. MELMAN

The Brauer set BR is contained in the Gershgorin set ΓR, and the boundaries
of the BR

ij sets are quartic curves, called ovals of Cassini ([24, p. 153]).

The above results also have a column version since the spectra of A and AT are
identical.

There exist more complicated spectral inclusion sets, as in, e.g., [8], [9], [10], [23],
[30], and [33]. A good survey of such sets can be found in [35], along with more
advanced results, and for an introduction we refer to [19, Chapter 6].

We will derive sets that can be seen as generalizations of the Gershgorin disks,
providing tighter bounds on the eigenvalues. They were inspired by the more re-
stricted results in [29] for matrices with special symmetries. Although more com-
plicated than disks, these sets can be very useful in special cases such as for sparse
or structured matrices. The bulk of this paper is devoted to one such special case,
namely to the location of the zeros of a polynomial, which are the eigenvalues of
its (sparse) companion matrix, resulting in bounds on the moduli of the zeros. Our
bounds are more complicated than similar bounds based on the Gershgorin set,
but they require the same O(n) computational effort, where n is the order of the
polynomial. We note that this complexity refers to the computation of the afore-
mentioned bounds, and not to the computation of the boundaries of the inclusion
sets, which is more involved.

Bounds are, of course, no substitute for the accurate computation of polynomial
zeros should that be required. However, they can be used to start a zero-finding
method or in situations where it is sufficient to verify that the zeros lie in or are
bounded away from a specific region.

The literature on the computation of polynomial zeros and bounds on such zeros
is extensive, and we refer to [1], [4], [5], [6], [11], [12], [13], [15], [16], [20], [21],
[22], [25], [26], [27], [28], [31], [32], [34], [37], [38], and the references therein, to
name but a few. Most of these take a linear algebra approach, but some do not.
There also exist several classical methods for the computation of polynomial zeros
such as, e.g., the Laguerre and Durand-Kerner methods, and variations thereof. In
addition, specialized methods were developed for special polynomials.

The organization of the paper is as follows. In Section 2 we derive our eigenvalue
inclusion regions, which are then applied to computing bounds on the moduli of
polynomial zeros in Section 3. Some examples are provided in Section 4.

2. Inclusion sets

Before we continue, we define for a matrix A ∈ C
n×n:

R′′
ij =

n∑
k=1

k �=i,j

|aik| = R′
i − |aij | .

We also define the set Ji = {1, 2, . . . , n} \ {i}.
Although we will concentrate on the rows, analogous column versions of our

results can easily be obtained by considering AT instead of A.
The next theorem presents our generalized Gershgorin spectral inclusion sets.
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GENERALIZATIONS OF GERSHGORIN DISKS AND POLYNOMIAL ZEROS 2351

Theorem 2.1. All the eigenvalues of the n × n complex matrix A are located in
the union of the following n sets:

(2.1)

n⋃
i=1

⎧⎨
⎩

⋂
j∈Si

ΩR
ij

⎫⎬
⎭ ,

where Si is any nonempty subset of Ji and

ΩR
ij =

{
z ∈ C : |(z − aii)(z − ajj)− aijaji| ≤ |z − ajj |R′′

ij + |aij |R′′
ji

}
(i �= j) .

Proof. The proof is similar to that of Gershgorin’s theorem ([19, pp. 344-345]). Let
λ be an eigenvalue of A with corresponding eigenvector x, i.e., Ax = λx. Since x is
an eigenvector, it has at least one nonzero component. Define xρ as a component
of x with the largest absolute value, so that |xρ| ≥ |xj | for all j = 1, 2, . . . , n and
xρ �= 0.

For any μ �= ρ we then have

λxρ =

n∑
j=1

j �=ρ,μ

aρjxj + aρρxρ + aρμxμ,

λxμ =
n∑

j=1

j �=ρ,μ

aμjxj + aμρxρ + aμμxμ ,

which is equivalent to

(λ− aρρ)xρ − aρμxμ =
n∑

j=1

j �=ρ,μ

aρjxj ,

−aμρxρ + (λ− aμμ)xμ =

n∑
j=1

j �=ρ,μ

aμjxj .

Solving for xρ we obtain

((λ− aρρ)(λ− aμμ)− aρμaμρ)xρ = (λ− aμμ)
n∑

j=1

j �=ρ,μ

aρjxj + aρμ

n∑
j=1

j �=ρ,μ

aμjxj .

Taking the absolute value on both sides of the equation and using the triangle
inequality yields

|(λ− aρρ)(λ− aμμ)− aρμaμρ| |xρ| ≤ |λ− aμμ|
n∑

j=1

j �=ρ,μ

|aρj ||xj |+ |aρμ|
n∑

j=1

j �=ρ,μ

|aμj ||xj | .

Since xρ �= 0 and |xρ| ≥ |xj | for all j, we can divide through by |xρ| to obtain

|(λ− aρρ)(λ− aμμ)− aρμaμρ| ≤ |λ− aμμ|R′′
ρμ + |aρμ|R′′

μρ .

For each μ �= ρ we have such an inequality, which means that the eigenvalue must
lie in the intersection of the sets defined by these inequalities. One has the freedom
to choose only one μ (in which case there are no intersections) or more than one.
On the other hand, we do not know which ρ corresponds to a given eigenvalue
and can therefore only say that any eigenvalue must lie in the union of all n sets
determined by the corresponding ρ’s. This concludes the proof. �
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In general, the sets ΩR
ij are bounded by algebraic curves of degree 8 that are

somewhat reminiscent of the Cassini ovals which appear in the Brauer inclusion
set. Special cases of the sets ΩR

ij include singletons, disks and sets bounded by
ovals of Cassini. Some typical general examples can be seen in Figure 1. The
rightmost set consists of two separate loops.

Figure 1. Examples of the ΩR
ij sets.

In the next theorem we show that the ΩR
ij sets are contained in Gershgorin

disks, so that the eigenvalue inclusion set in (2.1) always lies in the Gershgorin set.
Nevertheless, it can range from not very different to dramatically different from the
Gershgorin set. Our sets are, in general, not contained in the Brauer set, although
they frequently are in practice. In Figure 2 we have provided a few typical examples
for randomly generated matrices of dimension 8. The Gershgorin sets are shaded
in intermediate grey, the Brauer sets in light grey, and the sets from Theorem 2.1
with Si = Ji for all i in dark grey. The eigenvalues are indicated by the white dots.

Figure 2. Comparison of Gershgorin, Brauer, and generalized
Gershgorin sets.

Theorem 2.2. The sets ΩR
ij satisfy

ΩR
ij ⊆ ΓR

i ∪ ΓR
j for all i �= j .

The union of intersections of such sets is therefore contained in the Gershgorin set
ΓR.

Proof. Assume that z ∈ ΩR
ij for some i, j ∈ {1, . . . , n} and i �= j. Then z ∈ ΓR

i or

z /∈ ΓR
i . If z ∈ ΓR

i , there is nothing to prove. Assume therefore that z /∈ ΓR
i . Since

z ∈ ΩR
ij , we have

(2.2)
|z − ajj |R′′

ij + |aij |R′′
ji ≥ |(z − aii)(z − ajj)− aijaji| ≥ |z − aii||z − ajj | − |aij ||aji| .

Because R′′
ij = R′

i − |aij | and R′′
ji = R′

j − |aji|, and because |z − aii| > R′
i, we have

from (2.2) that

|z − ajj |(R′
i − |aij |) + |aij |(R′

j − |aji|) ≥ R′
i|z − ajj | − |aij ||aji| ,
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GENERALIZATIONS OF GERSHGORIN DISKS AND POLYNOMIAL ZEROS 2353

which implies that

|aij |R′
j ≥ |aij ||z − ajj | .

If aij �= 0, then this inequality means that z ∈ ΓR
j . In other words, if z is not in

ΓR
i , then it must be in ΓR

j . If aij = 0, then it is easy to see that ΩR
ij = ΓR

i ∪{ajj} ⊆
ΓR
i ∪ ΓR

j . This completes the proof. �

Just as nonsingularity conditions lead to eigenvalue inclusion sets (a central
theme in [35]), an eigenvalue inclusion set for a matrix naturally leads to nonsingu-
larity conditions for that matrix. The following theorem presents such conditions.

Theorem 2.3. Let A ∈ Cn×n. Then A is invertible if for each i = 1, 2, . . . , n,
there exists a j �= i such that

(2.3) |aiiajj − aijaji| > |ajj |R′′
ij + |aij |R′′

ji .

Proof. The proof follows immediately by requiring that zero not lie in the spectral
inclusion set described by (2.1) in Theorem 2.1 with Si = Ji for all i. �

We note that, as is the case for the Gershgorin set, our results can be improved by
using a suitable similar matrix S−1AS instead of A, which has the same eigenvalues.

3. Polynomial zeros

Eigenvalue inclusion sets can be used to estimate zeros of polynomials by apply-
ing them to the polynomial’s companion matrix (see, e.g., [19, p. 146]), whose
eigenvalues are the zeros of the polynomial. For a monic polynomial p(z) =
zn + αn−1z

n−1 + · · · + α1z + α0 with complex coefficients and with α0 �= 0, the
companion matrix is given by⎛

⎜⎜⎜⎜⎜⎝

0 0 . . . 0 −α0

1 0 . . . 0 −α1

0 1 . . . 0 −α2

...
...

...
...

...
0 0 . . . 1 −αn−1

⎞
⎟⎟⎟⎟⎟⎠ .

We concentrate on this frequently used companion matrix, but there exist other
companion matrices that could also be used, as in, e.g., [2], [6], [7], [14], [18], [25],
[26], [27], or [36]. In the following theorem we derive an inclusion set for polynomial
zeros, based on Theorem 2.1.

Theorem 3.1. All the zeros of the polynomial p(z) = zn+αn−1z
n−1+· · ·+α1z+α0

with complex coefficients and with α0 �= 0 lie in the union of the n sets

n⋃
i=1

Φi ≡ Φ ,

where

Φ1 = {z ∈ C : |z| ≤ |α0| and |z||z + αn−1| ≤ |α0|} ,

Φi = {z ∈ C : |z| ≤ μi and |z(z + αn−1)| ≤ |z + αn−1|+ |αi−1|} (2 ≤ i ≤ n− 2),

Φn−1 = {z ∈ C : |z| ≤ μn−1 and |z(z + αn−1) + αn−2| ≤ |z + αn−1|} ,

Φn = {z ∈ C : |z + αn−1| ≤ 1 and |z(z + αn−1) + αn−2| ≤ 1} ,
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2354 A. MELMAN

and

μ1 = |α0| , μ2 = min

{
1 + |α1| ,

1

2

(
|α1|+

√
|α1|2 + 4|α0|

)}
,

μi = min

{
1 + |αi−1| ,

1

2

(
|αi−1|+

√
|αi−1|2 + 4(1 + |αi−2|)

)}
(i = 3, . . . , n− 1).

Proof. Applying Theorem 2.1 with Si = Ji for all i = 1, 2, . . . , n to the companion
matrix of p(z) results in the following ΩR

i,j sets, stated in their raw unsimplified
form.

For i = 1:

ΩR
1,j =

{
z ∈ C : |z|2 ≤ |z||α0|

}
(2 ≤ j ≤ n− 1) ,

ΩR
1,n = {z ∈ C : |z||z + αn−1| ≤ |α0|} .

For i = 2:

ΩR
2,j =

{
z ∈ C : |z|2 ≤ |z| (1 + |α1|)

}
(3 ≤ j ≤ n− 1) ,

ΩR
2,1 =

{
z ∈ C : |z|2 ≤ |z||α1|+ |α0|

}
,

ΩR
2,n = {z ∈ C : |z(z + αn−1)| ≤ |z + αn−1|+ |α1|} .

For 3 ≤ i ≤ n− 2:

ΩR
i,j =

{
z ∈ C : |z|2 ≤ |z| (1 + |αi−1|)

}
(1 ≤ j ≤ i− 2 or i+ 1 ≤ j ≤ n− 1) ,

ΩR
i,i−1 =

{
z ∈ C : |z|2 ≤ |z||αi−1|+ 1 + |αi−2|

}
,

ΩR
i,n = {z ∈ C : |z(z + αn−1)| ≤ |z + αn−1|+ |αi−1|} .

For i = n− 1:

ΩR
n−1,j =

{
z ∈ C : |z|2 ≤ |z| (1 + |αn−2|)

}
(1 ≤ j ≤ n− 3) ,

ΩR
n−1,n−2 =

{
z ∈ C : |z|2 ≤ |z||αn−2|+ 1 + |αn−3|

}
,

ΩR
n−1,n = {z ∈ C : |z(z + αn−1) + αn−2| ≤ |z + αn−1|} .

For i = n:

ΩR
n,j = {z ∈ C : |z(z + αn−1)| ≤ |z|} (1 ≤ j ≤ n− 2) ,

ΩR
n,n−1 = {z ∈ C : |z(z + αn−1) + αn−2| ≤ 1} .

We first consider i = 2, . . . , n−1. In this case, the set appearing in the definition
of Φi of the form

{
z ∈ C : |z|2 ≤ α|z|+ β

}
, where α and β are real and nonnegative,

is equivalent to {
z ∈ C : |z|2 − α|z| − β ≤ 0

}
.

Such a set is easily seen to be a disk of the form{
z ∈ C : |z| ≤ 1

2

(
α+

√
α2 + 4β

)}
.

Furthermore, the set ΩR
i,j (j �= i−1, i, n) is the same as {z ∈ C : |z| ≤ 1 + |αi−1|}

since the latter includes {0}.
The situation for i = 1 is analogous. For i = n− 1, n we can exclude z = 0 and

divide out |z| in the definition of ΩR
n−1,j (1 ≤ j ≤ n− 3) and ΩR

n,j (1 ≤ j ≤ n− 2)
because {0} is included in all the other sets Φi (i �= n−1, n) and we are taking their
union. With the definition of μi (i = 1, . . . , n− 1), this concludes the proof. �
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Examples. We illustrate the inclusion sets in the previous theorem with a few
examples. The polynomial coefficients in these examples were randomly gener-
ated and no special conditions were imposed. The inclusion sets for the following
polynomials can be seen in Figure 3:

p1(z) = z8 + 2z7 − 4z6 + iz5 + (1− 3i)z4 − (5 + 2i)z3 − (4− 6i)z2

−(2 + 4i)z + 4 + 2i ,

p2(z) = z10 − (4 + 8i)z9 + 3iz8 − (5 + 3i)z7 + (1− 8i)z6 + (7 + i)z5

−(4− 6i)z4 − (9− 3i)z3 − (6− 9i)z2 − (4− 9i)z + 1− 9i ,

p3(z) = z8 + 3z6 − 2z4 + 2z3 + z2 − z + 2 ,

p4(z) = z10 − 7z9 − 3z8 + 4z7 − 6z6 − 9z5 + 4z4 − 9z3 + 2z2 + 10z + 5 .

The generalized Gershgorin sets (dark grey) are contained well inside the Brauer sets
(light grey) and the Gershgorin sets (intermediate grey). The zeros are indicated
by the white dots.

Figure 3. Comparison of inclusion regions for the zeros of p1(z),
p2(z), p3(z), and p4(z).

Let us now have a closer look at the sets appearing in Φ. Many of them are just
disks and need no explanation. However, some are a little more complicated.

We start with Φ1, which contains a set of the form

{z ∈ C : |z − a||z − b| ≤ α} ,

where a and b are complex numbers, and α is real and nonnegative.
For positive α, and for a �= b, the boundary of this set is an oval of Cassini with

foci a and b, and when α = 0 the set reduces to the two points {a} and {b}. When
a = b, the boundary becomes a circle for α > 0 and a point for α = 0.

An oval of Cassini also appears in Φn as the boundary of a set, namely

(3.1) {z ∈ C : |z(z + αn−1) + αn−2| = 1} ,

which can be seen by writing the equation in (3.1) as∣∣∣∣
(
z − 1

2

(
−αn−1−

√
α2
n−1 − 4αn−2

))∣∣∣∣
∣∣∣∣
(
z− 1

2

(
−αn−1 +

√
α2
n−1 − 4αn−2

))∣∣∣∣=1.

A slightly more complicated set turns up in Φi (i = 2, . . . , n− 2), namely

{z ∈ C : |z(z + αn−1)| ≤ |z + αn−1|+ |αi−1|} .

Its boundary is a curve of degree eight, and using Cartesian or polar coordinates
to obtain its basic properties would be quite complicated. The following lemma
uses geometric arguments instead.
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Lemma 3.2. The curve defined by

(3.2) {z ∈ C : |z − a||z − b| = α|z − a|+ β} ,

where a and b are distinct complex numbers and α ≥ 0 and β > 0, is symmetric
with respect to the line through a and b and intersects that line at a distance of
Rmax from a in the direction of b and Rmin from a in the opposite direction, away
from b, where

Rmin =
1

2

(
α− |a− b|+

√
(|a− b| − α)2 + 4β

)
,(3.3)

Rmax =
1

2

(
α+ |a− b|+

√
(|a− b|+ α)2 + 4β

)
.(3.4)

If |a − b| ≥ α + 2
√
β, then there are two additional points of intersection, which

coincide when |a− b| = α + 2
√
β, namely at a distance of Qmin and Qmax from a

in the direction of b, where

Qmin =
1

2

(
|a− b| − α−

√
(|a− b| − α)2 − 4β

)
,(3.5)

Qmax =
1

2

(
|a− b| − α+

√
(|a− b| − α)2 − 4β

)
.(3.6)

If β = 0, the curve becomes the union of a circle and a point when α �= 0, or it
degenerates into two points when α = 0.

For a = b, the curve becomes a circle when β �= 0 and when β = 0, it becomes the
union of a circle and a point, or just a point, depending on whether α is nonzero
or not, respectively.

Proof. First, assume that a �= b and β > 0. Then, since z = a does not satisfy
(3.2), we can equivalently write the equation as

|z − b| = α+
β

|z − a| ·

This means that z is a point that lies on a circle with a radius R and center a
(Circle 1) and also on a circle with radius α + β/R and center b (Circle 2). But
R cannot be just any positive number. As R → 0+, the two circles clearly cannot
intersect and Circle 1 will be entirely contained in Circle 2. As R increases, Circle 1
grows while Circle 2 shrinks. At some point the two circles will touch. This happens
when R + |a − b| = α + β/R. Discarding the negative solution of the resulting
quadratic equation for R, we thus obtain that the minimum radius R is given by
expression (3.3) in the statement of the lemma. There can be no intersections for
R < Rmin.

As R increases from Rmin, the two circles now intersect in two points, symmetric
with respect to the line through the points a and b. On the other hand, R can be
so large that Circle 2 is entirely contained in Circle 1 and touches it at just one
point. This happens when |a − b| + α + β/R = R, so that we obtain expression
(3.4) in the statement of the lemma. As R decreases from Rmax, the two circles
now intersect in two points, symmetric with respect to the line through the points
a and b. There can be no intersections for R > Rmax.

It could also happen that, as R increases from Rmin, Circle 2 shrinks so fast that
there comes a point at which it no longer intersects Circle 1. If that is the case, then
the value of R for which this happens will be denoted by Qmin. When R continues
to increase after this point, Circle 2 will inevitably catch up with Circle 1 again.
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GENERALIZATIONS OF GERSHGORIN DISKS AND POLYNOMIAL ZEROS 2357

The value of R at which that happens will be denoted by Qmax. Each of these
events will occur only once or none will occur at all because at both of these events
we must have that R + α + β/R = |a − b|, and this particular quadratic equation
can only have two positive (possibly equal) solutions, two negative solutions, or two
imaginary solutions. Clearly, the positive solutions are the only ones of interest.

An easy computation shows that the two solutions Qmin and Qmax are given
by expressions (3.5) and (3.6) in the statement of the theorem. Obviously, this
situation only arises when |a−b| ≥ α+2

√
β. When the inequality is strict, the curve

has two disjoint loops, which are contained in the union of two disks: one with center
a and radius Qmin and one with center b and radius α+β/Qmax = |a− b| −Qmax.

Figures 4 and 5 show the evolution of the intersections of Circle 1 (solid line),
centered at a (upper right), and Circle 2 (dotted line), centered at b (lower left), as
R goes from Rmin to Rmax through Qmin and Qmax, i.e., in the situation that we
have two loops.

The proof for the cases β = 0 and a = b mentioned at the end of the statement
of the lemma are straightforward. �

The curve defined in (3.2) is an oval of Cassini when α = 0. Other properties of
this curve such as, e.g., minimum and maximum distances from the line through a
and b, can be derived using the same techniques as in Lemma 3.2. We do not need
these properties here and will omit them for brevity’s sake.

Using the same notation as in Lemma 3.2, we note that the set defined by

{z ∈ C : |z − a||z − b| ≤ α|z − a|+ β}
contains the points a and b and the area enclosed by the loop containing them. The
points a and b can be considered the foci of the boundary curve.

Figure 4. Evolution as R increases from Rmin (left) to a value
between Qmin and Qmax (right).

Figure 5. Evolution as R increases from Qmax (left) to Rmax (right).

The following theorem makes use of the inclusion sets Φi to derive bounds on
the modulus of the zeros of a polynomial.
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Theorem 3.3. Given the polynomial p(z) = zn + αn−1z
n−1 + · · ·+ α1z + α0 with

complex coefficients and with α0 �= 0, defining its corresponding zero inclusion sets
Φi as in Theorem 3.1, and defining βi, μi, q

+
i , and q−i for i = 1, . . . , n, and ri for

i = 1, . . . , n− 1 as

β1 = 2
√
|α0| , βn = 2

√
1 + |αn−2| , βi = 1 + 2

√
|αi−1| (i �= 1, n) ,

μ1 = |α0| , μ2 = min

{
1 + |α1| ,

1

2

(
|α1|+

√
|α1|2 + 4|α0|

)}
,

μi = min

{
1 + |αi−1| ,

1

2

(
|αi−1|+

√
|αi−1|2 + 4(1 + |αi−2|)

)}
(i �= 1, 2) ,

r1 =
1

2

(
|αn−1|+

√
|αn−1|2 + 4|α0|

)
,

ri =
1

2

(
1 + |αn−1|+

√
(|αn−1| − 1)2 + 4|αi−1|

)
(i �= 1) ,

q−1 =
1

2

(
|αn−1| −

√
|αn−1|2 − 4|α0|

)
,

q−n =
1

2

(
|αn−1| −

√
|αn−1|2 − 4(1 + |αn−2|)

)
,

q−i =
1

2

(
1 + |αn−1| −

√
(|αn−1| − 1)2 − 4|αi−1|

)
(i �= 1, n) ,

q+1 =
1

2

(
|αn−1|+

√
|αn−1|2 − 4|α0|

)
,

q+n =
1

2

(
|αn−1|+

√
|αn−1|2 − 4(1 + |αn−2|)

)
,

q+i =
1

2

(
1 + |αn−1|+

√
(|αn−1| − 1)2 − 4|αi−1|

)
(i �= 1, n) ,

the following holds for 1 ≤ i ≤ n− 1:
(1) If |αn−1| ≤ βi, then ∀z ∈ Φi : 0 ≤ |z| ≤ min {μi , ri}.
(2) If |αn−1| > βi and μi ≥ q+i , then ∀z ∈ Φi :

0 ≤ |z| ≤ q−i or q+i ≤ |z| ≤ min {μi , ri} .

(3) If |αn−1| > βi and μi < q+i , then ∀z ∈ Φi : 0 ≤ |z| ≤ min
{
μi , q

−
i

}
.

For i = n the following holds:
(4) If |αn−1| ≤ βn, then ∀z ∈ Φn : max{0, |αn−1| − 1} ≤ |z| ≤ μn.
(5) If |αn−1| > βn, then ∀z ∈ Φn : max{q+n , |αn−1| − 1} ≤ |z| ≤ μn.

Proof. We start with 2 ≤ i ≤ n− 2. The sets Φi for 2 ≤ i ≤ n− 2 are given by

Φi = {z ∈ C : |z| ≤ μi and |z(z + αn−1)| ≤ |z + αn−1|+ |αi−1|} (2 ≤ i ≤ n−2).

Each of those sets is the intersection of a disk, centered at the origin, with a region,
bounded by the curve

{z ∈ C : |z(z + αn−1)| = |z + αn−1|+ |αi−1|} (2 ≤ i ≤ n− 2) ,

i.e., a curve of the same form as in Lemma 3.2, with, in the notation of that lemma,
a = −αn−1, b = 0, α = 1, and β = |αi−1|.

If |αn−1| ≤ βi = 1 + 2
√

|αi−1|, the curve has only one loop. As was explained
in Lemma 3.2, we can interpret the curve as the intersection points of two circles,
one of which is, in this case, centered at the origin. Obviously, the modulus of any
point on the curve is equal to the radius of the corresponding circle centered at the
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origin and passing through that point. Lemma 3.2 then implies that the maximum
value for |z| when z lies on or inside the curve is given by ri ≡ |αn−1|+Rmin, where
we used the same notation as in Lemma 3.2, and we have that

ri =
1

2

(
1 + |αn−1|+

√
(|αn−1| − 1)2 + 4|αi−1|

)
.

We note that |z| attains all values between 0 and its maximum value in Φi because
there is only one loop. Since Φi is obtained by intersecting the region bounded by
the aforementioned curve with a disk, centered at the origin and with radius μi,
statement (1) of the theorem for 2 ≤ i ≤ n− 2 follows immediately.

If |αn−1| > βi = 1 + 2
√
|αi−1|, then the curve has two loops, which means that

it intersects the line through the origin and −αn−1 in two additional places, which
are at a distance of q+i ≡ |αn−1| − Qmin and q−i ≡ |αn−1|−Qmax from the origin,
respectively. Clearly, q−i ≤ q+i . We have once again used the same notation as in
Lemma 3.2, and it is worth pointing out that here, as elsewhere in this proof, Qmin

and Qmax are distances measured from −αn−1, whereas q−i and q+i are distances
measured from the origin. This means that

q+i =
1

2

(
1 + |αn−1|+

√
(|αn−1| − 1)2 − 4|αi−1|

)
,

q−i =
1

2

(
1 + |αn−1| −

√
(|αn−1| − 1)2 − 4|αi−1|

)
.

Therefore, if μi≥q+i , then the largest modulus of any point z in the intersection of
the disk centered at the origin with radius μi and the region bounded by the curve
is given by min{μi, ri} and there is a gap in the values that |z| can attain between
q−i and q+i . This proves statement (2) for 2 ≤ i ≤ n− 2.

If μi<q+i , then the largest modulus of z in the intersection is given by min{μi, q
−
i }

and this time there is no gap in the values of |z|. This proves statement (3) for
2 ≤ i ≤ n− 2.

Figure 6 shows a few representative cases when |αn−1| > βi. The left and right
white dots are the origin and −αn−1, respectively. On the left we have a situation
where μi < q−i and on the right q+i < μi < ri.

Figure 6. Illustration for |αn−1| > βi when μi < q−i (left) and
μi > q+i (right).

When i = 1, the oval of Cassini, appearing in Φ1, corresponds to a curve as in
Lemma 3.2, obtained by setting a = −αn−1, b = 0, α = 0 and β = |α0| in that
lemma. The proof then follows analogously to the proof for 2 ≤ i ≤ n− 2.

When i = n− 1, we replace Φn−1 by Φ̃n−1, which we define as

Φ̃n−1 = {z ∈ C : |z| ≤ μn−1 and |z||z + αn−1| ≤ |z + αn−1|+ |αn−2|} .
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Since |a+ b| ≥ |a| − |b| for any a, b ∈ C, we have that Φn−1 ⊆ Φ̃n−1, which implies
that we are enlarging the set of possible values of |z|. The set of all z satisfying
|z||z + αn−1| ≤ |z + αn−1|+ |αn−2| is of the same form as the sets appearing in Φi

for i = 2, . . . , n− 2 and the proof for i = n− 1 follows analogously.
When i = n, we proceed analogously to the case i = n − 1 and replace Φn by

Φ̃n, defined as

Φ̃n = {z ∈ C : |z + αn−1| ≤ 1 and |z||z + αn−1| ≤ 1 + |αn−2|} .

We have Φn ⊆ Φ̃n, and we are therefore once again enlarging the set of possible
values of |z|. The boundary of the set of all z satisfying |z||z+αn−1| ≤ 1+ |αn−2| is
also an oval of Cassini, but this time the oval is intersected with a disk of radius unity
centered at −αn−1. We regard the oval as a special case of the curve in Lemma 3.2,
with, in the notation of that lemma, α = 0, β = 1+ |αn−2|, a = −αn−1, and b = 0.
Furthermore we have

Rmin =
1

2

(
−|αn−1|+

√
|αn−1|2 + 4(1 + |αn−2|)

)
,

Rmax =
1

2

(
|αn−1|+

√
|αn−1|2 + 4(1 + |αn−2|)

)
,

Qmin =
1

2

(
|αn−1| −

√
|αn−1|2 − 4(1 + |αn−2|)

)
,

Qmax =
1

2

(
|αn−1|+

√
|αn−1|2 − 4(1 + |αn−2|)

)
,

all of which are distances measured from −αn−1. If |αn−1| ≤ βn = 2
√
1 + |αn−2|,

then there is only one loop. When |αn−1| > 1, there is a gap from 0 to |αn−1| − 1
in the values of |z| for any z in the intersection, while the largest value of |z| is
given by the smallest of the numbers |αn−1| + 1 and |αn−1| + Rmin. There is no
gap when |αn−1| ≤ 1 and the smallest value for |z| in this case is 0. Substituting
the value of Rmin then yields statement (4) of the theorem.

If |αn−1| > βn = 2
√
1 + |αn−2|, there are two loops, one containing −αn−1

and one containing the origin. Because here |αn−1| > 2, we have that Qmax > 1,
so that the disk centered at −αn−1 with radius unity intersects only with the
loop containing −αn−1. If, in addition, Qmin > 1, then the loop is not entirely
contained in the disk and the smallest and largest values for the modulus of any z
in the intersection are |αn−1|−1 (which here is larger than |αn−1|−Qmin = q+n ) and
|αn−1|+min{1, Rmin}, respectively. This case is illustrated on the left in Figure 7,
where the left and right white dots are the origin and −αn−1, respectively. If, on the
other hand, Qmin ≤ 1, then, since Rmin ≤ Qmin, the loop is entirely contained in
the closed disk and the smallest and largest values for |z| for any z in the intersection
now become |αn−1|−Qmin (which here is larger than |αn−1|−1) and |αn−1|+Rmin

(which here is smaller than |αn−1| + 1), respectively. This situation is illustrated
on the right in Figure 7. Substituting the expressions for Qmin and Rmin, taking
into account the definitions of q+n and μn, and combining the two cases Qmin > 1
and Qmin ≤ 1 yields statement (5) and concludes the proof of the theorem. �
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Figure 7. Illustration for |αn−1| > βn when q+n < |αn−1|−1 (left)
and q+n > |αn−1| − 1 (right).

We note that some of the quantities q−i and q+i defined in the previous theorem
may be imaginary, depending on the situation. However, they play no role whenever
this occurs. The computation of all the bounds in Theorem 3.3 requires only O(n)
computations. In addition, the bounds for i = n − 1 and i = n are not the best
possible given our inclusion sets since we enlarged the sets Φn−1 and Φn in the
interest of obtaining relatively simple explicit expressions for the bounds. They
can therefore be improved if so desired at the cost of computing, in general, two
intersections of a disk with a quartic. There are only two such intersections to
determine, regardless of the degree of the polynomial.

The maximum of the bounds in the previous theorem obviously provides a bound
on the modulus of the largest zero. Even after enlarging the sets Φn−1 and Φn, this
bound can never be worse than the one obtained from the Gershgorin set because
of the disks in the definition of the sets Φi (1 ≤ i ≤ n), which are contained in the
corresponding Gershgorin disks.

4. Numerical comparisons

To illustrate our results, we conclude this paper with some numerical compar-
isons. The bound on the modulus of the largest zero obtained from the Gershgorin
set is

max{|α0|, 1 + |α1|, . . . , 1 + |αn−1|} ,

which itself is bounded by Cauchy’s bound, given by

1 + max{|α0|, |α1|, . . . , |αn−1|} .

In addition to other classical bounds ([19, pp. 316-319]), there exist several more
modern methods, such as in [1], [5], [11], [12], [15], [20], [21], [22], [25], [26], [27],
[28], [34], [37], [38], which were already mentioned in the introduction. Judging
from the numerical examples in those references, these bounds are, by and large,
comparable. Some are better than others, but not uniformly so, and the roles can
be reversed, depending on the polynomial. In addition, there are bounds based
on a transformation of the polynomial, as in, e.g., [34] and [38], that can be used
to improve any bound. It is not our intention to conduct a comprehensive com-
parison, which would be beyond the scope of this paper. Instead, we have picked
a representative method from the aformentioned references, namely the one from
[20], to which we will compare our bounds. We have also included a comparison
to bounds derived from the Brauer set. We denote the bound from [20] by bJLR,
the Gershgorin bound by bΓ, the Brauer bound by bB , and the bound based on
Theorem 3.3 by bGΓ.

We generated 1000 monic polynomials of order 50 with random coefficients whose
real and complex parts were uniformly distributed on the interval [−10, 10], and
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we then computed the ratio of the bound to the modulus of the largest zero for
each polynomial; i.e., the closer to one that number is, the better the bound. The
average ratio and standard deviation for bΓ were 2.0943 and 0.9358, respectively,
and the range of values was [1.0250 , 5.9638]. For bB , these numbers were very
similar, namely, 2.0484 and 0.9142, and [1.0163 , 5.7734], respectively. For bGΓ the
corresponding results were 1.2522 and 0.2289, and [1.0071 , 2.7216], respectively,
which is significantly better. For bJLR the corresponding results were 1.2530 and
0.2284, and [1.0071 , 2.7216], respectively, which is very similar to what we obtained
for bGΓ, although, as was mentioned before, our bounds can still be improved.

In about 45% of the cases in our numerical comparisons, Theorem 3.3 also
provided an exclusion interval for the moduli of the zeros. Although theoreti-
cally possible, Gershgorin’s and Brauer’s theorem did not produce such intervals.
The method from [20] only computes an upper bound on the moduli of the ze-
ros. To illustrate this additional information our bounds can sometimes provide,
let us consider q1(z) = z5 + 6z4 + 4z3 + 5z2 + 2iz + 3. The zeros have moduli
0.6113, 0.7711, 1.0300, 1.1364, and 5.4370. The bounds bΓ, bB , and bJLR are 7.000,
6.8730, and 6.8541, respectively, but they provide no more information. How-
ever, Theorem 3.3 gives the range 0 ≤ |z| ≤ 2.3820 and 4.6180 ≤ |z| ≤ 6.7417;
i.e., no zeros can have moduli between 2.3820 and 4.6180. Another example is
q2(z) = z10 − (15/2)z9 + 5z8 + 4z7 − (6 + i)z6 − 2iz5 + 2z4 + z3 + 4z2 + iz + 1.
In this case, the zeros have moduli 0.4147, 0.6062, 0.6668, 0.6953, 0.9146, 0.9459,
1.0906, 1.1649, 1.1681, and 6.6821. From the Gershgorin and Brauer sets, and from
[20], we obtain only the upper bounds bΓ, bB , and bJLR as 8.5, 8.3484, and 8.3299,
respectively. On the other hand, Theorem 3.3 yields the range 0 ≤ |z| ≤ 2.1335 and
6.3665 ≤ |z| ≤ 8.2291; i.e., no zeros can have moduli between 2.1335 and 6.3665.

We conclude by mentioning that it may be possible to extend our techniques
to compute bounds on the real and imaginary parts of polynomial zeros as well.
Furthermore, more bounds can be obtained by considering powers of the companion
matrix and of its transpose. In addition, as was mentioned in Section 3, our methods
can be applied to other types of companion matrices.
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Appl. Math., 196 (2006), no. 2, 452–458. MR2249436 (2007e:15018)

10. Dashnic, L. S., and Zusmanovich, M. S. O nekotoryh kriteriyah regulyarnosti matric i
lokalizacii ih spektra. Zh. Vychisl. Matem. i Matem. Fiz. 5 (1970), 1092–1097.

11. Datt, B., and Govil, N.K. On the location of the zeros of a polynomial. J. Approx. Theory,
24 (1978), no. 1, 78–82. MR510922 (80g:30002)

12. Dehmer, M. On the location of zeros of complex polynomials. J. Inequal. Pure Appl. Math.,

7 (2006), Article 26, 13 pp. MR2217189 (2006m:30011)
13. Edelman, A., and Murakami, H. Polynomial roots from companion matrix eigenvalues. Math.

Comp., 64 (1995), 763–776. MR1262279 (95f:65075)
14. Fiedler, M. A note on companion matrices. Linear Algebra Appl., 372 (2003), 325–331.

MR1999154 (2004g:15017)
15. Fujii, Masatoshi, and Kubo, Fumio. Buzano’s inequality and bounds for roots of algebraic

equations. Proc. Amer. Math. Soc., 117 (1993), no. 2, 359–361. MR1088441 (93d:47014)
16. Gemignani, L. Structured matrix methods for polynomial root-finding. ISSAC 2007, 175–180,

ACM, New York, 2007. MR2396200 (2009f:65113)
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