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Generalizations of Gleason’s Theorem on Weight 
Enumerators of Self-Dual Codes 

F. JESSIE MACWILLIAMS, COLIN L. MALLOWS, AND NEIL J. A. SLOANE, MEMBER, IEEE 

Abstract-Gleason has recently shown that the weight enumerators of 
binary and ternary self-dual codes are polynomials in two given poly- 
nomials. In this paper it is shown that classical invariant theory permits 
a straightforward and systematic proof of Gleason’s theorems and their 
generalizations. The joint weight enumerator of two codes (analogous to 
the joint density function of two random variables) is defined and shown 
to satisfy a MacWilliams theorem, Invariant theory is then applied to 
generalize Gleason’s theorem to the complete weight enumerator of 
self-dual codes over GF(3), the Lee metric enumerator over GF(5) 
(given by Klein in 1884!) and over GF(7) (given by Maschke in 1893!), 
the Hamming enumerator over GF(q), and over GF(4) with all weights 
divisible by 2, the joint enumerator of two selfdual codes over GF(2), 
and a number of other results. 

I. INTRODUCTION 

I N 1963 MacWilliams [20] showed that the weight 
enumerators of a binary code and of its dual are related 

by 

w-&&(x, y) = 1 W&(X + y, x - y). 
L-4 

(1) 

(These terms are defined in Section II.) 
It has recently been shown [21] that this identity also 

holds for nonlinear codes, if the dual is appropriately 
defined. 

A code & of length IZ is said to be self-dual if it is linear 
and U. u z 0 (modulo 2) for all U, u E &, and Id/ = 2”12. 
Self-dual codes are of considerable interest. For example: 
they meet the Gilbert bound [22] ; many of the best codes 

known are self-dual; they give rise to dense sphere-packings 
[19] ; and they arise as the linear span of the incidence 
matrices of projective planes [l], [23]. 

From (1) it follows that the weight enumerator of a self- 
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dual code satisfies the identity 

In 1970, Gleason [15] showed that all possible weight 
enumerators satisfying (2) are polynomials in just two 
weight enumerators 

x2 + y2 

x8 + l4x4y4 + ys. 

He also proved similar theorems for binary codes with 
weights divisible by 4 and for ternary codes. (Alternative 
proofs of Gleason’s theorem have been given by Thompson 
[34], Feit [13], [14], and Berlekamp et al. [4].) 

One of the aims of this paper is to show that classical 
invariant theory allows Gleason’s theorems and generaliza- 
tions to be derived in a straightforward and systematic 
way. Invariant theory “came into existence about the middle 
of the nineteenth century somewhat like Minerva: a grown- 
up virgin, mailed in the shining armor of algebra, she sprang 
forth from Cayley’s Jovian head” (Weyl, 1939 [36]). By 
1892, as a result of Hilbert’s work (an excellent description 
is given in Reid’s book [30]), the theory was dead. Quite 
recently, however, it has come back to life (see DieudonnC 
and Carrel], 1971 [ll]). 

In Section IV we state the theorems needed from in- 

variant theory and give examples of their application to 
weight enumerators. Many of the theorems about weight 
enumerators have been known in another context for a long 
time. The theorem of Gleason quoted above may be found 
in effect on p. 362 of Burnside, 1911 [6], although it was 
certainly known long before. Klein in 1884 [18, p. 2361 had 
already given the theorem that is necessary to characterize 
the Lee weight enumerators of codes over GF(5)! (see 
Section V-5.3.2). 

We begin in Section II by stating the MacWilliams 
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theorems for complete, Lee, and Hamming weight enu- 
merators. Section III describes a new kind of enumerator, 

the joint weight enumerator of two codes. This generalizes 
the Hamming weight enumerator just as a joint probability- 
density function generalizes a single density function. The 
joint weight enumerator of a code with itself, called a 
biweight enumerator, gives much more information about 
a code than the weight enumerator does, and seems a more 
natural way to look at nonlinear codes. Various examples 

and applications are given. It is shown that the joint weight 
enumerator satisfies a MacWilliams theorem and this makes 
it possible to study the joint weight enumerators of self-dual 
codes. 

u E F” is defined to be camp (0) = s(u) = (sO(u),sl(u), . . ., 
sq- i(u)) where si(u) denotes the number of coordinates of u 
that are equal to oi. Clearly 

q-1 
igo si(“) = n: 

In general a composition s of n is a vector s = (sO,sl; . . , 
sq- 1) with nonnegative integer components such that 

q-1 
Jo si = n* 

Finally in Section V we summarize the results of applying 
invariant theory to weight enumerators. The theorems ob- 
tained are all of the type that states that a given weight 
enumerator is a polynomial in certain specified polynomials. 
Among others we give such theorems for the complete 
enumerator of codes over GF(3), the Lee enumerator over 
GF(5), the Hamming enumerator over GF(q), and over 
GF(4) with all weights divisible by 2, the joint enumerator 
of two codes over GF(2), and the biweight enumerator 
of a code over GF(2). 

Let A(s) be the number of codewords u E d such that 
camp (u) = s. Then the complete weight enumerator of d 
is the polynomial 

gd(zo, * * * ,zq- 1) = c A(s)zOSo . . . z$;, (2.3.1) 
s 

where the zi are indeterminates and the sum extends over 
all compositions s of n. 

The first MacWilliams identity gives the complete weight 

enumerator of ~2’ in terms of that of d. 
Theorem 2.3.2-([20, lemma 2.71, [Z.f]): 

II. WEIGHT ENUMERATORS 

2.1. Codes 

Let F be a finite field GF(q), where q is a prime power, 
and let F” be a vector space of dimension n over F. 

An (n,M,d) code over GF(q) is a set of M vectors of 
length n such that any two differ in at least d places. A code 
is linear if it is a linear subspace of F”, in which case it 
contains qk codewords for some k and is called an [n,k,d] 
code. If & is a linear code the dual code d’ is {u 1 u . v = 
0, for all v E &‘}. If d = d’ the code is said to be self- 
dual. Id 1 denotes the number M of codewords in d. Two 

codes are said to be equivalent if they differ only by a 

permutation of the coordinates of the codewords. 

where x is the fixed character defined in (2.1.2). 

2.4. Lee Weight Enumerator 

In studying Lee weight enumerators q is assumed to be 
an odd prime or prime power, since for q = 2 this enu- 
merator coincides with the Hamming weight enumerator, 
and for q = 2’, r > 1, it is undefined. 

2.2. Characters 

Let p(x) be a primitive irreducible polynomial of degree 
f over GF(p) and let c1 be a root of p(x). Any element /z of 

GF(q), q = ps, has a unique representation as 

2 = A, -I- A,cr + &a2 + ** ’ + AfplcP1, Ai E GF(p). 

(2.1.1) 

Let the elements of GF(q) be w0 = 0, or,.. *,w~,w-~, 

O-6+1,’ * *,o- i where 0-i = -wi and 6 = (4 - 1)/2. The 
Lee weight of a vector u E F” is defined to be Lee (u) = 

(~0(4,4(u), * . . ,Z,(U)) where Z,(U) = S,,(U) and [i(U) = Si(U) + 
S-~(U), for 1 I i I 6. Let AL(Z) be the number of code- 
words u E d such that Lee (u) = I; then the Lee weight 
enumerator of d is the polynomial 

Y&&o,. . * ,z,) = c AL(z)z,‘o,. . . ,zp. 
I 

A character of GF(q) is a homomorphism from the addi- 
tive group of GF(q) to the multiplicative group of the 
complex numbers. Let x be the fixed character defined by 

x(4 = P, (2.1.2) 

where t = e2niip and & is given by (2.1.1). 

2.3. Complete Weight Enumerator 

Let d be a linear code of length n over GF(q). We classify 
the codewords of &’ in three ways. 

Let the elements of GF(q) be o0 = 0, o~,w~;~*,o~-~ 

Clearly 9’& is obtained from the complete weight enu- 

merator V, of (2.3.1) by replacing z-~ by Zi for 1 I i _< 6. 
Applying this same transformation to (2.3.3), we obtain 
the second MacWilliams identity, giving the Lee weight 
enumerator of d ‘. 

Theorem 2.4.1-([21]): 

~Azo, * . . ,z,) 

- l 2, lJ4 
zO + i ofwOoj) + X(-00wj))zj5"'~z0 

j=l 

+ i MOPj> + X(-OPj>)zj . (2.4.2) 
j=l 

in some fixed order. Then the composition of a vector The Lee enumerator is a compromise, in that it gives 
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much more information about a code than the Hamming and the Hamming weight enumerator satisfies the identity 

enumerator of the next section, but has only half as many 
variables as the complete enumerator. It is also an ap- +f-,(X?Y) = w%czl 
propriate measure for codes to be used in phase-modula- 

(J, (x + (4 - l)Y), $ b - PI) 

tion communication schemes (see Berlekamp [3, p. 2051). (2.6.5) 

2.5. Hamming Weight Enumerator and so is invariant under the transformation 

Let the (Hamming) weight wt (u) of a vector u E F” be 
the number of nonzero coordinates of u; then 

q-1 
wt C”> = igl si(“)* 

Let A(i) be the number of codewords u E d such that 
wt (u) = i. The Hamming (or ordinary) weight enumerator 
of d is the polynomial 

W&(X,Y) = i& A(i)x"-'y'. 

In (2.3.3), if z0 is replaced by x and zi by y for i > 0, 
then the third MacWilliams identity is obtained, giving the 
weight enumerator of .J& ‘. 

Theorem 2..5.2-([20, theorem I]): 

~~Ax,Y) = +, W&(X + (4 - I)Y, x - Y). (2.5.2) 

For binary codes Theorems 2.3.2, 2.4.1, and 2.5.1 co- 
incide, and for ternary codes Theorems 2.4.1 and 2.5.1 

replace x by -l& (x + (4 - 1)~) 
44 

T,(q): 

replace y by 1 (x - y). 
J4 

(2.6.6) 

Polynomials that are invariant under T,, T2, or T3 we 
call formally self-dual weight enumerators. (These may have 
coefficients that are not positive integers.) Important ex- 

amples of such polynomials are the weight enumerators of 
i) linear codes that have the same weight distribution as, 

but are not equal to, their duals, ii) certain nonlinear codes, 
such as the (16,256,6) Nordstrom-Robinson code of [27], 
or the (8,16,2) code of Fig. 1 of [21], which satisfy (2.6.5). 

If in fact JZZ’ is linear and equal to d’, then as Gleason 
[ 151 has observed, the weight enumerators satisfy additional 
constraints. First, let p be a generator of the multiplicative 
group of nonzero elements of GF(q). Then u E d implies 
bu E d and so %& is invariant under the permutation 

T4: replace z0 by z0 and z, by ziCr,, where 
coincide. 

BW, = Oi(,), r = l,“‘, q - 1. (2.6.7) 

2.6. Self-Dual Codes Also the same transformation (with r running from 1 to 

Let d be a self-dual code over GF(q). Then certainly n 6) acts on the Lee weight enumerator. 

must be even and )d 1 = q”‘*. In fact, there are stronger Second, since any codeword u, say oftcomposition s, is 

restrictions on n. orthogonal to itself, it satisfies 

Theorem 2.6.1-(Pless [28]): If q $ - 1 (mod 4) self- 
dual codes exist if and only if n is even; if q z - 1 (mod 4) 
self-dual codes exist if and only if n is a multiple of 4. 

q-1 
iso siwi2 = O 

From Theorem 2.3.2 the complete weight enumerator of 
a self-dual code satisfies the identity 

and so w& is invariant under the transformation 

T, : replace Zi by x(Izwi2)zi, i = O,l;.*, q - 1 (2.6.8) 

~d(ZO, * ’ - 2zq-l) = %al for any ,J E GF(q). 

j; 18; &oq+coj)zj) . (2.6.2) 2’7’ The p?lem 
Polynomials that are invariant under transformations 

That is; %& is invariant under the linear transformation 
T,,T,,T, applied separately are also invariant under any 
combination of these transformations; i.e., are invariant 

Tl : replace Zi by $4 12 X(OiWj)Zj, 
under the group of transformations generated by T,,T,, T,. 
In Section IV we consider the general problem of charac- 

terizing polynomials invariant under a given group of 

for all i = 0,. . . , q - 1. (2.6.3) transformations. 

Similarly, from Theorems 2.4.1 and 2.5.1, the Lee weight III. JOINT WEIGHT ENUMERATORS 

enumerator is invariant under the transformation 3.1. Definitions 

T, : replace zi by 2 (zo + j$o Mwiwj) + X(-wiO,))zj) , 
The joint weight enumerator of two codes JZZ and $9 

measures the overlap between the zeros in a typical code- 
word of d and those in a typical codeword of 99. 

for all i = 0, * . . ,6 (2.6.4) Let u = (u,, . . * ,u,), u = (vi,. . . ,v,) be any pair of vec- 
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tors of I;“. Then we define 

i(u,u) = number of r such that U, = v, = 0; 

j(~,u) = number of r such that U, = 0, 21,. # 0; 

k(u,u) = number of r such that U, # 0, u, = 0; 

l(u,u) = number of r such that U, # 0, v, # 0. 

Of course 

i(u,u) + j(v) + k(n,u) + l(u,u) = n 

j(u,u) + l(u,u) = wt (u) 

k(u,u) + l&u) = wt (a). 

Let AZZ$ be (linear or nonlinear) codes of length n over 
GF(q). The joint (Hamming) weight enumerator of & and 
9iY is 

Example 3.3.4: d arbitrary, g = F” 

Bd,&,b,c,4 = wd(a + b, c + 4 

[use (3.2.2) and (3.3.3)]. 
Example 3.3.5: d arbitrary, a = {all even weight vec- 

tors} 

$&,&a,b,c,d) = $-ly-,(a + b, c + d) + +?V,(a - b, c - d). 

3.4. Generalized MacWilliams Identities 

Theorem 3.4.1: Let d be a linear code, d’ its dual, and 
99 an arbitrary code, all of length n over GF(q). Then the 
joint weight enumerators of d,S9 and d’,SJ are related by 

= h $d,98(a + yc, b + yd, a - c, b - d), (3.4.2) 

where y = q - 1. 
Corollary 3.4.3: For d arbitrary and ?8 linear, 

ued VSB 

= i, j,$= o Aij.dbjCkd’, 

where AijkI is the number of pairs u E ~2, u E g such that Yd da,b,c,d) 
’ 

i(u,u) = i j(w) = j k(u,u) = k l(u,u) = 1 = A Yd,da + yb, a - b, c + yd, c 

and a,b,c,d are (complex) indeterminates. 
The joint weight enumerator of a code d with itself is [For proof use (3.2.1).] 

Corollary 3.4.4: For d and 8 linear, called the biweight enumerator of &. 

= & fd,m(a + y@ + c) + y*d, a - b + Y(C 

3.2. Properties of Joint Weight Enumerators 

It follows immediately from the definition that 

~&d,a?U~LlJ) = l~ll~l 

2B,d@,b,c,4 = $d,&,c,W). 

The single weight enumerators are given by 

,~sd(X> Y) = ~.d,dW, Y,O), ifOE 

~B(X? Y> = B&d,&? Ym% if 0 E Se. 

0 

4, 

(3.2.1) 
a - c + y(b - d), a - b - c + d). 

Theorem 2.5.1 is another corollary. The proof of the 
following lemma and the deduction of Theorem 3.4.1 from 

it parallel the proof of Theorem 2.5.1 given by, Van Lint 
[35]; we omit the details. 

Lemma 3.4.5: Let A be a vector space over the complex 
numbers, let f: F” x F” + A be any mapping, and for 
anyuEF”dehneg:F” x F”+Aby 

g(vJ) = “,J” fW>~M~‘~‘> 

where U’U= E GF(q). Then for any linear code d, 

If & = d, u d, where zZ4, and ~2, are disjoint sets, 
then 

2 &l,B = %d,,!a + 9&,ea. (3.2.2) 

3.3. Examples (All Are Binary Codes) 

Example 3.3.1: ~4 = {OJ} = repetition code of length n 

y&.&(a,b,c,d) = a” + b” + c” + d”. 

Example 3.3.2: d = {0}, .?8 arbitrary 

Bd,B8(a,b,c,4 = -Ilr,W). 

Example 3.3.3: d = {single vector of weight e}, J% = 
F” (= all codewords of length n) 

,$J,d(a,b,c,d) = (a + b)“-‘(c + d)“. 

Corollary 3.4.4 can also be established for nonlinear 
codes by defining the dual in the appropriate way. 

3.5. Further Examples of Biweight Enumerators 

Example 3.5.1: The [n = 2” - 1, m, 2”-‘1 simplex 

code = dual of Hamming code, for m 2 2 

$&,&a,b,c,d) = an + na*(n-‘)(b3(n+1) + c*(“+‘) 

+ d+(“+‘)) + n(n - ‘1 (a),cd)+(“+‘). 
a 

Example 3.5.2: The [n = 2”’ - 1,2” - m - 1, 31 Ham- 
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ming code, for m 2 2 

Bd,d(a&,cy4 

1 
= (n + 1)” Olfl + 

‘(no; ‘) (cd - 2a,, + 8a,,,,) 

+ no~(“-l)((a - b + c - d)*(“+l) 

+ (a + b - c - d)t(“fl) 

+ (a - b - c + d)*(“+l) 

where G denotes a symmetric function of a,b,c,d: 

gi = ai + b’ + ci + d’ 

Let -Pei be an (n,M,,d/,) binary code, for i = 1,2. Then the 
code d = {(u, u + u): u E xZ,, u E -Qz,} is a (2n, M,M,, 
d = min (2d,,d,)) code. (Notice the improvement in d over 
the direct sum construction.) The joint weight enumerator 
of d,,d, is exactly what is required for the weight enu- 
merator of d. Since 

wt (u, u + u) = j(w) + 2k(u,u) + I(u,u) 

-Ilr,(XYY) = Al,,d2(x2JY~Y2JY). 

One may similarly write down the weight enumerators 
for codes obtained by the constructions (u, u AND u) 

(u, u OR u), where the logical operations AND, OR are applied 
componentwise. 

oij = a’(bj + cj + dj) + b’(aj + cj + d’) + ..*, i # j, 3.7. The Joint Weight Enumerator of Self-Dual Codes 

oii = aibi + aici + aidi + bici + bidi + cidi Let d = d’ and B = a’ be self-dual codes. It follows 
. . . from (3.4.1)-(3.4.4) that their joint weight enumerator 
giiii = a’b’c’d’. $,,,(a,b,c,d) is invariant under the transformation 

(This example is obtained from Example 3.5.1 using 
Corollary 3.4.4.) 

Example 3.5.3: The [a = 2”, m + 1, 2”-‘1 first-order 
Reed-Muller code, for m 2 2 

replace (3.7.1) 

%d,d(dv,4 = on + 2(n - 1)~,2,~,2 for the following values of T: 

+ 4(n - l)(n - 2)&,,. 

Example 3.5.4: To emphasize that the biweight enu- 
merator gives more information about a code than does the 
weight enumerator, we exhibit three examples of a pair of 
codes with the same weight enumerator and different bi- 
weight enumerators 

i) d, = {100,011}, d, = (100,110). 

ii) CQe, is the linear code generated by { 110000,001100, 
00001 l} and d2 is generated by {110000,011000,00111 I}. 

iii) d, is the [32,16,8] self-dual Reed-Muller code, 
d, the quadratic residue code with the same parameters 

(cf. [51). 

’ --’ y -y . (3.7.2) 

Other examples are given in Section IV-4.9. 

3.6. Applications to the Study of Code Constructions 

3.6.1. Joint Weight Enumerator of Direct Sum Codes: 
Let di be an (ni,Mi,d;) code over GF(q) for i = 1,2. The 
direct sum -Pel @ d, consists of all vectors (u,u) where 
u Ed,, v E &,, and is an (nl + n2, M,M,, d = min (d,,d,)) 
code [3, p. 3471. Since wt (u,u) = wt (u) + wt (u), 

“/v d,a&Y) = ~dl(X>YWLd&Y). 

Similarly it follows that if ai is an (ni,Mi’,di’) code for 
i = 1,2, then 

If d,8 are binary self-dual codes, then %d,B is invariant 
under some additional transformations. Let u E a, u E g. 

Then n = i(u,u) + j(q) + k(rc,u) + l(u,u), wt (u) = k(q) + 
l(u,u), and wt (u) = j(,,u) + l(u,u) must all be even. There- 
fore i,j,k,l are either all odd or all even, and so f&,% is 
invariant under the transformation (3.7.1) for the following 
values of T: 

T9 = diag (-l,- l,l,l) 

T,, = diag (- l,l,- 1,l) 

T,, = diag (-l,l,l,- l), 

f ~,~d2,~1~B2Wd~ = $~,.Bl(a,b,c,d)~~2,~~(a,b,c,d). 

3.6.2. The Weight Enumerator of the (u, u + v) Construc- 
tion: This construction is of interest because it generates all 
Reed-Muller codes, an infinite family of nonlinear single- 
error-correcting codes that are better than linear codes, as 
well as other nonlinear codes [33]. 

using the usual abbreviation for a diagonal matrix. 
Finally, consider the biweight enumerator $(a,b,c,d) of a 

binary self-dual code d. Since l(u,u) must be even for 
u, u E -Qz, $(a,b,c,d) is invariant under all changes of sign 
of a,b,c,d. Furthermore, it is invariant under all permuta- 
tions of a,b,c,d. In fact replacing each codeword u in d by 
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its complement V leaves d unchanged, and so 

$(a,b,c,d) = c c ui@,s)bjckdr 
UEd us&d 

= “5 “z# uj(“~“)bic’dk = Jqb,a,d,c), 

where the omitted arguments of the exponents of b,c,d 
agree with those of a. 

Similarly y(u,b,c,d) = $(c,d,u,b). Furthermore we may 

write j(u,b,c,d) as 

c ui(03~)bj(04J) + C C (ui(u,v)bickdL + ui(u,u+u)bickd~), 

us&d #&Ed VS.4~ 
IIf0 

where for each u # 0 we have partitioned & into d, v 
(U + .@‘J, d, n (U + ZZ’,) = 4. But k(u, u + u) = I(u,v), 
Z(u, u + a) = k(u,v), so the double sum is equal to 

.Fd “,C, (&w)bjckd” + uKw)bjc~dk), 

” 
u#O 

which is a symmetric function of c and d. Therefore 
$(u,b,c,d) = $(u,b,d,c). Iterating these three permutations 
shows that 3(u,b,c,d) is invariant under all permutations of 
its arguments. 

Therefore to characterize the biweight enumerators of 

binary self-dual codes, we must characterize polynomials 

y(u,b,c,d) that are invariant under the transformations T6, 
T7, all sign changes, and all permutations of the arguments. 

Theorem 4.2.3-([6, p. 3.591): There always exist n + I 
invariants fi,. . . ,fn+ 1 in y(G) such that any invariant is a 

rational function in fi, . . . , f,+ 1. 
However, by far the most convenient description of y(G) 

is a set of invariants fi,. . . ,f, such that any invariant is a 
polynomial in ,fi, . . . , f,. Then fi, * . ,f, is called a poly- 

nomial basis for f(G). By Theorem 4.2.1 if m > n there will 
be polynomial equations, which are called syzygies, relating 

fi,. . .,f,. 

IV. INVARIANTS 

The problems described in Sections II and III are special 
cases of the general problem of finding the invariant poly- 
nomials of a group of linear transformations. The classical 
statement and solution of this problem are as follows (see 
[6, ch. 171, [25, part II], [37]). 

Theorem 4.2.4-(Noether; see [37, pp. 275-2761): y(G) 
has a polynomial basis consisting of not more than (“L”) 
invariants, of degree not exceeding g. 

Theorem 4.2.4 says that a polynomial basis for f(G) can 
always be found. Finding invariants is fairly easy using the 
following theorem. 

Theorem 4.2.5: If f (x) is any polynomial then the average 

off(x) over the group G, 

4.1. The Problem 

Let G be a finite group of linear transformations on y1 
(complex) variables x1,x2,. . *,x,; that is, G is a multi- 
plicative group of nonsingular complex n x n matrices. 
Let g be the order of G, and let Idenote the identity matrix. 

A typical element A = (uij) of G thus stands for the 
linear transformation 

is an invariant of G. 
Proof: For any A’ E G, 

h(A’x) = j ,c, f(A’Ax) = ‘, ,c, f(Ax) = h(x) 
E E 

since the last sum is a rearrangement of the one before. 
Q.E.D. 

to characterize the invariants that are homogeneous poly- 
nomials, since any invariant is a sum of homogeneous 

invariants. 

4.2. Existence of a Basic Set of Invuriunts for Finite Groups 

DeJnition: Polynomials fi(x), * * . ,fm(x) are algebraically 
dependent if there is a polynomial p with complex co- 

efficients, not all zero, such that p(f,(x), * * . ,fm(x)) 3 0. 
Otherwise f,(x), . . . , f,(x) are algebraically independent. 

Theorem 4.2.1-([17, p. 1541): Any n + 1 polynomials 
in n variables are algebraically dependent. 

Theorem 4.2.2-([6, p. 3571): There always exist IZ 
algebraically independent invariants fi,. . . , f, in y(G); and 
so (by Theorem 4.2.1) any invariant is a root of a poly- 
nomial equation in fi,. . . ,f,. 

replace Xi by i uijxj, i = 1,2;**,n. (4.1.1) 
Furthermore, it is clear that all invariants of G can be 

j=l obtained in this way. In fact the proof of Theorem 4.2.4 

We use the same symbol A both for a transformation and 
for the matrix describing it. 

Iff(x) = f(x,;.. ,x,) is any polynomial, f(Ax) denotes 
the polynomial obtained by applying the transformation 
(4.1.1) to the variables x1,. . .,x,. 

Definition: f(x) is an invariant polynomial of G if 

f(A4 = fW> for all A E G. 

Clearly iff,g are invariants so are f + g and fg; therefore 

the invariants of G form a ring f(G). 
The main problem is to characterize 2(G). It is sufficient 

shows that a polynomial basis for the invariants of G can 
be obtained by averaging over G all monomials 

of total degree 

bl 
Xl x2 

bz . . . x bn n 

C bj I g. 

More generally, any symmetric function of the g poly- 
nomials {f (Ax); A E G} is an invariant of G. 

Finally, Theorems 4.2.6 and 4.2.7 enable one to deter- 
mine when enough invariants have been found to make a 
basis. 
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Theorem 4.2.6-([25, p. 2581): The number of linearly 
independent invariants of G of the first degree is 

!c trace (A). 
g AEG 

Theorem 4.2.7-(Molien, [26], [6, p. 3021, [25, p. 2591): 
The number of linearly independent invariants of G of 
degree v is the coefficient of 1” in the expansion of 

(4.2.8) 

We call @(A) the Molien series of G. 
Remark 4.2.9: In all the examples considered in this 

paper, it is possible to put the Molien series into the form 

1 + igl Cia6’ 

w> = n 

ig (1 - adi> ’ 

(4.2.10) 

where ci E Z ’ = {0,1,2,. . . }. Furthermore, whenever the 
Molien series is put into this form, it is then possible to 
find a polynomial basis for the invariants of G consisting of 
n algebraically independent invariants fi,. . . , f, of degrees 
d 17’. . ,d, (equal to the degrees of the denominator factors), 
together with c1 invariants of degree a,, . . ’ ,c, of degree a,, 

sayg,,.. . ,gk (corresponding to the terms in the numerator), 
which are algebraically dependent on fi,. . . ,f,, and such 
that any invariant of G is a sum of terms of the form 

fill . . *fnl?liB, (4.2.11) 

where lj E Z’, E = 0 or 1, and 1 I i I k. That is, there 
are syzygies expressing giz and gigj in terms of fi, * . * ,f,, 
917. . . ,gk, so that there is at most one gi in each term 
(4.2.11). 

This is a desirable state of affairs, since then the degrees 
of the invariants can be read off the Molien series (4.2.10). 
This happens for all Abelian groups (Section IV-4.4) for 
the groups known as u.g.g.r. (Section IV-4.8), and for all 

the other groups considered in this paper. But the exact 
determination of the groups for which it is true is an 
unsolved problem. (Partial answers to this question have 
been obtained and will appear elsewhere.) 

In the rest of the paper the invariants gr; . . ,gk that 
need never be used more than once in any term are denoted 
by an asterisk *. 

4.3. An Example 

,Consider a formally self-dual Hamming weight enu- 
merator %Y(x,y) over GF(q). By (2.6.6) this is invariant 
under the group G generated by 

In fact G = {I,T,}, since T3(q)’ 
Using (4.2.5) with f(x) = x 

x + U/&)(x + (9 - 11~1, or 

cl-1 
1 -1 * 

= I. 
we obtain the invariant 

equivalently 4r = x + 
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(& - 1)~. Using (4.2.5) with f(x) = x2 we obtain the 
invariant x2 + (l/q)(x + (q - l)~)~, or equivalently, sub- 

tracting (1 + 1/q)4r2, 42 = y(x - y). 
Any polynomial in 41,$2 is of course an invariant of G, 

and the number of products 4 r i42j of degree v is equal to 
the number of solutions of i + 2j = v, which is the co- 
efficient of 2’ in 

(1 + /J + A2 + . ..)(l + A2 + A4 + . ..) 

= l/{(l - A)(1 - AZ)}. (4.3.1) 

To see if this includes all the invariants of G we compute 
the Molien series (4.2.8). This is found to be 

Q(A) 1 ( l 1 1 = + ~ = 
2 (1 - n>2 1 - a2 

1 

(1 - A))(1 - /X2)’ 

which agrees with (4.3.1) ! We conclude that 4r ,$2 are a 
polynomial basis for the invariants of G. 

For coding applications we are interested in invariants 

of even degree. This corresponds to extending the group by 
adding the matrix -Z and the Molien series becomes 

1 
Q&v = 3(W) + W-4) = (1 _ a2)2 

and as a basis we may take 412,$2, or equivalently 43 = 
x2 + (q - l)xy, ti4 = x2 + (q - 1)~‘. Any formally self- 
dual weight enumerator over GF(q) of even degree is a 

polynomial in f$3,$4. 
For example, the code generated by {Ol}, which is 

equivalent to its dual, has weight enumerator 43, and the 
code generated by {I 1 }, which is self-dual if q is even and 
otherwise has the same weight enumerator as its dual, has 
weight enumerator 44. 

4.4. Invuriunts of Abeliun Groups 

We show that the invariants and Molien series of Abelian 
groups have the desirable properties described in Remark 
4.2.9. 

Let G be a finite Abelian group of order g acting on 

variables xi, * . . ,x,. By [25, p. 213, Theorem 81, it is pos- 
sible to redefine (by a linear transformation) the variables 

Xl,‘. *,x, so as to simultaneously diagonalize all the trans- 
formations of G. Thus each A E G has the form diag (;Lr , . * . , 
A,), where the li are the eigenvalues of A and are gth roots 
of unity. Let o be a primitive gth root of unity. 

Since G is Abelian, it is the direct product of cyclic 
groups : 

G = cl x c2 x . . + x c,, 

where ci is a cyclic group generated by diag (cYi1,0ai2,. . . , 
oPn), for i = 1; . .,m. 

Since G is diagonalized, any invariant polynomial for G 
is a sum of invariant monomials. Furthermore a monomial 

Xl x2 
bi bz...X nbn is invariant iff 

i zz I,... ,m, bj E Z’,j = l;*.,n. (4.4.1) 
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Any solution (b,, . . . ,b,) of (4.4.1) can be written as 

(b,,. * . A,) = (bl’, * . * A’) + W,, . * . d,,), 

where 0 I bi’ < g, li E 2 ‘. To every solution (bl’, . * *,b,‘) 
with 0 i bi’ < g there corresponds the invariant xbl’ . . . 
xbn’. Let these monomials be called gi,. . .,gk, of degrees 

d 1,’ * .,dk. Then a basic set of invariants consists of the n 

algebraically independent monomials 

x19,x29, * . . ,xng 

together with gi,. . . ,gk. Any invariant can be written as a 

sum of terms of the form 

(Q * * * xnygi= 

where lj E Z’, E = 0 or 1 and 1 I i I k. The number of 
linearly independent invariants of degree v is equal to the 
number of solutions of 

v = g(ll + . . . + 1,) + Edi. 

These numbers have the generating function 

(4.4.2) 

which is therefore the Molien series (4.2.8) for G. 
Often it is possible to find a simpler set of invariants 

than this, in which case there will be cancellation of a 
common factor in the numerator and denominator of 
(4.4.2). 

4.5. Example: Formally Self-Dual Complete Weight 
Enumerators over GF(3) 

Let the exponents of x,y,z count the occurrences of 
0,1,2 in a codeword. Then by (2.6.3), the complete weight 
enumerator U(x, y,z) is invariant under the group generated 

by 

w = e2ni/3 (4.5.1) 

a cyclic group of order 4. Take new variables 

a = (43 + 1)x + y + z 

b = (43 - 1)x - y - z 

f=y-z 

so A becomes diag (I,i2,i). The monomial u’bff y is invariant 
iff 2/I + y E 0 (modulo 4); and a basic set of invariants is 
given by u,b2,bf 2*,f4 with the syzygy (bf 2)2 = b2 . f 4. 
The Molien series is 

@(a) = 
I + A3 

(1 - A)(1 - A2)(1 - 1.4)’ 
(4.5.2) 

(Direct application of the theory of the previous section 
gives a more complicated set of basic invariants, corre- 

* See Remark 4.2.9. 

sponding to writing the Molien series (4.5.2) as 

Q(A) = 
1 + il + 2i2 + 3A3 + 2A4 + 3A5 + 216 + A7 + A8 

(1 - a4y 
, 

which is of the form (4.4.2)) 
The invariants of even degree have Molien series 

@cm = 1 + A4 

(1 - P)2(1 - n4) ; 

and as basic polynomials we may take u2,b2f4, and abf 2*, 
with the syzygy (abf 2)2 = u2 * b2 *f”. 

The following examples of complete weight enumerators 
of codes over GF(3) show that all four polynomials are 
necessary. 

Generators for Code Enumerator 

WI q& = x(x + s) = (*/4J3)(a2 - V), 
where s = y + z 

{0111,1210} v= h2 - 151.5 = x(x3 + s3), 
where I& = s(2x - s) 

{0011,1210} 

{0011,1200} 

= (1/2J3){(2 - J3)a2 - (2 + J3)b2) 

I + 6(h* + f’) + tabP 

v + Hh2 - f4) 

The second code is self-dual, the others equivalent to 

their duals. 

4.6. Invariants of Large Groups 

If the invariants of a subgroup H are known, then the 
invariants of G may be found from the following theorem. 

Theorem 4.6.1: Let the decomposition of G into cosets 

ofHbe 

G = A,H u A2H u . . ’ u A,H, 

where r = lGl/lHl. Then if 4(x) is an invariant of H, 

is an invariant of G, and all invariants of G may be obtained 

in this way. 
If in addition H is a normal subgroup of G (written 

H 4 G), then the application of Theorem 4.6.1 is simplified 

because of the following. 
Theorem 4.6.2: Suppose H 4 G and fi(x), . . . ,fm(x) are 

a polynomial basis for the invariants of H. Then fi(AX) is 
a polynomial in ,fi(x), . . . ,fm(x), for any A E G, 1 I i s m. 

Proof: For any B E H, f,(BAx) = fi(AB’x) = fi(AX) 
for some B’ E H. Thus fi(Ax) is an invariant of H and so is 

a polynomial in fj(X), . . . ,fm(X). 

So to find the invariants of a large composite group G it 
is usually easiest to choose a subnormal series [31, p. 1071 

for G, i.e., a chain of subgroups 

G, u G, u +. . u G 

and to successively find the invariants for G,,G,; . ‘,G 
using Theorems 4.6.1 and 4.6.2. 

Another technique for finding invariants of large groups, 
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illustrated by Maschke [23b], is first to find the invariants 
separately for two subgroups and then to find all combina- 

tions of these which are invariants of the large group. 

4.7. Example: Complete Weight Enumerators of Self-Dual 
Codes Over GF(3)’ 

We continue Example 4.5, imposing the additional re- 

quirement that the code be self-dual. By (2.6.3), (2.6.7), and 
(2.6.8), the complete weight enumerator g(x,y,z) is invariant 
under the transformations A of (4.5.1) and B = diag (l,o,w). 
A and B generate a group G of order 96 that has a subnormal 
series 

G, Q G, Q G, Q G. 

First, G, consists of Z and 

1 0 0 
- 0 0 1 ) 

i 1 0 1 0 

has Molien series (1 + 1,‘)/{(1 - /2)(1 - /2’)“}, and has 
basic invariants f = y - z, 8, = x2, e3 = xs*, 0, = s2, 
where s = y + z, with syzygy 13,~ = 02d4. 

Second, G, consists of the 4 cosets of G, with coset 
representatives 

Z, -iA, ?f; I2 i2j; -A(; i: fj; 

where jL = l/(i&). The Molien series is (1 + L6)/{(1 - i$) . 
(1 - A”)‘} and b asic invariants are f, * = x(x” + s3) = 

0,’ + 8,8,, 0, = s(s3 - 8x3) = 19,~ - 80,8,, and d6* = 
s6 + 2ox3s3 - 8x6 = 043 + 208,030, - 8ez3, with syzygy 
OS2 = 853 + 64$3. The invariants $,e5,e6* are obtained 
by averaging x4,s4,x6 over the cosets, using Theorem 4.6.1. 

Third, G, consists of the 3 cosets of G, with coset repre- 
sentatives Z,B,B’, and has Molien series Q3 = (1 + %6 + 
1L9)/{(1 - 1+“)(1 - JL4)(1 - n”)}. Clearly the invariants of 
G, are exactly those invariants of G, in which each term 
xiyjz“ has j + k = 0 (mod 3). Basic invariants are f3,$, 

e69f 2e5*do52*~ with syzygies (,f28,)” = f 3 .ft?52, ,f28, . 
f&2 = f3(8,j2 - 64G3), (fe,‘)’ = f28,(&j2 - 64$3). 

Finally G consists of the 4 cosets of G, with coset repre- 
sentatives f Z, + iZ, and has Molien series @,(A) = t{03(A) + 
03(iA) + 03(-A) + @3(-iIL)} = (1 + 4A12 + L2”)/ 
((1 - A”)( 1 - 1’2)2}. The invariants are all invariants of 
G, in which the degree is a multiple of 4, and so a set of 
basic invariants is IC/,f’2,862,f686*,f28g96*,f4e52*,,f88gi, 

f108,286*. (We omit the 15 syzygies.) 
If these invariants are denoted by ,fi,f2,f3,gl,. 9 . ,g5, we 

conclude [in agreement with Remark (4.2.9)] that the 
complete weight enumerator of any self-dual code over 
GF(3) is a sum of terms of the form f,tif2t2f3t3gi8, where 
ljEZ+,s=Oorl,andl 1i15.Forexample,$isthe 
enumerator of a code given in Section IV-4.5, and the 
[ 12,6,6] Golay code has enumerator U(x, y,z) given by 

1 This section is essentially due to McEliece [24]. 

g = x12 + y'2 + 212 + 22(xhy6 + x6z6 + y6z6) 

+ 220(xhy3z3 + x3y6z3 + x3y3z6) 

= 2-1’{1280$3 + 12(f1’ + 662) + 660(f48,2 + f8&) 
+ 704f686}. 

4.8. Unitary Groups Generated by Repections 

For the finite groups known as unitary groups generated 
by reflections (u.g.g.r.) the ring of invariants has a par- 
ticularly simple structure. We need not give their definition 
here, but just remark that there are 37 types of irreducible 
u.g.g.r., a complete list being given in [32], and that they 
include the symmetry groups of the regular polytopes [8], 
[9, table lo]. For our purposes their important property is 
given by the following theorem. 

Theorem 4.8.l-(Shephard and Todd [32]): A group G 
acting on n variables is a u.g.g.r. iff G has a set of basic 

invariants consisting of n algebraically independent poly- 
nomials fi,. * . ,f,. Furthermore the product of the degrees 

ml,* . . ,m, of these invariants is equal to the order of G. 

Thus the Molien series for a u.g.g.r. has the form 

1 
I 

h (1 - P). 
i=l 

The numbers mi are tabulated in [32]; see also [7]. 

4.9. Example: Biweight Enumerators of SeEf-Dual Codes 

By Section 111-3.7 the biweight enumerator 2(a,b,c,d) of 
a binary self-dual code is invariant under the group G2 
generated by the matrices T,,T,, all sign changes, and all 
4 x 4 permutation matrices. G, has a subnormal series 
Go Q G, Q G,. 

First, Go is generated by the 24 permutations and the 16 
matrices diag (+ 1, + 1, k 1, + l), has order 384, and the 
invariants are all symmetric functions in a2,b2,c2,d2. 

Second, G, is generated by Go and T8 = T6T7. It is not 
difficult to show that G, is the u.g.g.r. [3,4,3], which is the 

symmetry group of the 24-cell [8, p. 1491, and has order 
1152. 

A set of basic invariants for G, is, in the symmetric 
function notation of (3.5.2) : 

A= 

B= 

c= 

D= 

6a 222 - 622r72 + ga,3 

124111 - 3C22262 + c72z2 - +622C722 + &a2” 

-4a?,,,a,, + Sa1111a22 + $422 + +a223 

_l- 2a22 
1 

24a22 - $a222a22a2 + -&a22a24 - ~~ a26 
9. 27 

and the product of their degrees is 2 . 6 * 8 . 12 = 1152, 
verifying Theorem 4.8.1. (These were found with the help 

of the symmetric function tables in [lo].) 
Finally G, = G, u T6GI has order 2304, Molien series 

(1 + J.‘“)/{(l - L2)(1 - A8)(1 - A”)(1 - A’“)}, and basic 
invariants A,C,B2,BD*,D2 of degrees 2,8,12,18,24, with 
syzygy (BD)2 = B2 ’ D2. 

Thus the biweight enumerator of any binary self-dual code 
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is a polynomial in A,C,B2,BD*,D2. The following examples 

of self-dual codes show that all five polynomials are neces- 
sary. For generators of these codes see Pless’s list [29]. 

Code Biweight Enumerator” 

c, = {OO,ll} A 

As = [8,4,4] Hamming code 16C 

BIZ = 112,641 -iA6 + 20A’C + 48’ 

11s = UV,4 -+zLgA9 + y(A5C + A3BZ) 
+ s=,z,CZ _ LBD 3 3 2 

The [24,12,8] Golay code -&llC,3 + 702’) 

a Where C2 = 16C, D2 = 576(D + &A3B). 

V. CHARACTERIZATION OF WEIGHT ENUMERATORS 

OF SELF-DUAL CODES 

5.1. Introduction 

For each weight enumerator, we describe the group G 
of transformations under which it is invariant by giving the 
generators (enclosed within diamond brackets) and the 

degree n (the number of variables on which G acts). Then 
we give the Molien series Q(n) (4.2.8), and where possible 
a set of basic polynomial invariants fi,. . . ,f,,gl, . . 9 ,g,, the 
gi being indicated by asterisks. Any weight enumerator is a 
sum Of terms fill; * *,fnLngiE, lj E Z+, E = 0 or 1, 1 I 
i I m. 

5.2. Formally Self-Dual Weight Enumerators (Section 11-2.6) 

5.2.1. Complete Weight Enumerators over GF(q): G = 
(T,), a cyclic group of order 4; n = q. If q is a prime, 
4@(A) is 

(1 - n>-q + 2(1 - /?)-@+i)‘4 + (1 - i;>-’ 

. (1 _ p-ko/2, q E -l(mod4) 

(1 - 2)-q + 2(1 - q-y1 - j14)-(q-1)/4 

+ (1 - A)-‘(1 - Jyq-w, q = 1 (mod 4). 

For the case q = 3 it was shown in Section IV-4.5 that 
for invariants of even degree there are four basic poly- 
nomials, which in the notation of that section are a2,b2,c4, 

abc2*. Basic invariants are not known for q > 3. 
5.2.2. Lee Weight Enumerators over GF(q): G = CT,), 

a cyclic group of order 2; n = +(q + 1). If q is a prime, 
2@(A) is 

(1 - A)-” + (1 - iq-‘G, q E -l(mod4) 

(1 - IL)-’ + (1 - /I)-‘(1 - A2)-(“-1)12, q E 1 (mod 4) 

For q = 5, let the exponents of x,y,z count the occur- 
rences of 0, -t 1, k 2 in a codeword. Then basic polynomials 

are f = y - z, $2 = x + 3(J5 - l)(y + z), $3 = x2 + 
4yz. For invariants of even degree, basic polynomials are 
f2,,f$2*,$22,$3. Basic invariants are not known for q > 5. 

5.2.3. Hamming Weight Enumerators over GF(q): G = 
(T3(q)), a cyclic group of order 2; n = 2. For invariants 
of even degree, CD,(%) = (1 - L2)-2 and basic polynomials 

are $3 = x2 + (q - l)xy, 44 = x2 + (q - l)y2 (see Sec- 
tion IV-4.3). 

5.3. Weight Enumerators of Self-Dual Codes 

5.3.1. Complete Weight Enumerators over GF(q): G = 
(T,,T,,T,), n = q. Gleason [15] and McEliece et al. [24] 
have determined the order of G and the Molien series in the 
general case. 

For the case q = 3 a set of eight basic polynomials were 
given in Section 4.7. 

5.3.2. Lee Weight Enumerators over GF(q): G = 
(T2,T4,T5), n = +(q + 1). Again McEliece et al. [24] have 
determined the order of G and the Molien series in the 
general case. 

For the case q = 5, G is generated by A = diag (1 ,o,w4), 

i 

1 2 

B=;T ; t2;z3 -;-f;;j c=[ ; Ij, 

where o5 = 1. Now the subgroup G, generated by A and 
BC is the classical 3-dimensional representation of the 

alternating group of order 60, and has Molien series 
(1 + A’“)/{(1 - A’)(1 - n6)(1 - A”)}. A set of basic in- 
variants of G,, of degrees 2,6,10,15, is given by Klein [I 8, 
pp. 236-2431. G itself is the u.g.g.r. [3,5], the symmetry 
group of the icosahedron, and has order 120. Basic in- 
variants of G are, as given by Klein and writing Y for 2y 
and Z for 22, 

A = x2 + YZ, 

B = 8x4YZ - 2x2Y2Z2 + Y3Z3 - x(Y5 + Z”), 

C = 320x6Y2Z2 - 160x4Y3Z3 + 20x2Y4Z4 + 6Y5Zs 
- 4x( Y5 + Z 5)(32x4 - 20x2 YZ + 5 Y2Z2) 

+ Y1° + Z’O. 

Gleason and Pierce [16] independently found this basis 
and have very kindly supplied the following examples of 
codes. 

Generators for Code 

{la 
{100133,010313,001331} 

{1122OOOOO0,0000100122,0000010213, 
1414141414,2420430100) 

Lee Weight Enumerator 

A 

A3 - +B 

A5 - zAZB + &C 8 

For the case q = 7, G is generated by A = diag (l,w, 

w4,02), 

i 

1 2 2 2 

B=l 1 w + w6 W2 + W5 o3 + W4 

J7 1 m2 + CD5 W3 + CD4 0 + W6 
1 CD3 + CD4 w + f# CD2 + fi? 

1 0 0 0 

c= i 0 0 1 0 i 

0001. 

0 1 0 0 

Since the length of the code must be a multiple of 4, we 
are only interested in invariants of degree divisible by 4. 
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These invariants are unchanged if B is replaced by iB. The 
group generated by A, iB, and C has order 336 and is im- 
portant in elliptic function theory and in geometry. 
(Maschke [23b], Edge [12].) A set of basic invariants was 
given by Maschke in 1893. For completeness and to correct 
some errors in Maschke’s work (and also because of the 
inaccessibility of [23b]), we reproduce them here. Let the 
exponents of ti,x, y,z count the occurrences of 0, f I, _C 2, _+ 3 
in a codeword; and write t2 instead of 2x, t3 instead of 2y, 
and ,t, instead of 22. 

Let a = t2t3t4, b = tz3t3 + tj3t4 + t43t2, c = t22t33 + 
t32t43 + t4’tz3, d = a2 + t2t35 + t3tb5 + t4tz5, e = 7ab + 
t2’ + t3’ + t4’. 

Then there are 7 basic invariants, of degrees 4,6,8,8,10, 

12,14, as follows: 

Q4 = 2t14 + 6at, + b 

cD6 = 8t16 - 20at13 - lObt,’ - lOct, - 14~’ - d 

08 = t,a - 2at15 + bt14 + 2ct13 + (6a2 + d)t,’ 

-I- 2abt, + UC 

IY, = t,’ + 14ati5 - 7bt14 + 14cti3 - 7dt12 + et, 

alo = -8t,” - 20at17 + 14bt16 + 14cti5 
-t- 7(16a2 - d)t14 + (42ab - e)t13 

+ 7(b2 + 3ac)t,’ + 7(7a3 + bc)tI + ae 

Q12 = 26t11’ + 202at19 - 33bt,’ + 120cti7 
+ 14(13a2 + d)t16 + (378ab - 23e)t15 
-I- 7(35ac - 2b2)t14 + 14(49a3 - load + 5bc)t13 
+ 2a(lOe + 49ab)t,’ + (49~‘~ + 49ab2 
- 7cd + 2be)t, + ce 

tD14 = 48t114 + 7.24at,” + 7.44bt,” - 28.57ct19 
+ 63(84a2 + 22d)t,’ - 8(37e + 490ab)t17 
+ 4.49(12ac f 5b2)t16 + 196(15ad - 13bc)t15 
+ 14(13.14c2 - 86ae - 7bd)t14 + 28(11be 
- 42cd)t13 + 14(21d2 - 16ce)ti’ + 14det, 
- e2. 

(There are 5 syzygies, of degrees 20, 22, 24, 24, and 26.) 
For example, the code generated by { 1112,023 1 } has Lee 

enumerator 5Q4. 
5.3.3. Hamming Weight Enumerators over GF(q): In 

going from formally self-dual enumerators to self-dual 
codes, for general q nothing can be added to what was said 
in (5.2.3). But for small q we can study the effect of imposing 
the restriction that the Hamming weights of all codewords 
be divisible by a constant. According to the following 
theorem there are four cases in which this can happen. 

Theorem .5.3.4-(Gleason and Pierce [2]): If d is a self- 
dual code over GF(q) in which all Hamming weights are 
divisible by c, then the only possible values for the pair 

(w) are (2,2), (2,4), (3,3), and (4,2). 
We consider these cases separately. 
5.3.5. Binary Codes: A binary self-dual code auto- 

matically has all weights divisible by 2. The weight enu- 
merator is invariant under G = (T,(2), diag (l,- l)), a 
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dihedral group of order 16, and a u.g.g.r. Basic invariants 

are $i = x2 + y2, $2 = x8 + 14x4y4 + y’, the latter 
being the enumerator of the [8,4,4] Hamming code 

(Burnside [6, p. 3621, Gleason [lS]). 
5.3.6. Binary Codes With Weights Divisible by 4: G = 

(T,(2), diag (l,i)), a u.g.g.r. of order 192. Basic invariants 
are $2 and $3 = x4y4(x4 - y4)4 (Shephard and Todd [32], 

Gleason [15]). The [24,12,8] Golay code has enumerator 
$23 - 672$,. 

5.3.7. Ternary Codes: A ternary self-dual code auto- 
matically has all weights divisible by 3. G = (T,(3), 
diag (l,e2ni’3)), a u.g.g.r. of order 48. Basic invariants are 
$4 = x4 + 8xy3, $5 = y3(x3 - y3)3 (Shephard and Todd 
[32], Gleason [15]). The [12,6,6] Golay code has enumer- 

ator Gb4 + 24$,. As a verification, we observe that the 8 
basic invariants of Section IV-4.7 reduce to 11/4,$5 when 

y = z. 
5.3.8. Quaternary Codes With Weights Divisible by 2: 

G = (T,(4), diag (1, - l)), a dihedral group of order 12, 
and a u.g.g.r. Basic invariants are $6 = x2 -I- 3y2, ti7 = 

Y2(X2 - Y > 1 ’ ’ The code generated by (llwOOw,loloOO, 

lOolwO}, where m2 + o + 1 = 0, has enumerator $63 - 

9*7. 

5.4. Joint Weight Enumerators of Binary Codes (Section 
111-3.1) 

5.4.1. Joint Enumerator of Self-Dual Codes: Let &,g be 
binary self-dual codes. By Section 111-3.7 their joint weight 
enumerator $(a,b,c,d) is invariant under G = ( T6,T7,T9, 
TIo,TI1), of order 128, and 

@(/I) = 
1 + A8 + Al0 + Al8 

(1 - n2)(1 - A”)(1 - As)2 ’ 

The seven invariants have been calculated. 
5.4.2. Biweight Enumerator of a Binary Self-Dual Code: 

The five basic polynomials are given in Section IV-4.9. 
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Correspondence 

Correlation Properties of the Zero-Crossing Intervals of 

Gaussian Processes 

TADASI MIMAKI 

Abstract-An experimental study is reported of the correlation 
properties of the intervals between zero crossings of a Gaussian process. 
The validity of an assumption under which McFadden derived certain 
theoretical results is examined. It is found that the assumption is valid 
only for processes with narrow-band spectra. For broad-band spectra, 
the correlation coefficients of the intervals decay slowly and oscillate 
with increasing separation between intervals. 

I. INTRODUCTION 

Heretofore, little has been known about the correlations 
between the lengths of the zero-crossing intervals of a real-valued 

stationary random process, either theoretically or experimentally. 

McFadden [l] derived two relations among the correlation 

coefficients ~~ of the 0th and ith zero-crossing interval lengths. 

Earlier, McFadden [2] had derived expressions for the ~~ and 
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The author was with the Department of Physics, Faculty of Science, 

Tokyo University, Tokyo, Japan. He is now with the University of Electro- 
communications, Chofu-Shi, Tokyo, Japan. 

for the variance a2 of the interval lengths, under the assumption 

that the successive zero-crossing intervals form a Markov chain 

in the wide sense. Rainal [3] experimentally obtained X, for 

Gaussian processes and reported that in some cases the com- 
parisons with the theoretical approximations by McFadden 

were unsatisfactory. 

In this correspondence the experimental values of ~~ are given 
for Gaussian processes having seventh-order Butterworth spectra. 

It is shown that the Markov assumption is not valid except for 

a narrow-band spectrum. For a relatively broad-band spectrum, 
the coefficients ~~ oscillate and slowly decay as i increases. 

II. FUNDAMENTAL IDENTITIES 

McFadden [I ] derived the following expressions about the 
correlation coefficients ~~ between zero-crossing interval lengths: 

igl (- l)‘Ki = 5 - ; 

and 

(2) 


