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Abstract. Let A be an operator with the polar decomposition A = U|A|. The Aluthge transform of the

operator A, denoted by Ã, is defined as Ã = |A|
1
2 U|A|

1
2 . In this paper, first we generalize the definition of

Aluthge transform for non-negative continuous functions f , 1 such that f (x)1(x) = x (x ≥ 0). Then, by using
this definition, we get some numerical radius inequalities. Among other inequalities, it is shown that if A
is bounded linear operator on a complex Hilbert spaceH, then

h (w(A)) ≤
1

4

∥

∥

∥

∥

h
(

1
2 (|A|)

)

+ h
(

f 2 (|A|)
)

∥

∥

∥

∥

+
1

2
h
(

w
(

Ã f ,1

))

,

where f , 1 are non-negative continuous functions such that f (x)1(x) = x (x ≥ 0), h is a non-negative and
non-decreasing convex function on [0,∞) and Ã f ,1 = f (|A|)U1(|A|).

1. Introduction and preliminaries

2. Introduction

Let B(H) denotes the C∗-algebra of all bounded linear operators on a complex Hilbert spaceH with an
inner product 〈·, ·〉 and the corresponding norm ‖ · ‖. In the case when dimH = n, we identify B(H) with
the matrix algebraMn of all n × n matrices with entries in the complex field. For an operator A ∈ B(H), let
A = U|A| (U is a partial isometry with kerU = range|A|⊥) be the polar decomposition of A. The Aluthge

transform of the operator A, denoted by Ã, is defined as Ã = |A|
1
2 U|A|

1
2 . In [7, 21], a more general notion

called t-Aluthge transform has been introduced which has later been studied. This is defined for any
0 < t ≤ 1 by Ãt = |A|

tU|A|1−t. Clearly, for t = 1
2 we obtain the usual Aluthge transform. For the case t = 1, the

operator Ã1 = |A|U is called the Duggal transform of A ∈ B(H). For A ∈ B(H), we generalize the Aluthge
transform of the operator A to the form

Ã f ,1 = f (|A|)U1(|A|),

in which f , 1 are non-negative continuous functions such that f (x)1(x) = x (x ≥ 0). The numerical radius of
A ∈ B(H) is defined by

w(A) := sup{|〈Ax, x〉| : x ∈H, ‖x‖ = 1}.
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It is well known that w( · ) defines a norm on B(H), which is equivalent to the usual operator norm ‖ · ‖. In
fact, for any A ∈ B(H), 1

2‖A‖ ≤ w(A) ≤ ‖A‖; see [8]. Let r(·) denote the spectral radius. It is well known
that for every operator A ∈ B(H), we have r(A) ≤ w(A). An important inequality for ω(A) is the power
inequality stating that ω(An) ≤ ω(A)n (n = 1, 2, · · · ). For further information about the numerical radius
we refer the reader to [10–12] and references therein. The quantity w(A) is useful in studying perturbation,
convergence and approximation problems as well as integrative methods, etc. For more information see
[3, 6, 9, 13–15, 17].

Let A,B,C,D ∈ B(H). The operator matrices

[

A 0
0 D

]

and

[

0 B
C 0

]

are called the diagonal and off-

diagonal parts of the operator matrix

[

A B
C D

]

, respectively.

In [16], it has been shown that if A is an operator in B(H), then

w(A) ≤
1

2

(

‖A‖ + ‖A2‖
1
2

)

. (1)

Several refinements and generalizations of inequality (1) have been given; see [1, 4, 5, 21–24]. Yamazaki
[22] showed that for A ∈ B(H) and t ∈ [0, 1] we have

w(A) ≤
1

2

(

‖A‖ + w(Ãt)
)

. (2)

Davidson and Power [7] proved that if A and B are positive operators in B(H), then

‖A + B‖ ≤ max{‖A‖, ‖B‖} + ‖AB‖
1
2 . (3)

Inequality (3) has been generalized in [2, 20] and improved in [18, 19]. In [20], the author extended this
inequality to the form

‖A + B∗‖ ≤ max{‖A‖, ‖B‖} +
1

2

(∥

∥

∥|A|t|B∗|1−t
∥

∥

∥ +
∥

∥

∥|A∗|1−t|B|t
∥

∥

∥

)

, (4)

in which A,B ∈ B(H) and t ∈ [0, 1].

In this paper, by applying the generalized Aluthge transform of operators, we establish some inequalities
involving the numerical radius. In particular, we extend inequalities (2) and (4) for two non-negative
continuous functions. We also show some upper bounds for the numerical radius of 2 × 2 operator
matrices.

3. main results

To prove our numerical radius inequalities, we need several known lemmas.

Lemma 3.1. [1, Theorem 2.2] Let X,Y,S,T ∈ B(H). Then

r(XY + ST) ≤
1

2
(w(YX) + w(TS)) +

1

2

√

(w(YX) − w(TS))2
+ 4‖YS‖‖TX‖.

Lemma 3.2. [16, 22] Let A ∈ B(H). Then

(a) w(A) = max
θ∈R

∥

∥

∥

∥

Re
(

eiθA
)

∥

∥

∥

∥

.

(b) w

([

0 A
0 0

])

= 1
2‖A‖.
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Polarization identity: For all x, y ∈H, we have

〈

x, y
〉

=
1

4

3
∑

k=0

∥

∥

∥x + iky
∥

∥

∥

2
ik.

Now, we are ready to present our first result. The following theorem shows a generalization of inequality
(2).

Theorem 3.3. Let A ∈ B(H) and f , 1 be two non-negative continuous functions on [0,∞) such that f (x)1(x) =
x (x ≥ 0). Then, for all non-negative and non-decreasing convex function h on [0,∞), we have

h (w(A)) ≤
1

4

∥

∥

∥

∥

h
(

1
2 (|A|)

)

+ h
(

f 2 (|A|)
)

∥

∥

∥

∥

+
1

2
h
(

w
(

Ã f ,1

))

.

Proof. Let x be any unit vector. Then

Re
〈

eiθAx, x
〉

= Re
〈

eiθU |A| x, x
〉

= Re
〈

eiθU1 (|A|) f (|A|) x, x
〉

= Re
〈

eiθ f (|A|) x, 1 (|A|) U∗x
〉

=
1

4

∥

∥

∥

∥

(

eiθ f (|A|) + 1 (|A|) U∗
)

x
∥

∥

∥

∥

2

−
1

4

∥

∥

∥

∥

(

eiθ f (|A|) − 1 (|A|) U∗
)

x
∥

∥

∥

∥

2

(by polarization identity)

≤
1

4

∥

∥

∥

∥

(

eiθ f (|A|) + 1 (|A|) U∗
)

x
∥

∥

∥

∥

2

≤
1

4

∥

∥

∥

∥

(

eiθ f (|A|) + 1 (|A|) U∗
)

∥

∥

∥

∥

2

=
1

4

∥

∥

∥

∥

(

eiθ f (|A|) + 1 (|A|) U∗
) (

e−iθ f (|A|) +U1 (|A|)
)

∥

∥

∥

∥

=
1

4

∥

∥

∥

∥

1
2 (|A|) + f 2 (|A|) + eiθÃ f ,1 + e−iθ

(

Ã f ,1

)∗
∥

∥

∥

∥

≤
1

4

∥

∥

∥1
2 (|A|) + f 2 (|A|)

∥

∥

∥ +
1

4

∥

∥

∥

∥

eiθÃ f ,1 + e−iθ
(

Ã f ,1

)∗
∥

∥

∥

∥

=
1

4

∥

∥

∥1
2 (|A|) + f 2 (|A|)

∥

∥

∥ +
1

2

∥

∥

∥

∥

Re
(

eiθÃ f ,1

)

∥

∥

∥

∥

≤
1

4

∥

∥

∥1
2 (|A|) + f 2 (|A|)

∥

∥

∥ +
1

2
w

(

Ã f ,1

)

.

Now, taking the supremum over all unit vectors x ∈ H and applying Lemma 3.2 in the above inequality
produces

w (A) ≤
1

4

∥

∥

∥1
2 (|A|) + f 2 (|A|)

∥

∥

∥ +
1

2
w

(

Ã f ,1

)

.
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Therefore,

h (w (A)) ≤ h
(

1

4

∥

∥

∥1
2 (|A|) + f 2 (|A|)

∥

∥

∥ +
1

2
w

(

Ã f ,1

)

)

= h

(

1

2

∥

∥

∥

∥

∥

∥

12 (|A|) + f 2 (|A|)

2

∥

∥

∥

∥

∥

∥

+
1

2
w

(

Ã f ,1

)

)

≤
1

2
h

(
∥

∥

∥

∥

∥

∥

12 (|A|) + f 2 (|A|)

2

∥

∥

∥

∥

∥

∥

)

+
1

2
h
(

w
(

Ã f ,1

))

(by the convexity of h)

=
1

2

∥

∥

∥

∥

∥

∥

h

(

12 (|A|) + f 2 (|A|)

2

)
∥

∥

∥

∥

∥

∥

+
1

2
h
(

w
(

Ã f ,1

))

≤
1

4

∥

∥

∥

∥

h
(

1
2 (|A|)

)

+ h
(

f 2 (|A|)
)

∥

∥

∥

∥

+
1

2
h
(

w
(

Ã f ,1

))

(by the convexity of h).

Theorem 3.3 includes some special cases as follows.

Corollary 3.4. Let A ∈ B(H). Then, for all non-negative and non-decreasing convex function h on [0,∞) and all
t ∈ [0, 1], we have

h (w(A)) ≤
1

4

∥

∥

∥

∥

h
(

|A|2t
)

+ h
(

|A|2(1−t)
)

∥

∥

∥

∥

+
1

2
h
(

w
(

Ãt

))

. (5)

Corollary 3.5. Let A ∈ B(H). Then, for all t ∈ [0, 1] and s ≥ 1, we have

ws(A) ≤
1

4
‖ |A|2ts + |A|2(1−t)s ‖ +

1

2
ws

(

Ãt

)

.

In particular,

ws(A) ≤
1

2

(

‖A‖s + ws
(

Ã
))

.

Proof. The first inequality follows from inequality (5) for the function h (x) = xs (s ≥ 1). For the particular
case, it is enough to put t = 1

2 .

Theorem 3.3 gives the next result for the off-diagonal operator matrix

[

0 A
B 0

]

.

Theorem 3.6. Let A,B ∈ B(H), f , 1 be two non-negative continuous functions on [0,∞) such that f (x)1(x) =
x (x ≥ 0) and s ≥ 1. Then

ws

([

0 A
B 0

])

≤
1

4
max

(∥

∥

∥1
2s (|A|) + f 2s (|A|)

∥

∥

∥ ,
∥

∥

∥1
2s (|B|) + f 2s (|B|)

∥

∥

∥

)

+
1

4

(

‖ f (|B|)1(|A∗|)‖s + ‖ f (|A|)1(|B∗|)‖s
)

.
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Proof. Let A = U|A| and B = V|B| be the polar decompositions of A and B, respectively, and let T =

[

0 A
B 0

]

.

It follows from the polar decomposition of T =

[

0 U
V 0

] [

|B| 0
0 |A|

]

that

T̃ f ,1 = f (|T|)

[

0 U
V 0

]

1(|T|)

=

[

f (|B|) 0
0 f (|A|)

] [

0 U
V 0

] [

1(|B|) 0
0 1(|A|)

]

=

[

0 f (|B|)U1(|A|)
f (|A|)V1(|B|) 0

]

.

Using |A∗|2 = AA∗ = U|A|2U∗ and |B∗|2 = BB∗ = V|B|2V∗ we have 1(|A|) = U∗1(|A∗|)U and 1(|B|) = V∗1(|B∗|)V
for every non-negative continuous function 1 on [0,∞). Therefore,

w
(

T̃ f ,1

)

= w

([

0 f (|B|)U1(|A|)
f (|A|)V1(|B|) 0

])

≤ w

([

0 f (|B|)U1(|A|)
0 0

])

+ w

([

0 0
f (|A|)V1(|B|) 0

])

= w

([

0 f (|B|)U1(|A|)
0 0

])

+ w

(

W∗

[

0 f (|A|)V1(|B|)
0 0

]

W

)

= w

([

0 f (|B|)U1(|A|)
0 0

])

+ w

([

0 f (|A|)V1(|B|)
0 0

])

=
1

2
‖ f (|B|)U1(|A|)‖ +

1

2
‖ f (|A|)V1(|B|)‖

(by Lemma 3.2(b))

=
1

2
‖ f (|B|)UU∗1(|A∗|)U‖ +

1

2
‖ f (|A|)VV∗1(|B∗|)V‖

≤
1

2
‖ f (|B|)1(|A∗|)‖ +

1

2
‖ f (|A|)1(|B∗|)‖, (6)

where W =

[

0 I
I 0

]

is unitary. Applying Theorem 3.3 and inequality (6), we have

ws (T) ≤
1

4

∥

∥

∥1
2s (|T|) + f 2s (|T|)

∥

∥

∥ +
1

2

(

ws
(

T̃ f ,1

))

≤
1

4
max

(∥

∥

∥1
2s (|A|) + f 2s (|A|)

∥

∥

∥ ,
∥

∥

∥1
2s (|B|) + f 2s (|B|)

∥

∥

∥

)

+
1

2

[

1

2

(

‖ f (|B|)1(|A∗|)‖ + ‖ f (|A|)1(|B∗|)‖
)

]s

≤
1

4
max

(∥

∥

∥1
2s (|A|) + f 2s (|A|)

∥

∥

∥ ,
∥

∥

∥1
2s (|B|) + f 2s (|B|)

∥

∥

∥

)

+
1

4
‖ f (|B|)1(|A∗|)‖s +

1

4
‖ f (|A|)1(|B∗|)‖s

(by the convexity h(x) = xs).
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Corollary 3.7. Let A,B ∈ B(H). Then, for all t ∈ [0, 1] and s ≥ 1, we have

w
s
2 (AB) ≤

1

4
max

(∥

∥

∥|A|2ts + |A|2(1−t)s
∥

∥

∥ ,
∥

∥

∥|B|2ts + |B|2(1−t)s
∥

∥

∥

)

+
1

4

(∥

∥

∥|A|t |B∗|1−t
∥

∥

∥

s
+

∥

∥

∥|B|t |A∗|1−t
∥

∥

∥

s)

.

Proof. Applying the power inequality of the numerical radius (w(An) ≤ wn(A) [19]), we have

w
s
2 (AB) ≤ max

(

w
s
2 (AB) ,w

s
2 (BA)

)

= w
s
2

([

AB 0
0 BA

])

= w
s
2













[

0 A
B 0

]2










≤ ws

([

0 A
B 0

])

≤
1

4
max

(∥

∥

∥|A|2ts + |A|2(1−t)s
∥

∥

∥ ,
∥

∥

∥|B|2ts + |B|2(1−t)s
∥

∥

∥

)

+
1

4

(∥

∥

∥|A|t |B∗|1−t
∥

∥

∥

s
+

∥

∥

∥|B|t |A∗|1−t
∥

∥

∥

s)

(by Theorem 3.6).

Corollary 3.8. Let A,B ∈ B(H) be positive operators. Then, for all t ∈ [0, 1] and s ≥ 1, we have

∥

∥

∥

∥

A
1
2 B

1
2

∥

∥

∥

∥

s

≤
1

4
max

(∥

∥

∥Ats + A(1−t)s
∥

∥

∥ ,
∥

∥

∥Bts + B2(1−t)s
∥

∥

∥

)

+
1

4

(∥

∥

∥AtB1−t
∥

∥

∥

s
+

∥

∥

∥BtA1−t
∥

∥

∥

s)

.

Proof. Since the spectral radius of any operator is dominated by its numerical radius, then r
1
2 (AB) ≤ w

1
2 (AB) .

Applying a commutativity property of the spectral radius, we get

r
s
2 (AB) = r

s
2

(

A
1
2 A

1
2 B

1
2 B

1
2

)

= r
s
2

(

A
1
2 B

1
2 B

1
2 A

1
2

)

= r
s
2

(

A
1
2 B

1
2

(

A
1
2 B

1
2

)∗)

=

∥

∥

∥

∥

A
1
2 B

1
2

(

A
1
2 B

1
2

)∗
∥

∥

∥

∥

s
2

=

∥

∥

∥

∥

A
1
2 B

1
2

∥

∥

∥

∥

s

. (7)

Now, the result follows from Corollary 3.7.

An important special case of Theorem 3.6, which generalizes inequality (4) can be stated as follows.

Corollary 3.9. Let A,B ∈ B(H) and s ≥ 1. Then

‖A + B‖s ≤
1

22−s
max

(∥

∥

∥|A|2ts + |A|2(1−t)s
∥

∥

∥ ,
∥

∥

∥|B∗|2ts
+ |B∗|2(1−t)s

∥

∥

∥

)

+
1

22−s

(∥

∥

∥|A|t |B|1−t
∥

∥

∥

s
+

∥

∥

∥|B∗|t |A∗|1−t
∥

∥

∥

s)

.
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In particular, if A and B are normal, then

‖A + B‖s ≤
1

21−s
max (‖A‖s , ‖B‖s) +

1

21−s
‖AB‖

s
2 .

Proof. Applying Lemma 3.2 and Theorem 3.3, we have

‖A + B∗‖s = ‖T + T∗‖s

≤ 2smax
θ∈R

∥

∥

∥

∥

Re
(

eiθT
)

∥

∥

∥

∥

s

= 2sws (T)

≤
2s

4
max

(∥

∥

∥|A|2ts + |A|2(1−t)s
∥

∥

∥ ,
∥

∥

∥|B|2ts + |B|2(1−t)s
∥

∥

∥

)

+
2s

4

(∥

∥

∥|A|t |B∗|1−t
∥

∥

∥

s
+

∥

∥

∥|B|t |A∗|1−t
∥

∥

∥

s)

(by Theorem 3.6),

where T =

[

0 A
B 0

]

, f (x) = xt, and 1(x) = x1−t. Now, the desired result follows by replacing B by B∗. For

the particular case t = 1
2 . If A and B are normal, then |B∗| = |B| and |A∗| = |A|. Applying equality (7) for the

operators |A|
1
2 and |B|

1
2 , we have

∥

∥

∥

∥

|A|
1
2 |B|

1
2

∥

∥

∥

∥

s

= r
s
2 (|A| |B|)

≤ ‖|A| |B|‖
s
2

= ‖U∗AB∗V‖
s
2

= ‖AB∗‖
s
2 ,

where A = U|A| and B = V |B| are the polar decompositions of the operators A and B. This completes the
proof of the corollary.

In the next result, we show another generalization of inequality (2).

Theorem 3.10. Let A ∈ B(H) and f , 1, h be non-negative and non-decreasing continuous functions on [0,∞) such
that f (x)1(x) = x (x ≥ 0) and h is convex. Then

h (w(A)) ≤
1

2

(

h
(

w
(

Ã f ,1

))

+ ‖h(|A|)‖
)

.

Proof. Let A = U|A| be the polar decomposition of A. Then for every θ ∈ R, we have

‖Re
(

eiθA
)

‖ = r
(

Re
(

eiθA
))

=
1

2
r
(

eiθA + e−iθA∗
)

=
1

2
r
(

eiθU|A| + e−iθ|A|U∗
)

=
1

2
r
(

eiθU1(|A|) f (|A|) + e−iθ f (|A|)1(|A|)U∗
)

. (8)
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Now, if we put X = eiθU1(|A|), Y = f (|A|), S = e−iθ f (|A|) and T = 1(|A|)U∗ in Lemma 3.1, then we get

r
(

eiθU1(|A|) f (|A|) + e−iθ f (|A|)1(|A|)U∗
)

≤
1

2

(

w( f (|A|)U1(|A|)) + w(1(|A|)U∗ f (|A|))
)

+
1

2

√

4‖e−iθ f (|A|)1(|A|)‖‖1(|A|)U∗eiθU f (|A|)‖

(by Lemma 3.1)

≤ w( f (|A|)U1(|A|)) +
√

‖ f (|A|)‖‖ f (|A|)‖‖1(|A|)‖‖1(|A|)‖

= w( f (|A|)U1(|A|)) +
√

f (‖A‖)1(‖A‖)1(‖A‖) f (‖A‖)

= w( f (|A|)U1(|A|)) +
√

‖A‖‖A‖

= w
(

Ã f ,1

)

+ ‖A‖. (9)

Note that, since w(X) = w(X∗) (X ∈ B(H)), in the first inequality we have

w(YX) − w(TS) = w( f (|A|)U1(|A|)) − w(1(|A|)U∗ f (|A|)) = 0.

Using inequalities (8), (9) and Lemma 3.2 we get

ω(A) = max
θ∈R

∥

∥

∥

∥

Re
(

eiθA
)

∥

∥

∥

∥

≤
1

2

(

w
(

Ã f ,1

)

+ ‖A‖
)

.

Hence

h (w(A)) ≤ h
(

1

2

[

w
(

Ã f ,1

)

+ ‖A‖
]

)

(by the monotonicity of h)

≤
1

2
h
(

w
(

Ã f ,1

))

+
1

2
h (‖A‖)

(by the convexity of h)

=
1

2
h
(

w
(

Ã f ,1

))

+
1

2
‖h(|A|)‖ ,

as required.

Remark 3.11. We can obtain Theorem 3.3 from Theorem 3.10, but we keep the proof for the readers. To see this, first
note that by the hypotheses of Theorem 3.3 we have

h(|A|) = h(1(|A|) f (|A|))

≤ h

(

12(|A|) + f 2(|A|)

2

)

(by the arithmetic-geometric inequality)

≤
1

2

(

h
(

1
2(|A|)

)

+ h
(

f 2(|A|)
))

(by the convexity of h). (10)

Hence, using Theorem 3.10 and inequality (10) we get

h (w(A)) ≤
1

2

[

h
(

w
(

Ã f ,1

))

+ ‖h(|A|)‖
]

≤
1

2

[

h
(

w
(

Ã f ,1

))

+
1

2

∥

∥

∥

∥

h
(

1
2(|A|)

)

+ h
(

f 2(|A|)
)

∥

∥

∥

∥

]

=
1

2
h
(

w
(

Ã f ,1

))

+
1

4

∥

∥

∥

∥

h
(

1
2(|A|)

)

+ h
(

f 2(|A|)
)

∥

∥

∥

∥

.
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Remark 3.12. For the special case f (x) = xt and 1(x) = x1−t (t ∈ [0, 1]), we obtain the inequality (2)

w(A) ≤
1

2

(

w
(

Ãt

)

+ ‖A‖
)

,

where A ∈ B(H).

Let T =

[

0 A
B 0

]

. Using Theorem 3.10, we get the following result.

Corollary 3.13. Let A,B ∈ B(H) and f , 1 be two non-negative and non-decreasing continuous functions such that
f (x)1(x) = x (x ≥ 0). Then

2ws

([

0 A
B 0

])

≤ max{‖A‖s, ‖B‖s} +
1

2

( ∥

∥

∥ f (|B|)1(|A∗|)
∥

∥

∥

s
+

∥

∥

∥ f (|A|)1(|B∗|)
∥

∥

∥

s )

,

where s ≥ 1.

Proof. Using Theorem 3.10 and inequality (6), we have

2ws

([

0 A
B 0

])

≤

∥

∥

∥

∥

∥

∥

[

0 A
B 0

]
∥

∥

∥

∥

∥

∥

s

+ ws
(

T̃ f ,1

)

= max{‖A‖s, ‖B‖s} +
(

1

2

[ ∥

∥

∥ f (|B|)1(|A∗|)
∥

∥

∥ + ‖ f (|A|)1(|B∗|)‖
]

)s

≤ max{‖A‖s, ‖B‖s} +
1

2

( ∥

∥

∥ f (|B|)1(|A∗|)
∥

∥

∥

s
+ ‖ f (|A|)1(|B∗|)‖s

)

and the proof is complete.

Using similar arguments to the proof of Corollary 3.9, we get the following result.

Corollary 3.14. Let A,B ∈ B(H) and f , 1 be two non-negative and non-decreasing continuous functions on [0,∞)
such that f (x)1(x) = x (x ≥ 0). Then

‖A + B‖ ≤ max{‖A‖, ‖B‖} +
1

2

(∥

∥

∥ f (|B|)1(|A|)
∥

∥

∥ +
∥

∥

∥ f (|A∗|)1(|B∗|)
∥

∥

∥

)

.
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