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GENERALIZATIONS OF THE GLIVENKO-CANTELLI THEOREM

By J. DEHARDT
California State College at Los Angeles

0. Introduction. Let u be a probability measure on the Borel sets, &%, in k
dimensional Euclidean space E, and X, X,, --- a sequence of independent random
vectors with values in E, such that P[X; € A] = u(A) forevery Ain%,i = 1,2, - .
A necessary and sufficient condition is given for

(*) Supfeyt/tln—IZt{;If(Xi)_j'fd.ul_>a.s.09

where ./ is the class of all monotone functions on E, with a uniform bound. (*) is
shown to hold with no restriction on u for several classes of functions, one of which
is the class of characteristic functions of half-spaces in E,. This result strengthens
the theorem of Wolfowitz (1954). I am obliged to H. D. Brunk for many invaluable
conversations.

1. Sufficient conditions on ./ and u for (*). Let .# denote a class of real-valued,
measurable, uniformly bounded functions defined on E,. For fin .# let

Suf) =n" 1Y f(X).
If # and p are such that

P[limn-'oo Supfe./ﬂ |Sn((f) - ffdll, = 0] = 1,
it will be said that (*) holds. It will be assumed that .# is such that sup,. S,(f)
is measurable. The particular classes .# discussed in Section 2 have this property.

Lemmas 1-6 give sufficient conditions on . and u for (*), while the remainder
of the results are concerned with (*) holding for particular classes ..

LEMMA 1. If corresponding to each positive number ¢ there is a finite class of func-
tions M , such that for each f in M there are f; and f, in M, with f; < f < f, and
[ fodu— [y fdu < e, then (*) holds.

Proor. Corresponding to each positive integer k, let { %, /5%, -+, f*.} be the
finite class .#,;, which corresponds to the positive number 1/k by the hypothesis.
If

= [S"(f;k)—»jfikd‘u] i=1,2,m;k=1,2,--,

then
P(Aik) = 19

by the Law of Large Numbers.
If A= )L, ® Ak, then PA = 1.
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If f¥ < f*and O < [fi¥du—[f*dp < 1/k, then [f*du < [fdu < [ f*dp and
S(f* £ S)(f) £ S,(fi") for every fin M such that f;* < f < fi%
Then for these f,

SAN=[fdu < S,(fO—=[f*du £ S,(F—[frdu+ k™!
and

SAO=[fduz S,(f{)~[fldpz S,(f) 1 du—k™".
It follows that for every fin .# and all k,
Su(f)—[fdu| < supy<icm |SLF— [ du|+ k71,

and so
A =lim SUP,- o0 supfe./t't |Sn(f)_ijd#I

< limsup, o, SUP; <izm [SH(f)— [ du| +k7 1
If wisin A then
1M, o SUPy <i<m |SA(iNw)— [ fdu| =0 forall k,
and so
A =1lim,_,,sup;c 4 |S(f)—[fdu| =0 forthat w.

Therefore, [A = 0] > 4 which implies that P[A = 0] = 1, which concludes the
proof.
LEMMA 2. If there is a compact metric on M such that the mapping T(f) = | fdu

is continuous and every neighborhood N(f) of fin M contains g, and g, in its closure
with g, £ g £ g, for every g in N(f), then (*) holds.

ProoF. Given ¢ > 0, for each fin . select a neighborhood N(f) such that g in
N(f) implies that
|ffdu—fgdu| <e/4
This class of neighborhoods covers .# so there exists a finite subclass covering ./,
say N(f1), N(f2), ---, N(f,). Corresponding to N(f;) there are g;; and g;, in the
closure of N(f;) withg;, < g =< g;, forallgin N(f),i = 1,2, ---, n. It follows that
”gil d/l"_fgiz dﬂ| = Ugn d/l__ffidﬂl"‘ ”fl d.“__fgiz d.“| <e.

Hence, correspondingto ¢ > 0 is the finite class of functions{g;;, g;2}i = 1, 2, --+, n,
which satisfies the hypothesis of Lemma 1, and so (*) holds.

Denote n™' Y-, f(X)(x,ep; bYS.(f, D), where D is in B and Ijx, cp; is the
indicator random variable of [X; € D]. Let 4, A4,, :-- be a partition of E,. Define
pi(A)as u(4 Ay forall 4in B,j =1,2,- .

Lemma 3. If
P[lim,, o sup, . « |Si(f, A)—[fdp;| =0] =1
Jorj=1,2, -, then (*) holds.
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Proor. If M is a uniform bound for .# then corresponding to each positive
integer k there exists a positive integer N(k) such that Y 7y, u(A4;) < 1/(4kM).
A =U;O=N(k) 4; and B, = [lim,_,, I#"(Ak)*ﬂ(Ak)l =0], where y"(4*)=n"" Yi=1

Iix; e ay-
If B =i~ B, then P(B) = 1.

Let C; = [lim, .o, Supy c.4 S| (f; 4)— [fdu;| = 0].1f C = ()52, C; then P(C) = 1
and so P(BC) = 1. From

IS/ = [fdu| < XS Ap— [ dus| + |S.(f, A — [ e f dp|
ST ISHS A = [ dug| |+ Mu(A) + p(4Y)|
it follows that
llm Supn—voo Supfeaﬂ ,Sn(f)_jfdﬂl
< Y YO limsup, -, o, SUP s e |Sa(fs A — [ fdp| + M lim | (4% + p(4Y)|.

On CB the left-hand member is then less than or equal to 1/k for every positive
integer k and hence (*) holds.

Let .#(R) denote the class of functions obtained from .# by restricting the domain
of each function in . to a rectangle R in E,. If

PLlim, .., sup « .« |Su(fy )= fofdp| = 0] = 1,
it will be said that (*) holds for .Z(R).
LemMA 4. If (*) holds for M(R), for every R, then (*) holds for M.
Proor. Corollary of Lemma 3.
LeMMA 5. If “a” is a point in E, with pu(a) > O then
Pllim, ., Sup; c | S,(fs @) — [ufdu| = 0] = 1.
The proof is immediate.

LeMMA 6. If (*) holds for M then (*) holds for the class of functions of the form
f—g,fandgin M.

The proof is immediate.

2. Necessary and sufficient conditions for (*) on classes, .#, of monotone and
related functions. A real-valued function defined on E, is to be called monotone if
it is monotone in the separate variables. The following definition and Lemmas 7,
8 and 9 will be given for . the class of all real-valued functions on E; which are
non-increasing in each variable and have a fixed uniform bound. A similar definition
and lemmas could be given for a class of functions of mixed monotonicity or which
are non-decreasing in each variable.
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A metric on ., due to P. Lévy in the one-dimensional case, is defined as follows:
At each discontinuity point ¢ = (ay, a,, -*-, a,) of each fin .# adjoint to the graph
of fthe line segment joining the points (ay, a,, -+, ax, f(@a—0) and (ay, a,, -+, ay,
f(a+0)). Call the resulting graph G,. For f and g in .#, at each point p =
(P1> - Pe+1) On Gy let d, (f, g) be the distance from p to G, along the line
through p with parametric equations x; = t/(k+1)*+p;. The distance d(f, g) =
SUPyec, dp (f; g) is a metric on . if functions with 0 distance are identified.

LemMA 7. M(R) is compact in the metric d( f, g), for every R in E,.

PRrOOF. Let {f,} be a sequence of functions in #(R). There is a subsequence
{£,)} of {f,} and a function f in #(R) such that f,'(x) — f(x) for every x with
rational coordinates in R. It follows from a direct generalization of a theorem in
Gnedenko-Kolmogorov ((1954), page 33) that d( f,’, f) = 0, which completes the
proof.

LeMMA 8. d(f,, f) — O implies that f,(x) — f(x) at each continuity point of f.

ProOF. A direct generalization of the theorem in Gnedenko-Kolmogorov (1954)
referred to in the proof of Lemma 7.

Corresponding to a point b in E, let 4,' = [xe E;:x; =2 b, i =1, ---,n]. By
reversing the inequalities in the definition one at a time, sets A4, are defined
i=1,23, 2% A Borel set B is a strictly monotone graph if there exists i such
that for all b in B, 4,' n B = {b}. If 4,' N B is contained in the boundary of Ay

then B is a monotone graph.

LEMMA 9. If y is O on every monotone graph in E, then the mapping T(f) = [ fdu
on M is continuous in the metric d( f, g).

Proor. If d(f,,f) — O then f, — f on the continuity points of f by Lemma 8.
The discontinuities of f lie on a countable number of monotone graphs in E
[Brunk, Ewing, Utz (1956)], so u[f, = f] = 1 and [ f,—fdu — 0.

Let L be the set of points x in E, with u(x) > 0. Define u* (4) as u(AL) for all
Ain f. ‘

THEOREM 1. If M is a class of uniformly bounded monotone functions on E; then
(*) holds.

ProoF. The proof will be given for a class of non-increasing functions. With the
appropriate change in the definition of the metric and in Lemmas 7 and 8 the proof
for a non-decreasing class would be the same.

By Lemma 4 it suffices to show that (*) holds for .#(R) where R is an arbitrary
finite interval. By Lemmas 3 and 5 (*) will hold for g if it holds for u*. Lemmas
7 and 8 provide a metric on .#(R) which, by Lemma 9, satisfies the hypotheses of
Lemma 2 for u*. Hence (*) holds for .#(R) and u* and the proof is completed.

A set in E, of the form [(xy, - X}):X;, = ¢, =+, X, _, = ¢, ;] Will be called an
i-dimensional flat in E,. Let B, denote the union of the 0-dimensional flats of E|,
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each of which has positive y-measure. If u®°(4) = u(4B,) for all 4 in f, then there
are at most a countable number of 1-dimensional flats of E,, each of which has
positive u®°-measure.

Let B, be the union of these intersected with B,. If u®(4) = u(4B,) for all 4
in B, then there are at most a countable number of 2-dimensional flats of E,, each
of which has positive u®'-measure. Let B, be the union of these intersected with
B, U B,. Continuing in this way, disjoint sets By, By, ---, B,_, are defined. Let
V = (424 B;and p¥(4) = p(AV) for all Ain . ¥ is 0 on every i-dimensional flat
of Er,i=1,2,-,k—1.

THEOREM 2. If M is the class of all monotone functions on E, with any fixed
uniform bound then (*) holds if and only if u“ is 0 on every strictly monotone graph
in Ey.

Proor. The necessity is given in DeHardt (1970).

Sufficiency. The proof will be given for the case in which the functions in .# are
monotone non-increasing in each variable. With the appropriate change in the
definition of the metric and in Lemmas 7 and 8, the proof for the other 2* — 1 classes
of monotone functions would be the same, and if the sufficiency is true for each of
these classes, clearly it is true for their union.

The proof is by induction. The condition on p s sufficient for (*)in E; by Theorem 1.
Suppose the sufficiency holds in E;, j = 1,2, -+, k—1. By Lemma 4, it suffices
to give the proof for .#(R), where R is an arbitrary rectangle in E,. Let
By, By, -+, By_; be the sets whose union defines V. Each B; is a countable union
of i- dlmensmnal flats of Ek, and hence can be put equal to U 21 A; where 4 'A A
is empty forj # kand 4 is contained in an i-dimensional flat of the type descrlbed
in the definition of B;. The assumed condition on p is inherited by these flats so by
the inductive hypothesis,

P[limnﬂoosupfe./ﬂ ISn(f’Aji)_jAji fd/'ll =0] = la
J=1,2 i=1,2, k-1,

Therefore, after applying Lemma 3 twice, it remains to show that (*) holds for u".
The discontinuities of each f in (R) lic on a countable number of monotone
graphs in E, [2]. Since " is 0 on every monotone graph in E,, it follows from
Lemmas 7 and 9 that the hypotheses of Lemma 2 are satisfied for .#(R) and p".
Hence (*) holds for .#(R) and ¥ on E, and the sufficiency is completed.

A set {(xg, -+, x,) 1 Y5 aix; < ¢} or its complement will be called a hyper-
space in E,.

THEOREM 3. If M is the class of characteristic functions of hyper-spaces in E,
then (*) holds.

PROOF. In the metric d( f, g), #(R) is a closed subclass of the class of all mono-
tone functions with a uniform bound greater than 1. It follows from Lemma 7 that
A (R) is compact in this metric. Let W be the union of the hyper-planes E, which
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have positive y-measure. Let " (4) = u(4 W) for all 4 in f. Since the discontinuities
of each f€ ./ are on a hyper-plane of E,, it follows from Lemmas 9 and 2 that (*)
holds for u". Since W can be considered as a countable union of disjoint subsets
(not necessarily proper) of hyper-planes, it follows from Lemma 3 that it remains
to prove that (*) holds when u has all its mass on a hyper-plane of E,. This case,
when k = 2, reduces to a special case of Theorem 1, and holds for arbitrary k

by induction.

With the assumption that the components of the X; be independent, Wolfowitz
(1954) obtained the conclusion of Theorem 3. He pointed out later that his proof
will go through with no assumption on u. If the class of hyper-spaces is expanded
so that the boundaries may include proper subsets of the hyper-plane, then the
conditions of Theorem 2 are necessary and sufficient for (*).

THEOREM 4. (*) holds for the class of functions on E, which have first and second
differences of constant sign.

ProoF. According to Hobson (1950) each function in this class has its dis-
continuities on a countable number of graphs of the form x; = C. Hence y" is 0
on the discontinuity set of each function in this class and (*) holds by an argument
similar to that in the proof of the sufficiency of Theorem 2.

COROLLARY. If F(xy, -+, x;) is the common distribution function of the X, and
FE,(xy, -+, x) is the corresponding empiric distribution function, then

P[limSupn—»oo—oo<x‘<ooi=1,~-kIFn(xls ""xk)_F(xl""’xk)l = O] =1

The definition of a function of bounded variation used for the following theorem
is given in Hobson (1950).

THEOREM 5. If M is the class of all functions on E, of uniformly bounded variation
corresponding to any fixed bound, then (*) holds for M if and only if u" is O on every
strictly monotone graph in E,.

Proor. The sufficiency holds by Lemma 6 from Theorem 2. The necessity is
proved in DeHardt (1970).
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