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1. Introduction. In this paper we continue the work, started in [2], on generaliza-
tions of the Greenberg-Rascle construction of spatially and temporally periodic solutions
to quasilinear wave equations. We consider the system of 1-D elasticity equations

Ut — vx = 0 and vt — &(u)x = 0, (WEI)

where a(u) is an odd function satisfying <j'(u) > 0 and cr"(u) > 0 for u > 0.
We let c(u) = yju(u) denote the propagation speed and write (WEI) as

ut — vx = 0 and vt — c2(u)ux = 0. (WE2)

We are interested in propagation speeds, c, that satisfy

c(—u) = c(u) > Co =f c(0) > 0 and c'(ti) > c\ > 0, u > 0, (1.1)

and, thus, have jump discontinuity in ^ at u = 0.
Following the famous papers of Lax [5] and MacCamy and Mizel [6], researchers have

collected a large body of evidence supporting the belief that solutions of systems of
conservation laws develop shocks.1 This paper deals with shock-free solutions that have
a very remarkable property: they are spatially and temporally periodic!

The mathematical importance of having a periodic solution is amplified by the follow-
ing observation. Let (v,u) be a bounded, nonconstant, periodic solution of (WEI) and
let

(ve,ue)(x,t) = (v,u) (1.2)

Received April 15, 1997.
1991 Mathematics Subject Classification. Primary 35L65, 35L67; Secondary 35B10, 35B35.
Current address: 136 Highland Ave., Piscataway, NJ 08854.

'The Lax paper deals with genuinely nonlinear versions of (WEI) in which the condition cr"(u) > 0
is required for all u and, thus, a cannot be an odd function. MacCamy and Mizel, however, deal with
1-D elasticity equations that are not genuinely nonlinear and have an inflection point. Their analysis
admits odd functions a.
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Fig. 1

It is easy to show that all (ve,ue) satisfy the same equation (WEI) and that they con-
stitute a bounded sequence without any strongly converging subsequences. This obser-
vation shows, in particular, that the regularity assumption a £ C2 made in DiPerna's
compensated compactness result (see [3]) cannot be relaxed.

Greenberg and Rascle [1] were first to observe that for the special choice of sound
speed relation given by

f mU 121 0 < u < U,c(u) = \ (u-f' ~ 1.3)I ~U<u< 0,
Eqs. (WE2) admit spatially and temporally periodic solutions. A schematic representa-
tion of their solutions is shown in Figure 1.

The Greenberg-Rascle construction exploits the fact that the non-constant interaction
v = x and u = t could be matched to expanding and focusing simple waves that connect
constant states

(v,u) = (0, «0), (0, -u0), (vq, 0), (-uo,0), (1.4)

where
ru o

vq = I c(s)ds. (1-5)
J 0

The Greenberg-Rascle solution is obtained by superposing odd and even reflections
of the same solution defined on the rectangle KXutl (see Figs. 1, 2). The graph of the
solution inside KXl:tl resembles a butterfly and for this reason the Greenberg-Rascle
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(-XI,ti)  (Xj,fj)

(-XI,-ti) (xi,-ti)

Fig. 2. Rectangle KXIttj

solutions are sometimes referred to as the butterfly solutions. The solution consists of
constant states (1.4) on triangles E, S, W, and N, simple expanding waves in regions
D3 and D4, and simple focusing waves in regions D\ and D2- In the diamond-shaped
interaction region the solution is given by v = x and u = t, and along boundary curves
Ti, T2, F3, and r<i is matched to appropriate simple waves. The width and height of KXl
and amplitudes of the solution are characterized by four parameters (xj,tj,uo,vo) related
by (1.5) and

xI=c0tI+v 0. (1.6)

The spatial period of their solution is 4xj and the temporal period is 4tj.
The sequence (vE,ue), obtained by applying dilatation (1.2) to the Greenberg-Rascle

solution provides important limitations to the conjecture of Serre [4]. Serre has con-
jectured that the Young Measure associated with the sequence of solutions to certain
systems of two conservation laws is a tensor product, vrxt®v™t, in Riemann invariant
coordinates r, w. Explicit calculations show that (ve, u£) produces a Young Measure that
is not a product measure. The same can be shown about solutions constructed in this
paper.

Greenberg and Peszek [2] allowed more complicated interactions than v = x and u = t.
They used a hodograph transformation inside the interaction region and regarded x
and t as functions of v and u. They proved that for sufficiently small u0 and for any
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sufficiently small W = 6 l°° there exist a sound speed relation, c, and a one-to-
one map (v, u) —> (x, i) that defines a smooth solution in the interaction region satisfying

f(v,0)=0, tu(v, 0) = g(v) d= 1 + ^2 W"V . (1.7)
n= 1 ' U''

The Greenberg-Peszek result shows that there are sound speed relations other than (1.3)
that admit spatially and temporally periodic solutions of Greenberg-Rascle type. How-
ever, no attempt was made to characterize the class of wave equations of the form (WEI)
that admit such solutions.

We note that the class of all admissible (WEI) is closed with respect to taking the
inverse of a. More precisely, if (v,u) is a shock-free solution of (WEI) then U(x,t) =
cr(u(t,x)) and V(x,t) — v(t,x) satisfy

Ut — Vx = 0, Vt-a~l(U)x = 0.

This "nonlinear 90° rotation" of Greenberg-Rascle solutions produces a class of c's that
are continuous, even, positive and satisfy dc/du < 0 for u > 0. In this paper, however,
we restrict attention to sound speed functions that satisfy (1.1).

Our goal is to obtain some descriptions of the class of admissible c's. The first result
reduces the problem of constructing shock-free spatially and temporally periodic solutions
to solving a linear, hyperbolic boundary value problem. We show that if p is defined by

"il c(s)ds)"^r "-0
and if the boundary value problem

tuu - tvv + p(u)tu = 0 in fl++ = {(«, u) : v > 0,0 < u < v0 - v},

t(v, 0) = 0, 0 < v < vq,

tv(0,u) =0, 0 < u < Vq,
t(vo —u,u) = tj( 1 — e~5 Jo p(s)dso < u < v0

(1.8)
has a solution such that

tu>\ty\, (1.9)

then (WE2) admits a Greenberg-Rascle type solution with parameters (xj,ti,ua,vo),
where xi = c(0)(t/ + f("" tu(s, 0) ds), u0 is such that v0 = f"" c(s) ds, and v() and tj are
as in (1.8). The proof of this result utilizes ideas developed in [2], We note that the
above linear problem is much more complicated than standard hyperbolic initial value
problems; in particular, it has a solution only for a certain class of functions p.

Our interest is in determining the class of functions p > 0 for which (1.8) has a solution
satisfying (1.9). We assume that p e Cl(R+) is an arbitrarily given function and that
p > 6 > 0. Our basic observation is that, for small vq, the solution of (1.8) on the
characteristic triangle L, bounded by the lines u = 0,u = v, and u = vo — v. can be
uniquely determined from the data

t(vo - u,u) = ti(l — t"5 fo ds); 0 < u < vq/2. (1-10)
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Thus, the initial data

tu(v,0) = g(v), 0<v<vo (1.11)

is defined uniquely in terms of (1.10). We replace (1.8) with the initial value problem

tuu tvv — o m —[_,

t(v, 0) = 0, 0 < v < vq, ,v , j _ _ u, ^
tu(v,0) = g(v), 0<v<vo,

tv(0,u) =0, 0 < U < Vq

and ask whether (1.12) has a solution satisfying (1.9) and

t(v0 - u, u) = ti{\ - e~5 Jo Pds)) vo/2<u<vo■ (1-13)

It turns out that in most cases such a solution does not exist; however, one can modify
p on the set {vo/2, oo) in such a way that p > 0 and (1.12) has a solution satisfying (1.9)
and (1.13). The modified p|[„0/2,«0] is determined uniquely in terms of its values on the
set [0, t>o/2]. Summarizing, we show that any function po G C1 (i?) satisfying pa > 6 > 0
can be modified in a unique way to a function p G C([0, uo]) satisfying p(u) = Pg(u) for
u G [0,uo/2] and such that (1.8) has a solution satisfying (1.9).

Now, let us assume that cq is a given function satisfying (1.1), ti and vq are given
positive parameters, and vq is sufficiently small. We let u,\/2 be such that

^0
2

fU 1/2
= / cG{s)ds.

Jo
Our main result states that there exist positive parameters Uo and X], and a unique sound
speed function c satisfying c(u) = Cg(u) for —1^1/2 < u < «i/2 and such that (WE2)
admits a Greenberg-Rascle construction of spatially and temporally periodic solutions
with parameters (xi,ti,uo,vo).

2. Reformulation of the problem. We assume that the propagation speed func-
tion c satisfies (1.1) and is continuous and C1 away from it = 0. In this section we state
and prove sufficient conditions for (WE2) to admit a Greenberg-Rascle type construction
of spatially and temporally periodic solutions.

We let II denote the primitive function of c,
rlL

n(tt) d= / c(s)ds, u>0 (2.1)
J 0

and regard II as a new variable which we call u,

u = n(u) = f c(s) ds, u > 0. (2.2)
Jo

We note that II satisfies

n,n',n" > o for u > o. (2-3)
We define a new function

p{u)=p ^ c(s)ds^ = u,u> 0. (2.4)
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U + V — —V0, —Vq < U < 0 U — V — — t>0, — V0 < u < 0

Fig. 3. Sets fi, f2+,f2++, and L

In this section we follow the ideas developed in [2]. The basic change from the previous
paper is the use of variables (u,v), which will prove more convenient in reformulating
the problem.

Theorem 2.1. Consider the following boundary value problem (see Fig. 3):

twa - tvv +p(u)tw = 0 in fl++ — {(v,u) : v > 0,0 < u < v0 - u},

t(v, 0) = 0, 0 < v < vo,
tv(0,u) =0, 0<u<vo,
t(vo —u,u) = ti( 1 — e~i /o"pWds), 0 < u < vo

(2.5)
and assume that p > 0 is continuous and that (2.5) has a solution t £ C'1 satisfying

tu>\tv\. (2.6)

Then (WE2) admits a Greenberg-Rascle type solution with parameters (xj, tj, uq, i>o),
where

xi = c(0) (tj + J tu(s,0)dsSj , (2.7)

uq is such that vo = f^0 c(s) ds, and uo and tj are as in (2.5).

Proof. To prove the theorem, we assume that ti,vo are given, that t e C1 satisfies
(2.5) and (2.6), and that x/ and Uq are as described in the theorem. Our goal is to
construct the interaction between expanding and focusing waves shown in Figure 2.
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Define the variable u by the identity (2.2), let

fV
x(v,u) '= / c(u)tu(s,u) ds, (2.8)

Jo
and extend variables x and t on the whole closed square

f2 = {{v,u) : —Vo — v < u < vo — v, —Vq < v < uo}

shown in Figure 3 by requiring that
(i) t(v, —u) = —t(v,u), t(—v,u) = t(v,u),
(ii) x(v, —u) = x(v,u), x(—v,u) = —x(v,u).

We note that x and t satisfy

xv{v,u) — c(u)tu(v,u) = 0 and x^{v,u) — c{u)tv{v,u) = 0 in Q (2.9)

and

tu>\tv\ in (2-10)

We have the following lemma.

Lemma 2.1. Suppose (x,t) satisfy (2.9) for (v,u) € fI. If, in addition, t satisfies (2.10)
then the map (v, u) —> (x, t) is one-to-one on Q.

Proof of the lemma. Suppose the map is not one-to-one. Then there are points («i, u\)
and (v2,U2) in fI with (ui,IZi) ^ (^2,^2) such that t(vi,ui) = t(v2,U2) and x(vi,ui) =
x(v2,U2)- Since Q is convex, the identity

0 = t(vi,ui) - t{v2,u2) = («i - v2) / tv(svi + (1 - s)v2, sui + (1 - s)u2)
Jo

ds

+ (■Ml - u2) / tu{sv 1 + (1 - s)v2, su 1 + (1 - s)u2) ds,
Jo

(2.11)

obtained by integrating the derivative, implies that

u\-u2 _ fg tv(sv 1 + (1 - s)v2,su\ + (1 - s)u2) ds

Vl ~~ v2 fo1 Msul + (1 _ s)v2, SUi + (1 - s)u2) ds

rhile

0 = x(vi,Ui) - x(V2,U2) = (vi - V2) / xv(svi + (1 - s)V2,SUi + (1 - s)u2)
Jo

(2.12)

r _ (2'13)(ui - U2) / Xu(sv 1 + (1 - s)v2, suI + (1 - s)u2) ds,
Jo

+

together with the fact that x satisfies (2.9), implies that

I ds0 = x(v2,U2) - x{vi,U!) = (ui - V2) / ctu{sv\ + (1 — s)l>2, SU\ + (1 — s)u2) I
Jo (2.14)

+ («i - u2) / ctv(svi + (1 - s)v2, sui + (1 - s)u2) ds
Jo
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and (2.14) in turn yields

V\ -v2 _ fo ctv(sv\ + (1 - s)t>2, swi + (1 - s)u2) ds

U\ - u2 J* ctu(sv 1 + (1 - s)v2, sui + (1 - s)u2) ds

The identity (2.12), together with (2.6), implies that
ui ~ U2

(2.15)

vi-v2

while (2.15) and (2.6) imply that
' V1-V2

< 1, (2.16)

< 1 (2.17)
Ml - U2

and (2.16) and (2.17) provide the desired contradiction. □
We note that the condition (2.10) also implies that the Jacobian of (v,u) —> (x,t)

is bounded away from zero on fi and, thus, the map (v,u) —> (x,t) constitutes a C1
diffeomorphism.2

We write x and t in terms of variables (v, u), where u is defined by (2.2). The set fl is
now transformed onto a diamond-shaped set fJ7, in the (v, u)-plane, bounded by curves

v= c(s)ds, 0 < u < uq, (2-18)
J U

V — —

V — —

V

pu 0

/ c(s)ds, 0 < U < Uo, (2-19)
J u

[ c(s)ds, —uo<u<0, (2.20)
J-u 0

f c(s)ds, — Uq < U < 0. (2-21)
J-u0

Finally, we use the inverse hodograph transformation and regard v and u as functions
of x and t. The set is now transformed onto a new set which we call fir- We use the
notation from Figure 2. Set fip is bounded by curves ri,r2,r3, and T4 defined by

Ti : (x(vo— u,u),t(vo—u,u)), 0 < u < Vq, (2.22)

(x(vo + u, u), t(vo + u, u)), — Vo < u < 0, (2.23)

(x(—vo — u,u),t(—vo —u,u)), —vo<u<0, (2.24)

(x(—vo + u,u),t(—vo + u,u)), 0<u<vq, (2.25)

and simple calculations show that v and u satisfy (WE2) on fir-
As we will show, fir is the region of interaction between forward and backward simple

waves shown in Figure 3.
The symmetries (i), (ii) guarantee that the triangle

fi-i_+ = fi fl {(«, v) : u > 0, v > 0}

is mapped onto fir fl {(a:, t) : x > 0, t > 0}.
We observe that the solution (x,t) —» (v,u) defined on fir and satisfying (i) and (ii)

represents the interaction of forward and backward simple waves emanating from points

r2
r3
r4

2The fact that the Jacobian is bounded away from zero follows from the compactness of Q.
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(—X/, —tj) and (xi,—tj) and reconverging at points (—xi,ti) and (xj,tj) and bounded
by the constant states shown in Figure 2 if and only if the rays emanating from points
(x(vq — u,u),t(vo — u,u)) e Ti with speed c(u) pass through (xi,ti), that is, if

x(v0-u,u)-xI n
c(u) = — r— —, 0 < u < v0. (2.26)

t(v0 — u, U) — ti

To show (2.26) we rewrite (2.5)4,

1 r
~o / P{s)ds = \n(tj - t(vo - u,u))-\n(ti), (2.27)

z Jo

and differentiate (2.27) using the identity p(u) = y to get

dc
2c2[u)(tu - tv)(v0 - u,u) = —(i/ - t(v0 - u,u)). (2.28)

au

Equations (2.9) yield

c'(u)(t(u) - ti) + c2(u)~ = c^, (2.29)
au au

where I(u) = t{v0 — u, u) and x(u) = x(vq — u,u). Note that
rv 0

x(0) = x(vq, 0) = c(0) / tu(s,0)ds
Jo

and that the condition (2.7) can be written as

a?(0) = xi — t/c(0). (2.30)

We integrate (2.29) with respect to u and utilize (2.30) and the fact that f(0) = 0 and
du = cdu to obtain

(t(v0 — u,u) — ti)c(u) = x(vq — u, u) — xj. (2.31)

This proves (2.26) and show that, along the curve Fi, the constructed functions (u,v)
match a simple backward wave focusing at (xj, £/) and connecting constant states (Vo, 0)
and (0,Uo).

We also note that, if (2.26) holds, then the fact that c(—u) = c(u) and the sym-
/(x,t)e r2\

metry conditions (i), (ii) guarantee that the rays emanating from I (x,t)er3 I with slope
(x,t)er4 J

-<=(«) \ / (~xi,ti) \
c(u) I pass through I (-xi,-ti) ). Thus, constructed interaction matches, along curves

-c(u) J \ (x:,—tt) J
r2,r3 and r4, appropriate simple waves defined on D2,D3 and D4 and connecting con-
stant states

(■v,u)

(0, uq), (x,t)eN
(0, —u0)) (x,t)eS
(uo,0), {x,t) e E

,(—u0,o), (x,t)ew

(see Fig. 3). This concludes our construction of (v,u) inside the rectangle Kxi tl.
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To construct spatially and temporally periodic solutions we superpose odd and even
reflections of the solution defined inside Kxntl (as shown in Figure 1). The obtained
solution is spatially and temporally periodic with periods 4xj and 4£/.

3. Technical lemmas. Let L denote the characteristic triangle in the (v, tt)-plane
bounded by the lines u = 0, u = v and u = vq — v (see Figure 3). Let 7,he C1([0, vq/2])
be such that h(0) = 0.

We prove the following.

Lemma 3.1. Assume ^olllIU00[o,«0/2] ̂ 16. The boundary value problem

tun - tVv + l(u)t = 0 in L,

t(v, 0) = 0 for 0 < v < vo, (3-1)
t(v0 — u, u) = h(u) for 0 < u < Vq/2

has a unique weak solution t € Cl(L).

Proof. For convenience, we transform the problem to diagonal (£, ^-coordinates de-
fined by

u + v v-u ,0,= ~VT' e = ̂ T (3'2)
and let

«0 i/ \ , ( s , Mvo = ^, h(s) = h[-T2 + -y

Note that t satisfies (3.1) if and only if
1 rVo rV

Ht: v) = HO - Hv) +2 J J (tfj. (3.3)
The reader is advised to consult Figure 4.

We let
1 r^° fi — —T(t)(£,ri) = MO - h{rj) + - J lt(£,rj)d£,drj (3.4)

and our goal is to find t such that T{t) = t.
We note that for any t\ and £ C(L)

1 rv0 rv
\(T(i1)-T(t2m,ri)\ = -

po rv ^ ^ _
J J 7(^1 - i2)d£,dfj< I L° [0,«o/2]"^-|l*l ~ ^2 || L°°(L)

(3.5)
and, thus, T is a contraction on C(L). Let t be the unique fixed point of T : T(t) = t.
From the definition of T, t satisfies (3.3). The fact that t G Cl(L) follows immediately
from (3.3). □

Lemma 3.2. Assume

II7IIl°°[o,«o/2Fo

and that h £ C2([0, vq/2]) satisfies h, h' > 0.

Vq < 8 (3.6)
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V

Fig. 4

Then the solution t, constructed in the previous lemma, satisfies £„(•, 0) € C1 and

l|t|U°°(L) < vo||'i/||i,«=[o,«0/2]> (3-7)

M«.0)> min h'{a) — fo II "7 [0, v0/2] II IU°° [o,Vo /2], (3.8)
« e[o,«o/2]

tu(v, 0) < ||^'||[0,i>0/2](1 + woll7lU°°[0,tJo/2])> (3-9)

(3.10)

( nl I ll^"IU°°[0,«o/2] . »0||,/|| ,,|%«(u>0)| <    1- —IIh ||Loo[0j„0/2](||7||too[o,vo/2]

V?
+ "y ll7llioo[0i„o/2] + uo||7'IIl«=[o,do/2])-2

Proof. Again, it is more convenient to work in (£, rf) coordinates. We observe that
— h(r]) < 7701|/i' ||00 and apply identity (3.3) to obtain

||t|U~(L) < rf'lloo + | ||7l|oo||i||L«-(i) < y II^IU~(0,„o/2] + ^||7l|oo||t||L-(L).
(3-11)

Inequalities (3.11) and (3.6) yield (3.7).
Differentiating (3.3) and using tu = -^(tv — t$) gives

d t. 1
35%,*)=(.,») - ^

fVo
-2 h'(s)+ / (7 t)(s,r)dr

J s

which, in turn, implies (3.8), (3.9) and the fact that {„(•, 0) e C1.

(3.12)
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Inequality (3.10) is obtained by differentiating the identity (3.12) in the v direction

d2 ~ i r - r° -= 2 ~2h"(s) + Js M((s,r)dr

and using the fact that t^(s,r) = h'(s) + \ f^° (yt)(s,f) dr. □
Let S7+ be the characteristic triangle bounded by the lines u = 0,u + v = vo, and

u — v = vo (see Fig. 3). Consider the following initial value problem:

tuu iyv ~t~ p{u)tu i u*) in

t(v, 0) = 0, — vq < v < v0, (3.13)
tu{v,0) = g(v), -v0<v<v0,\

where Q e p e C([0, uo]) is nonnegative, and g € C([—v0, ^o])-

Lemma 3.3. The solution of (3.13) satisfies

IM-.«)lloo <ef?^ds (||5llLoo([-,0,t)0])+^Ue-^pMdr||Q(-,S)||oo^ • (3.14)

Proof. We differentiate the identity
^ rv+u nu rv+s

t(v,u) = - / g(s) ds + - / / Q(r,u — s) — ptu(r,u — s) dr ds (3.15)
2 Jv-u 2 Jq Jv_s

to obtain

tu(v,u) = \(g(v + u) +g(v-u))

+ \J \Q{v-U +S,s)+Q(v+ u-s,s) ^ 16J

— ptji{v — U + s,s) — ptu(v + u — s, s) J ds

and

IIM-.^lloo < IMU«([->,,z;o]) + I ||Q(", s)||oo +P(s)P«(-.s)l|oorfS- (3.17)
J 0

The generalized Gronwall inequality yields (3.14). □

Corollary 3.1. Assume that t satisfies (3.13) and that Q = 0. Then

HW-,«)||oo < e/"p(s)ds||ff/||L»([-,o,,o]). (3.IL8)

||t„(-,tJ)||oo < ue^"p(s)ds||ff'||Loc([_Bii:)i;o]), (3.19)

and

||W-,«)lloo < (l + £p(s)eSoP(r)drdsSj H^'H^ + e-^^^llflrlloo- (3.20)

If, in addition, fx = min,, g(v) satisfies

M - «olbllL~([0,l,0])e,"'l|p|l^(io„o]) ||ff||Loo([_„0i„0]) > 0, (3.21)
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l|£u('i u) II oo 5: 11^ II L°° ([—i>o ,uo])' (3.22)
P('jw)||oo 5: wllflUL^Q-vojfo])' (3.23)

min tu{v,u)> fi-\\g\\Loc{[_V0tV0]) [ p(s)ds. (3.24)
ve[—vo+u,vo—u\ J Q

Proof. Inequalities (3.19) and (3.18) are a direct consequence of (3.14) once the initial
data g in (3.13)3 is replaced by g'. We calculate t^u from (3.16),

tuu(v,u) = \{g'(v + u) - g'(v-u)) -p{u)tu(v,u)

i r - - (3-25)+ 0 / p(s){tuv{v-u + s, s) -tuV(v + u- s,s))ds,
* Jo

and use (3.18) and (3.14) to obtain (3.20). Inequality (3.23) follows immediately from
(3.22). To prove the remaining inequalities we observe that (3.16) implies

_ i r _tu{v,u) > — - / ptu(v - u + s, s) +ptu(v + u - s,s)) ds
Jo

>n-f pe^p\\g\\Loo{[_V0:V0])ds ('3"26^
Jo

> M - «olbllL-([oiUo])ei;o1"P«x.-(t0.-o]) ||^|Uoo([_V0;W0])

and that the condition (3.21) implies that tu > 0 on 0+. This together with (3.16) and
the fact that p > 0 give (3.22). Finally, the first inequality in (3.26) together with (3.22)
yield (3.24). □

Corollary 3.2. If p e C([0, uo]), Q = 0, and g € C([—i>o, vo]), then the solution t of
(3.13) satisfies t € C1(fl+).

If, in addition, g satisfies

lfl'(u)| < Const a.e.

then tu and tv are Lipschitz continuous on

Proof. Inequality (3.14) can be used to show that tu € C(fi+). This and the identity
(3.15) imply that tv € C(fi+). The Lipschitz continuity of the derivatives follows from
(3.18), (3.20), and (3.14). □

4. The main result. Assume we are given positive parameters Vo and tj and a
function pc G C2(R+) satisfying

Pa > 8 > 0- (4.1)
Let ro > 0 be an arbitrary constant and define

7(") =' ~\Pg&) ~ \p'g{u)- (4.2)
Our concern is in verifying whether the boundary value problem (2.5) admits a solution
satisfying (2.6). We will prove the following.
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Theorem 4.1. There exists a constant

e = £'(lbG||Loo(0,r0)) WPG IIl°° [0,ro] > Wp'g IU00 [0,ro] 1 ̂  */) ^ ^r0

such that if Vo < e, then there exists a unique Lipschitz continuous function p;v satisfying
Pjv(u) = pg(u) for u 6 [0,i>o/2] and such that

tuu ~ tvv +PN{u)tu =0 in Q.++ = {(u,u) : v > 0,0 < u < v0 - v},

f(t>, 0) = 0, 0 < i; < uo,
tv(0,u) =0, 0 < u < vo,
t(vo — u,u) = t[{ 1 — /0"pjv(s)<is)) 0 < u < uo

(4.3)

has a solution t £ Cl satisfying

fcu > |i«|- (4-4)

Remarks. We explain the meaning of the word "unique" used in the above theorem.
As will become clear in the proof, if p G C([0, t?o]) is such that p|[o,«0/2] = Pg|[o,«0/2] and
if there exists vq/2 < v <vq for which p(v) ^ Pn{v), then (2.5) has NO SOLUTIONS.

We note that, if B is a bounded subset of C2([0, uo/2]) satisfying

Bc{p€C2([0,vo/2}):p>8>0}

and if vq is sufficiently small, then Theorem 4.1 defines a map Pg|[o,u0/2] £ B —*
PN|[«o/2,t>o] e C{[vo/2,vo]). It can be shown using estimates similar to those developed in
the last section that, for small vq, the map pgI[o,i>0/2] Pn\[v0/2,v0\ e C(\vq/2, uo])
is continuous (see how pn is constructed in the proof of Theorem 4.1).

We delay the proof of the theorem to explicitly list the smallness conditions on i>q . To
simplify our notation we define

Po = |lbG||L~[0,,o/2]e^ollPG|Uo0'°'"o/21(l + ^||7llL~[0,,o/2])1 (4-5)

P, — p ̂  ̂ 0 l|PG II L°° [01 ~ 2

+fhli-

K = |(«5-«02|l7||Loc(0,t,0/2]l|PG||L~[0,t,0/2]^,J0l|pGlUooi0""'/21)- (4-7)

vo/21 |ll7lk~[0,t;o/2] + ^IIPg||l~[0,W2](II7||l°°[0,i>o/2]

[0,v0/2] + ^0||7'I|l~[0,u0/2])| >

(4.6)
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Following are the sufficient conditions on the parameters ti and Vq to construct a
Greenberg-Rascle type solution:

ll7lU~[0.«o/2]Wo ^ 8> (4-8)
V0P0 > tj/2, (4.9)

VoPie8v°p°^t' < P0, (4.10)

K > 8v0P$eSv°Po/t'/tI: (4.11)

K >v0(Pq^- + exp(8voPo/ti)Pi\ , (4.12)ti

A = voU |p0 + v0Pi + v0|(P02 + P0Pie8voPo/t')\ e8voPo^ < 1. (4. 13)

Proof of Theorem 4.1. Our goal is to construct functions p^ and t that satisfy (4.3),
(4.4) and such that Pn(u) = pg(u) for u e [0,uo/2]- First we construct solution t in the
characteristic triangle, L, bounded by the lines u = 0,u = v, and u = vo — v. Define

h(u) = tI(e^Kpa(s)ds - 1), 0 < u < vo/2, (4.14)

and let 7 be such as in (4.2). We note that t is a solution of (4.3)1,2,4 on L if and only if

t = telffpoWd, (4_15)

satisfies

tuu - tVv + 7(u)t = 0 in L,

t(v, 0) = 0, 0 < v < v0, (4-16)
t(v 0 — u,u) = h(u), 0<u<vo.

Lemma 3.1 together with assumption (4.8) yield the existence of solution t to (4.16) in
L. Thus, (4.3)i24 has a unique solution t defined on L by (4.15).

To construct the solution t of (4.3) in the whole region fi++ we define

(w)ffeM) = £-(«, o), if v > o,
[fu(-u, 0) = tu(-V, 0), if V < 0.

Function g is Lipschitz continuous on [—Vo,^o] and C1 away from v = 0. Lemma 3.2 and
(4.8) imply that g satisfies the following conditions:

™in/015(^)> -£(6-Vol|7llL-[o,„0/2]lbG||t<x.[o^o/2]e^olbG|li'00|0l,'o/2)). (4-18)
vE[0,vq/2\ Z

II5IIl°°[—1)0/2,^0/2] < yl|PG||L-[0,,0/2]e^0||polUooi°-0/2](l + «02||7||l°O[cW2]), (4-19)

11^'IIL°°[—vo/2,v0/2] < ^e^ollPGlUo0'0-o/2]{||7||LOO[0 t)o/2] + ylbc||^[0,^/2]
(420)

»[o,w0/2] + ~2~ ll7llz/oc[o,v0/2] + wo||7'IIl^[o,v0/2])}-
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These conditions can be simplified using (4.5)-(4.7),

a = min g(v) > K, (4-21)
f0e[0,t;o/2]

\\9\\l°°[-vo/2,vo/2] < Po, (4.22)

\W\\l°°1-v0/2,vo/2] < Pi- (4.23)
We write (4.3) in the following form:

tmi - tvv +pN{u)tu = 0 in f2++ = {(u,u) : v > 0,0 < u < v0 - u},

t(v, 0) = 0, 0 < v < vo,
tv(0,u) =0, 0 < u < v0,

Pn{u) = 2[(tu - tv)(ti - ^_1](fo ~u,u), 0 < u < v0.

(4.24)
Let t9P £ C1(n+) denote the solution3 to the following initial value problem:

■£rt9P-^It«' + p(u)^t«> = 0 inf2+

t3P(v, 0) = 0, -Vo < v < Vo, (4.25)
^-§=tgP(v,0) = g(v), -v0<v<v0,

where p is a given continuous, nonnegative function, g is as in (4.17), and f2+ is the
characteristic triangle bounded by lines u = 0,u + v = vq, and u — v = Vo (see Fig. 3).
We observe that (4.17) implies

o

—t9P(0,u)=0, 0 <u<v0- (4-26)
ov

We define the mapping Sg,

-M=t9P(vo — u,u) — 4-t9P(vo — u,u)SJp)(u) = 2— ^9v V —, (4.27)
9KyJy ' t! -t3p(v0 ~ U,U)

and observe that if pf is a fixed-point of Sg (i.e., if Sg(pf) = pf) then t9pf satisfies (4.24).
Our goal is to show that Sg has a fixed-point pf such that pf = pg on [0, v0/2].

Let

Dm = {p£ C([0, v0\) :p=pG on [0, v0/2] and 0 < p < M}, (4.28)

where

M = SPo/ti
and note that Dm is a convex, closed subspace of C([0,«o]). We will show that Sg :
Dm —> Dm and that Sg is a contraction on Dm-

Let p e Dm', the identities

Sg(p){u) = pg{u) for u £ [0, v0/2]

and

t9P = t on L

follow directly from the definition of g.

3See Corollary 3.2.
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Condition (4.11) implies that the assumption (3.21) of Corollary 3.1 is satisfied for
p £ Bm and g defined in (4.17). We need to show that 0 < Sg(p) < M. To show the
second inequality we apply Corollary 3.1 and use the assumption (4.9) which, together
with (3.23), implies that t9P < , t]^tgP < fj. and

^ £ + (4,9)

Inequalities (4.29), (4.22), (4.23), and (4.10) imply that Sg(p) < ^-(IMIco + Po) < M.
The inequality Sg(p) > 0 follows from the fact that -§=t9P > \-§^t9P\ which will also

imply the bijectivity condition (4.4). To see that, we apply Corollary 3.1, (4.21)-(4.23),
and (4.12) to obtain

^t">,-vMUM>K-v^PS (43o)
> vq exp(8u[)Po/t/)Pi > v0eV0M\\g'\\Loo([_V0iV0]) > \tv{-,u)\.

We still need to show that Sg is a contraction on Dm- To do that let p\,p2 £ Dm and
_ f.gpi^ ̂ 2 _ £gp2 ancj define w = t1 — t2. We note that w satisfies

(wtm ~ wvv +px(u)wu = (p2 -pi)t% in f2+,

|iOu(u, 0) = w(v, 0) = 0, -v0 <V<V0-

Applying Lemma 3.3 and Corollary 3.1 gives

(4.31)

Moo < ||pi -p2||L<»[o,«o]llff||L«'([-«o,«o]) [ e^"Pl(r)dr
JO

< u0Poe8woPo/t,|bi - Pi ||L°°[0,w0]>

(4.32)

klloo < VoP0e8voPo/t'\\p1 ~P2\\l°°[o,v0] (4-33)

and

lk„||oo < Vo||ff'||ooeM||pi -p2||oo < VQPie8v°p°/tl \\p\ P21|l°°[o,ijo]• (4-34)

Assumption (4.13) yields

I|(Ss(Pl)-Ss(P2))|2'
tl _ /I t2_ 4.2°u V U V

tj — tj— t2
(vq ~ U, u)

(»+ („o _ - 5)

< y(W + Kl) + j(l4l + l4l)M
< V0{P0 + V0P1 + (P02 + P0P1e8voP°/t')}t-^eSvoPo/tl \\Pl - p2\\l<*>[o,v0]

A J.
< ^llpi P2 IlL00 [0,v0]
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def
and, thus, Sg is a contraction as stated. We have constructed functions p2\: = pf and

t =f t9'Pt satisfying (4.3). Estimates (4.30) show that t satisfies (4.4). We note that
(4.27) and Corollary 3.2 imply that pn is Lipschitz continuous.

To prove that function p;y is determined uniquely we let pi and t\ satisfy (4.3) and
(4.4), and let pi(u) = Pg{u) for u e [0, vq/2]. We note that t\ has to satisfy (4.16) on L
and, thus, t\ = t9Pl. We also note that Corollary 3.1 and conditions (4.8)-(4.12) imply
that pi € Bm-4 Thus, p\ € % is a fixed point of Sg. Since Sg is a contraction on Bm,
we conclude that p\ =pn■ This observation ends the proof of Theorem 4.1. □

Now we return our attention to elasticity equations (WE2). Assume we have a given
cq € C(R) fl C3(R+) satisfying

cg(—u) = cq{u) > cgo d= cg(0) > 0 and c'G(u) >0, u > 0 (4.35)

and let IIg denote the primitive function of cq,

cu
IIg(w) ^ / co(s)ds, u> 0. (4.36)

Jo
Function IIg satisfies

nG,n'G,> o for u > o. (4.37)

We assume that ti,vo, and ui/2 are positive parameters related by

nG(«i/2) = uo/2. (4.38)

The following is an immediate consequence of Theorems 2.1 and 4.1 and is the main
result of this paper.

Theorem 4.2. Assume that vq is sufficiently small. There exist xi > 0 and a unique
function cjv 6 C(R) fl C1(R+) satisfying (1.1) and

cN{u) = cG{u) for u e [-u1/2,ui/2],

and such that

u,t~v,x= 0 and vit — c2n(u)uiX = 0 (WE)

admit a Greenberg-Rascle type solution with parameters (x/, ti,u0,vo), where u0 is such
that vq = /0"° cat(s) ds.

Proof. Let pc; be such that

def Cq(u)

c2g(u)
pG(UG(u)) (4.39)

Equation (4.39) is equivalent to

n^(u)=PG(nG(w))(n^(u))2. (4.40)

4To prove that pi 6 Bm one needs to repeat estimates (4.29) and (4.30).
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Theorem 4.1 implies that there exists a Lipschitz continuous function p = pN satisfying
Pn(u) = pg(u) for u £ [0, uo/2], and such that (2.5) admits a solution satisfying (2.6).
Theorem 2.1, in turn, shows that if c = c# is such that

PN ̂ I cN{s)dsSj = gjvW
c%(u)

then (WE2) admits a Greenberg-Rascle construction of spatially and temporally periodic
solutions. We define

c#(u) = n^(u), u > 0 and c#(u) = II'N(—u), u < 0

where 11# is the solution of the following ODE:

n'i(r(u)=p#(n#(u))(n'iV(u))2,
IIjv(O) =0, (4.41)
n'^o) = cG(0).

We show that if fjPoCG(0)vo < 1, then (4.41) has a unique solution defined on [0, uo]-
This follows from standard results on local existence and uniqueness of ODEs, and from
the fact that

o < n%(u) < ibiun'jvK))2
implies the uniform bound on 11^,

o<wW = nW<1_||^(0)B<i_^(oH

for 0 < u < Vo. Function 11# satisfies

n#, n'N, n'^ > o for u > o. (4.42)

We observe that II# = IIr; as long as IIg < fo/2. Inequalities (4.37) and (4.42) show
that II# = IIg for 0 < u < U\/2 and, thus, that c#(u) = cg(w) for —«i/2 < u < ui/2- n

We conclude this paper with the following remark. All admissible sound speed re-
lations c# constructed in the above theorem satisfy c# £ C{R) D C1(R+). One can
construct (nonuniquely) more regular c# S C{R) fl Cm(R+), 1 < m < oo. We note that
the basic obstacle in improving on regularity of c# (away from u = 0) is the fact that
the function g constructed in (4.17) has, in general, a singularity in the first derivative
at v = 0. One can bypass this problem by redefining g smooth for —e\ < v < E\ and
repeating our construction. This procedure yields smoother c# satisfying c#(m) = cc(u)
on a smaller set u £ [—«i/2 — £2, U1/2 +£2], where e2 is such that IIg(w1/2 — £2) = ^ —£1.
We note, however, that c# is no longer uniquely defined in terms of cq |[o,u1/2]-
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