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Generalizations of the Sampling Theorem:
Seven Decades After Nyquist
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Abstract—The sampling theorem is one of the most basic and then established for the cases of bandlimited as well as nonban-
fascinating topics in engineering sciences. The most well- known dlimited sampling in Sections IV-B and C. The connection be-
formis Shannon’s uniform-sampling theorem for bandlimited sig- y\yaen this kind of stability and functional subspaces is reviewed

nals. Extensions of this to bandpass signals and multiband signals, . . . N
and to nonuniform sampling are also well-known. The connection in Section IV-D. The role of nonuniform sampling in MR theory

between such extensions and the theory of filter banks in DSP has IS €xplained in Section V. We show in particular that the MR
been well established. This paper presents some of the less knowrcoefficients can often be calculated using FIR filtering opera-
aspects of sampling, with special emphasis on non bandlimited sig- tions without the use of oversampling (which is often resorted
nals, pointwise stability of reconstruction, and reconstruction from to). Sampling theorems for non bandlimited discrete time signals
nonuniform samples. Applications in multiresolution computation : di din Section VI. Th It based I
and in digital spline interpolation are also reviewed. are. IScussed In efc lon o e_Se res_u S are ase_ on well es-
tablished concepts in multirate digital signal processing. Results
on FIR reconstructibility in this context are established in Sec-
tions VI-B-D. Certain basic properties satisfied by bandlimited
signals are summarized in the Appendices for convenience.

Index Terms—Bandlimited signals, FIR reconstruction, multi-
resolution, nonuniform sampling, sampling theorems.

. INTRODUCTION

HE sampling theorem is one of the most basic and fa%—' Notations

cinating topics in engineering sciences. The most well- Unless mentioned otherwise, all notations are as in [23]. The
known form is the uniform sampling theorem for bandlimitederm o-BL refers to signals that are bandlimited [to] < o
signals, due to Nyquist and Shannon [9], [13]. This has al§ee., Fourier transform is zero outside). We use the notations
been attributed to Whittaker and Cauchy (see [6]). Itis the fufe(n)]|m and [X(z)];as to denote the decimated version
damental tool that allows the processing of real signals usifig}/n) and itsz-transform. The expanded version
digital signal processors (DSP). Extensions of this to bandpass
signals and multiband signals, and to nonuniform sampling are {
also well-known [6], [22]. The connection between such exten-
sions and the theory of filter banks in DSP has also been Wgllsimjlary denoted byz(n)]: v, and itsz-transformX ()

established (e.g., see Chap. 10in[23]). Further novel extensigfioted by.X (»)]-,,. In situations where the-transform does
can be found in [5]. This paper is a review of some of the legt exist in the conventional sense (e.g., ideal filters), the nota-
known aspects of sampling, with special emphasis on non bggn , stands fore’= so thatH(z) is the frequency response
dlimited signals, stability of reconstruction, and reconstructiog (<), The type 1 and type 2 polyphase representations of

x(%), n:mglof M
0, otherwise

from nonuniform samples. [24]-{27]. H(z) with respect to an intege¥/ are given by [23]
A. Outline Hz) = { i\igl 2 *Ew(zM)  (type 1 polyphase)
In Section Il, we consider sampling theorems for non ban- i 24:51 Z*Rip(z)  (type 2 polyphase).

dlimited signals. These are often referred to as multiresoluti Lo tvpe used is usually clear from the context and is therefore
(MR) or wavelet sampling theorems. An application in digita yp . y
ften not mentioned.

interpolation is reviewed in Section Ill, and demonstrated with . .
B-spline interpolation of images. Stability of the reconstruction. .BIBO stability stands fob.ounded Input bour_1ded outpsia-
lity [10]. A sequencé:(n) is an/; sequence iy~ |h(n)| <

process is defined in Section IV and addressed in consideraoléand itis are, sequence 5 [h(n)|? < o. Alinéar time in
. . . o " 2 N , -
detail there. We explain the importance of pointwise stability as riant filter is BIBO stable if and only if the impulse response

opposed to stability in terms of energy. Such pointwise stabilit 7@ S ) : ; " ot
PP Y 9y P yL(n) is in ¢;. For continuous time signals similar definitions
(L1 and Ls) apply with sums replaced by integrals. Note that
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Fig. 1. A nonbandlimited signal. 1“¢(t) case 2
apriori information we havel-or example, suppose we have the / \ t
knowledge that:() has the form ‘1 o 1 >
g:(t) = Z c(k)d)(t — k) (signal model) (1) Fig. 2. Two non Nyquist choices @f(?).
k=—oc

where¢(t) is aknown function. Denoting the continuous timelf ¢,(c’“) # 0 for all w we can writeC(e/*) = X4(e«)/
Fourier transforms (FT) af(t) and¢(t) asX(jw) and®(jw), ®4(c’*). Thatis, we can identifg(n) from x(n) using

and the discrete time FT af(n) as C(¢“), we equivalently

haveX (jw) = C(e/“)¢(jw). As a first example, assume that cln) = Zx(k)’y(n —k) @)
¢(t) is a time-limited signal as demonstrated in Fig. 1. In this k

example, the samples oft) at integer points are(n) = ¢(n).
So we can trivially reconstruat(¢) from its samples using the
formula

where~(n) is the of convolutional inverse of ¢(n) i.e., its
Fourier transfornl(¢’~) = 1/®4(c’*). Recovery ofx(t) for
all t can then be done using (1). In summary, we have recovered
z(t) from the samples(n).
(t) = Z w(k)s(t — k) @ (R)eturn now to the ex(ar%ples in Fig. 2. We see that for the first
h=—oo function the nonzero samples ¢f{n) are {1,3,1} whereas
wheres(t) = #(t). More generally, this holds i(¢) has the for the second function these afe, 1,1}. In the first case

oo

zero-crossing property(n) = 6(n), i.e., |®4(c’“)] = 3+ 2cosw > 0 whereas in the second case,
_ |®4(c?)] = |1 + 2cosw| = 0 atw = 27/3. Sox(t) is
¢(0) =1, ¢(n) = 0 for other integers.. ()  reconstrucible fromx(n) for the first case, but not the second.

Thus reconstruction from samples has been possibfate of We conclude this section with a few remarks.

aliasing due to nonbandlimitedness. 1) Discrete time modeThe preceding discussion also shows
A function ¢(¢) satisfying the zero-crossing property (3) is  this: given a discrete time signal;(n) and an arbitrary
also referred to as Byquist(1) function in the literature. The function ¢() we canalmost alwaysassume thatq(n)
argument “(1)” signifies that the zero crossings are separated by ~ ¢an be written in the form (5) for appropriate choice of
one unit of time. A special case is the example whe? is the c(k), the only theoretical condition being thé(c’) #
sine funtion 0 for all w. In particular, we can regargy(n) as sam-
sin 7t ples of a continuous time signa(t) of the formxz(¢) =
olt) = . @) S clk)p(t — k).
2) Lack of shift invarianceFor fixed ¢(¢), let V; denote
Since this isr-BL, the sum (1) is alsa-BL. The sine function the space of all signals which can be represented as in
is Nyquist(1), so the reconstruction formula (2) holds. This cor- (1) for appropriate finite-energy(k). When¢(t) is the
responds to the familig@hannon sampling and reconstruction sine function we know that any shifted version )
If a function can be represented as in (1) whe(#) is not (e.g.,z(t — 0.1)) also belongs to the spad§ because
Nyquist (Fig. 2), can we still reconstruci(¢) from samples time-shift does not affect bandlimitedness. For arbitrary

z(n)? The answer igesfor a large class of(t) as we now

i ¢(t) however, even though reconstruction from samples
show! From (1) we see that the samplesudt) are given by

is often possible, the shifted versionsft) do not in

o0 general belong to the same spdée This is readily ver-
za(n) = z(n) = Z e(k)p(n — k) (5) ified with examples. For example shif{¢) in Fig. 2 to
k=—o0 obtain¢(t — 0.1). This result cannot be expressed as a

linear combination of the integer shiffg(t — n)}.

which is nothing but a discrete-time convolution equation. De- ) . , :
Undersampling a wideband signahs a special case of

noting the discrete time Fourier transforms of the sequences )

2(n), e(n), andg(n) by Xa(c#), C(c#*) and® (™) we get j[he signal model, suppogét) is 27r.-BL, thatis, bandlim-
ited to —27 < w < 27. Thenxz(¢) is also2r-BL and the
Xq (%) = C () @4 (/). (6) Shannonsampling rate would #e, implying the sample

] ) ) ] spacingl’ = 1/2. Assuming for sake of argument that
INotice that the sample spacing®s = 1, and that the sampling phase is

such that = 0 is included. For a different sampling phase, the reconstruction O(jw) is real a'_ﬁ'd posmve_ =27 < w < 2m, we see
conditions and equations have to be worked out again. that ®,(c’*) (aliased version of(jw)) is nonzero for
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Reconstruction of(t) from samples.
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s(t) 1 Fig. 5. MR decomposition based on ideal filters.
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N~ \/ 0 s Fig. 6. Interpolation of a signai(») with digital filters. The signal is assumed
to have a continuous time mode(t) = 3, c(k)é(t — k).

4

Nyquist(1) or zero-crossing property of the reconstruction filtey.
I1l. A PPLICATION IN INTERPOLATION

all w, and the reconstruction (7) is valid. Thus the model As explained in Section Il, a discrete time signa{») can be
(1) allows a smaller sampling rate, that is, wider sampldewed as a sampled versionaft) = >, c(k)@(t — k). While
spacing ofl’ = 1, even though the Shannonrate spacinigue for almost any(t), this viewpoint is especially useful for

would beT = 1/2. certain choices of5(t). For example, if¢(t) has smoothness
Reconstruction filterSubstituting fore(k) from (7) into  Properties such as a certain degree of differentiability every-
(1) and simplifying we get where, then we can use this to generate an interpolated version
of z(n). A 256 x 256 image can be displayed as a %1212
00 image in this way (interpolation by two). Smoothnesspof)
x(t) = Z x(4)s(t — 1) usually ensures that the interpolated result is visually pleasing
i=—00 (see example below). To see how the model can be used for in-
- ] terpolation notice that the samplesigt) at a finer spacing/L
wheres(t) =>"""____~(m)¢(t —m) is the reconstruc- zre given by

tion filter. Thus, we simply pass the sampi€s.) through
the continuous-time filter with impulse resposg) as in ny e n—kL) <
standard D/A conversion. See Fig. 3. * (_) B Z c(k)¢ L o Z c(k)f(n — kL)

L
From the preceding definition of the reconstruc- = = ®)

tion filter s(¢) it follows that at the integer points wheref(i) = $(i/L). In summary, we can reconstruct the finer
s(n) = 20— o¥(m)d(n — m). Thatis,s(n) is ob-  samplesc(n/L) from z(n) as shown in Fig. 6. First pasgn)
tained by passing(n) through its convolutional inverse through the digital prefilteH (¢7+) = 1/®4(e’*). This gives
v(n). Evidently therefores(n) = &(n). That is, the ¢(n). Then, use thé-fold upsampler or expander [20] indicated
continuous filters() has the Nyquist(1) property similaras{ L, followed by the interpolation filte#"(z), which is ob-

to the sine functiorin =t/nt (Fig. 4). tained by sampling(t) using the finer spacing/ L. We see that
MR spaces Sampling theorems for signals of thethe interpolation from:(n)tox(n/L) can be done entirely digi-
type (1) are often known as wavelet or MR samplingally. The functiong(t) is often chosen as a spline function. The
theorems. Readers familiar with MR theory [8] willuse of cubic spline is especially common in image processing
realize, however, that additional restrictions @ift) because its degree of differentiablity is two, which provides suf-
are required to generate a MR. Functions of the forficient smoothness for the human visual system.

z(t) = >, c(k)¢(t — k) belong to the spack, in a MR . . _

decomposition. Roughly speaking is like a subspace A- Interpolation With Splines

of lowpass signals with a certain degree of smoothness.A splines(¢) is a piecewise polynomial, with the pieces glued
The MR framework also defines finer subspatggwith  together at places calledknots such that the function is differ-
higher bandwidth) and bandpass spad&s. If ¢(t) entiable a specified number of times even at the knots. The most
were the sine functiorin 7t /7t the MR decomposition commonly used splines have knots at integers, that is £,
would be as in Fig. 5. In practicej(¢) is not ideally where—oo < k < oc.

bandlimited. So none of the subspaces represents idedDefinition 1. Splines:An Nth-order spline with knots at in-
bandpass signals, even though they admit reconstructteégers (just Nth-order spline” for the rest of the paper) is a
from samples. These sampling theorems can also B#ctions(t) such that

extended to other subspaces li& and arbitrary direct 1) s(¢) is a polynomial of degre# or less between integers,
sums of such spaces [4]. (i.e.,ink < ¢t < k+ 1 for all integerk).




VAIDYANATHAN: GENERALIZATIONS OF THE SAMPLING THEOREM: SEVEN DECADES AFTER NYQUIST

smooth connections
at knots

/

polynomials

-1 0 1 2

Nth derivative

Fig. 7.

constant, typically discontinuous at the knots (integers here).

N=0

(b) N=1
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Fig. 8. Nth-orderB-splines orbx(t) for various ordersV. (a) ForN = 0
this is the pulse, (b) folV = 1 this is a triangle, and (c) faN = 2 thisis a
quadratic. The knots are at integer locations as indicated by vertical lines.

2) At the integers or knots = k, the functions(¢) is con-
tinuously differentiableV — 1 times (i.e., differentiable

N —1times and thé N — 1)th derivative is continuous).

o

(a) A spline with knots at integers is a succession of piecewise
polynomials, connected at the knots such that it is sufficiently differentiable
everywhere. (b) TheVth derivative of anNth-order spline is a piecewise

1097
x(n) c(n) x(n/L
—> 1/BN(Z) > TL »| C BN(Z) > GN+1(Z) ( )
compute spline - - >
coefficients interpolate
Fig.9. Interpolation of a signal(») with digital filters. The signal is assumed

to have a continuous time modeft) = 3, c(k)bn(t — k) whereby(t) is
the N'th-order B-spline.

It can be verified that the corresponding time domain expression
is

k)N

N41 AN
NOEDS (N N 1)(—1>’“—(t i
k=0

Uit —k)
wherel{(¢) is the unit-step. The functioris(¢) andbs(t) are
known, respectively, as thguadratic and cubic splines. We
can verify that

e, 0<t<1
3 3\2
2 (t=3)?
=) 2<t<3
0, otherwise

and is shown in Fig. 8(c)B-splines are commonly used in in-
terpolation and have been known in the mathematics literature
for many decades (e.g., see Schoenberg’s classic book [12]). In
the digitial signal processing literature, the use of splines specif-
ically for interpolation became practicable because of the im-
portant work by Unseet al, [20] who showed thaB-spline
interpolation can be performed efficiently with FIR and stable
lIR filters of very low complexity [15]-[17].

B. Cubic Spline Example
Assuming thatp(¢) is Nth-order splineby (¢), we see that
the prefilter is the IIR filterH (2) = 1/Bn(z) whereBy(z) =
22:01 by (n)z~". For example ifN = 3 (cubic spline case)
we have
2744272 4 273
6

Bg(z) =

This implies, in fact, that théVth derivative is a piecewise and H(z) = 1/B3(z). Next, the interpolation filte’(z) has

constant with jumps at the knots. Conversaith-order splines

impulse responsg(n) = by(n/L). Unseret al. [14] have

are functions obtained by integrating such piecewise constasi®wn that/'(z) can be written in the especially elegant form
N times. Fig. 7 depicts some of the ideas pictorially. There exigt z) = cBn(2)[G(2)]¥ ™! wherec = 1/LY andG(z) is the

splines of finite duration. It can be shown [12] thatth-order

spline has duration at leaat + 1. It is easy to obtain examples

of such splines. For this define the pulse function

MﬂI{é

7

0<t<l1
otherwise.

Define the functionbx (¢) to be the convolution of(t) with

itself V times. It can be shown that this is a spline of ord

N. This is called the ofB-spline orderN. Evidently this is

nonzero in0 < ¢t < N + 1 (Fig. 8). The Fourier transform

of the Nth-orderB-spline is

By (jw) = exp [—jw S ”} <(‘)>+

2

@
2

e

simple running-sum filter
L—1
>
n=0
The implementation off'(z) is therefore computationally
very efficient. Fig. 9 shows how Fig. 6 simplifies in this case.
The zeros ofBs(2) are z; —3.7321 and 2, = —0.2679
showing thatl/Bsz(z) is not a causal stable IIR filter. But

_1—z_L
T 1— L

|[ can be implemented using a combination of a causal and
anticausal stable filter, and the same is true for arbitférnAs
emphasized by Unset al, this is not only a practical scheme
for finite length signals (e.g., images), it is also computationally
very efficient. A comparison of this approach with several
traditional ones can be found in [14]. Fig. 10 shows 51212
images obtained by two-fold interpolatiofl. 2) of a
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Fig. 11, then such reconstructions are not useful. Qualita-
tively speaking, the reconstruction is stable if small errors in
the sample values remain small in the reconstructed signal.
More precisely, letz(k) be replaced with theoisy version
xz(k) + e(k). Then the reconstructed signal has the error
component(t) = > ;- e(k)si(t). If we can show that

/ T lewPa <o Y Je®)P (11)

k=—oc0

for some finite constant' independent oé(%), the reconstruc-
tion is said to bestable in the energy-sense
For example, suppode(t)} satisfy orthogonality, that is

/sk(t)sfn(t)dt = Cé(k—m)

for someC > 0. Then, (11) holds with equality assuring this
kind of stability. A special case is reconstruction from samples
of abandlimited signal. Heresy(t) = sinn(¢t — k) /n(t — k)
(shifted sine functions) and satisfy the preceding orthogonality
property (Appendix ). Reconstruction of a bandlimited signal
from its sampled version (sampling rateNyquist rate) is there-
fore stable in the energy-sense.

A. Importance of Pointwise Stability

While stability in the energy sense is nice, a more stringent
type of stability called pointwise stability is desirable in the re-
construction ofc(¢) from samples. Before defining this kind of
stability, we first explain why energy-based stability is insuffi-
cient. Consider a hypothetical example of a sign@) and its
noisy reconstructed versiar(t) + ¢(t) shown in Fig. 12. We
assume for the purpose of illustration that the erf@ is in
the form of short occassional pulses. Even if the pulse widths in
the errore(t) (hence the error energly||c(¢)|?dt) are arbitrarily
small, the samples of(t) + e(¢) will differ significantly from
those ofr(t) at certain points. Thus, a resamplingu§t) + e(¢)
(perhaps with a slight offset of sampling instants) could yield
results that are completely different from the original samples
Fig. 10. 512x 512 interpolated versions of a portion of Barbara image usin@f #(t). This situation is avoided by requiring that the recon-
zeroth—order spline (top), and cubic spline (bottom). struction error be smafiointwise in timeFor example, if a re-
construction scheme is such that

256 x 25_6 sec_:tior! of the Barbara image. Both zeroth-order le(t)? < CZ (k)2 (12)
and cubic-spline interpolations are shown. In the former, the "

sample and hold effect is very visible and annoying, especially _ _ _ _

at the locations of the stripes. The cubic spline interpolationtiden the preceding mishap will never happen. By making the

Smoother’ and the Stripes have a much cleaner appearance_error in samples small enough we can make the reconstruction
errore(t) as small as we want, for allWhenever (12) holds, we

IV. STABILITY OF RECONSTRUCTION say that the reconstruction from samplepaintwise stable

Consider the reconstruction formula B. Pointwise Bound for Bandlimited Signals
oo Let z(nT") denote samples of the-BL signal z(¢). Assume
z(t) = Z a(k)sr(t). (10) Nyquist sampling, that is]’ = «/o. The signalx(t) can be
o reconstructed from:(n7") using the ideal lowpass filter or sine

functionh(t) = sin ot /ot, according to the equation
Typically, sx(t) = s(t — k), for most cases under discussion. 0o
If a slight perturbation of samples(k) results in a large z(t) = Z a(nT)h(t — nT).
perturbation of the reconstructed signal as demonstrated in o
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samples of x(t) x(t)
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lightl i
o zé%pe{agglfsz(t) x(t)+e(t)
7 T o 79 PN,
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Fig.11. () A signal:(t) reconstructed from samples, and (b) a slightly perturbed set of samples resulting in a completely different reconstructét) signal

e(t).
x(t /\/\/\ B R e I e

t
> imp. resp.o(n) imp. resp. Y(n}

Y

Fig. 13. The digital-filtering relation betweein) andxz(n).

t wise in timein terms of its energy. So a fixed amount of energy
> cannot be concentrated in an arbitrarily narrow region (for that
would increase the magnitude arbitrarily somewhere). We now
e(t) 1— . . L
n n t apply this result to study the stability of reconstruction in pres-

-

ence ofadditive noisein the samples.

Fig. 12. Asignalz(t) and its noisy versiom(t) + e(t). The noise:(t) is also Theorem 1. Pointwise Stability in Nyquist Samplinget

shown. x(t) be a bandlimited signal and letn7") represent samples at
the Nyquist rate (i.ed = n/o). Leta(nT) + e(nT) represent
Using Cauchy—Schwartz inequality, it follows that the samples with erroe(nT’). Assume the error has finite
- - energy, thatisy .~ ___|e(nT)|? < co. Then the reconstructed
signal isz(t) + ¢(t) where the erroe(t) is bounded pointwise
|z(to)|* < _z: |x(nT)|? _z: |h(to — nT)|? anCOl’ding(tzie(t)TQ)S ) |6(7’LT()|)2 P &
e e Proof: The error in the reconstructed signal is
for anyto. The sumy_, |h(to — nT)|* can be regarded as thee(t) = Y77 e(nT)h(t — nT). So e(t) is a o-BL
energy in the samples of theBL signal h(ty — t). Applying signal and therefore satisfigs(¢)|? < >°°7 __|e(nT)|* for
the energy identity proved in Appendix | for bandlimited signalall ¢. VVVY
(32) we therefore have Note that stability of reconstruction is not synonymous with
oo 1 e filter stability . The reconstruction filtes(¢) = sinot/ot is
Z |h(to —nT)|* == / |h(to — )2 dt unstable in the BIBO sense [10]. Still the reconstruction process
n=—oo ) is pointwise stable.
1 [~
:T/ N |h(8)[?dt C. Pointwise Stability in MR Sampling
_ 2 ; : - Consider again signals of the fornt) = >, c(k)p(t — k)
N zn: [R(nT)[" (energy identity again) discussed in Section II. We will make a caref’[JI choice of math-
—1. ematical assumptions and establish pointwise stability of the re-
construction equation(t) = >, x(k)s(¢t — k). The samples of
The last equality follows from observing thdt(nT) = this signal, taken at integer spacing, are given by
sin(oTn)/oTn = sinwn/mn = 6(n). Thus, the quantity, is
irrelevant in the summation. Summarizing, we have shown that z(n) =Y c(k)p(n — k). (14)
0o k
e < > |x(nT)) forallt Assuming tha®,(c/*) £ 3 $(n)e 9™ # 0 for all w, we
n=—o0 can construct(n) from the samples(n) using
for any o-bandlimited signal sampled at the Nyquist spacing
T = 7 /o. Applying the energy identity (32), again we see that e(n) =D _w(k)y(n — k) (15)
the preceding also implies k
1 = where~(n) is the impulse response &f ®,(c’<). Equations
lz(t)]* < —/ |z(7)|?dr forall ¢ (13) (14) and (15) represent two digital filters which are convolu-
T tional inverses of each other (see Fig. 13).

whereT = 7 /o. This result makes no reference to sampling at Our first goal is to ensure that both of these filters are BIBO
all! It simply says that a bandlimited signal is boundsaint- stable [10], that is, the impulse responsesfargsequences (i.e.,
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absolutely summable). For this we make the assumption that Proof: Applying Cauchy—Schwartz inequality, the equa-
#(t) is bounded as tion z(ty) = >, c(n)o(to —n) yields

PO < T (16) otto)” < 3 letm)l* Dot =

<
< T

. To proceed further note thatt, — n) represents samples of the
for someX > 0 ande > 0 (in Word_s,d)(t) decays faster than shifted functionp(ty — ¢). If ¢(¢) is bounded as in (16) then so
1/t)_. Under_t_hls and a_few other mlld_ assumptions we _W|II ess (to — ) for appropriatek’ ande in (16). Sog(to — n) is in
tablish stability propgrtles. The following prgsentanon differs in (Lemma 1) so thad" |¢(to — n)[2 in the preceding equa-
style as wgll as de'ta|l frqm some of the original results of Walt?lon is finite. Next, fromn Lemma 2 we see thit |c(n)? <
[29] who first studied this problem rigorously. BY" |z(n)? for a finite positiveB. Thus "
Lemma 1. Filter Properfcies:ASupposej)(t) is bounded as in " '

(16) and furthermor& (e’*) = 3~ ¢(n)e 7" # 0 for all 2 2 N2 2
w. Then (a)p(n) andv(n) aref; sequences, (b)(n) andv(n) (o) < ;'c(n” En: [9(t0 —m)I” < Oézn: ()l
are alsof, sequences, and (c) the Fourier transforms ©f) o -
and~(n) are finite for allw. ¢ for some finite positiver. 3 _ AYAY

Proof: Equation (16) means that(n)| < K/|n|'*<, n # C(_)rollar)_/ 1. I?omtm_se Stablllty:The preceding theqrem im-
0, which assures that(n) € ¢;. Now there is a theorem due tomediately implies pointwise stability of reconstruction. Thus
Wiener [11] which says that ip(n) € £ and®y(c™) # 0 leta(n) +e(n) represent the samples with eredr) and as-
for all w theny(n) is also an/; signal. Next, if¢(n) is anéy  SUME2, o le(n)|* < oo. Then we can use the stable filter
seqluen|ce( tr;(|en it isf als?lﬂpsequince becaz@i|¢|(n()| )<|200 12/:<I>2(<(3k)()7)(t7(13 de/?)neTigng iZigE??)C%(g scuc(z)i(?te(nk)) |:s
implies|p(n)| < o forall n some finitex so that) | |p(n)|* < % Ce TR © = 2. Ce -
aY, |¢(n)] < cc. Thet, property also implies that the Fourierthen the additive noise affectingt). Applying (17) toe(t) we
transform is finite becaus@y(c’*)| < 3, |¢(n)e 9| = find

n lp(n)] < oo, \VAVAV/

ZL(lrrgm)rJ\ 2: Supposep(t) is bounded as in (16) and further- le(®)]” < O‘Z le(n)]? (18)
more ®4(c’) = 3" $(n)e=i" # 0 for all w. Assume fur- "
ther thatc(n) is in £2. Thenz(n) is in £, and furthermore there which is precisely the pointwise stability property. We conclude
are finite positive constantd, B such that4 " |=(n)]?> < this section with a technical detail.
Yo lem)? < BY, |x(n)]?. & Theorem 3. Pointwise Bound and Riesz Biast all assump-

Proof: This is essentially a consequence of the facts th@éns be as in Theorem 2. Assume further thaft — &)} is a
(a) z(n) is the output of a BIBO stable filter with inpu{n), Riesz basis for signals of the form(t) = 3=, c(k)¢(t — k)
and (b) the inverse of this filter is also BIBO stable. For a formabherec(k) € ¢,. Then in addition to (17) we also have
proof we will use the fact thgt ()| < 3~ |d(n)e 74| =

3, |#(n)] < oo becauses(n) € £1. Thus ()” < B / lo(r)Pdr forall ¢ (19)
27 -
Z lz(n)[? :/ 1 |X (ejw) |2 duw for some finite nonzero constafit Thus, similar to bandlimited
- o 27 signals,z(¢) is bounded pointwise in time in terms of its energy.
27
1 i Gon |2 <
I/O o C () @u ()| dw Proof: By definition {¢(t — k)} is said to be a Riesz basis

if there exists finite nonzero constamts and B; such that for

27
[ bt WO

2 2 2
wherel/A = (3~ |#(n)])%. This shows in particular that(n) 4 zn: feml” < /—oo ()P < By zn: letm)
is also an/; sequence. Next, sinagn) is the output of the . .
filter v(n) in response ta(n), we similarly havey", |e(n)|? < Wherexz(r) = 3, c(n)¢(r — n). We will need only the first
BY, |z(n)]> whereB = (3, |v(n)|)? < oo becausey(n) € mequgllt_y in the proof. Appllcat|on_of Cauchy-Schwartz in-
/. NAVAY/ equality inz(t) = > c(n)é(t — n) yields
Theorem 2. Pointwise Bound in MR Sampliriget «(¢) =

S, c(n)$(t — n) whereg(t) is bounded as in (16) and further- [ (to)|* <D |éto —m)[* 3 le(n)l?
moredy(c’«) =3 ¢p(n)e™7«™ £ 0 for all w. Assume further " Moo dr
thatc(n) is in ;. Th —n)|? —
ate(n) is in £, Then <SSl -mf [ el
() < |zx(n)]” forallt (17) :/3/“’ ()2

for some finite nonzero constant & where =3 [¢(to — n)|?/A;. VVV
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D. Pointwise Stability and Functional Subspaces xt)
The stablility of reconstruction af(¢) from samples is re- 3 /TTT\ \

lated to the idea of a functional space. Recall thatdenotes 0 6 >
the Hilbert space [7] of functions with finite energly (|| = \LLJ/
J |z(t)|?dt. Let H be a subspace with the additional property
that|z(¢)| is pointwise bounded as follows:
0o Fig. 14. Demonstration of nonuniform sampling.
wOF <0 [ fetrPr (20)

- c(n) x(3n)
whereC' < oo. The constanC is the same for alk:(¢) in H ~ H@ l3 —
though it might depertdbon the choice of the subspake A sub- ,L X(3n+1/3)
space satisfying the preceding inequality is callédrectional » H(2) ls >
spaceor a reproducing kernel Hilbert space (rkhs). Notice that ,L X(3n+2/3)
arbitrary subspaces df; may not satisfy (20) (e.gk = L) | H(2) ls e

because we can change the value:@) at a pointt, by an ar-
bitrary amount without changing |z(7)|?dr.

We proved that the subspace ofBL signals satisfies
(13) and is therefore a functional subspace. Similarly The- ) ) ) )
orem 3 shows that the subspace of signals of the forRhis is equivalent to the nonuniform sampling scheme shown in
z(t) = ¥, c(n)p(t — n) is a functional subspace under thd19. 14, with average rate still equal to unity. The three sets of
assumptions mentioned in that theorem. So, we have seen 888'Ples can be expressed as
explicit examples of function subspaces. In such spaces point- i i
wise stability of reconstruction from samples is guaranteed x <3n + 5) = ZC(k)d) <3n + 37 k) , 1=0,1,2.

(i.e., we get “good” sampling theorems). For further reading on k
this topic, the reader is referred to [2] and [19].

Fig. 15. Analysis bank representing nonuniform sampling.

We cannot interpret this as convolution as we did in the uniform
case. Define the three discrete time filtéfg(») with impulse
resposes

If ¢(t) is compactly supported (e.g., Daubechies’ scaling .
function, or a member of the spline family, etc.) then the hi(n) = ¢ <n+ ﬁ)’ i=0,1,2. (22)
sequence(n) is an FIR filter and its inversg/®(e*) is lIR. 3
So the construction af(n) (hencex(?)) from x(n) involves Thatis,;(n) is the sampled version of a shifted versiog¢f).

IR f||ter|ng. (rewew F|g. 13). Mallat [8.] proposed a CleverThus we can represent the set of nonuniform samples as the dec-
way to avoid such filtering byversampling z(¢) at a much

higher resolution. The idea is that:if¢) belongs toV} it also Lr:iateldsiul?:)haer:cei Z;giggzgflflllr?n gxég]ﬂzgﬁfgﬂ?;isvﬁ:ﬁf b;rjk
belongs to finer spaces suchdg, N > 0. This is called the 9. 19)- y P

multiresolution property, and is ensured by further restrictior$§Ct reconstrucno_n property [23] then we can reconstrue}
on ¢(t). Thus rom these nonuniform samples. Theft) can be reconstructed

fromz(t) = >, c(n)p(t—n). Most readers familiar with filter
z(t) =Y a(k)2"?¢ (2Nt — k). (21) bank theory will realize that it is very easy to find examples
k where such FIR synthesis filters do exist. We now supply a de-
If N is large enough the2™¥/2¢ (2Nt _ k) are narrow enough tailed example Wher_é(t) is the_ guadratic spli_ne gi\_/en in_ 9).
to make the approximatiom(k) ~ c (Z—Nk) for some con- 1he three analysis filters obtained by sampling this spline are

stante. The coefficients:(k) can then be found from(k) by ~9ven by

V. NONUNIFORM SAMPLING

using a discrete time filter bank (see [25] and [28] for tutorial 21y 2 14132 1+ 422
review). It turns out that such arbitrary oversampling is not nec-  Ho(#) = Hi(z)= 18
essary; oversampling by a factor of two is enough. Under mild 4+132-1 4 22

conditionse(k) can be computed exactly fros{0.5n) with the Hy(z) =5

help of FIR filters alone [28].

In fact both IIR filtering and oversampling schemes can bEhe 3x 3 polyphase matri¥(z) of this anaylsis bank [23] is
avoided completelyf the samples ofc(¢) are allowed to be nonsingular and can be inverted to obtain the synthesis bank
nonuniform. Thus, we will show how to reconstruetn) from  polyphase matriR(z)
periodically nonuniform samples af(¢) with the help of FIR

filters alone. For example, suppose we consider the following 1 0 9 9
three sets of samples: E(z) 18 113 4
4 13 1

x(3n) z <3n + %) T <3n + ;) . 1 13 -36 27

R(z) =E (2) = 1|5 12 -3

2Actually C could depend on but we keep it simple here. 13 -12 3
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x@n t3 F@ [>e>ch) y(n) F(z) F=x(n)
A
x(3nﬂ3)_> T3 F@ > Fig. 18. Signal model allowing recovery from samples.
A
x(3n+2/3) - X(Mn)
—1 13 E@ P> y(n)—>{ R (2) S(z) | x(n)
Fig. 16. FIR synthesis bank for reconstructir(g ). Fig. 19. Extracting the reconstruction filt(z).
samples x(Mn-k) x(n-k)
ettt ——m k T L m—
samples ‘r
X(3n+1/3) J_é_f_f_é_, Fig. 20. Extracting the stable reconstruction fil&fz) whenR, (=) has no
— s/t > ‘ unit circle zeros.
samples W I | 1 r
x(3n+2/3) ———» sft) |» z(n) can be reconstructed perfectly from its decimated version
analog filters «(Mn) even thoughz(n) may not be bandlimited (because
F(z) is not necessarily an ideal bandlimiter in this discussion).
Fig. 17. Reconstruction of(t) from nonuniform samples. The only condition od'( ) is the NyquistM ) condition. To see

how this condition can be eliminated, consider the polyphase
which shows that the synthesis filters for perfect reconstructié@Presentation [23]

are the FIR filters M-1
13 — 52 + 1322 36 + 122 — 1222 F(z)= ) 2" (). (25)
Fo(z) =275 Ri(x) = . =
97 — 37 + 322 F(z)is Nyquist M) if and only if the Oth polyphase component
F(2) == Ro(z) = 1. If this is not the case, rewrite

Fig. 16 shows the synthesis bank which reconstrdgty from  F(2) = Ro (™) (1 + 281 (™) + -+ + 2 1Sp_1 (2M))
the nonuniform samples of(¢) perfectly. By usingz(t) = ~ M
>, c(k)p(t — k) we can directly express(t) in terms of the call this 5(z)
nonuniform samples: so that the filtelS () is Nyquis{ M ). Using a standard multirate
2 oo . identity, we can then redraw Fig. 18 as in Fig. 19. This shows
z(t) = Z Z = <3k + 1) si(t — 3k). (23) thatz(n) can still be recovered from(Mn) if we use the in-
3 terpolation filter

=0 k=—o0
Here,s;(t) are related to the scaling functigiit) and the syn- S 2 F(z)
thesis filters bys;(t) = >°, fi(k)¢(t — k). We can interpret (z) = Ro(zM)"

this reconstruction as a continuous-time filter bank as shown in . . ) . )
Fig. 17. Thus, the three sets of samples are passed through ti{{§ecall £(z) the model filter (it defines the signal model in
analog filtersso(#), 1 (£) ands»(¢) and then added up to obtain"19- 18), andS(z) thereconstruction filter.

x(t). Sincef;(k) have finite durations, the filters () also have Stability of Reconstruction

finite durations likep(t). . o
In order to be practical, the reconstruction filt§(z) has
VI. DISCRETETIME SAMPLING THEOREMS to be stable and preferrably causal. Assume the model filter
_ ) ) ) _ o . F(2)is stable. IfRy(>) has all zeros inside the unit circle then
A/}d‘|screte-t|me signak(n) is said to bea—bandllmlted if S(z) = F(2)/Ro(z) is a causal stable IIR filter. In fact if
X(e/¥) = Oforo < |w| < 7. If o = «/M forinteger p. .y has no unit-circle zeros(z) has a (possibly noncausal)
M, we can reconstruct(n) from the decimated or subsam-g¢apie impulse response, and this is in principle sufficient to
pled versionz(Mn) [23]. Similar statements can be made withyet staple reconstruction. More generally, if #t@-polyphase
suitably defined bandpass signals.zifr) is not bandlimited componentR;,(z) has no unit circle zeros, we can rewrite
at all (e.g.,X(e’*) nonzeroeverywherg can we still recon- g,y — Z*Ry(xM)S(z) where S(») is NyquistAf). The
structz(n) from a decimated version? Consider Fig. 18 whichjgnal model can therefore be redrawn as in Fig. 20. We see that
shows an interpolation filter. The output is given bin) = 2(n — k) (hencex(n)) can be recovered from its decimated

2 f(n - ME)y(k). ) versionz(Mn — k) using the stable IIR filter
If the filter F'(z) has the Nyquigt\/) property *P(2)
z z
F(Mn) = (n) @4 S = R
then we can see that the samplégs) are also present in the The preceding discussion also shows that stable recon-
sequence:(n). More precisely we havg(0) = x(0), y(1) = structibility from the decimated version af(n — %) (i.e.,

z(M), and so forth, that isy(n) = z(Mn). This shows that from z(Mn — k)) for somek does not imply the same from
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L-blocked

@ y(n)—>|*2]_> F@@) = x(n versci)gnex(n)
x(n) —» > L / » *L

R

fr >

X
2

4
-—
p
L 4

Fig. 21. (a) The signal model. (b) Simplification in the case of Example 2. S x(Ln—1) 2
x(4n-3)
_ -1
\ X/(4n " Z L’ lL x(Ln—L+1)‘ TL _JZ
TTTTTTTT?T TTT?? - ) blocking i :unblocking>

Fig. 22. Demonstrating nonuniform decimation. Fig. 23. Blocked and unblocking a signa(r).

o(Mn — @) for i # k. Notice finally that if all the polyphase arbitrary (independent aff) it adds flexibility to the class of
components have unit-circle zeros then we cannot use fignhuniform decimators that can be created this way.
preceding trick. A totally different technique is needed based .
on nonuniform decimation (Section VI-C). B. Block Representation

Example 1. Unit Circle Zeroslet the model filter be  To explain how nonuniform decimation helps in stable recon-

F(z) = 1+ 2 — 22 + 2% AssumingM = 2 we have struction we first review a definition. Given a signa(n), its
Ro(z) = 1 — zandR;(z) = 1 + 2. Both of these polyphase L-blocked version is thel.-component vector
components have unit circle zeros. We cannot therefore recon- z(Ln)
structz(n) from eitherz(2n) or z(2n — 1) in a stable manner. 2(Ln — 1)
Example 2. Common Factord:et F((z) = 1+ z + 2% 4 2°. x(n) =
AssumingM = 2 we haveRy(z) = R;(z) = 1 + z. Both of :
these polyphase components have unit circle zeros. In this ex- z(Ln—L+1)

ample we can rewrité'(z) = C(2*)(1+z) whereC(z) = 1+z  We also say thak(n) is the unblocked version af(n). The

is the common factor between the polyphase components. %ponent&(Ln — 1) are nothing but the polyphase compo-
signal model can therefore be simplified as shown in Fig. Zents ofz(n) with respect ta.. The integerL is known as the
using a standard multirate identity [23]. This shows that W§lock length. Fig. 23 shows how blocking and unblocking can
can reconstruct(n) from xz(2n) by using the Nyquist(2) filter pe represented using multirate building blocks.

S(Z) =1+ 2. This example demonstrates the fact that if there Now, consider a transfer functioﬁ(z) with |nput$(n) and

is a common facto€’(z) among thel/ polyphase components, output y(n) [Fig. 24(a)]. Redraw this as in Fig. 24(b) where
it can be eliminated altogether from any discussion of recog¢,) andy(n) are L-blocked versions af(n) andy(n). Then,
structibility. the mapping fromx(n) and y(n) is a linear time invariant

In the case of Example 1, we will show that it is possible teystem [23] with an x L transfer matrixH(z) called the

obtain stable reconstruction ifronuniformly decimated ver-  plocked version of (z). Letting H(z) = Ef_—(} 2~k Ep(2F)

sion Of.’L'(TL) is used instead of USII’!E(QH) Ol’a:(2n — 1) To ex- be the Type 1 polyphase form CH(Z) (Section |_B)7 the
plain What th|S means Consider the pail’ Of Slgmﬁ(EMn — 'L) blocked version fo. = 3 has the form
andz(2Mn — i — 1) for some fixed:. These together constitute

. . . . . . Eo(z) El(z) EQ(Z)
a nonuniformly decimated version. The decimation ratids I

. . H(z)= | 271Ex(2) Eo(2) Ei(z)

because we retain one out bf samples on the average. This LE(2) 2 1Ea(z) Eol»)
is demonstrated in Fig. 22 fav/ = 2 andi = 2. The samples _ _ Comne s meel A
shown in bold lines constitute the nonuniformly decimated vein this matrix, any row is obtained from the previous row by
sion. More generally lef. be an arbitrary integer and considesghifting it to the right and then recirculating the last element

the signals that spills over. In this sense it is similar to a circulant matrix,
) ) but since the recirculated element is also multiplied:by, it
zi(n) = a(MLn—1), 0<e<ML-1. (26) jgformally called apseudocirculantmatrix [21], [23].

Thusz;(n) is a polyphase component ofn) with respect to

the integet L, that is, X (=) = Eﬁ\igfl # X;(zM"). Suppose C. Reconstruction from Nonuniform Decimation

we retain a subset df signals The signal model forz(n), given by Fig. 18 can be
2io (1), 35, (0 35, (n) redrawn inME?Iyphase form as shown in Fig. 25, where
i (1), Liyg (M) oo Ty F(z) = > ,_ #*Ri(zM) as usual. Now imagine that each

and discard the rest. This setbfsignals constitutes a nonuni-polyphase componert; (z) is represented if.-blocked form
formly decimated version of(n). Since we retaid. out of LM for someL as in Fig. 24. By combining the expandeL in this
components, the decimation ratiofg. Since the integeE is system with the expandérd/ in Fig. 25 we can redraw Fig. 25
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(a)
X(n) —| H(») — y(n)
L-blocked L-blocked
version x(n) version y(n)
x(n > > L / > / > > —>
" -1 ' x(Ln) y(Ln) fe v
zY ‘r r4
> i L > - T L
Sy x(Ln-1) H(z) y(Ln-1) !, (b)

z’1+_’ ‘L R TL _Jz

x(Ln-L+1) y(Ln-L+1)
D —— bloc!(ed «-—
blocking ‘éfe':zcz’;‘ unblocking

Fig. 24. (a) A transfer functioi/ (=), and (b) itsL-blocked versiorH(z).

y(n)——e—»| R TM s X(N) we say thay(n), and hence:(n), has been reconstructed from
I the M -fold nonuniformly decimated version (27). We can write
1
e il X, (2) Yo(2)
4 4z X, (= Yi(z
: ( ) = Rsub(z) 1.( )
2 : :
L RM"(Z) > TM —’—T XiL—l(Z) YL—l(z)

, _ _ _ for an appropriately defined. x L submatrix Ry,,(z) of

Fig. 25. The standard polyphase representation of the signal model of Flg.%&ig(z)_ Thus, as long as there exists such a submatrix with
[detR.u,(c’*)] # 0 for any w, we can obtain the inverse

as shown in Fig. 26. The advance operatoirsFig. 24 become R, (¢/“), and in principle reconstruct(n) from the dec-

2™ because they are moved to the right of the expanplées imated version. For the case whefgz) is an FIR filter,

using noble identities [23]. R.un(2) is a polynomial matrix and the condition is that

The signalsz;(n) appearing in Fig. 26 are thé/L [detR.u,(z)] be free from unit-circle zeros. If we want the

polyphase components of(n) defined in (26). Consider reconstruction itself to be FIR theR_j (z) has to be FIR

a subsetr;, (n),x;, (n),...x;, ,(n). This subset defines awhich is possible ifdetR..,(»)] is a pure delay, i.e.,

nonuniformly decimated version af(n). It can be used to

determinez(n) .if the driyir)g sign_aly(n) i_n thc_e model Fig. 18 detR.u,(z) = ¢~ (FIR reconstructibility condition)

can be determined. This in turn is possible if and only if the (28)

s!gnaISyk(n) in Fig. 25 can pe reconstructed from the abdiyg for somec #£ 0 and some integel.

S|gn§1I5xi(n)_. To explore this let us formulate the problem in Example 3: din Example 1 we had(z) = 1 4+ » — 22 + 23

matrix notation. L_elxk(n) denote the vector oL outputs of andir = 2 so thatRo(z) = 1 — z andRy(z) = 1 + . These

Ry (z) andX.(2) its z-transform. We can then write polyphase components have unit circle zeros, so we could not
reconstructz(n) from eitherxz(2n) or z(2n — 1) in a stable

Xo(#) Ro(z) Yo(2) manner. Now consider the scheme of Fig. 26 with- 2. First
X1(#2) Ri(z) Yi(z) we have to find the 2-fold blocked versions®§(z) andR;(z).
. = . . . Since

Xy Ry Lyooi()

R Rofz) =1 =2 =1+ x (=)

we see that its polyphase components are 1-andSimilarly

Here, Ry, (2) is anM L x L matrix. It has thel inputsyx(n),  those ofR,(z) are 1 anck. Thus, theL = 2 blocked versions
0 <k < L—1andML outputsz;(n). If the L inputs of e

Ry,ig(2) can be reconstructed from a subsef.adutputs

240 (), 24, (n), i, (n) 27) Ro(z):[_1 1}’ Rl(z):[i ﬂ
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ML-blocked
L-blocked versio?xcofe x(n), M-blocked
version of y(n) rearranged version of x(n)
v A X,(n) x(n)
— lL 9 > TML > >
7'y 4zM
(W]
- L i Wt ML
'y ° R, (@) . M
: : I W4
z—1| ‘[_ Y. M R xM(L_n(n) R TML TZM
- SN fmL
4 M
xM+1 (n) N TML i w4
. R @ . azM
[ 4 ®
L] L]
XM(L-1)+1(n) ZM
fm —J
. z
L ]
L» X () TML -
M
sz.1 (n) . tML R Y4
0 RM-1(z) ) Z
[ 4 L
‘ :
| xML-1 (n) _ 1ML |ZM
Fig. 26. TheL-blocked version of the polyphase form shown in Fig. 25.
In the notation of Fig. 26 we have SinceX(z) = Xo(zh) +2X1(2%) + 22 Xa(24) + 23 X3(2), we
Xo(2) 1 _z finally have
XQ(Z) _ -1 1 Yo(Z) X0(24)
Xi(z) 1 =z Yi()|" 2 3y | Xi(2?)
Xg(z) 1 1 X(Z) :[1 z Z z ] X2(24)
Xa(2*)
Rouig (2) 3% .
ThusRuy,i(2) is a 4x 2 matrix. Consider the submatrix 1 _72
R [_1 1} =0.5[1 =z 22 2% 1 “1
sub —
1 1 1 1
This is a constant nonsingular matrix. This shows that we can -1 1| [Xa(z)
write 1 1] | X3(2%)
Yo(z) | _ R (2) Xoa(2) which simplifies to X (z) = S2(2)Xa(z*) + S3(2)X3(2%)
Yi(z) su Xs3(2) where
so that Sa(z) = —0.5(1 + 2z — 222 + 2% = 2°)
§0EZ§ 11 _12 () S3(z) =0.5(1 + z + 22° — 2* + 2°).
2% I 1 2(2
X1z |1 =z Row(2) |:X3(Z):| Note thatXs(z) and X3(z) are thez-transforms ofz(4n — 2)
X3(2) 1 1 andxz(4n — 3) respectively. So we have shown thg) can be
1 —z reconstructed frona(4n—2) andz(4n —3) using the FIR filters
PR I | -1 1] [Xa(2) Sa(z) andSs(z) as shown in Fig. 27(a). That is, we can recover
=0.5 1 P 1 1| | X3(2) | all the samples of(») from the nonuniformly decimated ver-

1 1 sion shown by bold lines in Fig. 27(b).
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x(4n-2)
X(4n-3)

H il

@) (b)

Fig. 27. Pertaining to Example 3. (a) FIR reconstructionv¢f) from two of its four polyphase components. (b) Interpretation as reconstruction from
nonuniformly decimated version.

n

D. Conditions for Reconstruction from Nonuniform trix obtained by selecting the first three rowsRf(z) and first
Decimation two rows of R;(z)

Note thatRy,.(~) depends entirely on the filteF'(») and 1 a as 0 O
integersM and L in Fig. 26. With F'(») restricted to be FIR, 0 1 a a O
what is a set of necessary and sufficient conditions for FIR re- Rop(2)=1{0 0 1 a; a
constructibility? That is, what are the conditions bBK>) and 1 b by by O
M so that there will exist ai such that a submatriRs.;,(2) 0 1 b by bs

of Ry,e(2) satisfies[detRqy,(2)] = cz~~? This is an open

problem. However a set ofufficient conditions has been By choice this matrix is constant (i.e., mon it). We now claim

that this is a nonsingular matrix. The proof depends crucially on

found [26]: ;
Theorem 4:Let x(n) be modeled as in Fig. 18. Letzg()er?gsrﬁmﬁtllc:anieci)tshzazeg)e nmo Zimﬂﬁfggr)éfiﬁﬁ&;a};
F(z) = YAt 2*Ri(2M) be FIR and assume there is & P '

and1/b be the zeros aR;(z) and1/d, 1/e and1/ f the zeros of

pair of polyphase components;(») and &;(z) with (a) no R.(2) (the choice of notations simplify some of the following

multiple zeros and (b) no common zeros. Then, we can recovet . o
expressions). Based on these definitions we see that

z(n) from a nonuniformly decimated version with average

decimation ratio equal ta/. Moreover the reconstruction 1 rl ag ao 0 O 1
involves only FIR filtering. & a 0 1 a a O a
We explain the idea of the proof by an exampleet the two Row(2) [a®> | =0 0 1 a; ao a?
FIR polyphase component$;(z) and R;(z) in Theorem 4 be a® 1 b b b3 O a?
given by at LO 1 b by b3 a*
[ R (3) 0
Ri(z) =1+ a1z + azz 2 aR; (%) 0 1
Ri(z) =1+4biz L4 byz 2 4 bgz 2, =|dRi(5) | = |0| & <E> '
R;(3) 1
Choose the block length in Fig. 26 to be the sum of orders L aR; (%) @

of R;(z) andR;(z), i.e.,,L = 2+ 3 = 5. Then the blocked Defining the Vandermonde matrix

versionsR,;(z) andR;(z) are
1 1 1 1 1
c

L w w0 o bl ]
0 1 ay as 0 V= CL3 b3 d3 63 f3
Ri(z) = 0 0 1 a1 a» a4 b4 d4 64 f4
z"Lay 0 0 1 a a* b d* & f
—1 —1
Lz e 2 e 000 we therefore see that the prodiRt.,;,(2)V has the form
ro1 b1 ba bz 0O
0 1 b1 by b3 R V= 0o P
Rj (Z) = Z_lbg 0 1 by by | . Sllb(z) Q o
Z_le Z_lbg 0 1 b
_Z_lbl Z_lbg Z_lbg 0 1 where .
Q= 1 1] [R(3) 0 and
As mentioned in Section VI-B these are pseudocirculants. The a b 0 R; (1)
martrix Ri,ig(2) is a 10x 5 matrix. Consider the & 5 subma- 11 1 R; (%) 0 0
P=|d ¢ f 0 R 0
ENCE & 0 0 R (;)

3A formal proof is mostly a matter of supplying more general notations at téinceRi(z).andRJ(z) do not have mUI.tip_Ie Zeros or common
expense of clarity. zeros, the five numbers b, d, ¢, f are distinct. Thus, the Van-
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xn) €an be interesting especially in the case of nonseparable lattice

sampling.
2r/M

- @®

N
For ac-BL signalz(t) it turns out that certain integrals can
Fig. 28. (a) A signal with several bands of individual width 2z /M, and be calculated exaCtly by using sums of samples. Accordmg to

APPENDIX |
BANDLIMITED SIGNALS: EVALUATING INTEGRALS FROM SuMS

(b) model for such a signal. Shannon’s sampling theorem
x(t) = Z x(nTYh(t — nT) (29)

whereT = n/o andh(t) = sinot/ot. Thish(t) is a lowpass
filter with frequency response

VM_ (n) x(n) Hiiw) = T for |CU| <0
‘ X0) 60 ={5  dsunere
Analysis bank Synthesis bank
Since[ h(t)dt = H(j0) = T we see from (29) thaf «(¢)dt =
Fig. 29. The maximally decimated filter bank. > x(nT). Thatis
dermonde matri¥ is nonsingular. MoreoveP andQ are non- - R
singular for the same reason (e.§;(1/a) and R;(1/b) are Z_: z(nT) = T /_Ooa:(t)dt. (30)

nonzero by coprimeness). The matRx,,;,(z) is therefore non-

smgulek\]r.. Mrc])reovehr since it is a constaiﬁt;]ub(z) is trivially  this shows that thentegral of a bandlimited function can be
FIR. This shows that we can reconstruct the compongr{is) oy ajyated from theum of samples taken at any rate above the

in Fig. 26 from first three outputs d¥;(~) and first two outputs Nyquist rate. Now the shifted sine functiola§ —n ") constitute
of R;(z). Thusy(n) (hencex(n)) can be reconstructed fromanorthogonal basis foro-BL functions. That is
an M -fold nonuniformly decimated version efn), using FIR

filters. AAY o
/ Wt — n YR (t — mT)dt = T65(m — n). (31)

E. Multiband Models e

Signals which can be approximated by the model of Fig. Tthis can be shown by using the fact that the preceding integral
are typically those which have most energy concentrated insaequal taZ™ ffo edwTm=n) g, /21 (from Parseval’s relation)
frequency band of widtB= /M. For multiband signals with en- and simplifying the result. Using this orthogonality it follows
ergy concentrated ik < M subbands [Fig. 28(a)] the modelfrom (29) that
of Fig. 28(b) can be used. Subject to minor restrictions (sim-

ilar to the one-band case) we can reconstruct the sigfnglin > , 1 e y
Fig. 28(b) from a nonuniformly decimated version, the average > le(nD)P = T / |(t)["dt. (32)
decimation ratio beind//L > 1 (see [27]). The signat(n) n=-oo o

can be viewed asartial reconstructions from perfect-recon- In short. th : that i in th i
struction filter banks [23] of the form shown in Fig. 29. If all the " SNOrt, theenergy 1S preserved al 1S, energy in the sam
M subbands are retained thetw) = v(n). If we drop some ples is prop(_)rt|ona_l o the energy m’(t)._ Equat|0_ns (30) and
subbands, them(n) is a partial reconstruction af(n). If the (:_32) ShOU|d. in particular be_true for tiwne fun(_:tlon h(t) =
filter bank is appropriately designed, thetw) is theorthog- =" ot/ot with sample spacing” = /. In this case these
onal projection of v(n) onto the subspace spannedbyf the equations yield

filters Fy(2). Thus orthogonal projections admit reconstruction

from subsampled versions, just as bandlimited signals do. S h(nT)=1, > hW(nT)=1 (33)

VIl CONCLUDING REMARKS which also follows trivially from the NyquisT”) property of the

The topic of sampling continues to fascinate many reine, namelyi(nT) = §(n). More generally if a signal has the
searchers in science and engineering. In this paper we revie@un (29) for someh(¢) (not necessarily bandlimited, e.g., sig-
several less known aspects of sampling, with emphasis on mads in Section Il) we see that the integral can be found from
bandlimited signals and stability of reconstruction. For furthéhe sum of samples as long gié’ooo h(t — nT)dt is nonzero.
reading along these lines the reader should study [2], [4], [18]milarly, (32) can be generalized if the functiofist — nT")}
and [19]. Multidimensional versions of some of these resulgatisfy orthogonality. For an entirely arbitrary integrable signal
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@) (b) 1

p(t)

0.5

-05 0

Fig. 30. The pulse and triangle waveforms.

(1
[2

(3]
(4]

z(t) (30) and (32) can only be approximatey true, the approxi-

mation typically improving with the sampling rate.

APPENDIX I
MATHEMATICAL |IDENTITIES FROM SAMPLING THEORY

(5]

(6]
[7]

It turns out that several standard math identities can be de-
rived from a basic knowledge of the simplest form of sampling [8] S. Mallat, “A theory for multiresolution signal decomposition: the

theory. Consider the pulse functigrit) shown in Fig. 30(a)
whose Fourier transform is

P(jw) = M (34)

€ [ —

If this is sampled with spacin@ = 1 the result isc[n] = §[n],
S0 X (¢/*) = 1. But sampling theorglso sayghat X (¢/«) =
> i P(J(w + 27k)), which proves

oo €in (w+27‘rk)
k=—oc 2
for all w. For example, suppose = =, then this yields
o0 . 2k+1)w
s B (36)

= 2k+1 T2

Thatis,>" 4, sin(mm/2)/m = = /2 from whict we get the
well-known identity

1 T
7 4
More generally, sincein((w + 27k)/2) = sin(w/2 + kr) =
(—1)*sin(w/2) we obtain from (35) the identity

53 (- 1
N w+2rk  2sin (%)’

c=—00

1 1 1
lm oo e = 37
3+5 +9+ (37)

0<w<2rx. (38)

(9]
(10]
(11]
(12]
(13]

(14]

(15]

(16]

(17]

(18]

(29]
[20]

[21]

[22]

Next, consider the triangle signal in Fig. 30(b), obtained by

convolving the pulse with itself. This has the Fourier trans-

form P2(jw). If this is sampled we again gefn] = §[n], so
X (e/*) = 1again. Butaccording to sampling theoty( ¢/« ) =
>y P2(j(w + 27k)), s0

o] 2 fw2nk
sin” («27k)
Y i =L (39)
k=—oco 4
By settingw = 7 we get the identity
11 1 1 72
It mtgtmtet =3 (40)

8
and more generally, the identity" ;= 1/(w+27k)* =
1/4sin*(w/2),for 0 < w < 2.

(23]

(24]

(25]

(26]

(27]

(28]

4Another way to arrive at this identity by starting from the FT of the bandlim- [29]
ited sine function was indicated in a Caltech lecture several years ago by the late
Prof. E. C. Posner. In fact, the material in Appendix Il is inspired by that lecture.
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