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Generalizations of the Sampling Theorem:
Seven Decades After Nyquist

P. P. Vaidyanathan, Fellow, IEEE

Abstract—The sampling theorem is one of the most basic and
fascinating topics in engineering sciences. The most well- known
form is Shannon’s uniform-sampling theorem for bandlimited sig-
nals. Extensions of this to bandpass signals and multiband signals,
and to nonuniform sampling are also well-known. The connection
between such extensions and the theory of filter banks in DSP has
been well established. This paper presents some of the less known
aspects of sampling, with special emphasis on non bandlimited sig-
nals, pointwise stability of reconstruction, and reconstruction from
nonuniform samples. Applications in multiresolution computation
and in digital spline interpolation are also reviewed.

Index Terms—Bandlimited signals, FIR reconstruction, multi-
resolution, nonuniform sampling, sampling theorems.

I. INTRODUCTION

T HE sampling theorem is one of the most basic and fas-
cinating topics in engineering sciences. The most well-

known form is the uniform sampling theorem for bandlimited
signals, due to Nyquist and Shannon [9], [13]. This has also
been attributed to Whittaker and Cauchy (see [6]). It is the fun-
damental tool that allows the processing of real signals using
digital signal processors (DSP). Extensions of this to bandpass
signals and multiband signals, and to nonuniform sampling are
also well-known [6], [22]. The connection between such exten-
sions and the theory of filter banks in DSP has also been well
established (e.g., see Chap. 10 in [23]). Further novel extensions
can be found in [5]. This paper is a review of some of the less
known aspects of sampling, with special emphasis on non ban-
dlimited signals, stability of reconstruction, and reconstruction
from nonuniform samples. [24]–[27].

A. Outline

In Section II, we consider sampling theorems for non ban-
dlimited signals. These are often referred to as multiresolution
(MR) or wavelet sampling theorems. An application in digital
interpolation is reviewed in Section III, and demonstrated with

-spline interpolation of images. Stability of the reconstruction
process is defined in Section IV and addressed in considerable
detail there. We explain the importance of pointwise stability as
opposed tostability in terms of energy.Suchpointwise stability is
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then established for the cases of bandlimited as well as nonban-
dlimited sampling in Sections IV-B and C. The connection be-
tween this kind of stability and functional subspaces is reviewed
in Section IV-D. The role of nonuniform sampling in MR theory
is explained in Section V. We show in particular that the MR
coefficients can often be calculated using FIR filtering opera-
tions without the use of oversampling (which is often resorted
to). Sampling theorems for non bandlimited discrete time signals
are discussed in Section VI. These results are based on well es-
tablished concepts in multirate digital signal processing. Results
on FIR reconstructibility in this context are established in Sec-
tions VI-B–D. Certain basic properties satisfied by bandlimited
signals are summarized in the Appendices for convenience.

B. Notations

Unless mentioned otherwise, all notations are as in [23]. The
term -BL refers to signals that are bandlimited to
(i.e., Fourier transform is zero outside). We use the notations

and to denote the decimated version
and its -transform. The expanded version

mul of
otherwise

is similary denoted by and its -transform
denoted by . In situations where the-transform does
not exist in the conventional sense (e.g., ideal filters), the nota-
tion stands for so that is the frequency response

. The type 1 and type 2 polyphase representations of
with respect to an integer are given by [23]

(type 1 polyphase)
(type 2 polyphase).

The type used is usually clear from the context and is therefore
often not mentioned.

BIBO stability stands forbounded input bounded outputsta-
bility [10]. A sequence is an sequence if

and it is an sequence if . A linear time in-
variant filter is BIBO stable if and only if the impulse response

is in . For continuous time signals similar definitions
( and ) apply with sums replaced by integrals. Note that

but we do not have .

II. NONBANDLIMITED SIGNALS

If we have theapriori information that a signal is bandlimited
to a known region, we can recover it from appropriately-spaced
samples by filtering. If a signal is not bandlimited, can we still
recover it from samples? The answer depends onwhat other

1057–7122/01$10.00 © 2001 IEEE
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Fig. 1. A nonbandlimited signal.

apriori information we have.For example, suppose we have the
knowledge that has the form

(signal model) (1)

where is aknown function. Denoting the continuous time
Fourier transforms (FT) of and as and ,
and the discrete time FT of as , we equivalently
have . As a first example, assume that

is a time-limited signal as demonstrated in Fig. 1. In this
example, the samples of at integer points are .
So we can trivially reconstruct from its samples using the
formula

(2)

where . More generally, this holds if has the
zero-crossing property , i.e.,

for other integers (3)

Thus reconstruction from samples has been possibleinspite of
aliasing due to nonbandlimitedness.

A function satisfying the zero-crossing property (3) is
also referred to as aNyquist(1) function in the literature. The
argument “(1)” signifies that the zero crossings are separated by
one unit of time. A special case is the example where is the
sine funtion

(4)

Since this is -BL, the sum (1) is also -BL. The sine function
is Nyquist(1), so the reconstruction formula (2) holds. This cor-
responds to the familiarShannon sampling and reconstruction.

If a function can be represented as in (1) where is not
Nyquist (Fig. 2), can we still reconstruct from samples

? The answer isyes for a large class of as we now
show.1 From (1) we see that the samples of are given by

(5)

which is nothing but a discrete-time convolution equation. De-
noting the discrete time Fourier transforms of the sequences

, , and by , and we get

(6)

1Notice that the sample spacing isT = 1, and that the sampling phase is
such thatt = 0 is included. For a different sampling phase, the reconstruction
conditions and equations have to be worked out again.

Fig. 2. Two non Nyquist choices of�(t).

If for all we can write
. That is, we can identify from using

(7)

where is the of convolutional inverse of i.e., its
Fourier transform . Recovery of for
all can then be done using (1). In summary, we have recovered

from the samples .
Return now to the examples in Fig. 2. We see that for the first

function the nonzero samples of are whereas
for the second function these are . In the first case

whereas in the second case,
at . So is

reconstrucible from for the first case, but not the second.
We conclude this section with a few remarks.

1) Discrete time model. The preceding discussion also shows
this: given a discrete time signal and an arbitrary
function we canalmost alwaysassume that
can be written in the form (5) for appropriate choice of

the only theoretical condition being that
for all . In particular, we can regard as sam-

ples of a continuous time signal of the form
.

2) Lack of shift invariance. For fixed , let denote
the space of all signals which can be represented as in
(1) for appropriate finite-energy . When is the
sine function we know that any shifted version of
(e.g., ) also belongs to the space because
time-shift does not affect bandlimitedness. For arbitrary

however, even though reconstruction from samples
is often possible, the shifted versions of do not in
general belong to the same space. This is readily ver-
ified with examples. For example shift in Fig. 2 to
obtain . This result cannot be expressed as a
linear combination of the integer shifts .

3) Undersampling a wideband signal. As a special case of
the signal model, suppose is -BL, that is, bandlim-
ited to . Then is also -BL and the
Shannonsampling rate would be, implying the sample
spacing . Assuming for sake of argument that

is real and positive in , we see
that (aliased version of ) is nonzero for
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Fig. 3. Reconstruction ofx(t) from samples.

Fig. 4. Nyquist(1) or zero-crossing property of the reconstruction filters(t).

all and the reconstruction (7) is valid. Thus the model
(1) allows a smaller sampling rate, that is, wider sample
spacing of , even though the Shannonrate spacing
would be .

4) Reconstruction filter. Substituting for from (7) into
(1) and simplifying we get

where is the reconstruc-
tion filter. Thus, we simply pass the samples through
the continuous-time filter with impulse respose as in
standard D/A conversion. See Fig. 3.

From the preceding definition of the reconstruc-
tion filter it follows that at the integer points

. That is, is ob-
tained by passing through its convolutional inverse

. Evidently therefore, . That is, the
continuous filter has the Nyquist(1) property similar
to the sine function (Fig. 4).

5) MR spaces. Sampling theorems for signals of the
type (1) are often known as wavelet or MR sampling
theorems. Readers familiar with MR theory [8] will
realize, however, that additional restrictions on
are required to generate a MR. Functions of the form

belong to the space in a MR
decomposition. Roughly speaking, is like a subspace
of lowpass signals with a certain degree of smoothness.
The MR framework also defines finer subspaces(with
higher bandwidth) and bandpass spaces. If
were the sine function the MR decomposition
would be as in Fig. 5. In practice, is not ideally
bandlimited. So none of the subspaces represents ideal
bandpass signals, even though they admit reconstruction
from samples. These sampling theorems can also be
extended to other subspaces like and arbitrary direct
sums of such spaces [4].

Fig. 5. MR decomposition based on ideal filters.

Fig. 6. Interpolation of a signalx(n)with digital filters. The signal is assumed
to have a continuous time modelx(t) = c(k)�(t � k).

III. A PPLICATION IN INTERPOLATION

As explained in Section II, a discrete time signal can be
viewed as a sampled version of . While
true for almost any , this viewpoint is especially useful for
certain choices of . For example, if has smoothness
properties such as a certain degree of differentiability every-
where, then we can use this to generate an interpolated version
of . A 256 256 image can be displayed as a 512512
image in this way (interpolation by two). Smoothness of
usually ensures that the interpolated result is visually pleasing
(see example below). To see how the model can be used for in-
terpolation notice that the samples of at a finer spacing
are given by

(8)
where . In summary, we can reconstruct the finer
samples from as shown in Fig. 6. First pass
through the digital prefilter . This gives

. Then, use the -fold upsampler or expander [20] indicated
as , followed by the interpolation filter which is ob-
tained by sampling using the finer spacing . We see that
the interpolation from to can be done entirely digi-
tially. The function is often chosen as a spline function. The
use of cubic spline is especially common in image processing
because its degree of differentiablity is two, which provides suf-
ficient smoothness for the human visual system.

A. Interpolation With Splines

A spline is a piecewise polynomial, with the pieces glued
together at places calledknotssuch that the function is differ-
entiable a specified number of times even at the knots. The most
commonly used splines have knots at integers, that is ,
where .

Definition 1. Splines:An th-order spline with knots at in-
tegers (just “ th-order spline” for the rest of the paper) is a
function such that

1) is a polynomial of degree or less between integers,
(i.e., in for all integer ).
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Fig. 7. (a) A spline with knots at integers is a succession of piecewise
polynomials, connected at the knots such that it is sufficiently differentiable
everywhere. (b) TheN th derivative of anN th-order spline is a piecewise
constant, typically discontinuous at the knots (integers here).

Fig. 8. N th-orderB-splines orb (t) for various ordersN . (a) ForN = 0
this is the pulse, (b) forN = 1 this is a triangle, and (c) forN = 2 this is a
quadratic. The knots are at integer locations as indicated by vertical lines.

2) At the integers or knots the function is con-
tinuously differentiable times (i.e., differentiable

times and the th derivative is continuous).

This implies, in fact, that the th derivative is a piecewise
constant with jumps at the knots. Converselyth-order splines
are functions obtained by integrating such piecewise constants

times. Fig. 7 depicts some of the ideas pictorially. There exist
splines of finite duration. It can be shown [12] that anth-order
spline has duration at least . It is easy to obtain examples
of such splines. For this define the pulse function

otherwise.

Define the function to be the convolution of with
itself times. It can be shown that this is a spline of order

. This is called the of -spline order . Evidently this is
nonzero in (Fig. 8). The Fourier transform
of the th-order -spline is

Fig. 9. Interpolation of a signalx(n)with digital filters. The signal is assumed
to have a continuous time modelx(t) = c(k)b (t � k) whereb (t) is
theN th-orderB-spline.

It can be verified that the corresponding time domain expression
is

where is the unit-step. The functions and are
known, respectively, as thequadratic and cubic splines. We
can verify that

otherwise

(9)

and is shown in Fig. 8(c). -splines are commonly used in in-
terpolation and have been known in the mathematics literature
for many decades (e.g., see Schoenberg’s classic book [12]). In
the digitial signal processing literature, the use of splines specif-
ically for interpolation became practicable because of the im-
portant work by Unseret al., [20] who showed that -spline
interpolation can be performed efficiently with FIR and stable
IIR filters of very low complexity [15]–[17].

B. Cubic Spline Example

Assuming that is th-order spline , we see that
the prefilter is the IIR filter where

. For example if (cubic spline case)
we have

and . Next, the interpolation filter has
impulse response . Unseret al. [14] have
shown that can be written in the especially elegant form

where and is the
simple running-sum filter

The implementation of is therefore computationally
very efficient. Fig. 9 shows how Fig. 6 simplifies in this case.
The zeros of are and
showing that is not a causal stable IIR filter. But
it can be implemented using a combination of a causal and
anticausal stable filter, and the same is true for arbitrary. As
emphasized by Unseret al., this is not only a practical scheme
for finite length signals (e.g., images), it is also computationally
very efficient. A comparison of this approach with several
traditional ones can be found in [14]. Fig. 10 shows 512512
images obtained by two-fold interpolation of a
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Fig. 10. 512� 512 interpolated versions of a portion of Barbara image using
zeroth–order spline (top), and cubic spline (bottom).

256 256 section of the Barbara image. Both zeroth-order
and cubic-spline interpolations are shown. In the former, the
sample and hold effect is very visible and annoying, especially
at the locations of the stripes. The cubic spline interpolation is
smoother, and the stripes have a much cleaner appearance.

IV. STABILITY OF RECONSTRUCTION

Consider the reconstruction formula

(10)

Typically, , for most cases under discussion.
If a slight perturbation of samples results in a large
perturbation of the reconstructed signal as demonstrated in

Fig. 11, then such reconstructions are not useful. Qualita-
tively speaking, the reconstruction is stable if small errors in
the sample values remain small in the reconstructed signal.
More precisely, let be replaced with thenoisy version

. Then the reconstructed signal has the error
component . If we can show that

(11)

for some finite constant independent of , the reconstruc-
tion is said to bestable in the energy-sense.

For example, suppose satisfy orthogonality, that is

for some . Then, (11) holds with equality assuring this
kind of stability. A special case is reconstruction from samples
of a bandlimited signal. Here,
(shifted sine functions) and satisfy the preceding orthogonality
property (Appendix I). Reconstruction of a bandlimited signal
from its sampled version (sampling rateNyquist rate) is there-
fore stable in the energy-sense.

A. Importance of Pointwise Stability

While stability in the energy sense is nice, a more stringent
type of stability called pointwise stability is desirable in the re-
construction of from samples. Before defining this kind of
stability, we first explain why energy-based stability is insuffi-
cient. Consider a hypothetical example of a signal and its
noisy reconstructed version shown in Fig. 12. We
assume for the purpose of illustration that the error is in
the form of short occassional pulses. Even if the pulse widths in
the error (hence the error energy ) are arbitrarily
small, the samples of will differ significantly from
those of at certain points. Thus, a resampling of
(perhaps with a slight offset of sampling instants) could yield
results that are completely different from the original samples
of . This situation is avoided by requiring that the recon-
struction error be smallpointwise in time. For example, if a re-
construction scheme is such that

(12)

then the preceding mishap will never happen. By making the
error in samples small enough we can make the reconstruction
error as small as we want, for all. Whenever (12) holds, we
say that the reconstruction from samples ispointwise stable.

B. Pointwise Bound for Bandlimited Signals

Let denote samples of the-BL signal . Assume
Nyquist sampling, that is, . The signal can be
reconstructed from using the ideal lowpass filter or sine
function , according to the equation
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Fig. 11. (a) A signalx(t) reconstructed from samples, and (b) a slightly perturbed set of samples resulting in a completely different reconstructed signalx(t) +
e(t).

Fig. 12. A signalx(t) and its noisy versionx(t)+e(t). The noisee(t) is also
shown.

Using Cauchy–Schwartz inequality, it follows that

for any . The sum can be regarded as the
energy in the samples of the-BL signal . Applying
the energy identity proved in Appendix I for bandlimited signals
(32) we therefore have

(energy identity again)

The last equality follows from observing that
. Thus, the quantity is

irrelevant in the summation. Summarizing, we have shown that

for all

for any -bandlimited signal sampled at the Nyquist spacing
. Applying the energy identity (32), again we see that

the preceding also implies

for all (13)

where . This result makes no reference to sampling at
all! It simply says that a bandlimited signal is boundedpoint-

Fig. 13. The digital-filtering relation betweenc(n) andx(n).

wise in time in terms of its energy. So a fixed amount of energy
cannot be concentrated in an arbitrarily narrow region (for that
would increase the magnitude arbitrarily somewhere). We now
apply this result to study the stability of reconstruction in pres-
ence ofadditive noisein the samples.

Theorem 1. Pointwise Stability in Nyquist Sampling:Let
be a bandlimited signal and let represent samples at

the Nyquist rate (i.e., ). Let represent
the samples with error . Assume the error has finite
energy, that is, . Then the reconstructed
signal is where the error is bounded pointwise
according to .

Proof: The error in the reconstructed signal is
. So is a -BL

signal and therefore satisfies for
all .

Note that stability of reconstruction is not synonymous with
filter stability . The reconstruction filter is
unstable in the BIBO sense [10]. Still the reconstruction process
is pointwise stable.

C. Pointwise Stability in MR Sampling

Consider again signals of the form
discussed in Section II. We will make a careful choice of math-
ematical assumptions and establish pointwise stability of the re-
construction equation . The samples of
this signal, taken at integer spacing, are given by

(14)

Assuming that for all we
can construct from the samples using

(15)

where is the impulse response of . Equations
(14) and (15) represent two digital filters which are convolu-
tional inverses of each other (see Fig. 13).

Our first goal is to ensure that both of these filters are BIBO
stable [10], that is, the impulse responses aresequences (i.e.,
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absolutely summable). For this we make the assumption that
is bounded as

(16)

for some and (in words, decays faster than
). Under this and a few other mild assumptions we will es-

tablish stability properties. The following presentation differs in
style as well as detail from some of the original results of Walter
[29] who first studied this problem rigorously.

Lemma 1. Filter Properties:Suppose is bounded as in
(16) and furthermore for all

. Then (a) and are sequences, (b) and
are also sequences, and (c) the Fourier transforms of
and are finite for all .

Proof: Equation (16) means that ,
which assures that . Now there is a theorem due to

Wiener [11] which says that if and
for all then is also an signal. Next, if is an
sequence then it is also ansequence because
implies for all some finite so that

. The property also implies that the Fourier
transform is finite because

.
Lemma 2: Suppose is bounded as in (16) and further-

more for all . Assume fur-
ther that is in . Then is in and furthermore there
are finite positive constants , such that

.
Proof: This is essentially a consequence of the facts that

(a) is the output of a BIBO stable filter with input
and (b) the inverse of this filter is also BIBO stable. For a formal
proof we will use the fact that

because . Thus

where . This shows in particular that
is also an sequence. Next, since is the output of the
filter in response to , we similarly have

where because
.
Theorem 2. Pointwise Bound in MR Sampling:Let

where is bounded as in (16) and further-
more for all . Assume further
that is in . Then

for all (17)

for some finite nonzero constant.

Proof: Applying Cauchy–Schwartz inequality, the equa-
tion yields

To proceed further note that represents samples of the
shifted function . If is bounded as in (16) then so
is for appropriate and in (16). So is in

(Lemma 1) so that in the preceding equa-
tion is finite. Next, from Lemma 2 we see that

for a finite positive . Thus

for some finite positive .
Corollary 1. Pointwise Stability:The preceding theorem im-

mediately implies pointwise stability of reconstruction. Thus
let represent the samples with error and as-
sume . Then we can use the stable filter

to define an sequence such that
. The signal is

then the additive noise affecting . Applying (17) to we
find

(18)

which is precisely the pointwise stability property. We conclude
this section with a technical detail.

Theorem 3. Pointwise Bound and Riesz Bias:Let all assump-
tions be as in Theorem 2. Assume further that is a
Riesz basis for signals of the form
where . Then in addition to (17) we also have

for all (19)

for some finite nonzero constant. Thus, similar to bandlimited
signals, is bounded pointwise in time in terms of its energy.

Proof: By definition is said to be a Riesz basis
if there exists finite nonzero constants and such that for
any

where . We will need only the first
inequality in the proof. Application of Cauchy–Schwartz in-
equality in yields

where .
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D. Pointwise Stability and Functional Subspaces

The stablility of reconstruction of from samples is re-
lated to the idea of a functional space. Recall thatdenotes
the Hilbert space [7] of functions with finite energy

. Let be a subspace with the additional property
that is pointwise bounded as follows:

(20)

where . The constant is the same for all in
though it might depend2 on the choice of the subspace. A sub-
space satisfying the preceding inequality is called afunctional
spaceor a reproducing kernel Hilbert space (rkhs). Notice that
arbitrary subspaces of may not satisfy (20) (e.g., )
because we can change the value of at a point by an ar-
bitrary amount without changing .

We proved that the subspace of-BL signals satisfies
(13) and is therefore a functional subspace. Similarly The-
orem 3 shows that the subspace of signals of the form

is a functional subspace under the
assumptions mentioned in that theorem. So, we have seen two
explicit examples of function subspaces. In such spaces point-
wise stability of reconstruction from samples is guaranteed
(i.e., we get “good” sampling theorems). For further reading on
this topic, the reader is referred to [2] and [19].

V. NONUNIFORM SAMPLING

If is compactly supported (e.g., Daubechies’ scaling
function, or a member of the spline family, etc.) then the
sequence is an FIR filter and its inverse is IIR.
So the construction of (hence ) from involves
IIR filtering (review Fig. 13). Mallat [8] proposed a clever
way to avoid such filtering byoversampling at a much
higher resolution. The idea is that if belongs to it also
belongs to finer spaces such as, . This is called the
multiresolution property, and is ensured by further restrictions
on . Thus

(21)

If is large enough then are narrow enough
to make the approximation for some con-
stant . The coefficients can then be found from by
using a discrete time filter bank (see [25] and [28] for tutorial
review). It turns out that such arbitrary oversampling is not nec-
essary; oversampling by a factor of two is enough. Under mild
conditions can be computed exactly from with the
help of FIR filters alone [28].

In fact both IIR filtering and oversampling schemes can be
avoided completelyif the samples of are allowed to be
nonuniform . Thus, we will show how to reconstruct from
periodically nonuniform samples of with the help of FIR
filters alone. For example, suppose we consider the following
three sets of samples:

2ActuallyC could depend ont but we keep it simple here.

Fig. 14. Demonstration of nonuniform sampling.

Fig. 15. Analysis bank representing nonuniform sampling.

This is equivalent to the nonuniform sampling scheme shown in
Fig. 14, with average rate still equal to unity. The three sets of
samples can be expressed as

We cannot interpret this as convolution as we did in the uniform
case. Define the three discrete time filters with impulse
resposes

(22)

That is, is the sampled version of a shifted version of .
Thus we can represent the set of nonuniform samples as the dec-
imated subband signals of a maximally decimated analysis bank
(Fig. 15). If there exists an FIR synthesis filter bank with the per-
fect reconstruction property [23] then we can reconstruct
from these nonuniform samples. Then can be reconstructed
from . Most readers familiar with filter
bank theory will realize that it is very easy to find examples
where such FIR synthesis filters do exist. We now supply a de-
tailed example where is the quadratic spline given in (9).
The three analysis filters obtained by sampling this spline are
given by

The 3 3 polyphase matrix of this anaylsis bank [23] is
nonsingular and can be inverted to obtain the synthesis bank
polyphase matrix
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Fig. 16. FIR synthesis bank for reconstructingc(n).

Fig. 17. Reconstruction ofx(t) from nonuniform samples.

which shows that the synthesis filters for perfect reconstruction
are the FIR filters

Fig. 16 shows the synthesis bank which reconstructs from
the nonuniform samples of perfectly. By using

we can directly express in terms of the
nonuniform samples:

(23)

Here, are related to the scaling function and the syn-
thesis filters by . We can interpret
this reconstruction as a continuous-time filter bank as shown in
Fig. 17. Thus, the three sets of samples are passed through three
analog filters , and and then added up to obtain

. Since have finite durations, the filters also have
finite durations like .

VI. DISCRETETIME SAMPLING THEOREMS

A discrete-time signal is said to be -bandlimited if
for . If for integer

, we can reconstruct from the decimated or subsam-
pled version [23]. Similar statements can be made with
suitably defined bandpass signals. If is not bandlimited
at all (e.g., nonzeroeverywhere), can we still recon-
struct from a decimated version? Consider Fig. 18 which
shows an interpolation filter. The output is given by

.
If the filter has the Nyquist property

(24)

then we can see that the samples are also present in the
sequence . More precisely we have ,

, and so forth, that is, . This shows that

Fig. 18. Signal model allowing recovery from samples.

Fig. 19. Extracting the reconstruction filterS(z).

Fig. 20. Extracting the stable reconstruction filterS(z) whenR (z) has no
unit circle zeros.

can be reconstructed perfectly from its decimated version
even though may not be bandlimited (because

is not necessarily an ideal bandlimiter in this discussion).
The only condition on is the Nyquist condition. To see
how this condition can be eliminated, consider the polyphase
representation [23]

(25)

is Nyquist if and only if the 0th polyphase component
. If this is not the case, rewrite

call this

so that the filter is Nyquist . Using a standard multirate
identity, we can then redraw Fig. 18 as in Fig. 19. This shows
that can still be recovered from if we use the in-
terpolation filter

We call the model filter (it defines the signal model in
Fig. 18), and thereconstruction filter .

A. Stability of Reconstruction

In order to be practical, the reconstruction filter has
to be stable and preferrably causal. Assume the model filter

is stable. If has all zeros inside the unit circle then
is a causal stable IIR filter. In fact if

has no unit-circle zeros, has a (possibly noncausal)
stable impulse response, and this is in principle sufficient to
get stable reconstruction. More generally, if theth-polyphase
component has no unit circle zeros, we can rewrite

where is Nyquist . The
signal model can therefore be redrawn as in Fig. 20. We see that

(hence ) can be recovered from its decimated
version using the stable IIR filter

The preceding discussion also shows that stable recon-
structibility from the decimated version of (i.e.,
from ) for some does not imply the same from
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Fig. 21. (a) The signal model. (b) Simplification in the case of Example 2.

Fig. 22. Demonstrating nonuniform decimation.

for . Notice finally that if all the polyphase
components have unit-circle zeros then we cannot use the
preceding trick. A totally different technique is needed based
on nonuniform decimation (Section VI-C).

Example 1. Unit Circle Zeros:Let the model filter be
. Assuming we have

and . Both of these polyphase
components have unit circle zeros. We cannot therefore recon-
struct from either or in a stable manner.

Example 2. Common Factors:Let .
Assuming we have . Both of
these polyphase components have unit circle zeros. In this ex-
ample we can rewrite where
is the common factor between the polyphase components. The
signal model can therefore be simplified as shown in Fig. 21
using a standard multirate identity [23]. This shows that we
can reconstruct from by using the Nyquist(2) filter

. This example demonstrates the fact that if there
is a common factor among the polyphase components,
it can be eliminated altogether from any discussion of recon-
structibility.

In the case of Example 1, we will show that it is possible to
obtain stable reconstruction if anonuniformly decimated ver-
sion of is used instead of using or . To ex-
plain what this means consider the pair of signals
and for some fixed . These together constitute
a nonuniformly decimated version. The decimation ratio is
because we retain one out of samples on the average. This
is demonstrated in Fig. 22 for and . The samples
shown in bold lines constitute the nonuniformly decimated ver-
sion. More generally let be an arbitrary integer and consider
the signals

(26)

Thus is a polyphase component of with respect to
the integer that is, . Suppose
we retain a subset of signals

and discard the rest. This set ofsignals constitutes a nonuni-
formly decimated version of . Since we retain out of
components, the decimation ratio is. Since the integer is

Fig. 23. Blocked and unblocking a signalx(n).

arbitrary (independent of ) it adds flexibility to the class of
nonuniform decimators that can be created this way.

B. Block Representation

To explain how nonuniform decimation helps in stable recon-
struction we first review a definition. Given a signal , its

-blocked version is the -component vector

...

We also say that is the unblocked version of . The
components are nothing but the polyphase compo-
nents of with respect to . The integer is known as the
block length. Fig. 23 shows how blocking and unblocking can
be represented using multirate building blocks.

Now, consider a transfer function with input and
output [Fig. 24(a)]. Redraw this as in Fig. 24(b) where

and are -blocked versions of and . Then,
the mapping from and is a linear time invariant
system [23] with an transfer matrix called the
blocked version of . Letting
be the Type 1 polyphase form of (Section I-B), the
blocked version for has the form

In this matrix, any row is obtained from the previous row by
shifting it to the right and then recirculating the last element
that spills over. In this sense it is similar to a circulant matrix,
but since the recirculated element is also multiplied by, it
is formally called apseudocirculantmatrix [21], [23].

C. Reconstruction from Nonuniform Decimation

The signal model for , given by Fig. 18 can be
redrawn in polyphase form as shown in Fig. 25, where

as usual. Now imagine that each
polyphase component is represented in -blocked form
for some as in Fig. 24. By combining the expander in this
system with the expander in Fig. 25 we can redraw Fig. 25
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Fig. 24. (a) A transfer functionH(z), and (b) itsL-blocked versionH(z).

Fig. 25. The standard polyphase representation of the signal model of Fig. 18.

as shown in Fig. 26. The advance operatorsin Fig. 24 become
because they are moved to the right of the expanders

using noble identities [23].
The signals appearing in Fig. 26 are the

polyphase components of defined in (26). Consider
a subset . This subset defines a
nonuniformly decimated version of . It can be used to
determine if the driving signal in the model Fig. 18
can be determined. This in turn is possible if and only if the
signals in Fig. 25 can be reconstructed from the above
signals . To explore this let us formulate the problem in
matrix notation. Let denote the vector of outputs of

and its -transform. We can then write

...
...

...

Here, is an matrix. It has the inputs ,
and outputs . If the inputs of

can be reconstructed from a subset ofoutputs

(27)

we say that and hence has been reconstructed from
the -fold nonuniformly decimated version (27). We can write

...
...

for an appropriately defined submatrix of
. Thus, as long as there exists such a submatrix with

det for any , we can obtain the inverse
, and in principle reconstruct from the dec-

imated version. For the case where is an FIR filter,
is a polynomial matrix and the condition is that

det be free from unit-circle zeros. If we want the
reconstruction itself to be FIR then has to be FIR
which is possible ifdet is a pure delay, i.e.,

det (FIR reconstructibility condition)
(28)

for some and some integer .
Example 3: dIn Example 1 we had

and so that and . These
polyphase components have unit circle zeros, so we could not
reconstruct from either or in a stable
manner. Now consider the scheme of Fig. 26 with . First
we have to find the 2-fold blocked versions of and .
Since

we see that its polyphase components are 1 and. Similarly
those of are 1 and . Thus, the blocked versions
are
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Fig. 26. TheL-blocked version of the polyphase form shown in Fig. 25.

In the notation of Fig. 26 we have

Thus is a 4 2 matrix. Consider the submatrix

This is a constant nonsingular matrix. This shows that we can
write

so that

Since , we
finally have

which simplifies to
where

Note that and are the -transforms of
and respectively. So we have shown that can be
reconstructed from and using the FIR filters

and as shown in Fig. 27(a). That is, we can recover
all the samples of from the nonuniformly decimated ver-
sion shown by bold lines in Fig. 27(b).
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(a) (b)

Fig. 27. Pertaining to Example 3. (a) FIR reconstruction ofx(n) from two of its four polyphase components. (b) Interpretation as reconstruction from
nonuniformly decimated version.

D. Conditions for Reconstruction from Nonuniform
Decimation

Note that depends entirely on the filter and
integers and in Fig. 26. With restricted to be FIR,
what is a set of necessary and sufficient conditions for FIR re-
constructibility? That is, what are the conditions on and

so that there will exist an such that a submatrix
of satisfies det ? This is an open
problem. However a set ofsufficient conditions has been
found [26]:

Theorem 4: Let be modeled as in Fig. 18. Let
be FIR and assume there is a

pair of polyphase components and with (a) no
multiple zeros and (b) no common zeros. Then, we can recover

from a nonuniformly decimated version with average
decimation ratio equal to . Moreover the reconstruction
involves only FIR filtering.

We explain the idea of the proof by an example.3 Let the two
FIR polyphase components and in Theorem 4 be
given by

Choose the block length in Fig. 26 to be the sum of orders
of and , i.e., . Then the blocked
versions and are

As mentioned in Section VI-B these are pseudocirculants. The
martrix is a 10 5 matrix. Consider the 5 5 subma-

3A formal proof is mostly a matter of supplying more general notations at the
expense of clarity.

trix obtained by selecting the first three rows of and first
two rows of

By choice this matrix is constant (i.e., noin it). We now claim
that this is a nonsingular matrix. The proof depends crucially on
the assumptions of the theorem, namely that , have
(a) no multiple zeros and (b) no common zeros. Thus, let
and be the zeros of and , and the zeros of

(the choice of notations simplify some of the following
expressions). Based on these definitions we see that

Defining the Vandermonde matrix

we therefore see that the product has the form

where

and

Since and do not have multiple zeros or common
zeros, the five numbers, , , , are distinct. Thus, the Van-
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Fig. 28. (a) A signal with several bands of individual width� 2�=M , and
(b) model for such a signal.

Fig. 29. The maximally decimated filter bank.

dermonde matrix is nonsingular. Moreover and are non-
singular for the same reason (e.g., and are
nonzero by coprimeness). The matrix is therefore non-
singular. Moreover since it is a constant, is trivially
FIR. This shows that we can reconstruct the components
in Fig. 26 from first three outputs of and first two outputs
of . Thus (hence ) can be reconstructed from
an -fold nonuniformly decimated version of using FIR
filters.

E. Multiband Models

Signals which can be approximated by the model of Fig. 18
are typically those which have most energy concentrated in a
frequency band of width . For multiband signals with en-
ergy concentrated in subbands [Fig. 28(a)] the model
of Fig. 28(b) can be used. Subject to minor restrictions (sim-
ilar to the one-band case) we can reconstruct the signal in
Fig. 28(b) from a nonuniformly decimated version, the average
decimation ratio being (see [27]). The signal
can be viewed as apartial reconstructions from perfect-recon-
struction filter banks [23] of the form shown in Fig. 29. If all the

subbands are retained then . If we drop some
subbands, then is a partial reconstruction of . If the
filter bank is appropriately designed, then is theorthog-
onal projection of onto the subspace spanned byof the
filters . Thus orthogonal projections admit reconstruction
from subsampled versions, just as bandlimited signals do.

VII. CONCLUDING REMARKS

The topic of sampling continues to fascinate many re-
searchers in science and engineering. In this paper we reviewed
several less known aspects of sampling, with emphasis on non
bandlimited signals and stability of reconstruction. For further
reading along these lines the reader should study [2], [4], [18]
and [19]. Multidimensional versions of some of these results

can be interesting especially in the case of nonseparable lattice
sampling.

APPENDIX I
BANDLIMITED SIGNALS: EVALUATING INTEGRALSFROM SUMS

For a -BL signal it turns out that certain integrals can
be calculated exactly by using sums of samples. According to
Shannon’s sampling theorem

(29)

where and . This is a lowpass
filter with frequency response

for
elsewhere.

Since we see from (29) that
. That is

(30)

This shows that theintegral of a bandlimited function can be
evaluated from thesum of samples taken at any rate above the
Nyquist rate. Now the shifted sine functions constitute
anorthogonal basis for -BL functions. That is

(31)

This can be shown by using the fact that the preceding integral
is equal to (from Parseval’s relation)
and simplifying the result. Using this orthogonality it follows
from (29) that

(32)

In short, theenergy is preserved, that is, energy in the sam-
ples is proportional to the energy in . Equations (30) and
(32) should in particular be true for thesine function

with sample spacing . In this case these
equations yield

(33)

which also follows trivially from the Nyquist property of the
sine, namely . More generally if a signal has the
form (29) for some (not necessarily bandlimited, e.g., sig-
nals in Section II) we see that the integral can be found from
the sum of samples as long as is nonzero.
Similarly, (32) can be generalized if the functions
satisfy orthogonality. For an entirely arbitrary integrable signal
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Fig. 30. The pulse and triangle waveforms.

(30) and (32) can only be approximatey true, the approxi-
mation typically improving with the sampling rate.

APPENDIX II
MATHEMATICAL IDENTITIES FROM SAMPLING THEORY

It turns out that several standard math identities can be de-
rived from a basic knowledge of the simplest form of sampling
theory. Consider the pulse function shown in Fig. 30(a)
whose Fourier transform is

(34)

If this is sampled with spacing the result is ,
so . But sampling theoryalso saysthat

which proves

(35)

for all . For example, suppose then this yields

(36)

That is, from which4 we get the
well-known identity

(37)

More generally, since
we obtain from (35) the identity

(38)

Next, consider the triangle signal in Fig. 30(b), obtained by
convolving the pulse with itself. This has the Fourier trans-
form . If this is sampled we again get , so

again. But according to sampling theory
, so

(39)

By setting we get the identity

(40)

and more generally, the identity
for .

4Another way to arrive at this identity by starting from the FT of the bandlim-
ited sine function was indicated in a Caltech lecture several years ago by the late
Prof. E. C. Posner. In fact, the material in Appendix II is inspired by that lecture.
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