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Abstract � A general form of a family of bounded two-sided continuous distributions is

introduced. The uniform and triangular distributions are possibly the simplest and best

known members of this family. We also describe families of continuous distribution on a

bounded interval generated by convolutions of these two sided distributions. Examples of

various forms of convolutions of triangular distributions are presented and analyzed.

1. INTRODUCTION

The Standard Two Sided Power (STSP) distributions introduced by Van Dorp and Kotz

(1), (2) can be motivated from at least two different aspects. The original motivation is to

extend the triangular distribution which has, inter alia, applications in various problems

associated with risk analysis and uncertainty elicitation (see, e.g., Johnson (3)). This leads

us to a two-parameter STSP distribution with the density
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where [0,1], , not necessarily an integer. Nadarajah (4) (as noted in Van Dorp� � � � �

and Kotz (1)) arrived at a form similar form to and presented in Nadarajah (5) the�	
	�

following reparameterized version of :�	
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where  and  are chosen so that� �� � � �
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is the proportionality factor ensuring that  integrates to one. Nadarajah’s (5) two-�	
��

parameter reparameterization  results in additional flexibility of the distribution�	
��

�	
�� �	
	�as compared with .

A four-parameter Two Sided Power (TSP) distribution is obtained in Van Dorp and

Kotz (2) by incorporating the location and scale parameters  and  in to yield the� � �	
	�

density
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where and  are arbitrary real numbers with  and  The mean� � � � � � � �� � �� � �
�

value associated with  equals�	
��

���� � �	
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� � �� � 	�� � �

� � 	

It follows from that the parameter  assigns relative importance to the most likely�	
�� �

value  (or equivalently ) in  and the denominator  may be interpreted as a� �	
�� �� � 	��
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virtual sample size. Analogous interpretation can be attributed to the parameters  and � �

in  only when �	
�� � 
� "
#

As it was shown in Van Dorp and Kotz (1), the distributions , and�	
	� �	
��

consequently  serve as viable alternatives to the versatile and flexible two and four-�	
��

parameter beta distributions. Properties and maximum likelihood estimators (MLE) of the

STSP density  are presented in Van Dorp and Kotz (1). These properties include�	
	�

inter alia i) quantiles given in a closed form, ii) a maximum likelihood estimation

procedure that is algorithmically straightforward and efficient and iii) parameters that

possess a clear cut and meaningful interpretation. Moment estimation of parameters in

�	
	� �	
��and four-parameter MLE estimation involving parameters in  are discussed in

Van Dorp and Kotz (2).   The beta distribution  enjoy the above mentioneddoes not

properties, while the various forms of the STSP density  (or   as�	
	� �	
��� are

encompassing as those of the two-parameter beta distribution in the unimodal and U-

shaped domains (see Van Dorp and Kotz (1) and Nadarajah (5)). Van Dorp and Kotz (1)

have also demonstrated that the TSP distribution is a useful model for describing

uncertainty in financial data, among other applications.

A novel approach to STSP distributions is the realization that   can be viewed as�	
	�

a particular case of the (general) two-sided continuous family with support given by��� 	�

the density
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where  is an appropriately selected continuous pdf defined on  with��  � � ��� 	��

parameter(s) , which may in principle be vector-valued. The density  will be� ���  � �

referred to as the  of the resulting two-sided family of distributions andgenerating density

the parameter  is termed the . The simplest linear choice� reflection parameter

��#� � �# �  #  	� �	
$�, 
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generates the triangular distribution (see Figure 1A). A  more general form of ��#�  �

given by

��#��� � �# � �  #  	� � � ��8�"  

generates via  the STSP distribution , extending the triangular distribution (see�	
"� �	
	�

Figure 1B). The density of a normalized exponential distribution, i.e.

��#� � � %��� � #�&�	 � % !� �  #  	� � ��� � �  �-

generates the two sided truncated exponential distribution (see Figure 1C). The density

��#� � � �  #  	� ' �� �	
(�� �
�

� 	
� �	 � #� � #!

�
� ,   

to be called the  the two sided slope distribution (see,linear slope distribution results in

Figure 1D)  The linear slope distribution (cf. , which - to the best of our knowledge
 �	
(��

- has not been discussed in the literature, is a one-parameter distribution supported on

��� 	� ���� � � ��	� � � 	 ��#� � with the property that . Hence, for  the density (cf.� � � � �

�	
(� � � � 	) is a downward sloping linear function and for  an upward sloping one.�

For , the slope distribution reduces to the uniform distribution on , while� � 	 ��� 	�

� � � leads us to the triangular distribution. Evidently, a  generatingnon linear slope

density can easily be constructed by modifying . Finally, the density�	
(�

��#��� �  #  	�� # � # � � ��
���� � 	� 	 � �

�� � 	 �� � 	

7�"
#

#
7,   

to be referred to as the , generates a two sided ogive distribution (see,ogive distribution

Figure 1E) which is a distribution worthy of a further investigation.

The five examples presented above portray a strictly increasing (decreasing) convex

density, two increasing linear generating densities and a generating density possessing an

inflection point. A large variety of bounded continuous distributions can be constructed

using the outlined procedure.
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Figure 1. Examples of Two Sided distributions and their Generating Densities
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We note that our model is different in structure (although similar in spirit) from the

double Weibull distribution introduced in Balakrishnan and Kocherlakota (6).

The cumulative distribution function (cdf) associated with  is�	
"�

)��� � * �  �! � �	
+�
* � � � � � � �
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where  is the cdf of the generating density . An important main and* �  � � ��  � �� �

revealing property of the two sided family given by , or alternatively by , is that�	
"� �	
+�

)� � � � � * �	� � � �	
,�� � � � � �

regardless of the functional form of the generating density  (or generating cdf��  � ��

* �  � �� �). In other words, the cdf’s of all the members of the two-sided family hinge at ,

which can be interpreted as the pivotal point of the distribution. We emphasize the

structural difference between the reflection (hinge) parameter  which determines the�

"turning point" of the distribution under consideration and the parameters included in �

which control the form of the two sides of the distribution to the left and the right of .�

If   (cf. ) and , the following relationship� - ��  � � ��  � �! �	
"� . - ��  � �� � �

between the moments around zero of   and  can straightforwardly be derived by� .

induction

��� � � � � ��. � � � � � 	� �	 � � ��. � � �	
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From , utilizing the modern computational facilities (if necessary for large value of�	
	��

/), moments of two sided distributions can be calculated in the case when closed form

expressions for the moments of the generating density exist. In particular, we have for the

first two moments

���� � � � �� � 	���. � � � �	 � � �	
		�� � � � �

and
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1 �2��� � � � � � �	 � � !1 �2�. � � � �	 � ����. � � � 	! �	
	��� � � � � � � �$ $ #.

Note that it follows from  for 1,  and  that�	
		� � �� "
#

����	� � � ��. � �� ���� � � � 	 � ��. � � ���� � � � �	
	��
	 	

� �
� � � � �     0 ,      , 

and from  we obtain�	
	��

1 �2���	� � � 1 �2����� � � 1 �2�. � �
 �	
	��� � �

The density  implies for  that . Hence, the relations�	
"� � 	 ���� � ��  � �! � ���� �� � � �

for in  and  are verified. The second result in  and � �� 	 �	
	�� �	
	�� � � �� �	
	�� �	
	��

follows from the observation that   represents the  of the������ ��  � �!� mirror reflection

generating density, i.e. . The third result in holds regardless of the form��	 � �� � �	
	���

of  due to the symmetry of  around ���� � ���� � ��  � �! � 
� � �" "
# #

In this paper we shall derive the structure of the densities of  the various distributions

on a bounded interval that can be constructed by adding two independent two sided

variables  and  both defined by . (Note that these  and  are unrelated to the� . �	
"� � .

specific  and  utilized in equations  -  ). Such a scenario may be useful,� . �	
	�� �	
	��

for example, in applications to financial engineering when evaluating the uncertainty in

the annual return of a diversified portfolio of two investments  and , where the� .

uncertainties in the individual annual returns of  and  are adequately represented by� .

two sided distributions under the reasonable assumption that the returns are independent.

(The principle of diversification in investment analysis is indeed based on the assumption

of essential independence or near independence between the annual returns of diverse

investment options.) Alternatively, one may view  and  as the uncertainty of two� .

independent consecutive activity durations that are often modeled by triangular

distributions, often used in the PERT Analysis (see, e.g., Johnson (3)), where the overall

completion time  is the purpose of the analysis.� � .
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Results on convolution and, more generally, sums and linear combinations are by now

available for most distributions commonly used in statistical, economics, engineering and

medical applications, amongst others. They are scattered in numerous books on statistics

and probability theory as well as publications dealing with order statistics and non-

parametric methodology. A selective bibliography has been recently compiled by the

authors and is available upon request. Applications in queuing theory, civil engineering

and random number generations seems to be particularly prominent topics where these

distributional structures are used in addition to large number of applications to statistical

and reliability theories and methodologies.

Although the calculations presented below may seem to be somewhat involved due to

the fact that the component distributions are defined by two different algebraic

expressions which requires careful examination of various sub cases, the results seem to

be rewarding by opening new avenues for additional investigation. In the next section we

provide the basic theoretical framework for the convolution of two sided distributions. In

Section 3 we present in some detail an example of the convolution of two triangular

distributions in closed form within this framework.

2. CONVOLUTION OF TWO SIDED DISTRIBUTIONS

Let  where  cf. ) be a two sided density� - � ��� � ��  � �!� � ��� � ��  � �! � �	
"�\ B \ B� � � �

with the reflection parameter  and the generating density  and let �   	 ��  � � . -� �B

� �#� � 3�  � �!� � �#� � 3�  � �! 4 � � � .] C ] C� � � �where be an analogous density. Let ,

where  and are assumed to be independent. Finally, let  be the density of � . � �5� � 4^ �

(the convolution of   and ), i.e.� ��� � ��  � �! � �#� � 3�  � �!\ B ] C� � � �

� �5� � � � ��� � ��  � �!� �5 � �� � 3�  � �!	 �5 � ��6� ��
	�^ \ B ] C
Bæ!

Bæ"

·!Ä"¸� � � � �
where  and  be the indicator function� � � � �� � � � � ! 	 ���B C E
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	 ��� �
� � 7 8
	 � � 8E 	 .

We shall assume without loss of generality that  Several equivalent expressions� �B C 


for the convolution  are available but we have found representation  to be� �5� � ��
	�^ �

most convenient for our purposes. Utilizing the identities
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	 �5 � �� � 	 ���·+Ä,¸ ·D�,ÄD�+¸ ,

where is an arbitrary integrable function on the interval  , and the definitions/��� ��� 	�

��
	� �	
"�� � �  � � and  one can verify that  can be expressed as a sum of four integrals.^ �

Specifically,
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��^ 3
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�
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and the regions of integration are respectively

�������
8 �5� � � � ��� � : �5 � � 5�
8 �5� � � � ��� � : �5 � 	� 5 � �
8 �5� � � � � � 	� : �5 � � 5�
8 �5� � � � � � 	� : �5 � 	� 5 � �
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��

" B C B C

# B C B C

$ B C B C

% B C B C

� � � �
� � � �
� � � �
� � � �

As an illustration, Figure 2 explains calculations of , for the8 �5� � �� 0 � 	� ; � �3 B C� �

case that   � � � � � �B C B C B C 5   �  	  .under the assumptions that and
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Figure 2. Calculation of , (cf.  for8 �5 0 � 	� ; �� ��
��3 � � �� �B C

� � � � � �B C B C B C 5   �  	 under the assumption that  and 
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From Figure 2 it follows that in this case

�������
8 �5� � � � ��
8 �5� � � �
8 �5� � � �
8 �5� � � � 
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"�

" B C
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% B C

� �
� �
� �
� �

� �  5 
<  5 
� � 5�  5 
<  5 
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� �
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� �

B B C

B C

B B C

B CÃ

Hence, from  it follows that neither the integral ��
"� 9 �5� � 9 �5� ��# %� � nor the integral cf.

��
�� � �5� � ��
	�) contribute to  (cf. )^ � . Also, it follows from  and  that for��
"� ��
��

� �B C 5   the contribution of, for example, the third integral 9 �5� � � �5� �$ ^� � to 

equals

9 �5� � � �� � �3� � �6�
	 � � 5 � �

	 �
$

D

B C
� � �

� �

)B

,       .� �B C 5 

By sliding the three dotted arrows pointing downward to the z-axis in Figure 2 associated

with the points  and , respectively, to the left and right, while keeping5 � 	� 5 � 5�C

5 � ��� �� ��
��, it follows from the definition of the regions in  that the non-overlapping

partition of the following consecutive seven subintervals ought to be considered when

evaluating 8 �5�� 0 � 	� ; � �3 :

5 � ��� �� 5 � � � �� 5 � � � � �� 5 � � � � 	�� ��
$�

5 � �	� � 	�� 5 � � � 	� � 	�� 5 � � � 	� ��

� � � � � � � �

� � � �
B B C C B C B C

B B C C .

Table 1 summarizes calculation of , for partition on the8 �5� � �� 0 � 	� ; � � ��
$�3 B C� �

support of  under the assumptions Recall that it was��� �� 4 � � � �B C B C �  	  . and

assumed that without loss of generality , otherwise one simply interchanges  and� �B C �

# in all the expressions he corresponding even consecutive. T partition of into s��� ��

subintervals under the assumption that  will be� �B C� � 	

5 � ��� �� 5 � � � �� 5 � � � 	�� 5 � �	� � �� ��
(�

5 � �	� � 	�� 5 � � � 	� � 	�� 5 � � � 	� ��

� � � � � �

� � � �
B B C C B C

B B C C .

The calculation of   defined in  for partition  is8 �5� � �� 0 � 	� ; � � ��
�� ��
(�3 B C� �

presented in Table 2.
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Table 1. Calculation of , (cf.  for  the seven non-8 �5 0 � 	� ; �� ��
��3 � � �� �B C

overlapping subintervals partitioning the support  of in��� �� 4 ��
$�


8 �5� 8 �5� 8 �5� 8 �5�
	 5 � ��� 5� < < <
� 5 � ��� � < � � 5� <

� 5 � �5 � � � ��� 5 � � � � 5� <

� 5 � < ��� � �5 � � 5� �

" # $ %
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" 5 � < �5 � 	� � �5 � � 	� � � 5 � �

$ 5 � < < �5 � � 	� �5 � 	� 5 � �

( 5 � < < < �5 � 	� 	�
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B C B C

C C
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B C

C

Table 2. Calculation of , (cf. ) for  the seven non-8 �5 0 � 	� ; �� ��
��3 � � �� �B C

overlapping subintervals partitioning the support  of in��� �� 4 ��
(�


8 �5� 8 �5� 8 �5� 8 �5�
	 5 � ��� 5� < < <
� 5 � ��� � < � � 5� <

� 5 � �5 � � � ��� 5 � � � � 5� <

� 5 � �5 � � � �5 � 	� 5 � � �

" # $ %

B B

C B C B

C B C B

��� �
� � �

� � 	�

�	� � �

�
� �

�

� �

B

B C

C

B C

� �

� � � �

� � � � � 	� <

" 5 � < �5 � 	� � �5 � � 	� � � 5 � �

$ 5 � < < �5 � � 	� �5 � 	� 5 � �
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�

B C B

B C
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B C B C

C C

We urge the reader to examine carefully Figure 2 and Tables 1 and 2 and to note the

various symmetries involved therein. We emphasize that, without exception, out of the

four different scenarios of ,  appearing in Tables 1 and 2, at least one of8 �5� 0 � 	� ; � �3

them will always be the empty set Moreover, for the first interval <. in the partition of

��� �� 9 �5� � only  contributes to in the partition of" � � �5� �^ � , whereas in the last interval 

��� �� 9 �5� � only  is involved in % � � �5� �
^ �

Under the assumption that  or its converse , the explicit� � � �B C B C�  	 � � 	 

functional form of the generating density  of  and that of the generating density��  � � ��

3�  � � . 4 ��
��� ��
���  of  , the density of  can straightforwardly be derived utilizing  and

Tables 1 or 2, respectively. As an illustration, the next section presents the convolution of
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two triangular distributions in a closed form under the assumption that In� �B C�  	. 

addition, graphs of the convolution density  (cf. ) and its summands� �5� � ��
	�^ �

9 �5� �� 0 � 	� ; � � ��
��3 �  (cf. ) are developed for these examples.

3. EXAMPLES

Let  and  be triangular distributions on  with the reflection parameters  and ,� . ��� 	� � �B C

respectively. Utilizing  with the generating densities  and ,��
�� ���� � � �� 3�#� � � �#� �

respectively, it follows that

�����������������������

� �
� �
�

9 �5� � � 5� � �

9 �5� � � � � 5� � �
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" "# $
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5� � �

9 �5� � � � � 5� � 5� � �
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	��
� �

$

$

B C
%

%

� 4
) )

where  and  are the endpoints of the intervals , ,� �5� � �5� 8 �5� � � 0 � 	� ; � �3 3 3 B C� �

specified in Table 1 and  denotes the integration variable From and Table 1 one� 
 ��
	�

deduces that

�

�
9 �5� � � � ��
��

5 ��� �

� 5 � � � � �

�� � �5 � 5 � � �� � � � � � �
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��	 � �

�
9 �5� � � �

�5 �5 � � � � ��5 � �� � � � � � � �

�� � �� � � 5 � � � 	�
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(Observe that, ) Utilizing  -  and collecting the terms9 �5� � � � 9 �5� � � 
 ��
�� ��
"�$ C B # B C� � � �
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and
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�� �	 � � � �	 � �!5 � � � � � � � � � � � � ��� � � � � � � � � � � �B C B C B C B CC B B C
# # # # .

It is straightforward, although somewhat tedious, to verify that the appropriate integrals of

the terms in  defined by  add up to .(In our calculations we have been� �5� � � ��
$� 	^ B C� �

aided by the newly available software which makes the task by far less time consuming).

Figure 3 represents the convolution of  Z , where  and . The� � � . � �� �B C
" "
% #

specific values  and  result in seven subintervals partitioning the support� �B C
" "
% #� �

��� �� 4 of  indicated by the dotted lines in Figure 3G. Figures 3A and 3B represent the

component distribution of  and  in the convolution of . Figures 3C, D, E� . 4 � � � .

and F display the functions  given by - , respectively,9 �5� � �� 0 � 	� ; � � ��
�� ��
"�3 B C� �

for this situation. Finally, Figure 3G depicts the convolution pdf of  given by .4 ��
$�

Note that the component graphs of (Figure 3D) and (Figure 3E)9 �5� � � 9 �5� � �# B C $ B C� � � �

are peaked. The component graphs of (Figure 3C) and  (Figure9 �5� � � 9 �5� � �" B C % B C� � � �

3F) are, however, smooth. The smoothness of the resulting convolution pdf of  (Figure4

3G) may be somewhat surprising given the peakedness of 9 �5� � � 9 �5� � �# B C $ B C� � � �and  in

this case.

Figure 4 provides some additional examples of the form of the convolution pdf for

different values of  and  In Figure 4A (4B) the values ( ) result in a� � � �B C C B
"
%
 � � �

skewed convolution pdf that appears to have the shape of a beta distribution, a feature

that may merit further investigation. The closed form expression in case of Figure��
$�

4A simplifies to

� �5��� �� � ��
(�
5 � $5 � $5 ��� 	�

�� � 5� �	� ��
^

#
$

$ D

#
$

$� � 5 �

5 � .

In Figure 4C (4D), ( resulting in a convolution pdf that appears to	 � � � �� �C B
" "
# %

have the shape similar to that of a normal distribution.



To Appear in COMMUNICATIONS AND STATISTICS: THEORY AND METHODS, Vol. 32, No. 9

Submitted: August 2002, Revised March 2003 16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
z-axis

P
D

F
 C

o
n

vo
lu

ti
o

n

0

0.2

0.4

0.6

0.8

1

0.00 0.50 1.00 1.50 2.00

z-axis

0

0.2

0.4

0.6

0.8

1

0.00 0.50 1.00 1.50 2.00

z-axis

0

0.2

0.4

0.6

0.8

1

0.00 0.50 1.00 1.50 2.00

z-axis

0

0.2

0.4

0.6

0.8

1

0.00 0.50 1.00 1.50 2.00

z-axis

0.00

1.00

2.00

3.00

0.00 0.50 1.00X

P
D

F

0.00

1.00

2.00

3.00

0.00 0.50 1.00
Y

P
D

F

A B

C D E F

G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
z-axis

P
D

F
 C

o
n

vo
lu

ti
o

n

0

0.2

0.4

0.6

0.8

1

0.00 0.50 1.00 1.50 2.00

z-axis

0

0.2

0.4

0.6

0.8

1

0.00 0.50 1.00 1.50 2.00

z-axis

0

0.2

0.4

0.6

0.8

1

0.00 0.50 1.00 1.50 2.00

z-axis

0

0.2

0.4

0.6

0.8

1

0.00 0.50 1.00 1.50 2.00

z-axis

0.00

1.00

2.00

3.00

0.00 0.50 1.00X

P
D

F

0.00

1.00

2.00

3.00

0.00 0.50 1.00
Y

P
D

F

A B

C D E F

G
 

Figure 3. Convolution of an asymmetric triangular variable  with and� ��B
"
%

a symmetric triangular variable with  and support  such that. � ��� 	���C
"
#

��4� � ��� � . � � 	


Recall that the sum of two symmetric triangular distributions are equivalent to the sum of

four uniform random variables on which are often used as an approximation to the��� ��"
#

normal distribution. A closed form expression of the convolution of two symmetric

triangular distributions (Figure 4C) could be of interest in this connection.
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Figure 4. Examples of probability density function of where X and Y4 � � � . , 

are triangular distribution on with  and ;��� 	�  �  	 � � � �B C B C

A B CA � � �B A � � �
�"B A � 	 � � �
"B� � � � � �B C B C C B

D E F  .A � 	 � � �
("B A � 	 � � �
,B A � 	 � � 	� � � � � �C B C B C B
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It is given by

� �5� � � � ��
+�
	 	

� �

5 ��� �

	 � $�5 � 	� � $�5 � 	� � � 	�

$�5 � 	� � $�5 � 	� � 	 �	� 	 �

�� � 5� �	 � ��

^

) "
$ #

$

% "
$ #

$ #

% "
$ #

$ #

) "
$ #

$

���������
��

5 �

5 �

5 �

5 � .

Finally, in Figure 4E (4F) ( ) results in a more "peaked" convolution	 � � � �� �C B
"
"!

pdf. This is especially pronounced in Figure 4F where the convolution pdf appears to

have the shape of a symmetric two sided power distribution. The closed form expression

��
$� � in the case of Figure F simplifies to

� �5��� 	� � ��
,�
��5 � 	� � �5 � 	� � � ��� 	�

�5 � 	� � ��5 � 	� � �� �	� ��
^

#
$

$

#
$

$� �� 5 �

5 � .

Note that the basic seven-interval partition of  in  reduces to a two-, four- and��� �� ��
$�

two-interval partitions in - , respectively.��
(� ��
,�

Although the explicit expression derived in is not needed to calculate the��
$�

classical measures such as the coefficient of variation ( ), skewness ( ) and kurtosis� �0 "

( , it is natural to compare their values for the convolution  with those for the�#� 4

components  and . These component measures for  can easily be calculated for the� . �

general two-sided family by utilizing which provides the moments �	
	�� � ��� ��w 5
5

/ � 	� ; � � ��  � � in terms of the first four moments of its generating density (cf.�

�	
"�), their definition

� � �
� � �

� � �
! " #

w #
"

#

$
$ #
# #

%
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	��

the classical relationship between central moments  ,�5
5� ���� � ����� � � / � �� ; � �

and the moments around the origin  given by�w 5
5 � ��� �� / � 	� ; � ��

�����
� � �

� � � � �
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#
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$
w w w w
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(see, e.g. Stuart and Ord (7)). In the case of  the moments of the generating density��
$�

���� � �� �&�� � /�� / � 	� ; � �
 . are With analogous calculations for  and the

following relationship (in the obvious notation) between the moments of the convolution

4 � � � .  and that of its components, i.e.

�������
� � �

� � �
� � �
� � � � �

w w w
"Ä^ "Ä\ "Ä]

#Ä^ #Ä\ #Ä]

$Ä^ $Ä\ $Ä]

%Ä^ %Ä\ %Ä] #Ä\ #Ä]

� �

� �
� �
� � �  

��
		�

,

we may calculate the coefficient of variation ( ), skewness ( ) and kurtosis (  for � � �0 " #� 4

from their definition .��
	��

Figure 5 displays a comparison of the coefficient of variation ( ) for �0Ä^ 4

corresponding to the convolution expression  in the extreme cases that ��
$� � �� � �B C

(identical triangular distribution) and  (reflected triangular distributions).	 � � �� � �C B

In addition, Figure 5 depicts  for a triangular distribution and a uniform distribution as�0

well. It follows from Figure 5 that in the case of identical component triangular

distributions the coefficient of variation  (with the minimum of  and the maximum�0Ä^ �

of ) is strictly larger than . The coefficient   in the case when � � � � C �
�$ �� �0 0Ä\ Ä^
�

and are symmetric triangular distributions (  is exactly twice the coefficient of. � �
"��

variation of the uniform  distribution, while the coefficient   in��� 	� � $ C �
�"�0Ä^ �
the case when  and are uniform (as it was already mentioned the convolution of two� .

uniform distributions is a symmetric triangular distribution). Finally,  with identical�0Ä^

positively (negatively) skewed component triangular distributions is strictly smaller

(larger) than  with reflected component triangular distributions for ( ).� �0Ä^
" "
# #� �

From  and  it can easily be derived that the variance of a convolution with�	
	�� ��
		�

identical triangular and reflected triangular distributions are identical. Hence, the latter

observation follows solely from the difference in the mean of the convolution with

reflected triangular distributions (which equals regardless of ) and that of the	 �
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convolution with identical triangular distributions which is less (greater) than for 	 �� "
#
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Figure 5. Comparison of the coefficients of variation between convolutions of�!

triangular distributions (identical and reflected) and their components.

The convolution of reflected triangular distributions  is a�	 � � � �� � �C B

symmetric distribution around its mean  and hence the skewness  Figure 6	 � �
�"

displays  for the convolution of identical triangular distributions as well as that of its�"

components. The sign of of the convolution of identical triangular distributions agrees�"

with the sign of  of the component triangular distributions. However, it follows from�"

Figure 6 that  of the convolution of identical triangular distributions is strictly less�"

(larger) than that of its components for  . The latter observation holds for� �� � � �" "
# #
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the general form of two-sided distributions due to i) the fact that the total probability

mass is split into  and  at the point  ( cf. ) and ii) the independence� � �	 � �	
,�

assumption between  and .� .
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Figure 6. Comparison of skewness  between�"

convolution of identical triangular distributions and that of its components.

The kurtosis  in case of the convolution of identical and reflected triangular�#

distributions equals  regardless of the value of . The kurtosis  of a triangular� (
"! #� �

distribution is also constant and equals  (see, e.g., Johnson and Kotz (8)). The latter� %
"!

result is perhaps more intuitive than the former. Indeed, the kurtosis in all the examples in

Figure 4 equal , which indicates by now the well known fact that kurtosis is not just a� (
"!

measure of , but rather a measure of peakedness peakedness and fatness of the tails (see,
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e.g., Stuart and Ord (7)).  The values � (
"!  (kurtosis of a convolution of 4 uniform random

variables),  (kurtosis of a convolution of two uniform random variables) and  (� 	% )
"! "!

kurtosis of a uniform random variable) are indicative of the rate at which sums of uniform

random variables approach a normal distribution (with a kurtosis of   ). �
� It should

however be noted, that skewness  and a kurtosis  are only necessary  but not sufficient� � �

conditions for normality of the distribution. Indeed, as a by product of our investigations

one can easily verify utilizing the above setup that a "peaked" TSP distribution with

� �� � C �
�(�� � �"
# " and  yields a continuous non-normal distribution with skewness 

and kurtosis .�# � �
����

4. CONCLUDING REMARKS

Two topics are discussed in this paper. Firstly, a mechanism of generating a wide variety

of two-sided continuous distributions with bounded support characterized by a reflection

parameter  and secondly, a procedure for calculating convolutions of these distributions�

utilizing seven non-overlapping regions of integration is presented  We found this


representation of the convolution procedure to be in tune with the available mathematical

software but welcome comments and suggestions for possible alternative approaches

which may perhaps be appropriate in more general cases.

ACKNOWLEDGMENTS

The authors are indebted to Professor Norman L. Johnson for his valuable comments on

an earlier version of this paper and extend their gratitude to the Editor-in-Chief and

referee whose careful comments improved the presentation.



To Appear in COMMUNICATIONS AND STATISTICS: THEORY AND METHODS, Vol. 32, No. 9

Submitted: August 2002, Revised March 2003 23

REFERENCES

(1) Van Dorp, J.R.; Kotz, S. The Standard Two Sided Power Distribution and its

Properties: with Applications in Financial Engineering. The American Statistician ,

2002, 56 (2), 90-99.

(2) Van Dorp, J.R.; Kotz, S. A Novel Extension of the Triangular Distribution and its

Parameter Estimation. The Statistician  (1), 63-79., 512002, 

(3) Johnson, D. The Triangular Distribution as a Proxy for the Beta Distribution in Risk

Analysis. , The Statistician   (3), 387-398., 1997 46

(4) Nadarajah, S. A Polynomial Model for Bivariate Extreme Value Distributions,

Statistics and Probability Letters  , 15-25., 421999, 

(5) Nadarajah, S. A comment on Van Dorp, J.R. and Kotz, S. (2002), The Standard Two

Sided Power Distribution and its Properties: with Applications in Financial

Engineering (The American Statistician 56 (2), 90-99). The American, 2002, 

Statistician, ,  (4), 340-341.2002 56

(6) Balakrishnan, N.; Kocherlakota, S. On the double Weibull distribution: Order

Statistics and estimation. , Sankhya,  (B), 61-178.
_

1985 47

(7) Stuart, A.; Ord, J.K. Volume 1: Distribution Theory, 6-th edition. Edward Arnold,

London, .1996

(8) Johnson, N.L.; Kotz, S. Non-Smooth Sailing or Triangular Distributions Revisited

after Some 50 Years. ,The Statistician  (2), 179-187., 1999  48


