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Abstract: The connectivity is an important measurement for the fault-tolerance of a network. The general-
ized connectivity is a natural generalization of the classical connectivity. An S-tree of a connected graph G
is a treeT V E,( )= ′ ′ that contains all the vertices in S subject to S V G( )⊆ . Two S-treesT andT′ are internally
disjoint if and only if E T E T( ) ( )∩ ′ = ∅ and V T V T S( ) ( )∩ ′ = . Denote by κ S( ) the maximum number
of internally disjoint S-trees in graph G. The generalized k-connectivity is defined as κ Gk( ) =

κ S S V G S kmin and{ ( )∣ ( ) ∣ ∣ }⊆ = . Clearly, κ G κ G2( ) ( )= . In this article, we show that κ HS n 1n4( ) = − , where
HSn is the hierarchical star network.
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1 Introduction

The graphs considered in this article are simple undirected finite graphs. For graph theory symbols and
terms that are covered but not mentioned in this article, please refer to [1]. Let G V E,( )= be a connected
graph with vertex set V G( ) and edge set E G( ). Let u V G( )∈ , and N u v V G u uv E G\G( ) { ( ) ∣ ( )}= ∈ ∈ be the
neighbour set of u in the graph G, and N u N u uG G[ ] ( ) { }= ∪ . Let d u N uG G( ) ∣ ( )∣= be the degree of u in G.
If d v kG( ) = for any vertex v V G( )∈ , then the graph G is k-regular. For any vertices u v V G, ( )∈ , an
u v,( )-path starts at u and ends at v. Any two u v,( )-paths P and Q are internally disjoint if and only
if V P V Q u v,( ) ( ) { }∩ = .

The classic connectivity of graph G, denoted as κ G( ), is an important parameter to measure the relia-
bility and fault-tolerance of the network. The connectivity κ G( ) is larger, the reliability of the network is
higher. There are two versions to define κ G( ). The version definition of “cut” is that deleting the minimum
number of vertices disconnects the graph G. The version of “path” is defined as follows: for any vertex set
S u v,{ }= , κ SG( ) represents the maximum number of internally disjoint paths joining u and v in G,
and κ G κ S S V G Smin and 2G( ) { ( )∣ ( ) ∣ ∣ }= ⊆ = .

Although there are fruitful research results in the study of classical connectivity, classical connectivity
itself has certain limitations, which lead to large defects in evaluating the reliability of the network. For
example, in the actual application of an interconnection network, all processors connected to the same
processor are less likely to fail at the same time, so this parameter is not accurate enough to measure
network reliability and fault tolerance. In view of this, Chartrand et al. [2] generalized classical connectivity
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and proposed the concept of generalized connectivity. LetG be a connected graph with S V G( )⊆ . An S-tree of
graph G is a tree T V E,( )= ′ ′ that contains all the vertices in S subject to S V G( )⊆ . Two S-trees T and T′ are
internally disjoint if and only if E T E T( ) ( )∩ ′ = ∅ andV T V T S( ) ( )∩ ′ = . Denote κ S( ) as the maximum number
of internally disjoint S-trees in graph G. The generalized k-connectivity is defined as
κ G κ S S V G S kmin andk( ) { ( )∣ ( ) ∣ ∣ }= ⊆ = , clearly, κ G κ G2( ) ( )= .

The bounds of generalized connectivity and the relationship between connectivity and generalized
connectivity have been extensively investigated [3–5]. In addition, the generalized 3-connectivity of many
networks has been studied, for example, complete graphs [6], card product graphs [7], product graphs [8],
complete bipartite graph [9], star graphs, and alternating group graphs [10]. However, there are few results
about generalized 4-connectivity, such as hypercubes [11], exchanged hypercubes [12], dual cube [13], and
hierarchical cubic networks [14]. For more works and results on generalized connectivity, please refer
to [15–18].

In this article, we study the generalized 4-connectivity of the hierarchical star networks.

2 Hierarchical star networks and their properties

In this section, we give the definition, structure of the hierarchical star networks, and some lemmas.

Definition 1. [19] An n-dimensional star graph, denoted by the graph Sn, is defined as an undirected graph
with each vertex representing a distinct permutation of n[ ] and two vertices are adjacent if and only if their
labels differ only in the first and another position, that is, two vertices u u u un1 2= … , v v v vn1 2= … are
adjacent if and only if v u u u u u u ui i i n2 3 1 1 1= … …

− +
for some i n 1[ ] { }∈ ⧹ , where n n1, 2, ,[ ] = … . In this situa-

tion, u v,( ) is an i-edge.

The star graph S4 is shown in Figure 1.
Let Γn be a permutation group on the set n[ ] and S n1, 2 , 1, 3 , , 1,{( ) ( ) ( )}= … , where i1,( ) is a transposi-

tion of Γn. Then Sn is the undirected Cayley graph Cay SΓ ,n( ). For a permutation x Γn∈ , the permutation by
interchanging the first element with ith element of x is denoted as x i1,( ) for i n 1[ ] { }∈ ⧹ .

For two integers i j n, [ ]∈ , denoted by Sn
j i: the subgraph of Sn induced by all the vertices with the jth

element being i. For a fixed dimension j n \1[ ]∈ , Sn can be partitioned into n subgraphs Sn
j i: , which is

isomorphic to Sn 1−
for each i n[ ]∈ .

Figure 1: The graph of S4.

1262  Junzhen Wang et al.



Lemma 2.1. [19] For any integer n 3≥ , Sn is n 1( )− -regular and n 1( )− -connected, vertex transitive, edge
transitive, bipartite graph with girth 6. Any two vertices have at most one common neighbor in Sn.

Definition 2. [20] An n-dimensional hierarchical star network, HSn, is made of n ! n-dimensional star
graphs Sn, called copies. Each vertex of HSn is denoted by a two-tuple address a b,⟨ ⟩, where both a and
b are arbitrary permutation of n distinct symbols. The first n-bit permutation a identifies the copy of a and

the second n-bit permutation b identifies the position of b inside its copy. Two vertices a b,⟨ ⟩ and a b, 
⟨ ⟩ in

HSn are adjacent, if one of the following three conditions holds:

(1) a a= and b b E S, n( ) ( )∈ . That is, a b,⟨ ⟩ is adjacent to a b, ⟨ ⟩ if b b E S, n( ) ( )∈ ;

(2) a a≠ , a b= , and a b a n1,  ( )= = . That is, a a,⟨ ⟩ is adjacent to a n a n1, , 1,( ) ( )⟨ ⟩;

(3) a a≠ , a b≠ , a b= , and b a= . That is, a b,⟨ ⟩ is adjacent to b a,⟨ ⟩ if a b≠ .

The hierarchical star networks HS2 and HS3 are shown in Figure 2.

Remark 2.1. [21] Each node in HSn is assigned a label a b a a a b b b, ,n n1 2 1 2⟨ ⟩ = ⟨ … … ⟩, where a a an1 2 … and
b b bn1 2 … are permutations of n distinct symbols (not necessarily distinct from each other). The edges of the
HSn are defined by the following n generators:

h a b a n b n a b
b a a b

, 1, , 1, , ;
, , ,1( )

⎧

⎨
⎩

( ) ( )
⟨ ⟩ =

⟨ ⟩ =

⟨ ⟩ ≠

and h a b a b i, , 1,i( ) ( )⟨ ⟩ = ⟨ ⟩ for i n 1[ ] { }∈ ⧹ .

Let a b,⟨ ⟩ be a vertex of HSn. The neighbor set of a b,⟨ ⟩ is exactly h a b i n,i{ ( )∣ [ ]}⟨ ⟩ ∈ . Furthermore,
h a b,1( )⟨ ⟩ is called the external neighbor of a b,⟨ ⟩ and h a b,i( )⟨ ⟩ is called the internal neighbor of a b,⟨ ⟩

for i n 1[ ] { }∈ ⧹ . We denote by HSn
a the subgraph induced by the vertex set a b V HS b V S, n n{ ( )∣ ( )}⟨ ⟩ ∈ ∈ , which

is isomorphic to an n-dimensional star graph Sn identified by a. Moreover, we define HSn
a b, as a subgraph of

HSn induced by the vertex setV HS V HSn
a

n
b( ) ( )∪ and HSn

aΓn { }− as a subgraph of HSn induced by the vertex set
V HS V HS\n n

a( ) ( ). For a vertex x V HSn( )∈ , we use x′ to denote the external neighbor of x.

Remark 2.2. [21] Any vertex has exactly one external neighbor in HSn, that is, every vertex a b,⟨ ⟩ in HSn
a is

exactly incident one cross edge a b h a b, , ,1( ( ))⟨ ⟩ ⟨ ⟩ . There is one or two cross edges between any pair of

copies. Moreover, for a fixed copy HSn
a, there are two cross edges between HSn

a and HSn
a n1,( ); there is only one

cross edge between HSn
a and HSn

b, where b a a nΓ \ , 1,n { ( )}∈ .

Figure 2: The graph of HS2 and HS3.
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Lemma 2.2. [20] For any integer n 3≥ , HSn is an n-regular n-connected graph, and its girth is 4. Any two
vertices have at most two common neighbors in HSn.

Lemma 2.3. Let HS HS HS, , ,n n n
n1 2

…

! be the n ! copies of HSn, and H HS V HSn j
k

n
j

1i
i[ ]( )= ⋃

=

for j ni [ ]∈ ! , k 1≥ , and
n 3≥ , i n1 ≤ ≤ ! , then H is connected.

Proof. Without loss of generality, suppose H HS V HSn j
k

n
j

1i
i

[ ( )]= ⋃
=

. By Remark 2.2, there is at least one cross
edge between any two distinct copies of HSn. Thus, H is connected. □

Lemma 2.4. For j ni [ ]∈ ! , i n1 ≤ ≤ ! , let v V HSn
ji

( )∈ with v x y,= ⟨ ⟩ and x y= . The external neighbors

of different vertices in V HS v\n
ji { }( ) belong to different copies of HSn. Moreover, if u V HS v\n

ji { }( )∈ with
u x y n, 1,( )= ⟨ ⟩, then v u,′ ′ belong to the same copy of HSn.

Proof. Let v v V HS v, \n
j

1 2 i { }( )∈ with v x y,1 1 1= ⟨ ⟩, v x y,2 2 2= ⟨ ⟩. By the definition of HSn, x y1 1≠ , x y2 2≠ , and
y y1 2≠ , v x n y n1, , 1,( ) ( )′ = ⟨ ⟩. Clearly, v y x,1 1 1′ = ⟨ ⟩ and v y x,2 2 2′ = ⟨ ⟩. Since y y1 2≠ , v1′ and v2′ belong to different

copies of HSn. Let u V HS v\n
ji { }( )∈ , x y n1,( )≠ , and u y n x1, ,( )′ = ⟨ ⟩. Since x n y n1, 1,( ) ( )= , v u,′ ′ belong to

the same copy of HSn. □

3 Generalized 4-connectivity of HSn

In this section, we will study the generalized 4-connectivity of hierarchical star networks. To prove the main
result, the following results are useful.

Lemma 3.1. [4] If there are two adjacent vertices of degree δ G( ), then κ G δ G 1k( ) ( )≤ − for k V G3 ∣ ( )∣≤ ≤ .

Lemma 3.2. [1] Let G be a k-connected graph, and let x and y be a pair of distinct vertices in G. Then there
exist k internally disjoint paths P P P, , , k1 2 … in G connecting x and y.

Lemma 3.3. [1] Let G V E,( )= be a k-connected graph, let x be a vertex of G, and letY V x\{ }⊆ be a set of at
least k vertices of G. Then there exists a k-fan in G from x to Y. That is, there exists a family of k internally
vertex-disjoint x Y,( )-paths whose terminal vertices are distinct in Y .

Lemma 3.4. [1] Let G V E,( )= be a k-connected graph, and let X and Y be subsets of V G( ) of cardinality at
least k . Then there exists a family of k pairwise disjoint X Y,( )-paths in G.

Theorem 3.1. [22] κ S n 2n3( ) = − , for n 3≥ .

Theorem 3.2. [23] κ S n 2n4( ) = − , for n 3≥ .

Lemma 3.5. For any three vertices x y z V S, , n( )∈ , n 3≥ , there exist n 2− internally disjoint trees T T, , n1 2 
…

−

connecting x y z, , and each Ti contains a vertex ui such that ui is distinct from x y z, , and u ui j≠ ,
for i j n1 2≤ ≠ ≤ − .

Proof. By Theorem 3.2, κ S n 2n4( ) = − . That is to say, for any four distinct vertices x y z u V S, , , n( )∈ , there
are n 2− internally disjoint treesT T, , n1 2′ … ′

−

connecting x y z u, , , in Sn. There exists some integer i such that

V T 4i∣ ( )∣′ = and V T 5j∣ ( )∣′ ≥ , where i j n1 2≤ ≠ ≤ − .

Without loss of generality, suppose V T 41∣ ( )∣′ = . By Lemma 2.1, d u n 1Sn( ) = − .
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Case 1. d u 2T1( ) =
′

.

Obviously, for Tj′, j n2 2≤ ≤ − , d u 1Tj( ) =
′

. Let T T1 1
= ′ and T T uj j

= ′ − for i j n1 2≤ ≠ ≤ − .

Then T T, , n1 2 
…

−
are the desired trees.

Case 2. d u 1T1( ) =
′

.

Case 2.1. For j n2 2≤ ≤ − , d u 1Tj( ) =
′

.

The proof is similar to that of Case 1.
Case 2.2. For j n2 2≤ ≤ − , there exists some Tj′ subject to d u 2Tj( ) =

′
.

Without loss of generality, suppose d u 2T2( ) =
′

. Let T T T T T T u, , j j1 1 2 2  
= ′ = ′ = ′ − for j n3 2≤ ≤ − .

Then T T, , n1 2 
…

−
are the desired trees. □

Theorem 3.3. κ HS n 1n4( ) = − for n 2≥ .

By Lemma 3.1, κ HS δ HS n1 1n n4( ) ( )≤ − = − . To obtain Theorem 3.3, it suffices to establish the following
claim.

Claim. For any given vertex set S x y z w V HS, , , n{ } ( )= ⊆ , there exist n 1− internally disjoint S-trees
in HSn.

Proof. It proceeds by induction on n. Obviously, HS2 is connected, there is a tree connecting x y z w, , , in
HS2. Suppose that n 3≥ and the theorem holds for n 1− . □

Recall that HSn consists of n ! copies isomorphic to Sn, denoted by HSn
ℓ, Γnℓ ∈ . We consider the following

cases.
Case 1. The vertices of S are distributed in one copy of HSn.
Without loss of generality, suppose x y z w V HS, , , n

α( )∈ , where α Γn∈ . By Theorem 3.2, there exist n 2−

internally disjoint S-trees connecting x y z w, , , in HSn
α, sayT T T, , , n1 2 2…

−
. Let H HSn

αΓn { }
=

− , by Lemma 2.3, H
is connected. Clearly, x y z w V H, , , ( )′ ′ ′ ′ ∈ , then there exists a tree Tn 1

−
connecting x y z w, , ,′ ′ ′ ′ in H . Let

T T xx yy zz wwn n1 1
= ∪ ′ ∪ ′ ∪ ′ ∪ ′

− −
. Then T T T, , , n1 2 1…

−
are n 1− internally disjoint S-trees.

Case 2. The vertices of S are distributed in two distinct copies of HSn.

Without loss of generality, suppose x y z V HS, , n
α( )∈ and w V HSn

β( )∈ , where α β α β, Γ ,n∈ ≠ . By Lemma

3.5, there are n 2− internally disjoint trees connecting x y z, , , say Ti, and u V Ti i( )∈ is distinct with x y z, ,
for i n1, , 2{ }∈ … − .

Figure 3: The illustration of Case 2.1.1.
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Case 2.1. There is no cross edge between T T, , n1 2 { }…
−

and HSn
β.

Without loss of generality, suppose u V HSi n
ji

( )
′ ∈ , where j α βΓ ,i n { }∈ − , i n1, , 2{ }∈ … − . First, we sup-

pose that different vertices of u u, , n1 2{ }′ … ′

−

belong to different copies.

Case 2.1.1. x y z V HS, , n
α β jΓ , ,n i

n
i1

2{ }
( )′ ′ ′ ∈

− ⋃
=

−

for i n1, , 2{ }∈ … − .

Clearly, there exists a path Pi joining ui′ and mi in HSn
ji such that m V HSi n

β( )′ ∈ . LetW m m m, , ,n1 2{ }= ′ … ′

−

.
By Lemma 3.3, there are n 1− internally disjoint paths joining w and W , say P P, , n1 1′ … ′

−

, m V Pi i( )′ ∈ ′ ,

m V Pn 1( )∈ ′

−

, m V HSn
α β jΓ , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

−

, for i n1, , 2{ }∈ … − . Clearly, x y z m V HS, , , n
α β jΓ , ,n i

n
i1

2{ }
( )′ ′ ′ ′ ∈

− ⋃
=

−

, and so

there is a tree Tn 1
−

connecting x y z m, , ,′ ′ ′ ′. Let T T u u P m m Pi i i i i i i i
= ∪ ′ ∪ ∪ ′ ∪ ′ for i n1, , 2{ }∈ … − and

T xx yy zz mm P Tn n n1 1 1
= ′ ∪ ′ ∪ ′ ∪ ′ ∪ ′ ∪

− − −
. ThenT T T, , , n1 2 1…

−
are n 1− internally disjoint S-trees (Figure 3).

Case 2.1.2. One of x y z, ,{ }′ ′ ′ belongs to some HSn
ji for i n1, , 2{ }∈ … − .

Suppose x′ belongs to the copy HSn
jn 2− , clearly un 2′

−

also belongs to HSn
jn 2− . Let m h V HS,n n

j
2 n 2

( )∈
−

− ,

X u x,n 2{ }= ′ ′
−

, and Y m h,n 2{ }=
−

such that m V HSn n
β

2 ( )′ ∈
−

, h V HSn
α β jΓ , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

−

. By Lemma 3.4, there

are two internally disjoint paths between X and Y , say Pn 2−
and Pn 1−

, where Pn 2−
is the path joining un 2′

−

and mn 2−
and Pn 1−

is the path joining x′ and h. Let W m m m, , ,n1 2{ }= ′ … ′

−

, by Lemma 3.3, there are
n 1− internally disjoint paths between w and W , say P P, , n1 1′ … ′

−

, and m V Pi i( )′ ∈ ′ , m V Pn 1( )∈ ′

−

, such that

m V HSn
α β jΓ , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

−

. In viewof y z m h V HS, , , n
α β jΓ , ,n i

n
i1

2{ }
( )′ ′ ′ ′ ∈

− ⋃
=

−

, there exists a tree connecting y z m h, , ,′ ′ ′ ′,

say Tn 1
−
. Let T T u u P m m Pi i i i i i i i

= ∪ ′ ∪ ∪ ′ ∪ ′ for i n1, , 2{ }∈ … − and T xx yy zz P hhn n1 1= ′ ∪ ′ ∪ ′ ∪ ∪ ′ ∪
− −

mm P Tn n1 1
′ ∪ ′ ∪

− −
. ThenT T T, , , n1 2 1…

−
are n 1− internally disjoint S-trees (Figure 4).

Next, we suppose two of u u, , n1 2{ }′ … ′

−

belong to the same copy. Let X X x u\ n 3( { }) { }′ = ′ ∪ ′

−

, Y′ =

Y h m\ n 3( { }) { }∪
−

, and m V HSn n
β

3 ( )′ ∈
−

. We obtain n 3− internally disjoint S-tees T T T T, , , , ,n n1 2 4 2…
− −

similar

to that of Case 2.1.2 by replacing X with X′ and Y with Y′. In view of x y z m V HS, , , n
α β jΓ , ,n i

n
i1

3{ }
( )′ ′ ′ ′ ∈

− ⋃
=

−

,

there is a tree connecting x y z m, , ,′ ′ ′ ′ say Tn 1
−
. Let T T u u P m m Pn n n n n n n n3 3 3 3 3 3 3 3

= ∪ ′ ∪ ∪ ′ ∪ ′
− − − − − − − −

, Tn 1 =
−

xx yy zz mm P Tn n1 1
′ ∪ ′ ∪ ′ ∪ ′ ∪ ′ ∪

− −
. Then T T T, , , n1 2 1…

−
are n 1− internally disjoint S-trees.

Case 2.2. There is one cross edge between T T, , n1 2 { }…
−

and HSn
β.

Consequently, we just consider the case different vertices of u u, , n1 2{ }′ … ′

−

belong to different copies and
the case that two of u u, , n1 2{ }′ … ′

−

in the same copy is similar.

Case 2.2.1. For some i n1, , 2{ }∈ … − , u V HSi n
β( )′ ∈ .

Without loss of generality, suppose u V HSn n
β

2 ( )′ ∈
−

, u V HSi n
ji

( )
′ ∈ for i n1, , 3{ }∈ … − .

When x y z V HS, , n
α β jΓ , ,n i

n
i1

3{ }
( )′ ′ ′ ∈

− ⋃
=

−

, we setW W m u\ n n2 2( { }) { }′ = ′ ∪ ′

− −

. We obtain n 2− internally disjoint
S-trees T T T T, , , ,n n1 2 3 1…

− −
, similar to that of Case 2.1.1 by replacing W with W′. And Tn 2 =

−

T P u un n n n2 2 2 2
∪ ′ ∪ ′

− − − −

(Figure 5[a]).

Figure 4: The illustration of Case 2.1.2.
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When one of x y z, ,{ }′ ′ ′ and ui′ belong to the same copy, for some i n1, , 3{ }∈ … − , we suppose that

x u, n 3′ ′

−

belong to the same copy HSn
jn 3− . Let X X u u\ n n2 3( { }) { }′ = ′ ∪ ′

− −

, Y Y m m\ n n2 3( { }) { }′ = ∪
− −

, and W′ =

W m u\ n n2 2( { }) { }′ ∪ ′

− −

. We obtain n 2− internally disjoint S-trees T T T T, , , ,n n1 2 3 1…
− −

, similar to that of Case

2.1.2 by replacing X with X′, Y with Y′, W with W′. And T T P u un n n n n2 2 2 2 2
= ∪ ′ ∪ ′

− − − − −

(Figure 5[b]).
Case 2.2.2. One of x y z, ,{ }′ ′ ′ belongs to HSn

β.

Without loss of generality, suppose z V HSn
β( )′ ∈ , u V HSi n

ji
( )

′ ∈ , where j α βΓ ,i n { }∈ − , i n1, , 2{ }∈ … − .

There is a path joining ui′ and mi in HSn
ji, say Pi, and m V HSi n

β( )′ ∈ , for i n1, , 2{ }∈ … − .

Case 2.2.2.1. x y V HS, n
α β jΓ , ,n i

n
i1

2{ }
( )′ ′ ∈

− ⋃
=

−

.

When z N wHSn
β( )′ ∈ , we setTn 1

−
be the tree connecting x y m, ,′ ′ ′. We obtain n 2− internally disjoint S-trees

T T T, , , n1 2 2…
−
, similar to that of Case 2.1.1. And T T P xx yy zz mmn n n1 1 1

= ∪ ′ ∪ ′ ∪ ′ ∪ ′ ∪ ′
− − −

.
When z N wHSn

β( )′ ∉ , we set Pn 1′

−

be the path from w to z′, then there exists a vertex a distinct from z′ and

w in Pn 1′

−

. First, we suppose a V HSn
α β jΓ , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

−

. The proof is similar to the case of z N wHSn
β( )′ ∈ . Next,

we suppose a V HSn
α j, i

( )′ ∈ , for some i n1, , 2{ }∈ … − . Clearly, in this case, w V HSn
α β jΓ , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

−

, the proof

is similar to the case of a V HSn
α β jΓ , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

− (Figure 6[a]).
Case 2.2.2.2. For some i n1, , 2{ }∈ … − , one of x y,{ }′ ′ belongs to V HSn

ji
( ).

Without loss of generality, suppose x u V HS, n n
j

2
n 2

( )
′ ′ ∈

−

− .

Figure 5: The illustrations of Case 2.2.1: (a) ⎜ ⎟
⎛

⎝

⎞

⎠

{ }
∈

⋃

=x y z V HS′, ′, ′ n
α β jΓ − , ,n i

n
i1

−3
; and (b) ( )∈x u V HS′, ′n n

j
−3

n−3 .

Figure 6: The illustrations of ( )∈

{ }

z N w′ HSn
β : (a) Case 2.2.2.1 and (b) Case 2.2.2.2.
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When z N wHSn
β( )′ ∈ , we setTn 1

−
be the tree connectingh y m, ,′ ′ ′. We can obtainn 2− internally disjoint S-trees

T T T, , , n1 2 2…
−
, similar to Case 2.1.2. And T T P P xx yy zz mm hhn n n n1 1 1 1

= ∪ ∪ ′ ∪ ′ ∪ ′ ∪ ′ ∪ ′ ∪ ′
− − − −

(Figure 6[b]).
When z N wHSn

β( )′ ∉ , there exists a vertex a distinct from z′ and w in Pn 1′

−

. First, we suppose

a V HSn
α β jΓ , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

−

. The proof is similar to the case of z N wHSn
β( )′ ∈ . Next, we suppose a V HSn

α j, i
( )′ ∈

for some i n1, , 2{ }∈ … − . Clearly, in this case, w V HSn
α β jΓ , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

−

. The proof is similar to the case

of a V HSn
α β jΓ , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

−

.

Case 2.3. There are two cross edges between T T, , n1 2 { }…
−

and HSn
β.

Case 2.3.1. One of x y z, ,{ }′ ′ ′ belongs to HSn
β, and some u V HSi n

β( )′ ∈ for i n1, , 2{ }∈ … − .

Without loss of generality, suppose z u V HS, n n
β

2 ( )′ ′ ∈
−

, and u V HSi n
ji

( )
′ ∈ for i n1, , 3{ }∈ … − . There exists

a path joining ui′ and mi in HSn
ji, say Pi, and m V HSi n

β( )′ ∈ , for i n1, , 3{ }∈ … − .
Let W m m u z, , , ,n n1 3 2{ }= ′ … ′ ′ ′

− −

. By Lemma 3.3, there are n 1− internally disjoint paths between w and
W , say P P, , n1 1′ … ′

−

, and m V Pi i( )′ ∈ ′ for i n1, , 3{ }∈ … − , u V Pn n2 2( )′ ∈ ′

− −

, z V Pn 1( )′ ∈ ′

−

. If w W∉ , clearly,

x y w V HS, , n
α β jΓ , ,n i

n
i1

3{ }
( )′ ′ ′ ∈

− ⋃
=

−

, there exists a tree connecting x y,′ ′, and w′, say Tn 1
−
. Let

T T u u P m m P i n
T T u u P
T xx yy zz ww T

, 1, , 3i i i i i i i i

n n n n n

n n

2 2 2 2 2

1 1






⎧

⎨

⎪

⎩
⎪

{ }= ∪ ′ ∪ ∪ ′ ∪ ′ ∈ … −

= ∪ ′ ∪ ′

= ′ ∪ ′ ∪ ′ ∪ ′ ∪

− − − − −

− −

ThenT T T, , , n1 2 1…
−
are n 1− internally disjoint S-trees (Figure 7[a]). If w W∈ , the proof is similar to the case

of w W∉ .

Case 2.3.2. Two of x y z, ,{ }′ ′ ′ belong to HSn
β.

Without loss of generality, suppose x y V HS, n
β( )′ ′ ∈ , clearly, x′ is adjacent to y′. Let W′ =

W u z x y\ , ,n 2( { }) { }′ ′ ∪ ′ ′
−

, we obtain n 3− internally disjoint S-trees T T T, , , n1 2 3…
−
, similar to that of Case

2.3.1 by replacing W with W′. Let x V Pn 2( )′ ∈ ′

−

, y V Pn 1( )′ ∈ ′

−

. Since the girth of HSn
β is 6, there is a vertex

m in Pn 2′

−

or Pn 1′

−

such that m is distinct with x y,′ ′, and w. Without loss of generality, suppose m V Pn 2( )∈ ′

−

.

Since there are two cross edges between HSn
α and HSn

β, m′ and w′ belong to different copies, z′ and un 2′

−

belong to different copies. We consider the case that m′ belongs to different copies with z′ or un 2′

−

, and the

case that m′ belongs to the same copy with z′ or un 2′

−

is similar. Suppose z V HSn
jn 2

( )′ ∈
− , m V HSn

jn 1
( )′ ∈

− .

By Lemma 2.3, HSn
j j,n n2 1− − is connected, then there is a path joining z′ and m′, say Q. Obviously,

u w V HS,n n
α β j

2
Γ , ,n i

n
i1

3{ }
( )

′ ′ ∈
−

− ⋃
=

−

. By Lemma 2.3, HSn
α β jΓ , ,n i

n
i1

3{ }− ⋃
=

−

is connected, then there is a path joining un 2′

−

and w′, say R. Let T T u u R wwn n n n2 2 2 2
= ∪ ′ ∪ ∪ ′

− − − −

, T xx yy zz P P mm Qn n n1 2 1= ′ ∪ ′ ∪ ′ ∪ ′ ∪ ′ ∪ ′ ∪
− − −

. Then
T T T, , , n1 2 1…

−
are n 1− internally disjoint S-trees (Figure 7[b]).

Figure 7: The illustrations of (a) Case 2.3.1 and (b) Case 2.3.2.
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Case 2.3.3. Two of u u, , n1 2{ }′ … ′

−

belong to HSn
β.

Let W W m z u m\ , ,n n3 3( { }) { }′ = ′ ′ ∪ ′

− −

, and m V HSn
α β jΓ , ,n i

n
i1

4{ }
( )′ ∈

− ⋃
=

−

. We obtain n 3− internally disjoint

S-trees T T T T, , , ,n n1 2 4 2…
− −

, similar to that of Case 2.3.1 by replacing W with W′. Let Tn 1
−

be the tree

connecting x y z m, , ,′ ′ ′ ′, T T u u Pn n n n n3 3 3 3 3
= ∪ ′ ∪ ′

− − − − −

, T xx yy zz mm P Tn n n1 1 1
= ′ ∪ ′ ∪ ′ ∪ ′ ∪ ′ ∪

− − −
. Then

T T T, , , n1 2 1…
−

are n 1− internally disjoint S-trees.
Case 3. The vertices of S are distributed equally in two distinct copies of HSn.

Without loss of generality, suppose x y V HS, n
α( )∈ and z w V HS, n

β( )∈ , where α β α β, Γ ,n∈ ≠ . Since HSn
α

is isomorphic to Sn, by Lemma 3.2, there are n 1− internally disjoint paths joining x and y in HSn
α, say

P P, , n1 1…
−
. Similarly, there are n 1− internally disjoint paths joining z and w in HSn

β, say P P, , n1 1′ … ′

−

. Let
x N x V Pi i( ) ( )∈ ∩ , w N w V Pi i( ) ( )∈ ∩ ′ for i n1, , 1{ }∈ … − . By Lemma 2.4, different vertices of x x, , n1 1{ }′ … ′

−

belong to distinct copies and different vertices of w w, , n1 1{ }′ … ′

−

belong to distinct copies. Obviously, at

most one x V HSi n
β( )′ ∈ , and at most one w V HSi n

α( )′ ∈ for i n1, , 1{ }∈ … − . We suppose x w,i i′ ′ belong to
different copies, where i n1, , 1{ }∈ … − , and the case that for some i n1, , 1{ }∈ … − , x w,i i′ ′ belong to the
same copy is similar.

Case 3.1. None of x x, , n1 1{ }′ … ′

−

belongs to HSn
β, and none of w w, , n1 1{ }′ … ′

−

belongs to HSn
α for

i n1, , 1{ }∈ … − .

As n n2 2 2!− ≥ − (n 3≥ ), we can suppose x V HSi n
γi

( )
′ ∈ , w V HSi n

ηi
( )

′ ∈ , and γ η α β γ η, Γ , ,i i n i i{ }∈ − ≠ for

i n1, , 1{ }∈ … − . By Lemma 2.3, HSn
γ η,i i is connected, there exists a path joining xi′ and wi′, say Pi, for

i n1, , 1{ }∈ … − . Let T P P x x w w Pi i i i i i i i= ∪ ′ ∪ ′ ∪ ′ ∪ , where i n1, , 1{ }∈ … − . Then T T T, , , n1 2 1…
−

are n 1−

internally disjoint S-trees.
Case 3.2. One of x x, , n1 1{ }′ … ′

−

belongs to HSn
β, and none of w w, , n1 1{ }′ … ′

−

belongs to HSn
α for

i n1, , 1{ }∈ … − .

Without loss of generality, suppose x V HSn n
β

1 ( )′ ∈
−

.
Case 3.2.1. x V Pn i1 ( )′ ∈ ′

−

, where i n1, , 1{ }∈ … − .
Without loss of generality, suppose x V Pn n1 1( )′ ∈ ′

− −

. We can obtain n 2− internally disjoint S-trees
T T, , n1 2…

−
similar to that of Case 3.1. Let T P P x xn n n n n1 1 1 1 1= ∪ ′ ∪ ′

− − − − −

. ThenT T T, , , n1 2 1…
−

are n 1− internally
disjoint S-trees.

Case 3.2.2. x V Pn i1 ( )′ ∉ ′

−

, where i n1, , 1{ }∈ … − .
Let W w w, , n1 1{ }= …

−
. By Lemma 3.3, there are n 1− internally disjoint paths Q Q, , n1 1…

−
between xn 1′

−

and W such that w V Qi i( )∈ , where i n1, , 1{ }∈ … − . It is necessary to consider the following situations.
When V Q V P n 1i i∣ ( ) ( )∣∩ ′ = − , that is, V Q V P Wi i( ) ( )∩ ′ = , where i n1, , 1{ }∈ … − . We can obtain n 2−

internally disjoint S-trees T T, , n1 2…
−

similar to that of Case 3.1. Let T P P Q x xn n n n n n1 1 1 1 1 1= ∪ ′ ∪ ∪ ′
− − − − − −

.
Then T T T, , , n1 2 1…

−
are n 1− internally disjoint S-trees.

When V Q V P ni i∣ ( ) ( )∣∩ ′ ≥ , where i n1, , 1{ }∈ … − . The proof is similar to that of Case 3.2.1.

Case 3.3. One of x x, , n1 1{ }′ … ′

−

belongs to HSn
β, and one of w w, , n1 1{ }′ … ′

−

belongs to HSn
α, where

i n1, , 1{ }∈ … − .
The proof is similar to that of Case 3.2.
Case 4. The vertices of S are distributed in three distinct copies of HSn.

Without loss of generality, suppose x y V HS, n
α( )∈ and z V HSn

β( )∈ , w V HSn
γ( )∈ where α β γ, , Γn∈ ,

α β γ≠ ≠ . Since HSn
α is isomorphic to Sn, by Lemma 3.2, there exist n 1− internally disjoint paths joining

x and y in HSn
α, say P P, , n1 1…

−
. Let N x x x, , n1 1( ) { }= …

−
and x N x V Pi i( ) ( )∈ ∩ , by Lemma 2.4, the external

neighbors of N x( ) belong to different copies. Consequently, we just consider the case y N x( )∉ and the proof
of the case y N x( )∈ is similar.

Case 4.1. There are three cross edges between N x[ ] and HSn
β γ, .

Suppose x V HSi n
ji

( )
′ ∈ , x V HSn n

β
2 ( )′ ∈

−

, x V HSn n
γ

1 ( )′ ∈
−

, where j α β γΓ , ,i n { }∈ − , i n1, , 3{ }∈ … − , and let

y V HSn
jn 2

( )′ ∈
− . By Lemma 2.4, x V HSn

β γ,( )′ ∈ .

When x V HSn
β( )′ ∈ , there is a tree connecting x a b, ,i i i′ in HSn

ji, say Ti, and a V HSi n
β( )′ ∈ , b V HSi n

γ( )′ ∈ for

i n1, , 3{ }∈ … − . There is a path joining y′ and bn 2−
in HSn

jn 2− , say P, and b V HSn n
γ

2 ( )′ ∈
−

. Let Z =
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a a x x, , , ,n n1 3 2{ }′ … ′ ′ ′
− −

, W b b x, , ,n n1 2 1{ }= ′ … ′ ′

− −

. By Lemma 3.3, there are n 1− internally disjoint paths

between z and Z , say P P, , n1 1′ … ′

−

, n 1− internally disjoint paths between w and W , say P P, , n1 1 
…

−
,

a V Pi i( )′ ∈ ′ for i n1, , 3{ }∈ … − , x V Pn n2 2( )′ ∈ ′

− −

, x V Pn 1( )′ ∈ ′

−

, b V Pi i( )′ ∈ for i n1, , 2{ }∈ … − , x V Pn n1 1( )′ ∈
− −

.
Let

T P P P T x x a a b b i n
T P P P x x yy P b b
T P P P xx x x

, 1, , 3

.

i i i i i i i i i i i

n n n n n n n n

n n n n n n

2 2 2 2 2 2 2 2

1 1 1 1 1 1





⎧

⎨

⎪

⎩
⎪

{ }= ∪ ′ ∪ ∪ ∪ ′ ∪ ′ ∪ ′ ∈ … −

= ∪ ′ ∪ ∪ ′ ∪ ′ ∪ ∪ ′

= ∪ ′ ∪ ∪ ′ ∪ ′

− − − − − − − −

− − − − − −

Then T T T, , , n1 2 1…
−

are n 1− internally disjoint S-trees (Figure 8).
When x V HSn

γ( )′ ∈ , the proof is similar to the case of x V HSn
β( )′ ∈ .

Case 4.2. There are two cross edges between N x[ ] and HSn
β γ, .

Case 4.2.1. For two integers j k n1 1≤ ≠ ≤ − , x V HSj n
β( )′ ∈ , x V HSn

γ( )′ ∈ .

Without loss of generality, suppose x V HSn n
β

2 ( )′ ∈
−

, x V HSn n
γ

1 ( )′ ∈
−

, x V HSi n
ji

( )
′ ∈ , for j α β γΓ , ,i n { }∈ − ,

i n1, , 3{ }∈ … − .

Case 4.2.1.1. For some i n1, , 3{ }∈ … − , x V HSn
ji

( )′ ∈ .

Without loss of generality, suppose x x V HS, n n
j

3
n 3

( )′ ′ ∈
−

− , and let y V HSn
jn 2

( )′ ∈
− . Let u v V HS, n

jn 3
( )∈

− , and

u V HSn
jn 1

( )′ ∈
− , v V HSn

γ( )′ ∈ . Let A x x,n 3{ }= ′ ′
−

, B u v,{ }= . By Lemma 3.4, there are two disjoint paths

Figure 8: The illustration of ( )∈x V HS′ n
β .

Figure 9: The illustration of Case 4.2.1.1.

1270  Junzhen Wang et al.



between A and B, say R1 and R2, R1 is the path joining xn 3′

−

and u, and R2 is the path joining x′ and v. There is
a path joining y′ and m in HSn

jn 2− , say P and m V HSn
β( )′ ∈ . There is a tree connecting x a,i i′ and bi in HSn

ji, say

Ti for i n1, , 4{ }∈ … − , and a V HSi n
β( )′ ∈ , b V HSi n

γ( )′ ∈ . There is a tree connecting u a, n 3′
−

and bn 3−
in HSn

jn 1− ,

say Tn 3
−

and a V HSn n
β

3 ( )′ ∈
−

, b V HSn n
γ

3 ( )′ ∈
−

. Let Z a a x m, , , ,n n1 3 2{ }= ′ … ′ ′ ′
− −

, W b b v x, , , ,n n1 3 1{ }= ′ … ′ ′ ′

− −

. By

Lemma 3.3, there are n 1− internally disjoint paths between z and Z , say P P, , n1 1′ … ′

−

, n 1− internally

disjoint paths between w and W , say P P, , n1 1 
…

−
and a V P x V P,i i n n2 2( ) ( )′ ∈ ′ ′ ∈ ′

− −

, m V Pn 1( )′ ∈ ′

−

, b V Pi i( )′ ∈

for i n1, , 3{ }∈ … − , v V Pn 2( )′ ∈
−

, x V Pn n1 1( )′ ∈
− −

. Let

T P P P T x x a a b b i n
T P P P T x x a a b b uu R
T P P P R x x xx vv
T P P P P x x yy mm

, 1, , 4

.

i i i i i i i i i i i

n n n n n n n n n n n

n n n n n n

n n n n n n

3 3 3 3 3 3 3 3 3 3 3 1

2 2 2 2 2 2 2

1 1 1 1 1 1










⎧

⎨

⎪
⎪

⎩

⎪
⎪

{ }= ∪ ′ ∪ ∪ ∪ ′ ∪ ′ ∪ ′ ∈ … −

= ∪ ′ ∪ ∪ ∪ ′ ∪ ′ ∪ ′ ∪ ′ ∪

= ∪ ′ ∪ ∪ ∪ ′ ∪ ′ ∪ ′

= ∪ ′ ∪ ∪ ∪ ′ ∪ ′ ∪ ′

− − − − − − − − − − −

− − − − − −

− − − − − −

Then T T T, , , n1 2 1…
−

are n 1− internally disjoint S-trees (Figure 9).
Case 4.2.1.2. x V HSn

α β γ jΓ , , ,n i
n

i1
3{ }

( )′ ∈

− ⋃
=

−

.

Without loss of generality, suppose x V HSn
jn 2

( )′ ∈
− . When y V HSn

β( )′ ∈ orV HSn
γ( ), the proof is similar to

that of Case 4.1. When y V HSn
ji

( )′ ∈ , for some i n1, , 3{ }∈ … − , the proof is similar to that of Case 4.2.1.1.

When y V HSn
α β γ jΓ , , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

− (Figure 10).
Without loss of generality, suppose y V HSn

jn 1
( )′ ∈

− . There is a tree connecting x a,i i′ , and bi in HSn
ji,

say Ti and a V HSi n
β( )′ ∈ , b V HSi n

γ( )′ ∈ for i n1, , 3{ }∈ … − . There is a path joining x′ and bn 2−
in HSn

jn 2− ,

say R and b V HSn n
γ

2 ( )′ ∈
−

. There is a path joining y′ and m in HSn
jn 1− , say Q and m V HSn

β( )′ ∈ . Let
Z a a x m, , , ,n n1 3 2{ }= ′ … ′ ′ ′

− −

, W b b x, , ,n n1 2 1{ }= ′ … ′ ′

− −

. By Lemma 3.3, there are n 1− internally disjoint

paths between z and Z , say P P, , n1 1′ … ′

−

, n 1− internally disjoint paths between w and W , say P P, , n1 1 
…

−

and a V Pi i( )′ ∈ ′ , for i n1, , 3{ }∈ … − , x V Pn n2 2( )′ ∈ ′

− −

, m V Pn 1( )′ ∈ ′

−

, b V Pi i( )′ ∈ for i n1, , 2{ }∈ … − ,

x V Pn n1 1( )′ ∈
− −

. Let

T P P P T x x a a b b i n
T P P P x x R xx b b
T P P P x x yy Q mm

, 1, , 3

.

i i i i i i i i i i i

n n n n n n n n

n n n n n n

2 2 2 2 2 2 2 2

1 1 1 1 1 1





⎧

⎨

⎪

⎩
⎪

{ }= ∪ ′ ∪ ∪ ∪ ′ ∪ ′ ∪ ′ ∈ … −

= ∪ ′ ∪ ∪ ′ ∪ ∪ ′ ∪ ′

= ∪ ′ ∪ ∪ ′ ∪ ′ ∪ ∪ ′

− − − − − − − −

− − − − − −

Then T T T, , , n1 2 1…
−

are n 1− internally disjoint S-trees.

Figure 10: The illustration of
{ }

( )∈

⋃

=y V HS′ n
α β γ jΓ − , , ,n i

n i1
−2

.
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Case 4.2.2. For some j n1, , 1{ }∈ … − , x V HSn
β( )′ ∈ , x V HSj n

γ( )′ ∈ .

Without loss of generality, suppose x V HSn
β( )′ ∈ , x V HSn n

γ
1 ( )′ ∈

−

.

Let x V HSi n
ji

( )
′ ∈ , for i n1, , 2{ }∈ … − and Z Z x a\ n n2 2( { }) { }′ = ′ ∪ ′

− −

. We can obtain n 2− internally disjoint

S-treesT T T T, , , ,n n1 2 3 1…
− −

, similar to that of Case 4.1 by replacing Z with Z′. There is a tree connecting x ,n 2′

−

a b,n n2 2− −
in HSn

jn 2− , sayTn 2
−
. LetT T x x a a b b P P Pn n n n n n n n n n n2 2 2 2 2 2 2 2 2 2 2 

= ∪ ′ ∪ ′ ∪ ′ ∪ ∪ ′ ∪
− − − − − − − − − − −

(Figure 11[a]).
ThenT T T, , , n1 2 1…

−
are n 1− internally disjoint S-trees.

Case 4.2.3. For some j n1, , 1{ }∈ … − , x x V HS, j n
β( )′ ′ ∈ .

Without loss of generality, suppose x x V HS, n n
β

1 ( )′ ′ ∈
−

, x V HSi n
ji

( )
′ ∈ , where j α β γΓ , ,i n { }∈ − , for

i n1, , 2{ }∈ … − .

When y V HSn
γ( )′ ∈ , there is a tree connecting x a b, ,i i i′ in HSn

ji, say Ti and a V HSi n
β( )′ ∈ , b V HSi n

γ( )′ ∈ for

i n1, , 3{ }∈ … − . There is a path joining xn 2′

−

and bn 2−
in HSn

jn 2− , say P and b V HSn n
γ

2 ( )′ ∈
−

. Let Z =

a a x x, , , ,n n1 3 1{ }′ … ′ ′ ′

− −

,W b b y, , ,n1 2{ }= ′ … ′ ′
−

. By Lemma 3.3, there are n 1− internally disjoint paths between

z and Z , say P P, , n1 1′ … ′

−

, n 1− internally disjoint paths between w andW , say P P, , n1 1 
…

−
and a V Pi i( )′ ∈ ′ for

i n1, , 3{ }∈ … − , x V Pn 2( )′ ∈ ′

−

, x V Pn n1 1( )′ ∈ ′

− −

, b V Pi i( )′ ∈ , for i n1, , 2{ }∈ … − , y Pn 1
′ ∈

−
. Let

T P P P T x x a a b b i n
T P P P x x P b b xx
T P P P x x yy

, 1, , 3

.

i i i i i i i i i i i

n n n n n n n n

n n n n n n

2 2 2 2 2 2 2 2

1 1 1 1 1 1





⎧

⎨

⎪

⎩
⎪

{ }= ∪ ′ ∪ ∪ ∪ ′ ∪ ′ ∪ ′ ∈ … −

= ∪ ′ ∪ ∪ ′ ∪ ∪ ′ ∪ ′

= ∪ ′ ∪ ∪ ′ ∪ ′

− − − − − − − −

− − − − − −

Then T T T, , , n1 2 1…
−

are n 1− internally disjoint S-trees (Figure 11[b]).
When y V HSn

α β γ jΓ , , ,n i
n

i1
2{ }

( )′ ∈

− ⋃
=

−

, without loss of generality, suppose y V HSn
jn 1

( )′ ∈
− . There is a path joining

y′ and bn 1−
in HSn

jn 1− , say Q, and b V HSn n
γ

1 ( )′ ∈
−

. We obtain n 2− internally disjoint S-trees T T T, , , n1 2 2…
−
,

similar to the case of y V HSn
γ( )′ ∈ . Let W W y b\ n 1( { }) { }′ = ′ ∪ ′

−

. T P P P x xn n n n n n1 1 1 1 1 1
= ∪ ′ ∪ ∪ ′ ∪

− − − − − −

Q yy b bn n1 1∪ ′ ∪ ′
− −

. Then T T T, , , n1 2 1…
−

are n 1− internally disjoint S-trees.
Case 4.3. There is one cross edge between N x[ ] and HSn

β γ, .

Case 4.3.1. x V HSn
β( )′ ∈ .

Without loss of generality, suppose x V HSi n
ji

( )
′ ∈ , where j α β γΓ , ,i n { }∈ − , i n1, , 1{ }∈ … − . There is a

tree connecting x a b, ,i i i′ , say Ti, and a V HSi n
β( )′ ∈ , b V HSi n

γ( )′ ∈ for i n1, , 1{ }∈ … − . Let Z a a, , n1 1{ }= ′ … ′

−

,
W b b, , n1 1{ }= ′ … ′

−

. By Lemma 3.3, there are n 1− internally disjoint paths between z and Z , say P P, , n1 1′ … ′

−

,

n 1− internally disjoint paths between w and W , say P P, , n1 1 
…

−
and a V Pi i( )′ ∈ ′ , b V Pi i( )′ ∈ for

i n1, , 1{ }∈ … − . Let T P P P T x x a a b bi i i i i i i i i i i
= ∪ ′ ∪ ∪ ∪ ′ ∪ ′ ∪ ′ for i n1, , 1{ }∈ … − . Then T T T, , , n1 2 1…

−
are

n 1− internally disjoint S-trees.

Figure 11: The illustrations of (a) Case 4.2.2 and (b) Case 4.2.3.
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Case 4.3.2. For some i n1, , 2{ }∈ … − , x V HSi n
β( )′ ∈ .

Without loss of generality, suppose x V HSn n
β

1 ( )′ ∈
−

, x V HSi n
ji

( )
′ ∈ , where j α β γΓ , ,i n { }∈ − , for

i n1, , 2{ }∈ … − .

When x V HSn
α β γ jΓ , , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

−

, without loss of generality, suppose x V HSn
jn 1

( )′ ∈
− . There is a path

joining x′ and bn 1−
in HSn

jn 1− , say R and b V HSn n
γ

1 ( )′ ∈
−

. Let Z a a x, , ,n n1 2 1{ }= ′ … ′ ′

− −

, W b b, , n1 1{ }= ′ … ′

−

. By
Lemma 3.3, there are n 1− internally disjoint paths between z and Z , say P P, , n1 1′ … ′

−

, n 1− internally disjoint

paths between w and W , say P P, , n1 1 
…

−
and a V Pi i( )′ ∈ ′ , for i n1, , 2{ }∈ … − , x V Pn n1 1( )′ ∈ ′

− −

, b V Pi i( )′ ∈ for

i n1, , 1{ }∈ … − . Let T P P P T x x a a b bi i i i i i i i i i i
= ∪ ′ ∪ ∪ ∪ ′ ∪ ′ ∪ ′ for i n1, , 2{ }∈ … − , T P P Pn n n n1 1 1 1

= ∪ ′ ∪ ∪
− − − −

x x R xx b bn n n n1 1 1 1′ ∪ ∪ ′ ∪ ′
− − − −

. Then T T T, , , n1 2 1…
−

are n 1− internally disjoint S-trees (Figure 12).
When x V HSn

ji
( )′ ∈ , for some i n1, , 2{ }∈ … − , without loss of generality, suppose x V HSn

jn 2
( )′ ∈

− . We

obtain n 2− internally disjoint S-trees T T T, , , n1 2 2…
−
, similar to the case of x V HSn

α β γ jΓ , , ,n i
n

i1
2{ }

( )′ ∈

− ⋃
=

−

. Since

there are two cross edges between HSn
α and HSn

jn 2− , y V HSn
α β j, , i

n
i1

2
( )′ ∉

⋃
=

−

. We suppose y V HSn
γ( )′ ∈ and the

proof of the case y V HSn
α β γ jΓ , , ,n i

n
i1

2{ }
( )′ ∈

− ⋃
=

−

is similar. Let Pn 1
−

be the path joining w and y′, T Pn n1 1= ∪
− −

P P yyn n1 1
′ ∪ ∪ ′

− −
. Then T T T, , , n1 2 1…

−
are n 1− internally disjoint S-trees.

Case 4.4. There are no cross edges between N x[ ] and HSn
β γ, .

The proof is similar to that of Case 4.3.1.
Case 5. The vertices of S are distributed in four distinct copies of HSn.

Without loss of generality, suppose x V HSn
α( )∈ , y V HSn

β( )∈ , z V HSn
γ( )∈ , and w V HSn

η( )∈ , where
α β γ η, , , Γn∈ , α β γ η≠ ≠ ≠ . Let X x x, , n1 1{ }= …

−
, Y y y, , n1 1{ }= …

−

, Z z z, , n1 1{ }= …
−

, W w w, , n1 1{ }= …
−

,

and x y z w V HS, , ,i i i i n
ji

( )
′ ′ ′ ′ ∈ for i n1, , 1{ }∈ … − . We suppose x X y Y z Z w W, , ,∉ ∉ ∉ ∉ , and the proof of

the case x X∈ or y Y∈ or z Z∈ or w W∈ is similar. By Lemma 3.3, there are n 1− internally disjoint paths
between x and X , say P P, , n1 1…

−
, n 1− internally disjoint paths between y and Y , say P P, , n1 1′ … ′

−

, n 1−

internally disjoint paths between z and Z , say P P, , n1 1″ … ″

−

, n 1− internally disjoint paths between w andW ,

say P P, , n1 1 
…

−
and such that x V P y V P z V P w V P, , ,i i i i i i i i( ) ( ) ( ) ( )∈ ∈ ′ ∈ ″ ∈ for i n1, , 1{ }∈ … − . Clearly, there

exists a tree connecting x y z w, , ,i i i i′ ′ ′ ′ in HSn
ji, say Ti for i n1, , 1{ }∈ … − . Let T P P P P x xi i i i i i i

= ∪ ′ ∪ ″ ∪ ∪ ′ ∪

yy z z w w Ti i i i i i i′ ∪ ′ ∪ ′ ∪ for i n1, , 1{ }∈ … − . ThenT T T, , , n1 2 1…
−
are n 1− internally disjoint S-trees (Figure 13).

Figure 12: The illustration of
{ }

( )∈

⋃

=x V HS′ n
α β γ jΓ − , , ,n i

n i1
−2

.
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4 Concluding remarks

The hierarchical star networks have some attractive properties to design interconnection networks. In this
article, we focus on the hierarchical star graphs, which is an invariant of the star network and denoted by
HSn. We show that κ HS n 1n4( ) = − for n 2≥ . So far, the results about generalized k-connectivity of networks
are almost about k 3= and there are few results about larger k . In the future work, the generalized k-con-
nectivity of the networks for k 5≥ would be an interesting problem.
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