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Summary
Despite the increasing use of the Particle Finite Element Method (PFEM) in fluid
flow simulation and the outstanding success of the Generalized-� time integration
method, very little discussion has been devoted to their combined performance. This
work aims to contribute in this regard by addressing three main aspects. Firstly, it
includes a detailed implementation analysis of the Generalized-� method in PFEM.
The work recognizes and compares different implementation approaches from the
literature, which differ mainly in the terms that are �-interpolated (state variables
or forces of momentum equation) and the type of treatment for the pressure in
the time integration scheme. Secondly, the work compares the performance of the
Generalized-� method against the Backward Euler and Newmark schemes for the
solution of the incompressible Navier-Stokes equations. Thirdly, the study is enriched
by considering not only the classical velocity-pressure formulation but also the
displacement-pressure formulation that is gaining interest in the fluid-structure inter-
action field. The work is carried out using various 2D and 3D benchmark problems
such as the fluid sloshing, the solitary wave propagation, the flow around a cylinder,
and the collapse of a cylindrical water column.
KEYWORDS:
Time integration, Fluid mechanics, Particle methods, CFD, Generalized-Alpha, PFEM

1 INTRODUCTION

The Particle Finite Element Method (PFEM) has drawn attention of the simulation community due to the possibility to formulate
fluid flow equations in a Lagrangian framework, allowing the use of classical Lagrangian FEM and easing tracking of fluid
boundaries, even in case of large and unpredictable boundary motions due to efficient remeshing algorithms1. The method
has been extended to various materials and multi-physics problems with moving domains, such as plasticity2, fluid-structure
interaction3,4 and phase change5 among others6,7.
In the PFEM, Lagrangian-based governing equations are solved using spatial FEM-Galerkin and temporal discretizations. The

first one subdivides the computational domain in a number of finite elements to approximate the solution of partial differential
equations governing the body motion. This procedure, applied to the momentum equation of a Newtonian fluid, leads to the
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following expression:
f dyn( .v, x, t) + f int(v,p, x, t) = f ext(x, t) (1)

where f dyn, f int and f ext represent, respectively, dynamic (inertial or d’Alembert forces), internal and external forces acting
on the nodes defining the finite elements. These forces depend on the nodal acceleration ( .v), velocity (v), position (x), pressure
(p), and time (t). The momentum equation is complemented with the continuity equation to form the set of Navier-Stokes
equations. In addition, the transient problem requires a temporal discretization to approximate time variation of state variables.
For example, starting from a known configuration of the body at time tn, the updated condition of the fluid at tn+1 is governed
by the discretized momentum equation:

f dyn( .vn+1, xn+1) + f int(vn+1,pn+1, xn+1) = f ext(xn+1) (2)
where the subscript n+1 indicates that variables are defined at time tn+1. To relate state variables with their time derivatives
( .vn+1, vn+1 and xn+1), a time integration scheme must be used. For example, common schemes in the PFEM literature are the
implicit Backward Euler3,5,8,9,10,11,12, Trapezoidal13,14, Newmark15,16 andNewmark-Bossak17,18,19,20. Although explicit schemes
can also be found21. However, one of the best performing time integration schemes reported in the computational dynamics
literature, and which has not been assessed in the PFEM context yet, is the Generalized-� method. This time integration scheme
was proposed by Chung and Hulbert22 for solving dynamic equations in solid mechanics. Later, Jansen et.al.23 extended the
idea to fluid mechanics. Since then, several works have demonstrated outstanding performance of the Generalized-� method for
solving the incompressible Navier-Stokes equations, mostly using Eulerian finite element discretization24. The essential feature
of the Generalized-� (GA) method is that it writes state equations at times tn+�f and tn+�m , instead of doing so at time tn+1. For
this method, the momentum equation is as follows:

f dynn+�m + f intn+�f − f extn+�f
= 0 (3)

For solving Eq. (3), two approaches can be identified in the literature, which are denoted as GA-I and GA-II in this work. The
first one (GA-I) is the most reported one for fluid dynamics and follows the original contribution of Chung and Hulbert22 and
Jansen et.al.23. GA-I computes nodal acceleration, velocity, position and pressure at tn+�m or tn+�f assuming a linear combination
between those at tn and tn+1, as follows:

.vn+�m = (1 − �m)
.vn + �m .vn+1 (4a)

xn+�m = (1 − �m) xn + �m xn+1 (4b)
vn+�f = (1 − �f ) vn + �f vn+1 (4c)
xn+�f = (1 − �f ) xn + �f xn+1 (4d)
pn+�f = (1 − �f ) pn + �f pn+1 (4e)

where �m and �f are user-defined parameters. In this way, the momentum Eq. (3) is written as:
f dyn( .vn+�m , xn+�m) + f int(vn+�f ,pn+�f , xn+�f ) = f ext(xn+�f ) (5)

Unavoidably, the GA-I approach (Eq. 5) results in a system of equations with constitutive matrices that must be computed
at times tn+�m and tn+�f . The second implementation approach (GA-II) follows the rationale of Hilber-Hughes-Taylor (HHT-
�)25 and Wood-Bossak-Zienkiewicz (WBZ-�)26, who paved the way to the Generalized-� method. Their idea is to formulate
dynamic, internal and external forces of the momentum equation at tn+�m and tn+�f using an interpolation of forces between tn
and tn+1, as follows:

f dynn+�m = (1 − �m) f
dyn
n + �m f dynn+1 (6a)

f intn+�f = (1 − �f ) f
int
n + �f f intn+1 (6b)

f extn+�f
= (1 − �f ) f extn + �f f extn+1 (6c)
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FIGURE 1 Classification of the different implementation approaches of the Generalized-� method for solving the incompress-
ible Navier-Stokes equations, which results in six different implementations of the algorithm.

When replacing Eq. (6) into the momentum balance Eq. (3), GA-II yields a system of equations with state variables and
constitutive matrices at tn and tn+1. This offers advantages over the implementation approach GA-I. For instance, it avoids
computationally expensive algorithms or constitutive matrices at tn+�f and tn+�m , such as in problems involving contact and/or
plasticity27,28. Possibly for this reason, the GA-II strategy can be easily found in solid mechanics, but hardly in Newtonian-based
fluid mechanics. From now on, various implementation approaches will be introduced, which are diagrammed in Fig. 1 for the
sake of clarity.
In addition, it can be identified that Eqs. (4a)-(4e) are used in two ways in the literature. The first one consists of substituting

Eq. (4) in the momentum equation to obtain a system whose unknowns are the velocity and pressure at tn+1 (see, for example,
Valdés Vázquez29). This implementation approach is denoted GA-Iqn+1 in this work. The second approach consists of solving
state equations directly at tn+�f to obtain the velocity and pressure at tn+�f . Then, using Eqs. (4a)-(4e) to retrieve kinematic
variables and pressure at tn+1 (see for example Jansen et.al.23). This implementation approach is denoted GA-Iqn+� in this work,
as illustrated in the second classification level of Fig. 1.
Another implementation detail that deserves attention is the way in which pressure is treated in the time integration scheme.

For example, two different approaches can be identified in the literature for the incompressible Navier-Stokes equations. The first
one follows the principle of Jansen et.al.23, in which the pressure is set at tn+�f in the momentum equation using Eq. (4e). The
second approach uses the pressure at tn+1 (or sets �f = 1 in Eq. 4e while keeping �f ≠ 1 in Eqs. 4c-4d). These approaches are
denoted as GA-Ipn+� and GA-Ipn+1 , respectively. Combining these with the other above-mentioned implementation approaches, 6
different schemes of the alpha-generalized method are eventually derived from the literature for a velocity-pressure formulation:
GA-Iqn+�pn+� , GA-Iqn+1pn+� , GA-Iqn+�pn+1 , GA-Iqn+1pn+1 , GA-IIpn+� , GA-IIpn+1 , which are illustrated in the third classification level of Fig. 1. For
instance, GA-Iqn+�pn+1 is used in30, GA-Iqn+�pn+� in23,31,32, and GA-Iqn+1pn+1 in24,29,33. The other schemes, to the best of our knowledge, could
not be recognized in the fluid mechanics literature but they were derived accordingly to become part of this study.
Despite the popularity of the Generalized-� method in solid and fluid dynamics, the different approaches mentioned above

have not been explored in such detail as to recognize in advance which one suits better the PFEM. One of the few works
addressing such a variety of approaches is the recent work of Liu et.al.34. The authors use stable B-spline (NURBS) elements for
Eulerian spatial discretization of Navier-Stokes equations to analyse the effect of using the pressure at tn+1 instead of tn+� (GA-
Ipn+1 versus GA-Ipn+� ). The authors show that GA-Ipn+1 reduces the performance of the Generalized-�method since only first-order
accuracy is achieved, at least for the pressure. However, since the present work uses a spatial Lagrangian PFEM discretization
stabilized with the Pressure-Stabilizing Petrov-Galerkin (PSPG) formulation, it is not possible to guarantee a priori that using
the pressure at pn+�f will lead to better performance than using it at pn+1. The argument is that, depending on the implementation
approach or on the formulation (velocity-based, or displacement-based), it is possible to obtain a pressure term, pn, acting on
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the right-hand side of the momentum equation. This could result in spurious oscillations of the external force vector due to
numerical instabilities inherent to the spatial discretization, and would be a reason to avoid the �-interpolation of the pressure.
One of the advantages provided by the PFEM is the possibility to identify evolving fluid boundaries easily, which facil-

itates numerical schemes for fluid-structure interaction, among others. In this context, advantages have been observed in
formulating the Navier-Stokes equations with respect to nodal displacements and pressures instead of the classical velocity-
pressure approach, since it facilitates unified formulations for fluids and solids. Some of the few authors introducing a
displacement-pressure formulation in PFEM for the incompressible Navier-Stokes equations are Ryzhakov et.al.20, who
use the Newmark-Bossak scheme when producing results but the Backward Euler for description of their methodology. In
the Lagrangian-based FEM for fluid dynamics, the works of Radovitzky and Ortiz35 and Avancini and Sanches36 present
displacement-pressure and position-pressure formulations, respectively. Notably, both works use the Newmark’s method as
time integration scheme. Avancini and Sanches36 present a total Lagrangian formulation without remeshing while Radovitzky
and Ortiz35 use an advancing front method as remeshing technique, which constraints fluid topology. Thus, both works expe-
rience difficulties in capturing wave breaking and splashing phenomena, which is an essential feature of PFEM. To the best
of our knowledge, no authors in Lagrangian-based fluid mechanics, let alone in PFEM, include the Generalized-� method in a
displacement-based formulation.
This work aims to contribute to the PFEM performance for fluid flow simulations by introducing the Generalized-� time

integration scheme in the formulation. In view of the foregoing discussion, this work is focused on five aspects. Firstly, to
incorporate the Generalized-� time integration scheme into PFEM for solving the incompressible Navier-Stokes equations in
an updated Lagrangian framework. Secondly, to include all the implementation approaches in order to identify differences or
equivalences. Thirdly, to verify whether or not omitting the intermediate pressure (pn+�) in the time integration scheme leads to
a worse performance of the Generalized-� method. Fourthly, to compare the performance of the Generalized-� method with the
popular choices in the PFEM literature, such as the Backward Euler and Newmark schemes. Fifthly and lastly, to carry out the
analysis for both velocity-based and displacement-based formulations, given the interest of the community in the latter for fluid-
structure interaction simulation. The study is carried out using incompressible Newtonian fluids and well-reported benchmarks
as the flow around a cylinder, the fluid sloshing, the solitary wave propagation, and the collapse of a 3D cylindrical water column.
Consistent with the CFD literature, results indicate that the Generalized-� method in PFEM outperforms the Backward Euler

and Newmark schemes as it does not suffer from excessive numerical damping for large time steps and exhibits less spurious
oscillations than the classical Trapezoidal rule. In turn, it is observed that implementation approaches assuming an interpolation
of state variables (GA-I) or of equilibrium forces (GA-II) lead to similar results in the PFEM, at least for incompressible New-
tonian fluids. Regarding the treatment of the pressure, a reduction in performance of the Generalized-� scheme was observed
when the pressure is imposed at tn+1 instead of tn+�f , which is in line with the observations of Liu et.al34. Although two cases
must be distinguished. The first one leads to a large degradation of the time integration scheme and results from integrating
the pressure gradient in the current configuration (at tn+1). In contrast, the second case integrates the pressure gradient in the
intermediate configuration (at tn+�f ), which leads to a minor degradation of the Generalized-� performance. Finally, findings
are likewise valid for the displacement-based formulation.
The reminder of this manuscript is organized as follows. Section 2 introduces the discretized Navier-Stokes equations for

an incompressible Newtonian fluid. Section 3 presents the studied time integration schemes including all implementation
approaches of the Generalized-�method and describes the PFEM implementation of this work. The benchmark problems, results
and discussions are provided in section 4. Finally, section 5 gathers the conclusions of this work.

2 SPACE DISCRETIZATION

In a simplified fashion, the Particle Finite Element Method (PFEM) is composed of two phases. Given a spatio-temporal FEM
discretization of the fluid at time tn, the first step is to solve the Lagrangian system of equations using FEM to obtain the nodal
velocity and pressure at tn+1. Then, nodal acceleration and position are updated consistently with the time integration scheme.
The second stage in PFEM consists of remeshing the fluid domain in its updated configuration to improve mesh quality when
necessary. In the following, the FEM part is presented for an incompressible Newtonian fluid. For a global overview of PFEM
on the simulation of other materials, the reader is referred to7.
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2.1 Governing equations
Incompressible Navier-Stokes equations can be obtained from the momentum and mass conservation equations for a continuum.
For a given time t and current configuration Ω(t), these equations read as follows:

� .v − �Δv + ∇p = f , in Ω(t) (7a)
∇ ⋅ v = 0 , in Ω(t) (7b)

where � is the density, v = [vx, vy, vz] is the velocity vector, Δ is the Laplacian operator, and f is the body force vector. The
point over the velocity (.□) represents the Lagrangian time derivative, thus .v is the acceleration vector. The pressure and dynamic
viscosity that define the Cauchy stress tensor of a Newtonian fluid are denoted, respectively, as p and � in Eq. (7a).
The system of Eqs. (7) must be completed with Dirichlet and Neumann boundary conditions to obtain a velocity-pressure

formulation of the Navier-Stokes equations. This formulation arises due to the constitutive law that defines the Cauchy stress
tensor as a function of pressure and velocity. Note that such tensor can also be defined in terms of displacement and pressure,
knowing that:

v =
.
d and .v = ..

d (8)

where d = [dx, dy, dz] is the displacement vector defined as the difference between the current (x) and reference (x0) position
(d = x − x0). Using Eq. (8) in (7), the following displacement-based formulation is obtained:

�
..
d − �Δ

.
d + ∇p = f , in Ω(t) (9a)
∇ ⋅

.
d = 0 , in Ω(t) (9b)

Since equations are written in a Lagrangian formalism, no convective effects have to be taken into account. Thus, the same
FEM-Galerkin procedure can be applied to Eq. (7) or Eq. (9) to obtain the semi-discrete Navier-Stokes equations

2.2 Finite element formulation
To facilitate the remeshing process required in PFEM, equal order linear interpolation is used for both the pressure and kinematic
variables. For this, triangular (2D) and tetrahedral (3D) elements are used in the spatial discretization of the governing equations.
Inside finite elements, state variables are interpolated as:

d = Nv d̄ , v = Nv v̄ , p = Np p̄ (10)
where Nv is a matrix and Np is a vector containing linear shape functions for kinematic variables and pressure, respectively. Bar
symbol in Eq. (10) denotes variables at the nodes of finite elements. For a triangular (2D) element with nodes labeled as 1, 2
and 3, the aforementioned entities are defined as:

Nv =

[
N1 N2 N3 0 0 0

0 0 0 N1 N2 N3

]
, Np =

[
N1 N2 N3

] (11a)

d̄ =
[
dx,1 dx,2 dx,3 dy,1 dy,2 dy,3

]⊺ , v̄ =
[
vx,1 vx,2 vx,3 vy,1 vy,2 vy,3

]⊺ , p̄ =
[
p1 p2 p3

]⊺ (11b)

The space-discretized momentum and continuity equations are written as follows:
M

.̄
v +K v̄ − D⊺ p̄ = f̄ (12a)

C
.̄
v + D v̄ + L p̄ = h̄ (12b)
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and for a displacement-based formulation, the system becomes:
M

..̄
d +K

.̄
d − D⊺ p̄ = f̄ (13a)

C
..̄
d + D

.̄
d + L p̄ = h̄ (13b)

In the momentum equation (Eqs. 12a and 13a), M, K and D are, respectively, the mass matrix, the matrix containing the
viscous terms, and the gradient matrix, all computed on the current configuration Ω(t). f̄ is a vector containing the body forces
and surface tractions, denoted as b̄ and t̄, respectively. At elemental level, these entities are defined as:

Me = ∫
Ωe

�N⊺vNv dΩ , Ke = ∫
Ωe

B⊺mv B dΩ , De = ∫
Ωe

N⊺pmp B dΩ , f̄e = ∫
Ωe

�N⊺v b̄ dΩ + ∫
Γt

N⊺vt̄ dΓ (14)

where B is a matrix containing the gradient of shape functions for the velocity,mv is a matrix with material viscous properties,
and mp is a vector that sorts matrix B for the pressure gradient. In 2D, these entities are defined as:

B =

⎡⎢⎢⎢⎢⎢⎢⎣

)N1
)x

)N2
)x

)N3
)x

0 0 0

0 0 0
)N1
)y

)N2
)y

)N3
)y

)N1
)y

)N2
)y

)N3
)y

)N1
)x

)N2
)x

)N3
)x

⎤⎥⎥⎥⎥⎥⎥⎦

, mv = �

⎡⎢⎢⎢⎢⎢⎣

4
3

−2
3

0

−2
3

4
3

0

0 0 1

⎤⎥⎥⎥⎥⎥⎦

, mp = [1 1 0] (15)

The continuity equations (Eqs. 12b and 13b) include the Pressure-Stabilizing Petrov-Galerkin (PSPG) stabilization37. Its pur-
pose is to circumvent the saddle point problem,where pressure acts as a Lagrangemultiplier of the incompressibility constraint38,
and to satisfy the LBB condition (Ladyzhenskaya-Babuška-Brezzi) since equal order linear elements are used to discretize
velocity (or displacement) and pressure. At elemental level, the stabilization terms, C, L and h̄ are defined as:

Ce = ∫
Ωe

�PSPG∇N⊺pNv dΩ , Le = ∫
Ωe

�PSPG
1
�
∇N⊺p∇Np dΩ , h̄e = ∫

Ωe

�PSPG �∇N⊺p b̄ dΩ (16)

with �PSPG computed as39:

�PSPG =
1

(
4
Δt2
+ 4v⊺v

ℎ̃2
+
(
4�
� ℎ̃2

)2) 1
2

(17)

where Δt is the time step and ℎ̃ is a characteristic size defined as the circumcircle diameter of the element.
For further implementation details concerning the terms in Eqs. (14) - (17), the reader is referred to40. To associate the semi-

discretized equations with the introductory discussion of this manuscript, it is pertinent to define the forces involved in the
momentum equation. The dynamic (f dyn), internal (f int) and external (f ext) forces are defined as:

f dyn(t) =M
.̄
v =M

..̄
d (18a)

f int(t) = K v̄ − D⊺ p̄ = K
.̄
d − D⊺ p̄ (18b)

f ext(t) = f̄ (18c)
Equations (12) and (13) are the final formulas of themomentum and continuity equations that are solved in this work. However,

to complete the system, equations for the velocity and displacement time derivatives are needed, which are given by the time
integration methods presented below.
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3 TIME DISCRETIZATION AND INTEGRATION

To complete the system composed of momentum and continuity equations (Eqs. 12 and 13), time t is discretized and time
derivatives are integrated over the time step [tn , tn+1] as follows:

v̄n+1 = v̄n +

tn+1

∫
tn

.̄
v(t) dt , d̄n+1 = x̄n+1 − x̄n =

tn+1

∫
tn

.̄
d(t) dt (19)

where x̄n+1 and x̄n are the nodal positions at tn+1 and tn, respectively. However, as
.̄
v(t) and .̄

d(t) are unknown functions, they
must be approximated leading to different time integration schemes. The approximate acceleration and velocity functions are
denoted by .v and v, respectively. These hold for the time step and are integrated as:

v̄n+1 = v̄n +
Δt

∫
0

.v(�) d� , d̄n+1 =
Δt

∫
0

v(�) d� (20)

where Δt = tn+1 − tn is the time step and � is time during a time step. In the following, two set of approximation formulas are
presented, the Backward Euler and Newmark. For now on, equations deal with nodal variables only, so the bar symbol will be
skipped for the sake of simplicity.

3.1 Backward Euler
The Backward Euler time integration scheme defines the unknown acceleration function .v(�) as constant and equal to the
acceleration of the current time step .vn+1, leading to :

vn+1 = vn +
Δt

∫
0

.vn+1 d� = vn + Δt .vn+1 (21)

Similarly, Backward Euler can be applied for integrating the velocity and obtain the displacement as dn+1 = Δtvn+1. Neverthe-
less, for consistency with Newmark’s method that is presented later, displacement is obtained from integrating the acceleration
twice, as follows:

v(�) = vn +
�

∫
0

.vn+1dt = vn + � .vn+1 (22)

dn+1 =
Δt

∫
0

v(�) d� =
Δt

∫
0

[
vn + �

.vn+1
]
d� = vn Δt +

Δt2
2

.vn+1 (23)

Kinematic relationships provided by the time integration scheme must be used in the discretized momentum and continuity
equations, either in the velocity-pressure system (Eq. 12) or displacement-pressure system (Eq. 13). In this work, both cases are
considered. However, the algebraic substitution is not detailed to avoid overextending the manuscript. The resulting momentum
equations are summarized in the first row of tables provided in appendices A and B.

3.2 Newmark’s Method
This method41 can be thought of as one that approximates the unknown acceleration function .v(�) by a constant acceleration
equal to a linear combination between the current and previous acceleration, as follows:

.v(�) = (1 − ) .vn +  .vn+1 (24)



8 FERNÁDEZ ET AL

where  is an interpolation parameter. Using Eq. (24) in (20), the well-knownNewmark equation for nodal velocities is obtained:

vn+1 = vn +
Δt

∫
0

[
(1 − ) .vn +  .vn+1

]
d� = vn + (1 − ) Δt

.vn +  Δt .vn+1 (25)

To compute nodal displacements, the Newmark’s method similarly approximates the acceleration function .v(�) by an
interpolation between the current and previous acceleration, but now controlled by a parameter 2�, as follows:

.v(�) = (1 − 2�) .vn + 2� .vn+1 (26)
This function (Eq. 26) is integrated twice to obtain the well-known Newmark equation for nodal displacements:

v(�) = vn +
�

∫
0

[
(1 − 2�) .vn + 2� .vn+1

]
dt = vn + (1 − 2�) �

.vn + 2� � .vn+1 (27)

dn+1 =
Δt

∫
0

[
vn + (1 − 2�) �

.vn + 2� � .vn+1
]
d� = Δt vn +

1 − 2�
2

Δt2 .vn + �Δt2 .vn+1 (28)

The expressions given by Newmark’s method allow to complete the system composed by the momentum and continuity
equation, either in the velocity-based (Eq. 12) or in the displacement-based (Eq. 13) formulation. To avoid overextending the
manuscript, the procedure is shown below only for the displacement-based formulation. The reader is referred to Appendix A
(second row of table) to obtain the momentum equation for the velocity-based formulation.
Using Eq. (25) to isolate the acceleration:

.vn+1 =
vn+1 − vn
Δt

− 1 − 


.vn (29)
and doing so also in Eq. (28):

.vn+1 =
dn+1
�Δt2

−
vn
�Δt

− 1 − 2�
2�

.vn (30)

velocity in terms of displacement can be obtained using Eqs. (29) and (30):
vn+1 =


�Δt

dn+1 +
� − 
�

vn +
2� − 
2�

Δt .vn (31)

Having expressed nodal acceleration and velocity in terms of displacement, these are replaced in Eq. (13) to give:
Mn+1

( dn+1
�Δt2

−
vn
�Δt

− 1 − 2�
2�

.vn
)
+Kn+1

(

�Δt

dn+1 +
� − 
�

vn +
2� − 
2�

Δt .vn
)
− D⊺n+1 pn+1 = fn+1 , (32a)

Cn+1

( dn+1
�Δt2

−
vn
�Δt

− 1 − 2�
2�

.vn
)
+ Dn+1

(

�Δt

dn+1 +
� − 
�

vn +
2� − 
2�

Δt .vn
)
+ Ln+1 pn+1 = hn+1 , (32b)

Arranging terms in a matrix form leads to:
⎡⎢⎢⎢⎢⎣

Mn+1
1

�Δt2
+Kn+1


�Δt

−D⊺n+1

Cn+1
1

�Δt2
+ Dn+1


�Δt

Ln+1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

dn+1

pn+1

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

fn+1 +Mn+1

( vn
�Δt

+ 1 − 2�
2�

.vn
)
+Kn+1

(
 − �


vn +
 − 2�
2�

Δt .vn
)

hn+1 + Cn+1

( vn
�Δt

+ 1 − 2�
2�

.vn
)
+ Dn+1

(
 − �


vn +
 − 2�
2�

Δt .vn
)
⎤⎥⎥⎥⎥⎦
(33)

Eq. (33) is the final expresion of the discretized Navier-Stokes equations solved in this work using the Newmark’s Method
in a displacement-pressure formulation. The momentum equation is also given in Appendix B (second row of table) to ease
comparison with equations obtained with the other time integration schemes.
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The  and � parameters of Newmark’s method allow to control accuracy and numerical damping, two competing criteria that
require the user to find a compromise. Notably,  = 1 and � = 0.5 lead to the highly-damped Backward Euler method defined
previously, and  = 0.5 and � = 0.25 results in the classical undamped (but second order accurate) Trapezoidal rule. When
comparing tables from Appendices A and B, it can be observed that the velocity-pressure formulation does not contain the �
parameter, since this is assigned to the displacement term. For this reason, velocity-pressure formulations in Eulerian-based
frameworks do not invoke such a parameter, as can be appreciated in the manuscript of Jansen et.al.23. Thus, to interpolate the
Backward Euler and Trapezoidal rule through the Newmark’s method, we resort to the linear stability analysis developed for
solid mechanics42,43. This establishes that, for a linear system, unconditional stability is ensured if:

 ≥ 1
2

and � ≥ 1
4

(
 + 1

2

)2
(34)

For the numerical examples of this work,  is chosen and � is obtained as the smallest value satisfying Eq. (34). This applies
to both the Newmark and the Generalized-� methods.
As discussed in section 1, Backward Euler dominates the PFEM literature presumably for its ease of implementation, and few

works can be found using the Newmark’s method44. However, one of the most successful time integration schemes in solid and
fluid mechanics, which has not been assessed in the PFEM context to the best of our knowledge, is the Generalized-� presented
below.

3.3 Generalized-� method
Unlike the Backward Euler and Newmark formulas that complete the system composed of the momentum and continuity
equations, the Generalized-�method seeks to increase accuracy of the time integration schemewithout compromising numerical
damping for high frequencies. This method is based on the Newmark’s method and was proposed by Chung and Hulbert22 in the
context of solid mechanics and then extended to fluid mechanics by Jansen et.al23. The Generalized-� method consists of posing
the system of equations for a time between tn and tn+1. The time of the dynamic, internal and external forces are defined dif-
ferently, as this provides control over accuracy and numerical dissipation of high frequency modes. Commonly, dynamic forces
are writen at tn+�m , while internal and external forces at tn+�f . These intermediate times are expressed in terms of weighting
parameters �m and �f , as follows:

tn+�m = (1 − �m) tn + �m tn+1 = tn + �m Δt

tn+�f = (1 − �f ) tn + �f tn+1 = tn + �f Δt
(35)

As discussed in the introduction of this manuscript, there are two implementation approaches of Eq. (3) in the literature,
which are denoted as GA-I and GA-II. The first assumes that state variables scale linearly between tn and tn+1, which leads to
the Eqs. (4a)-(4e). The second assumes a linear variation for the equilibrium forces, leading to Eqs. (6a)-(6c). It can be easily
demonstrated that under specific conditions, both approaches are equivalent. For example, if mass conservation is assumed:
Mn =Mn+�m =Mn+1, then,

f dynn+�m =Mn+�m
.vn+� (36a)

=Mn+�m((1 − �m)
.vn + �m .vn+1) (GA-I assumption) (36b)

= (1 − �m)Mn+�m
.vn + �m Mn+�m

.vn+1 (36c)
= (1 − �m)Mnvn + �m Mn+1vn+1 (because of mass conservation) (36d)
= (1 − �m) f dynn + �m f dynn+1 (GA-II assumption) (36e)

This shows that scaling the acceleration (GA-I) or the dynamic force (GA-II) at tn+�m is equivalent under mass conservation.
Regarding the internal force, similar development can be performed to show that there is a similarity between GA-I and GA-II.
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Taking the viscous forces for analysis:
GA-I

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Kn+�f ((1 − �f ) vn + �fvn+1) ≈

GA-II
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(1 − �f )Kn vn + �f Kn+1 vn+1 (37a)

(1 − �f )Kn+�f vn + �fKn+�f vn+1 ≈ (1 − �f )Kn vn + �f Kn+1 vn+1 (37b)

where highlighted terms are those appearing on both sides of Eq. (37b). Note that GA-I computes matrixK inΩ(tn+�f ), while inGA-II does it inΩ(tn) andΩ(tn+1). These tend to the samematrix in case of small deformation whereΩ(tn) ≈ Ω(tn+�f ) ≈ Ω(tn+1),or when time step tends to zero, since if tn+1 → tn ⇒ tn+�f → tn. Thus, the Generalized-� time integration method should
produce similar results under GA-I or GA-II schemes in problems featuring small deformations or using small time steps. Also,
for linear problems, scaling state variables (GA-I) or forces in the momentum equation (GA-II) is equivalent. As Newtonian
fluids assume a linear relationship between shear stress and shear rate, GA-I and GA-II are expected to provide similar results in
this work. Equations using GA-I for solving the incompressible Navier-Stokes equations (Eqs. 12 and 13) are presented below.

3.3.1 GA-I
To implement GA-I, it suffices to replace into Eq. (3) the equations developed for the incompressible Newtonian fluid considered
in this work. In a velocity-pressure formulation, Eq. (3) reads as follows:

Mn+�m
.vn+�m +Kn+�f vn+�f − D⊺n+�f pn+�f = fn+�f (38)

State variables .vn+�m , vn+�f and pn+�f are defined by the Eqs. (4a), (4c) and (4e), which depend on the state variables at time
tn and tn+1. The Generalized-� method uses the Newmark formulas (Eqs. 25 and 28) to relate state variables at tn+1 and their
time derivatives. As mentioned in the introduction, this set of equations (Eqs. (4a)-(4e), (25) and (28)) are used in two ways in
the literature, which were denoted by GA-Iqn+� and GA-Iqn+1 . The system of equations obtained with these two approaches are
presented below.
GA-Iqn+�
This approach writes the unknowns of the momentum equation at times tn+�f . In a velocity-pressure formulation, Eq. (38) is
expressed in terms of vn+�f and pn+�f . To do so, Eqs. (25), (4a) and (4c) can be used to get the relationship between .vn+�m and
vn+�f while eliminating .vn+1 and vn+1, which is:

.vn+�m =
�m

 �f Δt

(
vn+�f − vn

)
+
(
1 −

�m


) .vn (39)
Replacing (39) into (38) and arranging terms, the following momentum equation is obtained:

(
Mn+�m

�m
 �f Δt

+Kn+�f

)
vn+�f − D⊺n+�fpn+�f = fn+�f +Mn+�m

(
�m

 �f Δt
vn −

 − �m


v̇n
)

(40)

Applying PSGP stabilization, the system of equations to be solved becomes:
⎡⎢⎢⎢⎢⎣

Mn+�m
�m

�f Δt
+Kn+�f −D⊺n+�f

Cn+�m
�m

�f Δt
+ Dn+�f Ln+�f

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

vn+�f

pn+�f

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

fn+�f +Mn+�m

(
�m

 �f Δt
vn +

�m − 


v̇n
)

hn+�f + Cn+�m

(
�m

 �f Δt
vn +

�m − 


v̇n
)
⎤⎥⎥⎥⎥⎦

(41)

After solving Eq. (41), state variables at tn+1 are computed with equations given by the GA-I assumption (Eq. 4) and New-
mark’s formulas. Expressions for updating state variables once the system of equations is solved are listed in Appendix C (third
row of table).
For a displacement-based formulation, acceleration ..

dn+�m and velocity .
dn+�f must be expressed in terms of displacements

dn+�f . However, Newmark’s formulas relating state variables and their time derivatives are valid for tn+1, and not for tn+� . As a
consequence, algebraic substitution from the available formulas leads to a system whose unknowns are displacement at tn+1 and
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pressure at tn+�f , as shown in Appendix B (third row of table). To arrive at such a system of equations, the acceleration .vn+�m
(equal to ..dn+�m) in terms of displacements dn+1 is obtained using Eqs. (30) and (4a), which leads to:

.vn+�m =
(
1 −

�m
2�

) .vn −
�m
�Δt

vn +
�m
�Δt2

dn+1 (42)

Then, velocities vn+�f (equal to
.
dn+�f ) in terms of displacements dn+1 are obtained using Eqs. (31) and (4c), which leads to:

vn+�f =
(
1 −

�f 
�

)
vn + �fΔt

(
1 − 

2�

)
v̇n +

�f 
�Δt

dn+1 (43)

Replacing Eqs. (42) and Eqs. (43) in the momentum equation (38) and adding the PSPG stabilization, the system of equations
becomes:
⎡
⎢⎢⎢⎣

Mn+�m
�m
�Δt2

+Kn+�f
�f 
�Δt

−D⊺n+�f

Cn+�m
�m
�Δt2

+ Dn+�f
�f 
�Δt

Ln+�f

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

dn+1

pn+�f

⎤
⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎣

fn+�f +Mn+�m

(
�m
�Δt

vn +
�m−2�
2�

v̇n
)
−Kn+�f

(
�−�f 
�

vn + �fΔt
2�−
2�

v̇n
)

hn+�f + Cn+�m

(
�m
�Δt

vn +
�m−2�
2�

v̇n
)
− Dn+�f

(
�−�f 
�

vn + �fΔt
2�−
2�

v̇n
)
⎤
⎥⎥⎥⎦

(44)

GA-Iqn+1
Instead of solving the system at tn+�f , the GA-I parameterization can be used to replace terms in the momentum equation to
avoid states at tn+�f , as follows:

Mn+�m

.vn+�m
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
((1 − �m)

.vn + �m .vn+1) +Kn+�f

vn+�f
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
((1 − �f ) vn + �f vn+1) − D⊺n+�f

pn+�f
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
((1 − �f ) pn + �f pn+1) = fn+�f (45)

Arranging states at tn in the right-hand side:
Mn+�m �m

.vn+1 +Kn+�f �f vn+1 − D⊺n+�f �f pn+1 = fn+�f −Mn+�m(1 − �m)
.vn −Kn+�f (1 − �f ) vn + D⊺n+�f (1 − �f ) pn (46)

Resorting to Newmark’s formulas:
Mn+�m�m

(vn+1 − vn
Δt

− 1 − 


.vn
)
+Kn+�f �fvn+1 − D⊺n+�f �f pn+1

= fn+�f −Mn+�m(1 − �m)v̇n −Kn+�f (1 − �f )vn + D⊺n+�f (1 − �f )pn
(47)

Repeating the procedure for the continuity equation and rearranging terms, the following velocity-based system of equations
is obtained:
⎡⎢⎢⎢⎢⎣

Mn+�m
�m
Δt

+Kn+�f �f −D⊺n+�f �f

Cn+�m
�m
Δt

+ Dn+�f �f Ln+�f �f

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

vn+1

pn+1

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

fn+�f +Mn+�m

(
�m
Δt

vn +
�m − 


.vn
)
−(1 − �f )

(
Kn+�f vn − D⊺n+�fpn

)

hn+�f + Cn+�m

(
�m
Δt

vn +
�m − 


.vn
)
−(1 − �f )

(
Dn+�f vn + Ln+�fpn

)

⎤⎥⎥⎥⎥⎦
(48)

The procedure for the displacement-based equation is omitted, although the reader can refer to Appendix B (fourth row of
table) to obtain the momentum equation in the implementation approach GA-Iqn+1 . Note that in both approaches, GA-Iqn+� and
GA-Iqn+1 , and in both formulations (velocity-based and displacement-based), matrices are computed at tn+� , but GA-Iqn+1 defines
the unknown state variables at tn+1. However, the change of variables in GA-Iqn+1 introduces other terms on the right-hand side,
in particular, the pressure term pn, which is not present in the GA-Iqn+� , Newmark nor Backward Euler schemes.
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GA-Ipn+� and GA-Ipn+1
As explained in the introduction of this manuscript, another implementation approach commonly seen in the literature is to
avoid the pressure at tn+�f by writing it at tn+1. Although placing the pressure at tn+1 is not consistent with the principle of the
Generalized-� scheme, it is recognized as the most popular choice in the literature34. An argument is that, as the pressure acts as
a Lagrange multiplier, it should not be subjected to time integration33. However, in the way in which time integration schemes
were presented in this section, such argument can be questionable. It should be recalled that Backward Euler and Newmark have
been introduced as methods to approximate time derivatives of state variables appearing in the momentum equation. However,
the incompressible Navier-Stokes equations do not invoke a time derivative of pressure, unless other formulations are used such
as the quasi-incompressible Newtonian fluid13. In other words, per se, there is no need to apply time integration to the pressure.
On the other hand, the Generalized-� has been introduced as a method that aims at improving Newmark’s accuracy by posing
state equations at intermediate times tn+�m and tn+�f , but it does not present a new approximation formula to the time derivatives
of state variables. So, rather than a time integration method, the Generalized-� method can be seen as a numerical scheme that
upgrades Newmark’s accuracy from first to second order.
The approach that places pressure at tn+1 is likewise included in this work for two reasons. First, for the sake of completeness

since it represents a popular choice in the literature. Second, depending on the implementation approach, a pressure term pn
is obtained on the right-hand side of the system of equations (compare GA-Iqn+� and GA-Iqn+1). This could result in spurious
oscillations of the external force vector due to numerical instabilities inherent to the spatial discretization. If so, taking the
pressure out of Generalized-� scheme could prove beneficial in FEM formulations requiring stabilization.
The implementation approaches using pressure at tn+1 and tn+� are denoted by the subscripts pn+1 and pn+� , respectively. In

combination with the other two approaches, four implementations of the Generalized-� scheme in a velocity-pressure formula-
tion are obtained: GA-Iqn+�pn+� , GA-Iqn+1pn+� , GA-Iqn+�pn+1 and GA-Iqn+1pn+1 . For a displacement-pressure formulation, the combination reduces
to three approaches: GA-Iqn+�pn+� , GA-Iqn+1pn+� , and GA-Iqn+1pn+1 , since GA-Iqn+�pn+1 leads to the same system of equations than GA-Iqn+1pn+1 . Devel-opment of equations for the cases imposing pressure at tn+1 is omitted. Instead, the reader is provided with the momentum
equations in Appendix A (fifth and sixth rows of table) for a velocity-based formulation, and in Appendix B (fifth row of table)
for a displacement-based formulation. Note that in such tables, gradient matrix multiplying the pressure pn+1 is integrated in the
updated configuration Ω(tn+1) to be consistent with the pressure time (tn+1) obtained by setting �f = 1.0. That is, discretized
momentum equations listed in Appendices A and B for approaches GA-Iqn+�pn+1 and GA-Iqn+1pn+1 are obtained from the following
momentum equation:

Mn+�m
.vn+�m +Kn+�f vn+�f − D⊺

n + 1 pn+1 = fn+�f (49)

An alternative implementation for GA-Iqn+�pn+1 and GA-Iqn+1pn+1 is to compute the gradient matrix in the intermediate configuration
Ω(tn+�f ), as done in Eulerian-based works29. This alternative would lead to the following momentum equation:

Mn+�m
.vn+�m +Kn+�f vn+�f − D⊺

n + �f
pn+1 = fn+�f (50)

where the highlighted term is to stand out the difference between Eqs. (49) and (50). For the sake of simplicity, the time-
discretized equations for Eq. (50) are omitted, but they can be easily obtained from Table A1 (fifth and sixth rows) and B2 (fifth
row) by using a gradient matrix computed in Ω(tn+�f ).In the following, equations are developed for the GA-II approach that assumes linear scaling between times tn and tn+1 for the
dynamic, internal and external forces.

3.3.2 GA-II
The formulas for computing the intermediate forces (Eq. 6) are replaced in the momentum equation (Eq. 3), which leads to:

�m f dynn+1 + �f f intn+1 = �f f extn+1 + (1 − �f ) f
ext
n − (1 − �m)f dynn − (1 − �f )f intn (51)

Replacing terms for an incompressible Newtonian fluid, the following discretized momentum equation is obtained:
Mn+1�m

.vn+1 +Kn+1�fvn+1 − D⊺n+1�f pn+1 = �f fn+1 + (1 − �f ) (fn −Kn vn + D⊺n pn) −Mn(1 − �m)
.vn (52)
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Then, Newmark formulas are used to get a velocity-pressure formulation. Expressing the nodal acceleration in terms of the
nodal velocities:
Mn+1�m

(vn+1 − vn
 Δt

−(1 − )


.vn
)
+Kn+1�fvn+1 − D⊺n+1�f pn+1 =

�f fn+1 + (1 − �f ) (fn −Kn vn + D⊺n pn) −Mn(1 − �m)
.vn

(53)

Including the PSPG stabilization and arranging terms:
⎡
⎢⎢⎢⎢⎣

Mn+1
�m
Δt

+Kn+1�f −D⊺n+1�f

Cn+1
�m
Δt

+ Dn+1�f Ln+1�f

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

vn+1

pn+1

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

�f fn+1 + (1−�f ) (

f extn − f intn
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
fn −Knvn + D⊺npn) − (1−�m)

f dynn
⏞⏞⏞
Mn

.vn +Mn+1�m
(

1
Δt

vn +
1−

.vn
)

�f hn+1 + (1−�f ) (hn − Dnvn − Lnpn) − (1−�m) Cn
.vn + Cn+1�m

(
1
Δt

vn +
1−

.vn
)

⎤
⎥⎥⎥⎥⎥⎦

(54)

Notably, Eq. (54) does not contain terms at tn+� , which is the most distinctive feature with respect to the GA-I equations. The
reader can easily verify this by comparing the seventh row of Table A1 (appendix A) with the previous rows of that table. At first
glance, this could be seen as an advantage for computing programming, since there is no need to calculate and store intermediate
state variables. However, in the PFEM context, this does not present a major advantage over the GA-I approach. The reason is
that the finite element mesh is reconstructed at each time step, so dynamic, internal and external forces from the previous time
step must be recalculated in the new mesh (blue terms in Eq. 54). This requires to assemble theK, D, L and Cmatrices not only
at tn+1 but also at tn. If there is no remeshing, then forces at tn can be stored to avoid additional matrix assembling.
As done for the GA-I approach, equations can be developed for a displacement-pressure formulation, whose momentum

equation can be found in the sixth row of Table B2 (appendix B). In addition, equations resulting from setting the pressure at
tn+1 instead of tn+�f are presented in the last rows of Tables A1 and B2. Those equations assume that gradient of pressure pn+1
is integrated in the current configuration, as in Eq. (49). To obtain the expression that integrates the pressure gradient in the
intermediate configuration, as in Eq. (50), gradient matrix D⊺n+1 must be replaced by D⊺n+�f , which is computed as:

D⊺n+�f = (1 − �f ) D
⊺
n + �f D⊺n+1 (55)

3.3.3 Generalized-� : Set of parameters
Being based on Newmark’s method, the Generalized-� method requires 4 parameters to be defined by the user:  , �, �m, and �f .
However, these can be expressed as a function of the spectral radius �∞. According to the stability analysis of Jansen et.al.23
developed for a linear system, the parameterization that ensures stability and second-order accuracy is as follows:

�m =
1
2

(
3 − �∞
1 + �∞

)
, �f =

1
1 + �∞

,  = 1
2
+ �m − �f , 0 ≤ �∞ ≤ 1 (56)

Note that formulas in Eq. (56) differ from those of Chung and Hulbert22. On one side because works define � in opposite
ways (� weights tn+1 in Jansen.et.al.23 while tn in Chung and Hulbert22). Taking this into account, expressions for �f and  in
Eq. (56) turn out to be equivalent in both works. On the other hand, because amplification matrices are different, since Chung and
Hulbert22 consider displacement, velocity and acceleration, while Jansen et.al.23 only accounts for velocity and acceleration.
This results in different equations for �m, from which we chose that of Jansen et.al.23 since our momentum equation contains
only two kinematic variables. Given the use of a Lagrangian scheme, the � variable from Newmark’s method must be included.
As stated in Section 3.2, � is parameterized according to Eq. (34). This would be one distinctive aspect among Lagrangian and
Eulerian implementations of the Generalized-� method.
As highlighted by Jansen et.al.23 and Lovrić et.al.32, �∞ = 0.0 leads to a scheme with strong numerical damping for high

frequencies. In terms of spectral stability and for a linear problem, �∞ = 0.0 is equivalent to the backward differentiation scheme
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of second order. To make an analogy with the way time integration formulas have been presented, the second order backward
differentiation scheme is obtained by defining the approximate acceleration function as:

.v = 1
3
vn − vn−1
Δt

+ 2
3
.vn+1 (57)

which time-integrated results in the following (compare with equation 2.7 of reference32):
vn+1 = vn +

1
3
(vn − vn−1) +

2
3
Δt .vn+1 (58)

On the other hand, �∞ = 1.0 preserves all high frequencies and it is equivalent to the midpoint rule. For a linear problem, it
is also equivalent to the Trapezoidal rule obtained by setting  = 0.5 and � = 0.25 in Newmark’s method.
For the numerical examples of this manuscript, �∞ is imposed and �m, �f and  are obtained from Eq. (56), while � from

Eq. (34). It is noteworthy that �∞ = 0.0 leads to �m = 1.5 and �f = 1.0. In such a case, the GA-I and GA-II approches are
identical since external and internal forces are computed at the current time, f intn+1 and f extn+1, in addition, dynamic forces in these
approaches are equivalent when mass conservation holds (as shown in Eq. 36). Furthermore, if �∞ = 0.0, approaches that
impose pressure at tn+1 agree with those that impose it at tn+�f . Meaning, all of the aforementioned implementation approaches
of the Generalized-� method should produce the same result when �∞ = 0.0.
Before reporting numerical comparisons of the different time integration schemes, the following subsection briefly describes

our PFEM implementation.

3.4 PFEM implementation
The PFEM implementation of this work follows the original idea of Idelsohn et.al.8, which is based on a remeshing procedure
using the Alpha Shape algorithm45. Namely, the fluid is initially discretized using a cloud of particles, as shown in Fig. 2a. Then
a Delaunay triangulation is applied to generate a mesh on the convex hull of the cloud (Fig. 2b). Next, the Alpha Shape algorithm
is used to remove those elements whose circumcircle radius exceeds a global characteristic size of the mesh scaled by a �shape
parameter. In this way, depending on the value of �shape, large or highly distorted elements are removed from the triangulation,
leaving a discretization of the fluid with a clear definition of its boundaries and free surface, as shown in Fig. 2c. This mesh is used
to discretize the Lagrangian Navier-Stokes equations, whose solution gives the nodal velocity (or displacement) and pressure
(Fig. 2f). The new fluid position is obtained by the time integration scheme (Fig. 2e). Finally, the mesh quality is checked to
determine if re-meshing is necessary (Fig. 2d) or if the triangulation can be preserved for the next time step. A recent survey on
PFEM and more details on the above steps can be found in7.
The nonlinear system of equations, i.e. Eq. (33), (41), (44) or (48), is assembled in matrix form as A q = b, where A is a

large matrix storing matrix terms of the momentum and continuity equations computed at time tn+1, q is a vector containing
the solution the for state variables, and b is a vector storing the external forces. Note that all mass matrices are "consistent" and
computed at the time specified by the subscript (tn, tn+1 or tn+�m). The system Aq = b is solved using the Picard (or fixed-point)
algorithm, which sets as predictor the values of state variables of previous time tn. Regarding the stabilization term, �PSPG is
computed using the velocity of the previous iteration of the nonlinear algorithm. Once the solution of q is obtained, particle
kinematics is updated according to the time integration scheme. Updating equations are summarized in Appendix C.
The success of the PFEM method relies on the use of efficient remeshing algorithms, such as the Delaunay triangulation

followed by the Alpha Shape. This process involves a negligible computational cost in 2D and a minor one in 3D. However,
the Alpha Shape algorithm brings some issues during remeshing operations. The most notable is the mass variation of the
system produced by the discrete addition and removal of finite elements, which can be treated with mesh refinement or tuning
of the �shape parameter46. However, examples in the present work are free of such a problem either because they do not require
remeshing (such as the fluid sloshing), possess an Eulerian domain (such as the flow around a cylinder), or because they have slip
boundary conditions and do not feature fluid splashing (such as the solitary wave propagation and collapse of a water column).
The parameter �shape is set to 1.25 in all examples of this work.
PFEM can handle problems with non-uniform mesh size and Eulerian domains, such as the flow around a cylinder problem

introduced in the following section. Mesh refinement is achieved by adding and removing particles into the domain according to
a size field. For the flow around a cylinder problem (Section 4.3), the size field is a function of the distance to the cylinder, while
for the collapse of a water column problem (Section 4.4), the size field is defined in terms of the distance to the free surface. If
the size of a finite element is larger than the prescribed size, a particle is added in the center of the element and mesh refinement
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(a) (b) (c)

(d) (e) (f)
FIGURE 2 Illustration of the PFEM procedure using the collapse of a cylindrical water column problem. (a) Cloud of particles
with known state variables at tn. (b) Delaunay triangulation on the entire set of particles. (c) Large and distorted elements
are removed from the triangulation using Alpha Shape algorithm45. (f) Norm of nodal velocities for illustrating a FEM. (e)
Illustration of updating state variables and nodal position. (d) The updated cloud of particles to be used in the next time step.

occurs. The un-refinement process operates in a similar way, but now a particle is removed if the distance to the nearest particle is
less than that prescribed in the size field. This addition and removal process imposes upper and lower size limits on the elements
depending on the desired size distribution. An illustration of this process for the flow around a cylinder problem is shown in
Fig. 3. In this context, the Alpha Shape must be applied locally, i.e. the upper bound of the Alpha-Shape algorithm must be
defined by a parameter �shape scaled by the desired local element size and not by a global reference size as previously mentioned.
To simulate an Eulerian domain (the flow around a cylinder), particles in the inlet and outlet zone are treated in a Lagrangian

fashion, i.e., they are allowed to move. However, before proceeding with the remeshing process for the next time step, these
particles are repositioned on the inlet and outlet lines. For further details regarding the simulation of Eulerian domains using
PFEM, readers are referred to47,48.
Importantly, the remeshing process in PFEM does not affect the use of the Generalized-� method. Therefore, implementation

aspects of the Generalized-� presented for the standard FEM are equally valid in PFEM. The only practical shortcoming is with
respect to the GA-II approach, as it requires to recompute the dynamic, internal and external forces of the previous time tn due to
the new nodal connectivity at time tn+1. Likewise, drawbacks could arise with material models that require historical variables,
however such cases are outside the scope of this work.
The time integration schemes analyzed in this work have been implemented in an in-house code named PFEM3D40. This is

a C++ code that uses the Eigen49 library for linear algebra operations, the CGAL50 library for triangulation and Alpha Shape,
OpenMP51 for parallel threading, and Gmsh52 for the input/output of finite element meshes.

4 NUMERICAL EXAMPLES

Four distinctive benchmark problems are used in this section for comparing time integration schemes. The first is the sloshing
of a fluid characterized by small displacements so no remeshing is needed, which allows to validate the FEM implementation of
the time integration schemes. The second is the solitary wave propagation in a constant depth container, which uses remeshing
for minor improvements to the mesh discretizing the wave. The third is the flow around a cylinder, characterized by an Eulerian
computational domain that features mesh refinement and significant velocity gradients around the cylinder, so that remeshing
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FIGURE 3 Illustration of particle addition and removal for mesh refinement in PFEM. The flow around a cylinder problem is
illustrated. On the left side of the cylinder, particles are added in the center of elements as they approach the cylinder. On the
right side, particles are removed if the distance to the nearest particle is less than an imposed threshold.

(a) (b)

FIGURE 4 Small amplitude sloshing. (a) Geometry illustration. (b) Initial finite element discretization

is applied at each time step. The fourth is the collapse of a cylindrical water column which, unlike the previous ones, is a 3D
problem where time step Δt is defined in terms of a maximum CFL (Courant–Friedrichs–Lewy) number.
This section mainly reports simulation data for comparison effects and does not present snapshots of simulations. Instead, the

reader is guided to reference53 for animations of each problem.

4.1 Small amplitude sloshing
This free-surface problem consists of simulating the sloshing of a fluid caused by imposing a non-uniform initial elevation of
the free surface54. The geometry of the problem is illustrated in Fig. 4a. The width of the container is b = 1 m and the initial
free surface elevation is defined as:

ℎ(x) = H + a sin
(
�(x − x0)

b
− �
2

)
(59)

whereH is the mean height equal to 1.0 m and a is the initial amplitude equal to 0.01 m. A unit gravity acceleration is used, g
= 1.0 m/s2, as well as fictitious fluid parameters, � = 0.01 Pa s and � = 1.0 kg/m3. The fluid domain is discretized with 3073
particles and 5942 elements of 0.02 m average size, as shown in Fig. 4b. No external pressure is imposed in the free-surface,
a free-slip condition is defined on the container walls and non-slip condition in the base. Given the small initial amplitude a,
elements are subjected to small deformations so that remeshing process is not needed in this problem.
Several sloshing problems are solved with variations in the time step Δt, which are 0.400, 0.100, 0.025, and 0.00625 s. The

criterion for comparison is free surface elevation at coordinate xb (see Fig. 4a). Fig. 5 plots ℎ(xb) versus time for different time
steps using Backward Euler (Fig. 5a) and Generalized-� (Fig. 5b) in a velocity-pressure formulation. Implementation GA-Iqn+�pn+�
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(a) (b)

FIGURE 5 Results of the fluid sloshing. Elevation of free surface with respect to time. Results obtained using the Trapezoidal
rule, (a) Backward Euler and (b) Generalized-� (GA-Iqn+�pn+� and �∞ = 0.0).

(a) (b)

FIGURE 6 Results of the fluid sloshing. Error between reference elevation ℎref and simulated elevation ℎ at coordinate xb.
Simulations obtained using (a) Backward Euler, Newmark’s Method (NM), Trapezoidal rule, and (b) Generalized-� (GA-Iqn+�pn+� ).

with a spectral radius �∞ = 0.0 is used for Generalized-�. Graphs also show a solution obtained with the Trapezoidal rule
(Δt = 0.00625 s). For validating the simulation, extreme points of the oscillatory curve reported by Avancini and Sanches36 are
also displayed.
The strong dependence of Backward Euler on the time step is clear when comparing Figs. 5a and 5b. Even when using a

small time step Δt = 0.00625 it is not possible to match the curve of the Trapezoidal rule. Instead, the Generalized-� method
produces curves very close to that of the Trapezoidal rule, even when using a large Δt = 0.100. To facilitate the comparison
between time integration schemes, an error measure is plotted next. The error criterion considers the area comprised between a
reference elevation curve ℎref (t) and that of the simulation ℎ(xb, t), that is:

Adif f =
20

∫
0

||ℎref (t) − ℎ(xb, t)|| dt (60)

where Adif f is the error measure. The reference elevation ℎref (t) represents a solution obtained with a time step Δt = 0.0015625
using the Trapezoidal rule.
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Now, the Backward Euler, Newmark, Generalized-� and Trapezoidal rule are considered in a velocity-based formulation. For
Newmark, 6 problems are solved that differ in the value of  , which are set to 0.9, 0.8, 0.7, 0.6, 0.55 and 0.52. The Generalized-�
method considers 10 values of �∞ ranging from 0.0 to 0.9 with an increment of 0.1. Each time integration scheme is solved for
7 time stepsΔt, ranging from 0.00625 to 0.4 s. That is, 126 problems are solved in total using different time integration schemes
and time steps. Each one is compared against the reference curve to calculate the Adif f error. Results are shown in Figs. 6a and
6b. Performance of time integration schemes is consistent with the literature. Among all the schemes, Backward Euler exhibits
the lowest accuracy in the free surface height (black curve in Fig. 6a). Accuracy is improved by reducing time step Δt but with
an order of convergence approaching 1. The Trapezoidal rule is the most accurate and its error decreases with second order
with respect to time step (red curve in Fig. 6a). Newmark’s Method (NM) interpolates both Backward Euler and Trapezoidal
schemes. However,  must be chosen very close to 0.5 to exhibit second-order convergence. In the case of Generalized-�, all
curves exhibit second order convergence for large time steps (Fig. 6b). This expected result is due to the parameterization of  ,
�, �m and �f in terms of the spectral radius �∞, which ensures stability and second-order accuracy for a linear problem.
After validating our implementations of time integration schemes in PFEM with the results of Avancini and Sanches36,

and obtaining an anticipated behavior of these for a problem with small displacements and deformations, the following exam-
ples compare the different implementation approaches of the Generalized-� method and incorporate the displacement-based
formulation.

4.2 Solitary wave propagation
The geometry of the free-surface problem is illustrated in Fig. 7a. This consists of simulating a wave of amplitudA propagating in
a rectangular container of constant depthH . Instead of displacing a fluid volume at the beginning of the simulation to generate the
wave, another common approach35,36,54,55 is adopted here: to impose as initial condition the analytical approximation proposed
Wehausen and Laitone56. Taking their system of equations with second order approximation (equation 31.37 of reference56),
the free surface height, velocity and pressure are defined as follows:

ℎ(x, t) = H + A sech2(�) − 3A
2

4H
sech2(�)

(
1 − sech2(�)

) (61a)

vx(x, y, t)√
gH

= ℎ −H
H

− A2

2H2

(
1 + 6 y −H

H
+ 3 (y −H)

2

H2

)
sech2(�) + A2

2H2

(
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H
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2

2H2

)
sech4(�) (61b)

vy(x, y, t)√
gH

= y
√
3A3∕2
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(61c)
p(x, y, t)
�gH

= 1 + ℎ −H − y
H

− 3A
2

4H2

(
y2

H2 − 1
)(
2 sech2(�) − 3 sech4(�)

) (61d)

where the time-dependent parameter � is defined as:
�(x, t) = x − c t

H

( 3A
4H

)1∕2 (
1 − 5A

8H

)
(62)

and the wave celerity given by:
c√
gH

= 1 + A
2H

− 3A2
20H2 (63)

Due to the position of the coordinate system (see Fig. 7a), initial condition for velocity, pressure and free surface height is
obtained by setting t = 0 in Eq. (62). This produces a wave displacement to the right, whose position in time is defined by
Eq. (61a). The chosen fluid has viscosity � = 0.001 Pa s and density � = 1000 kg/m3. The container depth is H = 10 m, the
amplitude A is 2 m and the gravity acceleration is g = 9.81m/s2. The initial domain is discretized using 2400 particles and 4090
finite elements of 2 m average size, as shown in Fig. 7b.
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(a) (b)

FIGURE 7 Solitary wave propagation in constant water depth. (a) Geometry illustration and (b) initial Finite element
discretization around the wave. Subfigure (b) represents a section of the model that is indicated by dashed lines in (a).

(a) (b)

FIGURE 8Wave profile after 40 s using (a) Backward Euler and (b) Generalized-� (GA-Iqn+�pn+� ) and different time steps.

Performance of time integration schemes
Wave profiles after 40 s of simulation are shown in Figs. 8a and 8b using Backward Euler and Generalized-�, respectively.
Both in a velocity-based formulation. Again, results show a strong dependence of Backward Euler on the time step Δt, whose
excessive numerical damping for large time steps results in a decrease of wave amplitude. Figs. 10a and 8b also include the
analytical approximation of Eqs. (61)-(63), which is in good agreement with the simulations. However, themaximum height does
not completely match. This is because analytical equations are limited to linear conditions, such as waves with small amplitude
A. As shown in55 and36, the analytical approximations are rather accurate if A∕H ≤ 0.1, but less if A∕H ≥ 0.2. Therefore,
for error analysis of time integration schemes, the maximum wave height at 40 seconds of simulation is compared with that
obtained from a simulation using a time step Δt = 0.00078125, the Generalized-� method (�∞ = 0.0) and a discretization with
finite elements of 1 m size. The obtained reference height is ℎref = 12.0255.
The maximumwave height divided by the reference height is plotted next. The wave height is obtained from simulations using

different time integration schemes and time steps. Specifically, seven time steps Δt are considered, ranging from 0.003125 to
0.2. The Backward Euler, Trapezoidal, Newmark and Generalized-� schemes are considered. For Newmark, four combinations
of parameters are chosen from defining  as 0.9, 0.8, 0.7 and 0.6. For Generalized-�, implementation approach GA-Iqn+�pn+� is usedand ten combinations of parameters are chosen from defining �∞ as 0.0 to 0.9 with an increment of 0.1. Thus, 112 solitary
wave propagation problems are solved in total. Results are summarized in Fig. 9a, which show a pattern similar to the previous
example. Backward Euler exhibits the lowest wave height accuracy, which improves as time step is reduced but with an order
of convergence close to 1.0 (as shown by numbers next to the black dashed curve in Fig. 9a). The Trapezoidal scheme is
the most accurate while Newmark’s Method (NM) interpolates Backward Euler and Trapezoidal accuracy. On the other hand,
the Generalized-� method shows wave heights very close to the reference value, which gathers the GA-I curves in the upper
zone of Fig. 9a. For better visualization, such a zone is enlarged and is shown in Fig. 9b. Numbers next to the black curve
indicate the order of convergence for �∞ = 0.0. It can be seen that for large time steps (Δt ≥ 0.05), the maximum wave height
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(a) (b)

FIGURE 9 Maximum height of the solitary wave normalized with respect to the reference height. (a) Curves obtained with
Backward Euler, Trapezoidal, Newmark and Generalized-� (GA-Iqn+�pn+� ). Subfigure (b) is an enlarged view of (a). Numbers next
to black curves (dashed and solid) indicate the order of convergence of these curves.

converges with 2nd order with respect to Δt. For smaller time steps, the order of convergence is reduced. This is attributed to a
spatial discretization error resulting from a coarse discretization, which was chosen to extend the range of values of Δt without
compromising convergence of the nonlinear algorithm. Space discretization error becomes predominant as the maximum height
of the simulation approaches the reference value, which is reflected in the Generalized-� and Trapezoidal curves whenΔt ≤ 0.05.
Implementation approaches of the Generalized-� method

The next analysis incorporates results obtained with GA-Iqn+�pn+� , GA-Iqn+1pn+� and GA-IIpn+� , i.e., it compares the Generalized-� imple-
mentation approaches that write the pressure at tn+�f . The same 7 time step sizes and 10 values of �∞ of previous analysis are
considered. Results are summarized in Fig. 10a. Color scale indicates the value of �∞ while marker type distinguishes implemen-
tation schemes. The relative difference between the 3 schemes is shown in Fig. 10b. There, percentage difference is computed
with respect to the scheme GA-Iqn+�pn+� , taken as a reference.It is observed that for �∞ = 0.0, all three schemes produce the same result when Δt ≤ 0.1 (difference of ≈ 0% in Fig. 10b,
black color). In addition, the GA-Iqn+�pn+� and GA-Iqn+1pn+� schemes are coincident for all �∞ (all circle markers are at 0% in Fig. 10b).
Thus, at least in this problem, the algebraic treatment of the linear interpolation of state variables (Eq. 4) is not relevant to the
results. In case of GA-IIpn+� , a difference with respect to GA-I is observed. The biggest difference is observed for Δt = 0.2 and
�∞ ≥ 0.7, which is ≈ 0.007 %. The difference between GA-I and GA-II reduces rapidly when decreasing �∞ or the time step
Δt, and becomes negligible for Δt ≤ 0.05. This observation is in line with previous comments of section (Eq. 37), where it is
stipulated that GA-I and GA-II should converge to the same result in the presence of small deformations or small time steps if
mass conservation holds.
Next, results from implementation approaches of the Generalized-� that write the pressure at tn+1 instead of tn+�f are pre-

sented. The three implementation alternatives are considered, GA-Iqn+�pn+1 , GA-Iqn+1pn+1 and GA-IIpn+1 . In addition, two scenarios are
taken into account, one that integrates the gradient matrix at tn+1 (as in Eq. 49) and another that integrates it at tn+� (as in
Eq. Eq. 50). Results are shown in Figs. 11a and 11b, respectively (plots appear on different scales). Figures also include scheme
GA-Iqn+�pn+� that follows the rationale of the generalized alpha scheme and writes the pressure at tn+�f .Results reveal that there is no significant difference between the GA-I and GA-II implementation approaches that write the
pressure in tn+1, since in both figures, GA-Iqn+�pn+1 , GA-Iqn+1pn+1 and GA-IIpn+1 are coincident. However, there is a big difference for
when the gradient matrix is integrated. If D⊺n+1 is used (Fig. 11a), then performance of Generalized-� is reduced, especially for
large values of �∞ since performance becomes similar to that of Backward Euler. In contrast, if D⊺n+�f is used (Fig. 11b), then
no detriment is seen on the time integration scheme, regardless of the value of �∞ and the implementation approach (GA-Iqn+�pn+1 ,GA-Iqn+1pn+1 or GA-IIpn+1). Remarkably, all implementation schemes lead to the same result if �∞ = 0.
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(a) (b)

FIGURE 10 (a) Normalized maximum height of the solitary wave using different implementation approaches of the
Generalized-� method. (b) Relative difference between approaches, with GA-Iqn+�pn+� used as reference.

(a) (b)

FIGURE 11 Normalized maximum height of the solitary wave. Subfigures compare implementation approaches of the
Generalized-� method that write pressure at tn+1. Schemes GA-Iqn+�pn+1 , GA-Iqn+1pn+1 and GA-IIpn+1 compute the gradient matrix D⊺ in
(a) Ω(tn+1) and (b) Ω(tn+�f ).

Velocity-based and Displacement-based formulations
A final analysis using the solitary wave propagation problem compares results between velocity-based and displacement-based
formulations. This is conducted for Backward Euler, Newmark andGeneralized-� (GA-Iqn+�pn+� ). To avoid overloading graph results,only two sets of parameters are used for Newmark ( equal to 0.8 and 0.6), and five for Generalized-� (�∞ equal to 0.0, 0.2, 0.4,
0.6, and 0.8). Results are given in Fig. 12. It is observed that both formulations lead to practically the same results. That is, the
change of unknown variable in the system of equations does not seem to have an impact on the accuracy of results. Furthermore,
we did not observe significant changes in computation time between the two formulations (although computation time was not
precisely tracked in the simulations) nor in the number of iterations used by the nonlinear algorithm. Therefore, besides adding
additional terms on the right-hand side of the system of equations, it seems that there is no significant computational impact
from switching to a displacement-pressure formulation.
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FIGURE 12 Normalized maximum wave height using Backward Euler, Newmark and Generalized-� in velocity-based and
displacement-based formulations.

(a) (b)

FIGURE 13 Flow around a cylinder. (a) Geometry and (b) initial finite element discretization.

Observations up to this point have been obtained from two problems that feature small deformations and exhibit quasi linear
behavior. Furthermore, they are analyzed from a kinematic point of view while pressure has been excluded from the analysis.
Therefore, the following example of the flow around a cylinder is chosen due to the presence of large velocity gradients and
because comparison criterion is based on the force exerted on the cylinder, which is highly dependent on the pressure field.

4.3 Flow around a cylinder
This example involves the flow past a circular cylinder. The computational domain is designed as in Idelsohn et.al57,58. Therefore,
fluid particles cross a rectangular computational domain, as illustrated in Fig. 13a. A horizontal velocity v0 is imposed on
particles located at the left, top and bottom boundaries. Particles that cross the right boundary are deleted from the model. A
rigid cylinder of 1 m diameter is spaced 5 m from the left, top and bottom boundary, which leaves the cylinder at 15 m from the
right boundary.
Results for two Reynolds (Re) numbers are reported in this example, 100 and 1000. The first is included in the study of

Dettmer et.al.24, who solve the flow around a cylinder problem using the Generalized-� scheme with various values of �∞ in
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(a) (b)

(c) (d)

FIGURE 14 Simulation of the flow around a cylinder for Reynolds 100 (subfigures a,b) and 1000 (subfigures c,d). Evolution
of the lift (subfigures a,c) and drag (subfigures b,d) coefficients. Results obtained with Backward Euler and Δt = 0.016.

an Eulerian framework. The second, Re = 1000, is included for comparing results with Idelsohn et al.57,58 who are, to date, the
only ones to present results for the flow around a cylinder using PFEM, to the best of our knowledge.
Reynolds numbers 100 and 1000 are imposed by defining the viscosity � as 0.01 and 0.001, respectively. Whereas, fluid

density and inlet velocity are set to � = 1 kg/m3 and v0 = 1 m/s, respectively. Problems with Reynolds 100 and 1000 are
simulated for 160 and 90 s of physical time, respectively. For both problems, a non-uniform mesh size is used, which is defined
by the following function:

ℎelem = min
[(
0.05 (x + 5)2 + 0.05 y2 + 0.01

)
,
(
0.001 (x − 1)2 + 0.02 ∗ y2 + 0.12

)] (64)
where ℎelem is the element size at coordinates x and y. The adopted mesh generator (Gmsh52) produces 8018 particles with
Eq. (64), places 140 on the cylinder surface and generates 15777 finite elements in the initial computational domain, as shown
in Fig. 13b. During PFEM simulation, each remeshing process ensures that spatial distribution of particles agrees with Eq. (64),
otherwise particles are added or removed.
For this example, the Strouhal number, the amplitude of the lift coefficient and the mean value of the drag coefficient are

reported. These are respectively denoted as St, Amp(CL) and Mean(CD). The Strouhal number (St), lift (CL) and drag (CD)
coefficients are defined as:

St =
fL D
v0

, CL(t) =
Flif t(t)
1
2
� v20 D

, CD(t) =
Fdrag(t)
1
2
� v20 D

(65)

where Flif t and Fdrag are the lift and drag forces,D is the cylinder diameter (equal to 1 m) and fL is the frequency of the lift force.
Typical lift and drag coefficients curves, for problems with Reynolds 100, are shown in Figs. 14a and 14b, respectively. Curves
for problems with Reynolds 1000 are shown in Figs. 14c and 14d. The frequency of the lift force fL, equivalent to the frequency
of the lift coefficient, is obtained using a Fast Fourier Transform (FFT) on signal segments shown in Figs. 14a and 14c.
Verification against the literature
Several problems of the flow around a cylinder with variations in the time integration scheme and time step are solved. Specif-
ically, for problems with Re = 100, six time steps are considered ranging from 0.002 to 0.064. Backward Euler, Trapezoidal,
Newmark and Generalized-� are used as time integration schemes. For Newmark, four combinations of parameters are used by
defining  as 0.9, 0.8, 0.7 and 0.6. For Generalized-�, implementation GA-Iqn+�pn+� is used and six values of �∞, which are 0.0, 0.1,
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(a) (b)

(c) (d)

(e) (f)

FIGURE 15 Coefficients of the flow around a cylinder at Re = 100. (a,b) Strouhal number (c,d) mean value of the drag coef-
ficient, and (e,f) amplitude of the lift coefficient. Results obtained with (a,c,d) Backward Euler, Newmark’s Method (NM) and
Trapezoidal rule, and (b,d,f) Generalized-� (GA-Iqn+�pn+� ).

0.2, 0.5, 0.7, and 0.9. Therefore, 72 problems of the flow around a cylinder are solved for Re = 100. The coefficientsSt, Amp(CL)
and Mean(CD) are summarized in Fig. 15. On the left side (Figs. 15a, 15c and 15e) are results with Backward Euler, Newmark’s
Method (NM), and Trapezoidal rule, while on the right side (Figs. 15b, 15d and 15f) are those obtained with Generalized-�. In
addition, some references are included in the graphs, which appear as horizontal lines for ease of comparison, but it does not
indicate that references are insensitive to time step Δt.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 16 Coefficients of the flow around a cylinder at Re = 1000. (a,b) Strouhal number (c,d) mean value of the drag
coefficient, and (e,f) amplitude of the lift coefficient. Results obtained with (a,c,d) Backward Euler, Newmark’s Method (NM)
and Trapezoidal rule, and (b,d,f) Generalized-� (GA-Iqn+�pn+� ).

For problems with Re = 1000, five time steps are used ranging from 0.002 to 0.032. Similarly as for Re = 100, Backward
Euler, Trapezoidal, Newmark and Generalized-� are used. For Newmark,  is set to 0.9, 0.8, 0.7 and 0.6. For Generalized-�
(GA-Iqn+�pn+� ), �∞ is set to 0.0, 0.1, 0.2, 0.5. Thus, 50 problems are solved in total for Re = 1000. Results are summarized in Fig. 16
using same layout as for Re = 100 (Fig. 15).
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(a) Obtained with Δt = 0.004. (b) Obtained with Δt = 0.064.
FIGURE 17 Flow around a cylinder at Re = 100. Four cycles from the lift coefficient curve obtained with Backward Euler,
Newmark’s Method (NM), Generalized-� (GA-Iqn+�pn+� ) and Trapezoidal rule. Abscissa is scaled with respect to the reference
Strouhal number St = 0.174. In (a), lift coefficient curves of GA-I (�∞ = 0.90) and Trapezoidal rule are scaled by 1/2.5 and
1/25, respectively.

Results in Figs. 15 and 16 show that St, Amp(CL) and Mean(CD) obtained with stable time integration schemes converge to
the same value as time stepΔt is reduced. Converged values are listed in Table 1. These are obtained from averaging coefficients
obtained with Δt = 0.002. Table 1 also includes values from references that use Eulerian24,32 or semi-Lagrangian approaches
(PFEM-2)57,58. Notably, coefficients obtained in this work are in agreement with the literature.
Performance of time integration schemes
As in previous examples, Backward Euler is the least accurate at large time steps Δt. Its excessive numerical damping for high
frequencies reduces both the magnitude and frequency of the lift force. In contrast, Newmark’s Method (NM) offers better
accuracy as  is reduced, as long as  and � do not match the Trapezoidal rule, which leads to some problems in the present case.
Noteworthy, the Trapezoidal curve (red) does not completely appear in Figs. 15 and 16 because either values are far outside the
range of the plot (values for Δt < 0.008) or because convergence was not achieved with the imposed time step (Δt > 0.016).
The instability of the trapezoidal rule in the absence of numerical damping at high frequencies is illustrated in Fig. 17a. This
figure depicts 4 cycles of the lift coefficient (for Re = 100) obtained with different time integration schemes and Δt = 0.004.
The curves are aligned on the left side and abscissa is tabulated with respect to the converged frequency (equal to the converged
St number). Due to the lack of numerical damping, the lift coefficient shows huge values in the Trapezoidal scheme, thus it had
to be scaled by 1/25 to make it fit into Fig. 17a.
Regarding the Generalized-� scheme, �∞ ≤ 0.5 exhibits high accuracy with respect to lift and drag coefficients, even for

large time steps Δt. As numerical damping for high frequencies is reduced, specifically for �∞ > 0.5, accuracy is lost because
spurious oscillations become dominant in the system. This can be seen in Fig. 17a and 17b.
A remarkable aspect of the Generalized-� method is that results are very similar for �∞ ≤ 0.5. This holds for both Reynolds

(100 and 1000) and for both forces (lift and drag), as shown in Figs. 15b, 15d, 15f, 16b, 16d, 16f. On one hand, this is in line with
observations of Jansen et.al.23 who state "... the period and amplitude of both the lift and the drag are very weak functions of �∞
(which might be expected from the observation that 30 points per wavelength is adequate for second-order accurate method)".
On the other hand, it is in contradiction with results by Dettmer and Perić24, who report a notorious influence of the lift force
with respect to the spectral radius �∞. A possible explanation is that time step used in the present work and in that of Jansen
et.al.23 is significantly smaller than the one used by Dettmer and Perić24. At the largest time step (Δt = 0.064), the period of
the lift force is discretized in ≈90 points in our work, in ≈60 points in the work of Jansen et.al.23 (with Δt = 0.1), while in ≈18
points in that of Dettmer and Perić24 (with Δt = 0.3). In the latter case, a coarse time discretization could be standing out a
dependence of results on �∞.
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TABLE 1 Results from numerical simulations of the flow around a cylinder for Reynolds 100 and 1000. An em dash symbol
indicates that value is not found in the reference.

Source Re = 1000 Re = 100
St Amp(CL) Mean(CD) St Amp(CL) Mean(CD)

This work 0.241 1.427∗ 1.512∗ 0.174 0.331∗ 1.455∗
Dettmer-Perić (Sr9)24 0.252 1.498∗ 1.625∗ 0.181 0.358∗ 1.495∗
Dettmer-Perić (Sr19)24 0.243 — — 0.171 — —
Lovrić et.al.32 — — — 0.165 0.292∗ 0.998∗
Idelsohn et.al.57 0.2415 1.330 1.276 — — —
Idelsohn et.al.58 0.2475 1.630 1.639 — — —
∗Obtained from figure

(a) (b)

FIGURE 18 Strouhal number of the flow around a cylinder at Re = 100. Results for velocity-based and displacement-based
formulations using (a) Backward Euler and Newmark’s Method (NM) and (b) Generalized-� method.

Time steps used in this work are much smaller than those used by reference24 because a finer mesh around the cylinder is used
here in order to reduce instabilities of the pressure gradient caused by the spatial discretization and the remeshing. If a coarser
mesh were used, the lift and drag force would contain bigger spurious oscillations (see figure 10.11 of reference57) and it would
be difficult to identify numerical damping associated to the time integration schemes.

Velocity-based and Displacement-based formulations
So far all results for the flow around a cylinder have been obtained using the velocity-pressure formulation. Now these are
compared with results using the displacement-pressure formulation at Re = 100. Results for both formulations are shown in
Fig. 18, using the Backward Euler, Newmark (Fig. 18a) and Generalized-� (Fig. 18b) time integration schemes.
Subtle differences can be seen in Figs. 18a and 18b. The largest difference between formulations in the Newmark method is

0.09%, obtained with Δt = 0.016 and  = 0.6. In the Generalized-�, the largest difference is likewise 0.09% and is found for
Δt = 0.032 and �∞ = 0.5. Typically, the larger the numerical damping for high frequencies, the smaller the difference between
velocity- and displacement-based formulations. We believe, that this subtle difference between the two formulations is mainly
caused by high-frequency perturbations, which stand out in problems with long simulation times and several remeshing, such
as the flow around a cylinder.
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(a) (b)

FIGURE 19 Strouhal number of the flow around a cylinder at Re = 100. Results using different implementation approaches
of the Generalized-� scheme. In (a) are implementation approaches that follow the principle of the Generalized-� method and
impose the pressure at tn+�f . In (b) are implementation approaches that write the pressure at tn+1 and integrate the discrete
gradient operator (D⊺) in Ω(tn+1).

Implementation approaches of the Generalized-� method
The last analysis using the flow around a cylinder considers the different implementation approaches of the Generalized-�
scheme. The comparison is performed for Re = 100 and using five time stepsΔt ranging from 0.004 to 0.064. First, schemes that
write the pressure at tn+�f are compared, i.e., GA-Iqn+�pn+� , GA-Iqn+1pn+� , and GA-IIpn+� . Two values for the spectral radius are considered,0.0 and 0.5. Results for the Strouhal number are summarized in Fig. 19a. This shows a small difference between implementation
approaches, which is about 0.1% as indicated in Fig. 19a. This is also seen in the amplitude of the lift coefficient and the mean of
the drag coefficient, although no plots are given here to avoid overextending themanuscript. Thereby, as expected, the hypotheses
of scaling state variables (GA-I) or forces of momentum balance (GA-II) lead to practically the same result, especially when
small time steps are used.
A comparison is nowmade between schemes that write the pressure at tn+1 in the momentum equation, i.e., GA-Iqn+�pn+1 , GA-Iqn+1pn+1and GA-IIpn+1 . It is worth recalling that two scenarios are presented, one that integrates the gradient matrix in Ω(tn+1) (Eq. 49)

and another that does so in Ω(tn+�f ) (Eq. 50). Results for the first case are presented in Fig. 19b. The figure also includes resultswith GA-Iqn+�pn+� (solid line) that are used as reference. It is apparent from Fig. 19b that results are similar for all implementation
approaches when �∞ = 0.0. However, difference between the reference GA-Iqn+�pn+� and schemes that write the pressure at tn+1
increases with the value of �∞, in detriment of the schemes that do not follow the principle of the Generalized-� method. Similar
observations are obtained when analyzing the amplitude of the lift coefficient or the mean value of the drag coefficient (results
not reported here). This behavior was observed for the kinematics of the solitary wave propagation problem and it is now found
in the pressure field of the flow around a cylinder.
The second scenario for GA-Iqn+�pn+1 , GA-Iqn+1pn+1 and GA-IIpn+1 integrates the gradient matrix inΩ(tn+�f ), as done in Eulerian-basedformulations that adopt the modified approach for the pressure. Three values of �∞ are considered, 0.0, 0.2 and 0.5. Results

for the Strouhal number are shown in Fig. 20. This summarizes all the implementation approaches and plots on each graph the
schemes that write the pressure at tn+� (solid line) and tn+1 ( dashed line). Unlike the previous scenario (using Dn+1) here the
Strouhal number is not significantly influenced. The difference with respect to GA-Iqn+�pn+� is about 0.1 % for �∞ = 0.5. Something
similar is observed for the amplitude of the lift coefficient (not reported here). However, a different behavior is observed in
the drag force. Fig. 21 shows the mean of the drag coefficient. As expected, for �∞ = 0.0 all 6 approaches (GA-Iqn+�pn+� , GA-Iqn+1pn+� ,GA-IIpn+� , GA-Iqn+�pn+1 , GA-Iqn+1pn+1 and GA-IIpn+1) yield very similar results. However, as �∞ increases, schemes start to differ. The
trend is that the mean drag coefficient grows in the schemes that write the pressure at tn+1. In addition, one observes a notorious
difference between implementation approaches GA-Iqn+�pn+1 , GA-Iqn+1pn+1 , and GA-IIpn+1 , which has not been exhibited in the previous
example. Interestingly, GA-Iqn+1pn+1 features a high dependence on the value of �∞, even more, the converged value (Δt→ 0) seems
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 20 Strouhal number (St) from the flow around a cylinder at Re = 100. Results obtained with different implementation
approaches of the Generalized-� method. Continuous and dashed lines represent approaches that write pressure at tn+�f and
tn+1, respectively. Different spectral radii are considered: (a-c) �∞ = 0.0, (d-f) �∞ = 0.2, and (g-i) �∞ = 0.5.

to be dependent on �∞. Although this behaviour is observed only in the drag force, it is an inconsistency of the Generalized-�
method that arises from writing the pressure at tn+1 instead of tn+�f , and integrating the gradient matrix in Ω(tn+�f ).

4.4 Collapse of a cylindrical water column
The final problem consists of simulating the collapse of a water column whose initial condition follows the experimental setting
of Martin and Moyce59. The purpose is to validate performance of the analyzed time integration schemes on a problem with a
different simulation setting. For this reason, the problem is modelled in 3D, as shown in Fig. 22a. Slip boundary condition is
used in the base (plane x-y) and in the symmetry plane (y-z). The initial water column radius is r0 = 0.05715 m and its height
is ℎ0 = 2 r0. The acceleration of gravity is g = 9.81 m/s2, the density � = 1000 kg/m3 and the viscosity � = 0.001 Pa s. A
non-uniform discretization is chosen for refining elements on the free surface, as shown in Fig. 22b. The characteristic element
size is 5 mm at the free surface and 10 mm at a distance r0 from the free surface, while a linear interpolation defines the size
of elements in between. For some problems, the time step size (Δt) is set as a function of a maximum CFL number set at the
beginning of the simulation. The CFL number of an element is computed as:

cfl = max( ‖v‖ ) Δt
deq

(66)

where max( ‖v‖ ) is the maximum velocity norm of the element nodes and deq is the equivalent spherical diameter of the
tetrahedral element. The maximum CFL number is denoted as CFL∗ and is computed as CFL∗ = max(cfl), max(cfl) being the
vector that gathers the cfl of all elements.
Six collapse of a water column problems are solved. One using a fixed time step Δt = 0.00005 and Backward Euler. The

other five consider a time step set by a maximum CFL∗ = 0.5. These five problems use Backward Euler, Trapezoidal, and
Generalized-� (GA-Iqn+�pn+� ) with �∞ = 0.0, 0.25 and 0.50. From each problem, height (ℎ) and base radius (rb) of the water column
versus dimensionless time (t∗) are reported. The latter is defined as t∗ = t (2g∕r0)0.5. The base radius is computed using particles
located in the basal semicircle and taking the average distance from these particles to the origin [0 0 0]. The height is measured
at the center of the water column (along the z-axis). Results are summarized in Fig. 23 along with references using 3D Eulerian-
based60,61,62, 3D Lagrangian FEM63, and 2D Lagrangian PFEM48 formulations. Legend of Fig. 23a is shown in Fig. 23b.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 21 Mean value of drag coefficient (CD) from the flow around a cylinder at Re = 100. Results obtained with different
implementation approaches of the Generalized-� method. Continuous and dashed lines represent approaches that write pressure
at tn+�f and tn+1, respectively. Different spectral radii are considered: (a-c) �∞ = 0.0, (d-f) �∞ = 0.2, and (g-i) �∞ = 0.5.

(a) (b)

FIGURE 22 Collapse of a cylindrical water column problem. (a) Geometry and (b) initial finite element discretization.

Fig. 23a shows that the experimental reference (Martin and Moyce59) exhibits a similar pattern to that of the present work,
but with the experimental points shifted to the right. The fluid front delay of Martin and Moyce has also been noted in experi-
mental studies (e.g., see Fig. 12 in reference64), which suggest that the discrepancy with Martin and Moyce may be due to their
experimental technique used for dam gate removal. In particular, this work is closer to the numerical results of Battaglia et.al.62
and Akin et.al.60 for both fluid front position (rb) and height column (ℎ). The small differences with respect to those references
may be due to the fact that they use a formulation based on a fixed regular mesh and larger time steps than the present work
(approximately one order of magnitude). Due to the chosen space discretization, we cannot use larger time steps since tetrahe-
dral elements could be skewed after updating nodal position. Enlarging element size in favor of larger time steps would impair
the geometric resolution of the fluid front, since the Alpha Shape algorithm eliminates those highly distorted elements in the
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(a) (b)

FIGURE 23 Collapse of a water cylindrical column problem. Evolution of (a) base radius rb and (b) height ℎ of the water
column. The legend of curves in (a) is found in subfigure (b).

fluid front. In other words, the element and time step sizes were chosen by balancing the trade-off between computation time
and resolution.
As for the time integration schemes, no significant differences are observed. At least from a kinematic point of view, results

are insensitive to the time integration scheme, presumably because the problem is solved with time steps small enough to avoid
numerical damping. Looking in more detail, left and right close-up views in Fig. 23a show, respectively, that Backward Euler
with fixed and small time step (green curve), and Trapezoidal (red curve) lead the front position (rb). This alternation between
curves leading the front position is seen everywhere in the graph, although Backward Euler with large time step (CFL∗ = 0.5,
black curve) always exhibits the major delay, which is a sign of numerical damping.
As it was not possible to find references presenting pressure results for this example, it is decided to report the pressure at

the origin point [x y z] = [0 0 0]. Results for each time integration scheme are shown in Figs. 24a and 24b. These represent the
same plot but from different perspectives. Results show that all time integration schemes deliver the same order of magnitude for
the pressure, but different quantities of spurious oscillations. A simple look at Fig. 24a allows to classify results by the amount
of spurious oscillations. The trapezoidal scheme (CFL∗ = 0.5) has the largest number of oscillations, which grow significantly
from t∗ = 2. In second place is the generalized alpha (CFL∗ = 0.5) with �∞ = 0.5. Third is Backward Euler with small time step
Δt = 0.00005. Note that this Δt is much smaller than the one imposed by CFL∗ = 0.5, as seen in Figs. 24c and 24d. In fourth
place is generalized alpha (CFL∗ = 0.5) with �∞ = 0.25. Finally, schemes with the smallest amount of spurious oscillation are
Backward Euler (CFL∗ = 0.5) and Generalized-� (CFL∗ = 0.5) with �∞ = 0.0.
Importantly, the choice of the best time integration scheme depends on a number of criteria that must be weighed by the

user. For example, if high accuracy is required for fluid kinematics (position, velocity, acceleration), then the trapezoidal or
Generalized-� scheme with �∞ ≈ 1 is suggested, as long as convergence of the nonlinear algorithm is achieved. On the other
hand, if precision and stability in the pressure field is desired, for example for fluid-structure simulation, then schemes with
more numerical damping are recommended such as Backward Euler and Generalized-� with �∞ ≈ 0. If time step size is relevant
to the computational time, then Generalized-� with �∞ ≈ 0 is a good choice, since it does not present excessive numerical
damping at large time steps in comparison to Backward Euler. In particular for the authors of this work, the recommendation is
Generalized-� (GA-Iqn+�pn+� ) with �∞ ≤ 0.5.
The last remark concerns the computation time. Notably, the Generalized-� method allows using larger time steps than Back-

ward Euler or Newmark and still achieve the same order of error. The ratio of time step sizes between time integration schemes
depends on each problem. For instance, the reader can verify from the flow around a cylinder problem that the Generalized-�
reaches the same accuracy than Backward Euler, even with a Δt that is 32 times larger than that used with Backward Euler.
Therefore, a reduction in computation time is expected with Generalized-� due to the use of larger time steps.
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(a) (b)

(c) (d)

FIGURE 24 Collapse of a cylindrical water column problem. (a) Pressure at [x y z] = [0 0 0], (b) side view of subfigure (a), (c)
maximum CFL number and (d) time step Δt during simulation.

To provide the reader with an approximate computation cost of our Generalized-� implementation, the computation time
of three collapse of cylindrical water column problems are reported below. The problems consider the Backward Euler (BE),
GA-Iqn+�pn+� , and GA-IIpn+� as time integration schemes. All three problems use the same time step Δt = 0.00005s.
The average computation times are compared in Fig. 25a. These are computed as the total computation time divided by the

total amount of iterations of the nonlinear algorithm (time / n). This average computation time is normalized by that obtained
with Backward Euler (timeBE / nBE). Thus, Fig. 25a shows that the three problems take the same computation time per iteration
of the nonlinear solver. However, the nonlinear solver requires more iterations in the GA schemes (about 7% more iterations),
which is reflected in the total computation time shown in Fig. 25b. The increased computation time in problems using GA-I and
GA-II is due to the Finite Element Analysis (FEA), as depicted in Fig. 25c. On the contrary, the time spent in remeshing and
other tasks (e.g. data input/output) is the same as that required by Backward Euler. This is reasonable since all three problems
use the same time step size, so the amount of remeshing (and other tasks per time step) are the same.
Fig. 25d shows the time spent in different tasks of the FEA code. There, the time to build the system of equations (matrix

A and vector b) is slightly longer in problems using Generalized-�. This is because GA-I and GA-II present more terms in the
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(a) Time per iteration (b) Total time (c) Time in PFEM code (d) Time in FEA code

FIGURE 25 Breakdown of the computation time in the collapse of a water column problem. Three time integration schemes
are considered: Backward Euler (BE), GA-Iqn+�pn+� and GA-IIpn+� . Graphs are scaled with respect to the total time of Backward
Euler, denoted as timeBE. In (a), n denotes the total amount of iterations carried out by the nonlinear solver. In (d), the task
Build represents the computation of triplets (i, j, Ai,j), doublets (j, bj), and matrix/vector assembly; Solve involves a pattern
analysis of matrixA, an LU factorization ofA, and solving a linear system; andOthers consists of updating nodal state variables
according to the time integration scheme, and verification of convergence criteria.

governing equations, and because there are about 7% more system builds in problems using Generalized-� schemes. However,
most of the computation time is spent in solving the systemAq = b, which is a well known drawback of monolithic formulations.
In summary, for the same set of simulation parameters, there is no significant difference in computation time and memory

usage between the Backward Euler and Generalized-�, because the bottleneck is the routine that solves the systemAq = b. This
observation also holds for the 2D problems reported in this work.

5 CONCLUSIONS

This work incorporates the Generalized-� time integration scheme into the Particle Finite Element Method (PFEM) to solve
the incompressible Navier-Stokes equations in a Lagrangian framework. The discretized system of equations is derived for both
velocity-pressure and displacement-pressure formulations. The time integration scheme is compared with the Backward Euler
and Newmark, which are well established in the PFEM literature. Numerical comparisons of several benchmark problems and
a literature review of the Generalized-� method for computational fluid mechanics lead to the following conclusions:

• The Generalized-� method in PFEM outperforms the classical Backward Euler and Newmark schemes, since it exhibits
less numerical damping at large time steps and less spurious oscillations than the Trapezoidal rule. These observations
are in line with studies carried out in Eulerian-based frameworks24.

• The literature presents different implementation approaches of the Generalized-� method. A first classification can be
made based on the assumption for stating the momentum equation at the intermediate time tn+� . One approach (GA-I)
assumes that state variables scale linearly between tn and tn+1, while the other (GA-II) assumes linear scaling for the
forces in the momentum equation. These two approaches produce similar results in PFEM, especially if linear problems
are considered, or small time steps are used. However, the approach that scales forces (GA-II) demands more matrix
operations in our PFEM implementation. Therefore, the first implementation (GA-I) approach is preferred.
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• A second classification of implementation approaches considers the way in which the linear scaling of state variables is
used in the momentum equation. One approach solves the system of equations for state variables at tn+�f and then uses thelinear interpolation assumption to recover state variables at tn+1. The other approach substitutes the linear interpolation
equations into the momentum equation to write unknown states at tn+1. Both approaches lead to nearly identical results,
but the first scheme is preferred in this work since the algebraic substitution introduces additional terms in the momentum
equation, and hence demands more matrix operations.

• A third classification refers to the pressure. Some authors write the momentum equation with pressure at tn+1 instead of
tn+�f . This modified scheme results in a degradation of the Generalized-� method, as found by Liu et.al.34. Although
two cases are distinguished here. The first case integrates the discrete gradient matrix in the intermediate configuration
Ω(tn+�f ). In this case, an inconsistency of the time integration scheme is observed for the pressure. In the flow around a
cylinder, implementation approaches GA-I and GA-II differ, and the drag coefficient becomes highly dependent on the
spectral radius. The second case integrates the gradient matrix in the current configurationΩ(tn+1), which results in a high
degradation of the time integration scheme in terms of pressure and velocity.

• All the implementation approaches mentioned above are equivalent if the spectral radius is set to 0.0. Such a case yields
to a highly damped system for high frequencies but still results in a time integration scheme significantly superior to
Backward Euler. Moreover, it is much simpler to implement than a generalized code script containing �m and �f , since
�∞ = 0.0 yields �f = 1.0, thus it avoids code routines to compute equations at the intermediate time tn+�f .

• Numerical examples of this work do not reveal significant differences in accuracy between the velocity-based and
displacement-based formulations. The latter does present more terms in the system of equations, however, no perceptible
increase in computational time is observed in the academic examples of this manuscript. Also, the displacement-based
formulation draws the same conclusions mentioned for the velocity-based formulation.

This work focused on four benchmark problems widely reported in the literature, which allowed validation and analysis of
the presented methods. A perspective of this work is to consider more complex problems, for example, those that present wave
breaking, splashing and fluid-structure interaction, among others. In addition, it would be interesting to analyse the effect of
remeshing parameters on fluid kinematics. For example, the effect of the Alpha-Shape algorithm on the temporal integration
and positioning of the free surface. These and other relevant issues will be the subject of future studies.
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