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Generalised Adaptive Fuzzy Rule Interpolation
Longzhi Yang, Member, IEEE, Fei Chao, Member, IEEE, and Qiang Shen

Abstract—As a substantial extension to fuzzy rule interpo-
lation that works based on two neighbouring rules flanking
an observation, adaptive fuzzy rule interpolation is able to
restore system consistency when contradictory results are reached
during interpolation. The approach first identifies the exhaustive
sets of candidates, with each candidate consisting of a set of
interpolation procedures which may jointly be responsible for the
system inconsistency. Then, individual candidates are modified
such that all contradictions are removed and thus interpolation
consistency is restored. It has been developed on the assumption
that contradictions may only be resulted from the underlying
interpolation mechanism, and that all the identified candidates
are not distinguishable in terms of their likelihood to be the real
culprit. However, this assumption may not hold for real world
situations. This paper therefore further develops the adaptive
method by taking into account observations, rules and inter-
polation procedures, all as diagnosable and modifiable system
components. Also, given the common practice in fuzzy systems
that observations and rules are often associated with certainty
degrees, the identified candidates are ranked by examining the
certainty degrees of its components and their derivatives. From
this, the candidate modification is carried out based on such
ranking. This work significantly improves the efficacy of the
existing adaptive system by exploiting more information during
both the diagnosis and modification processes.

Index Terms—Fuzzy inference, adaptive fuzzy rule interpola-
tion, ATMS, GDE.

I. INTRODUCTION

Fuzzy inference systems have been successfully applied to

many real world applications, but the systems may suffer

from either too sparse or too complex rule bases. Fuzzy

rule interpolation (FRI) alleviates this by supporting infer-

ence with incomplete sparse rule bases, or by simplifying

complex fuzzy systems that involve very dense rule bases

through approximating certain parts of the model with their

neighbouring rules [1], [2]. Many important FRI methods

and their analysis or variations have been presented in the

literature, including [1]–[22]. What is common to most of

these techniques is that multiple values may be derived for

a single variable. This implies that inconsistencies have been

generated in the interpolated results.

Adaptive fuzzy rule interpolation (AFRI) was proposed in an

effort to address this problem [23], [24]. It was developed upon

FRI approaches by which two neighbouring rules that flank

an observation are utilised for interpolation. The approach
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efficiently detects inconsistencies, directly locates possible

sets of fault components (namely, candidates), and effectively

modifies the candidates in order to restore consistency, by

removing detected inconsistencies. The approach artificially

treats a fuzzy rule interpolation system as a component-

based mechanism where system components are defined as

interpolation procedures. An assumption-based truth mainte-

nance system (ATMS) [25]–[27] is employed to record the

depending relationships between interpolated results and their

dependent system components (i.e., its proceeding interpola-

tion procedures). Then, the classical general diagnostic engine

(GDE) [28] is utilised to hypothesise a set of candidates that

each may have led to all the system contradictions. Finally,

the system consistency is restored by modifying an identified

single candidate.

The adaptive approach outlined above assumes that all the

contradictory interpolated results are caused by the underpin-

ning interpolation procedures. This assumption restricts the

applications of AFRI to problems with defective fuzzy inter-

polation procedures only, but observations and rules in a fuzzy

inference system may also be ill-specified (to a certain extent).

Thankfully this limitation is not a fundamental restriction of

the idea underlying the adaptive approach. Supported by the

initial preliminary investigations of [29], this paper further

develops the work of [24], to allow the diagnosis and modifica-

tion of observations and rules. This significantly enhances the

robustness of the original method as one consistent inference

result may still be derived when the original fails, often with

intuitively more reasonable interpolated results.

Due to the introduction of more complex and uncertain

information to the underlying information and knowledge

representation scheme, the number of generated candidates

may increase dramatically. However, these candidates can

be discriminated as: i) two different values derived for a

given variable that have led to a contradiction may not be

equally reliable (besides, one may be correct and the other

wrong); and ii) all the elements which jointly support one

of the two contradictory values may not be equally reliable.

A candidate prioritisation mechanism is therefore introduced

here to reinforce the present work, starting from the initial

report of [30], such that only the most important candidates are

considered during the modification stage. Firstly, the classical

ATMS is extended to record dependencies and also, to log

the extent to which such dependencies are deemed reliable.

The candidates are then prioritised using a modified GDE by

taking the reliability information into consideration. Thanks

to the prioritisation of candidates, a consistent solution can be

rapidly derived with saved computational cost.

The remainder of this paper is organised as follows. A brief

review of the theoretical underpinnings of AFRI is presented

in Sec. II. An extension of the candidate generation procedure
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is reported in Sec. III, by which a candidate element can

be an observation, rule, or fuzzy interpolation procedure.

A generalisation of the candidate modification procedure is

discussed in Sec. IV, which allows the modification of all types

of diagnosable candidate component. To facilitate comparison,

the application problem considered in [24] is reinvestigated

in Sec. V where the proposed approach is employed. The

paper is concluded in Sec. VI with important future directions

of improvements pointed out.

II. ADAPTIVE FUZZY RULE INTERPOLATION

AFRI ensures that interpolated results remain consistent to a

certain degree throughout the entire interpolation process [24].

In this paper, given two fuzzy sets Ai and Aj with respect

to the same variable x within the domain Dx, the degree

of consistency between them is represented as the degree of

matching as follows:

M(Ai, Aj) = sup
x∈Dx

[min(µAi
(x), µAj

(x))]. (1)

Based on this, the degree β of a contradiction regarding two

propositions P (x is Ai) and P ′(x is Aj) is defined as:

β = 1−M(Ai, Aj). (2)

This work adopts a predefined threshold β0 (0 ≤ β0 ≤ 1) to

examine whether a pair of values associated with a common

variable is unacceptably contradictory. A β0-contradiction

appears if the corresponding contradictory degree between the

two concerned propositions is greater than β0.

As with [24], each pair of neighbouring rules, which may

be utilised together for interpolation, is termed as a fuzzy inter-

polation component (FIC). The input of such a component is a

vector of observations and/or previous inferred results, which

is hereafter referred to an interpolation input for simplicity.

The output is the consequence of the interpolated rule which

takes such an input as its antecedent. The working process

of AFRI is illustrated in Fig. 1. Given a fuzzy inference

problem with a sparse rule base, the interpolator performs

inference through fuzzy rule interpolation, and the ATMS

records the dependencies of contradictions upon the preceding

FICs. Then, the GDE diagnoses the cause of the contradictions

and generates candidates for modification, and finally the

modifier revises the candidates to remove contradictions and

restore system consistency.

ATMS

GDE

Components
Modified

Contradiction
Dependencies

Candidates

Beliefs
Justifications

Modifier

Interpolator

Fig. 1. Adaptive fuzzy interpolation

A. Rule Interpolation by the Interpolator

Suppose that the interpolation input is

O : x1 = A∗
1x and ... and xm = A∗

mx, (3)

and that rules

Ri : IF x1 = A1i and ... and xm = Ami, THEN y = Bi,

Rj : IF x1 = A1j and ... and xm = Amj , THEN y = Bj ,
(4)

are the neighbouring ones used for interpolation regarding the

input O. The scale and move transformation-based FRI, upon

which AFRI has been introduced, is outlined in Fig. 2. Further

details of this approach can be found in [12], [13], but this is

out of the scope of this paper.

In this figure, there are m repeated sub-components, each

of which takes A∗
kx, Aki and Akj (1 ≤ k ≤ m) as inputs and

produces a relative placement factor λk, an intermediate fuzzy

set A∗
kx

′ and a number of similarity measurements between

Akx and A∗
kx. Each sub-component first uses the so-called

representative values aki, akj and a∗kx to express the overall

positions of Aki, Akj and A∗
kx respectively, computed using

the function f1. The relation regarding the relative locations

between the interpolation input term A∗
kx and the correspond-

ing antecedents terms (Aki and Akj) of a pair of neighbouring

rules is computed next, resulting in the required λk which is

computed by the real function f2. From this, an antecedent

term of the intermediate rule A∗
kx

′ is calculated by applying

real function f3 with a parameter λk to Aki and Akj . Next, a

set of similarity degrees between A∗
kx and A∗

kx
′, expressed as

the scale rate sk, scale ratio Sk and move rate Mk, is obtained

by applying the function f4 (which stands for a predefined

similarity metric). Function f6 is then introduced to combine

all the resultant λk (k ∈ {1, 2, ...,m}) to an overall single

scale λ, as is f7 to combine all the similarity rates (sk, Sk, Mk)

to (s, S,M). The conclusion B∗ can finally be approximated

by transforming the consequent B∗′ of the intermediate rule.

This is implemented by applying the combined single scale

similarity rates, through the transformation function f5:

T (B∗, B∗′) = T ((A1x, ...., Amx), (A
∗
1x

′
, ...., A∗

mx
′)). (5)

B. Truth Maintenance by the ATMS

In implementing AFRI, ATMS is utilised to record the

dependency of interpolated results and that of contradictions,

upon the FICs from which they are inferred. Using ATMS’

terminology, observations, interpolated results, contradictions

and FICs can all be represented as ATMS nodes, each of

which is formed by a name (standing for its logical or physical

meaning), a set of justifications and a label.

A justification expresses a logical implication through which

a node may be derived from other relevant nodes. An inferred

proposition represented as an ATMS node is of the following

justification:

M1,M2, ...,Mn, RiRj ⇒ C, (6)

where RiRj denotes the FIC formed by the two neighbouring

rules Ri and Rj (i ̸= j) which infers the interpolated result

C from n other nodes M1,M2, ...,Mn (that are observations

and/or interpolated results). Based on the definition of con-

tradiction, a β0-contradiction is reached if the contradiction

degree β between any two propositions P (x is Ai) and P ′(x
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Fig. 2. An outline of transformation-based FRI

is Aj) is greater than a predefined threshold β0, which is

expressed in the format of proposition as:

P, P ′ ⇒β0
⊥. (7)

A label is a set of environments, each of which is a minimal

set of FICs that jointly entail the supported node. An environ-

ment is said to be β0-inconsistent if β0-contradiction is log-

ically derivable by the environment and a given justification;

otherwise, the environment is (1− β0)-consistent. The ATMS

label updating algorithm ensures that the label of each node

is (1 − β0)-consistent, sound, minimal and complete, except

that the label of the special ‘false’ node is β0-inconsistent

rather than (1 − β0)-consistent. Whenever a β0-contradiction

is detected, each environment in its label is added into the

label of the ‘false’ node and all such environments and their

supersets are removed from the label of every other node.

Also, any such environment which is a superset of another

is removed from the label of the ‘false’ node. Therefore, the

label of the special “false” node collectively holds the minimal,

complete set of environments each of which leads to a β0-

contradiction.

C. Candidate Generation by the GDE

A set of minimal candidates for modification can be gen-

erated by GDE [28] from the label of the ‘false’ node. A

candidate is a set of FICs that may have led to all detected

contradictions. Since a β0-inconsistent environment contained

in the label of the ‘false’ node indicates that at least one of its

elements is inconsistent (or faulty), a candidate must have a

non-empty intersection with each β0-inconsistent environment.

Based on this observation, each candidate is constructed by

taking just one FIC from each environment that supports the

‘false’ node. The candidates are guaranteed to be minimal by

removing all the supersets of others. As a result of this, the

successful correction of any single candidate will remove all

contradictions.

D. Candidate Modification by the Modifier

AFRI always modifies the candidate with the smallest

cardinality first. With respect to a given queue of candidates

Q, the overall modification procedure is outlined in Alg. 1.

The main sub-procedure MODIFY(C) takes a single candidate

(C) as input and returns a Boolean value to indicate whether

the modification succeeds or not.

Algorithm 1 The CONSISTENCYRESTORING procedure

CONSISTENCYRESTORING(Q)

Input: Q, a queue of candidates, each of which is a set

of FICs.

Output: True, if succeeds; False, otherwise.

1) modified←False

2) do

3) C← Dequeue(Q)
4) modified← MODIFY(C)

5) while ((modified ==False) && (Q! = ∅))

6) return modified

To illustrate the basic ideas embedded in this sub-procedure,

suppose that the defective FIC is formed by the pair of

neighbouring rules as given in Eq. 4, which flanks the interpo-

lation inputs Ox(x ∈ {1, 2, ..., n}) in the form of Eq. 3. The

implementation of the modification procedure for a candidate

consisting of a single FRI can then be summarised in the

following steps:

Step 1. Find the interpolated rule ‘IF x1 = A∗
1k and · · ·

and xm = A∗
mk, THEN y = B∗

k’ whose antecedent is located

in the middle most of the neighbourhood of the antecedents

of the two rules used for interpolation, in terms of their

representative values that are calculated using a particular

integration formula [24]. Suppose that the relative placement

factor of its consequence λk is modified to λ̂k. The correction

rate pair can then be calculated as:
{
c− = λ̂k

λk

c+ = 1−λ̂k

1−λk
.

(8)
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Step 2. Obtain the modified relative placement factors of

the consequences of all other interpolated rules, which have

been created with respect to the same defective FIC in the

same way as that used to compute the correction rate pair

above, where p ∈ {1, 2, ..., k−1} and q ∈ {k+1, k+2, ..., n}:
{
λ̂p = λp · c

−

1− λ̂q = (1− λq) · c
+.

(9)

Step 3. Compute the modified consequences of the in-

termediate rules corresponding to all interpolated rules that

have been generated from the same defective FIC in accor-

dance with their modified relative placement factors. Suppose

that the intermediate rule corresponding to defective rule

‘IF x1 = A∗
1x and · · · and xm = A∗

mx, THEN y = B∗
x’

is ‘IF x1 = A′
1x and · · · and xm = A′

mx, THEN y = B′
x’.

From this, the modified consequence of the intermediate rule

B̂′
x is:

B̂′
x = (1− λ̂x)Bi + λ̂xBj , (10)

where x ∈ {1, 2, ..., n}. That is, the modified intermediate rule

becomes ‘IF x1 = A′
1x and · · · and xm = A′

mx, THEN y =
B̂′

x’.

Step 4. Compute the modified consequences of all interpo-

lated rules from the consequences of the modified intermediate

rules through scale and move transformations:

T ((A1x
′, ..., Amx

′), (A∗
1x, ..., A

∗
mx)) = T (B̂′

x, B̂
∗
x), (11)

where x ∈ {1, 2, ..., n}, and T (·, ·) represents the transforma-

tions based on the scale and move measures [12], [13].

Step 5. Impose restriction over the modified consequence

such that it becomes consistent with the interpolation context.

Suppose that m object values B1, B2, ..., Bm are obtained for

the variable y. If they are (1−β0)-consistent, they must satisfy:

m∩

j=1

(Bj)β0
̸= ∅, (12)

where (Bj)β0
denotes the β0-cut of fuzzy set Bj .

Step 6. Constrain the propagations of all modified conse-

quences so that they are consistent with the rest. Propagate

the modified result through the entire reasoning network.

For a given variable z, suppose that m object values of the

variable z have been modified via the propagation, resulting in

modified values Ĉi, i ∈ {1, 2, ...,m}, and that n object values

Cj , j ∈ {1, 2, ..., n}, of z are not affected by the propagation.

These modified consequences must satisfy the following such

that they are all (1− β0)-consistent:
(

m∩

i=1

(Ĉi)β0

)
∩
(

n∩

l=1

(Cj)β0

)
̸= ∅. (13)

Step 7. Solve the set of simultaneous equalities and inequali-

ties as posed above. The solutions imply successfully modified

results which guarantee the system reasoning consistency.

III. GENERALISING CANDIDATE GENERATION

Only FICs are regarded as diagnosable and modifiable

candidate elements in the original AFRI approach outlined

above. However, observations and rules may also be faulty to a

certain extent. This section extends the existing AFRI such that

observations and rules can also be diagnosed and modified. To

facilitate this, the certainty degrees of observations, rules and

FICs are discussed first.

A. Certainty Degrees of Observations and Rules

There are generally four categories of inexact informa-

tion [31]: 1) vagueness, 2) uncertainty, 3) both vagueness and

uncertainty with the latter represented as real numbers, and

4) both vagueness and uncertainty with the latter also defined

as fuzzy sets. The existing FRI [24] only considers type 1

information, which is extended in this work by introducing

type 2 information into the system, thereby resulting in the

exploitation of type 3 information overall.

With the extra information, an observation is represented

as:

O: xi = A∗
ij (cO), (14)

where 0 ≤ cO ≤ 1 expresses the certainty degree of

the observation O. Conceptually, the vagueness of an object

value can be modelled as a fuzzy set due to the lack of a

precise boundary between given bits of information. Here, the

certainty degree of an observation is represented as a crisp

number, which is either assigned subjectively [32] or estimated

from other mechanisms such as statistical data analysis. It

indicates the confident level at which the current description

of the object value may be regarded as of confidence or being

reliable.

Denote the certainty degree of an observation O as cO.

Then, the uncertainty degree of the same piece of information

is naturally expressed as 1−cO. Thus, the modifiable range of

the object value O is intuitively bounded to the proportion of

1− cO in reference to the entire variable domain. This means

that the factual object value of O can be obtained by shifting

the fuzzy set representation of the defective observation to-

wards either side of the variable domain to a maximal distance

of 1−cO
2 (maxi−mini), where the domain of the variable xi is

Dxi
= [mini,maxi]. Given that the shifting of a vague term is

restricted from changing the shape and area of the underlying

fuzzy set, the shifting process is equivalent to adding a real

number to the original fuzzy set [33]. Formally, the factual

value of A∗
ij , denoted as Â∗

ij , of the observation O as given

in Eq. 14 must satisfy:
{
Â∗

ij ≥ Aij −
1−cO

2 (maxi−mini)

Â∗
ij ≤ Aij +

1−cO
2 (maxi−mini).

(15)

It is possible that the shifting may be out of the variable

domain due to the inaccuracy of the uncertainty information.

Therefore, to ensure the final shifting result is within the value

range of the variable, the following must be satisfied :
{
min(supp(Â∗

ij)) ≥ mini

max(supp(Â∗
ij)) ≤ maxi,

(16)

where supp(Â∗
ij) represents the support of Â∗

ij .
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Similarly, with the uncertainty information, rules given in

Eq. 4 are then extended to be of the following form:

Ri : IF x1 = A1i and · · · and xm = Ami,

THEN y = Bi (cRi
);

Rj : IF x1 = A1j and · · · and xm = Amj ,

THEN y = Bj (cRj
).

(17)

This means that rules Ri and Rj are certain to the degree

of cRi
and cRj

, respectively. As with the certainty degrees

associated with observations, certainty degrees attached to the

rules are either subjectively provided or objectively learned.

B. Certainty Degrees of FICs

A FIC consisted of two neighbouring rules is utilised in

this work to represent the fuzzy interpolation mechanism.

Essentially, this mechanism is an extension of classical linear

interpolation on fuzzy rules. Thus, intuitively, if a FIC is

defined on a pair of neighbouring rules that are more cer-

tain to derive correct interpolated results, such an artificially

created component is deemed to be more reliable, under the

linearity assumption. Suppose that the FIC RiRj consists of

the following two single-antecedent rules:

Ri : IF x = Ai, THEN y = Bi (cRi
);

Rj : IF x = Aj , THEN y = Bj (cRj
).

(18)

Then, reflecting this intuition, the certainty degree cRiRj
of

the component RiRj can be defined by:

cRiRj
= 1−

∣∣∣∣
d(Ai, Aj)

maxx−minx
−

d(Bi, Bj)

maxy −miny

∣∣∣∣ , (19)

where d(A,A′) is the distance between A and A′ (given a

certain distance metric); maxz and minz are the maximum and

minimum of the domain values of the variable z (z = x, y),
respectively. Note that cRiRj

∈ [0, 1].

For the more general cases where the FIC RiRj is com-

posed by two multi-antecedent rules as given in Eq. 17, the

calculation of the certainty degree can be readily extended.

The result is given as follows:

cRiRj
= 1−

∣∣∣∣∣∣

∑m

k=1
d(Aki,Akj)

maxxk
−minxk

m
−

d(Bi, Bj)

maxy −miny

∣∣∣∣∣∣
. (20)

In this equation, the distance between the two sets of an-

tecedents of two multi-antecedent fuzzy rules is defined as

the average of the distances between all pairs of corresponding

antecedent terms regarding each corresponding variable. This

is again, to reflect the underlying linearity assumption.

C. Certainty Degrees of Interpolated Results

Given an interpolation input M1,M2, ...,Mn, two neigh-

bouring rules Ri and Rj that flank the given interpolation

input, and the corresponding FIC RiRj , a logical consequence

C can be generated by applying FRI. Then, the certainty

degree cC of the conclusion C can be derived from the

certainty degrees of the input terms, the certainty degree

of the neighbouring rules and the certainty degree of the

corresponding FIC, which is calculated by:

cC = cM1
⊗ cM2

⊗ · · · ⊗ cMn
⊗ cRi

⊗ cRj
⊗ cRiRj

, (21)

where the composition operator ⊗ is a t-norm operator, such

as minimum and algebraic product. Note that multiple appli-

cations of different interpolation procedures may lead to the

same interpolated result C. However, they may be associated

with different certainty degrees, say cC1
, cC2

, ..., cCn
. Then

the overall certainty degree c of the interpolated result C is

revised as:

c = cC1
⊕ cC2

⊕ · · · ⊕ cCn
, (22)

where ⊕ is an s-norm operator, such as maximum.

D. Dependency Recording with Extended ATMS

In the previous work of [24], ATMS records the depen-

dencies of the contradictions (or interpolated results) upon

FICs. However, in general, such contradictions may also

depend upon the observations and rules used to perform FRI.

Therefore, observations, interpolated results, contradictions,

FICs, and rules are all represented as ATMS nodes in the

present work, which are originally assumed to be true and

which may be established to be false (of a certain degree)

subsequently. Recall that a justification describes how a node

is derivable from other nodes. In general, any ATMS node

with an interpolated result C from an interpolation input

M1,M2, ...,Mn based on neighbouring rules Ri and Rj may

now be verified by the following ATMS justification:

M1,M2, ...,Mn, Ri, Rj , RiRj ⇒ C. (23)

Eq. 23 degenerates to Eq. 6 when rules Ri and Rj (i ̸= j)
are fixed and true, and hence not needed to be kept in the

dependency records.

The above justification not only explicitly describes how

the consequence C is logically derived from other nodes, but

also implicitly expresses to what extent C can be derived

from the nodes M1, M2, ..., Mn, Ri, Rj and RiRj , with the

support of their certainty values. This implicit information is

explicitly held in extended ATMS nodes. The certainty degrees

of primitive ATMS nodes, including observations, rules and

FICs have been discussed in the previous sections, which

can be directly used here to extend the corresponding ATMS

nodes. The certainty degree of an interpolated result can be

derived from its entire set of label environments, based on

Eq. 22, whilst the extent to which each individual environment

entails the concerned interpolated result can be computed on

the basis of Eq. 21. The process of calculating and updating

of the certainty degrees of interpolated results is effectively

managed by an extended ATMS label-updating mechanism.

As a result, an extended ATMS node not only expresses how

it is entailed by its label environments, but also indicates to

what extent the node is derivable from the label environments.

E. Candidate Generation with Extended GDE

A β0-contradiction occurs if two object values are observed

and/or derived for a common variable that differ to the extent



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

of at least β0 and therefore, one or both of the two values

is faulty. Due to lack of differentiating information, both

contradictory values are supposed to be equally faulty in [24].

With the support of additional information of certainty degrees

as recorded in the extended ATMS, two values for a common

variable can be distinguished in response to the extent to which

each of them is derivable. In addition, for any one of the two

ATMS nodes representing the two observations/interpolated

results, the elements in its label environments are also dis-

tinguishable as some of the elements are of higher certainty

degrees than others. Within the label environment of either of

the two contradictory values, those elements with the smallest

certainty degree are intuitively regarded as the most likely to

be the real culprit. Based on these observations, the candidates

generated by GED can be prioritised. In order to do so, all

the elements in the label environments of the ‘false’ node are

ranked first.

Suppose that E⊥ is one of the label environments of the

‘false’ node which is deduced by two contradictory propo-

sition P and P ′. Then there must exist environments E =
{e1, e2, ..., em} and E′ = {e′1, e

′
2, ..., e

′
n} which entail the

corresponding propositions such that E ∪ E′ = E⊥. Suppose

that the certainty degrees associated with the propositions P

and P ′ are c and c′, respectively. The procedure of prioritising

the label elements of E⊥, by assigning a ranking value to

each element, is shown in Alg. 2. Assuming that c ≤ c′,

this algorithm guarantees that ei ≤ e′j , i ∈ {1, 2, ...,m} and

j ∈ {1, 2, ..., n}, and vice versa.

Algorithm 2 The ELEMENTRANKING procedure

ELEMENTRANKING(E,E′,c,c′)

1) E⊥ = E ∪ E′

2) foreach e ∈ E⊥

3) if (c ≤ c′ && e ∈ E′)||(c′ ≤ c && e ∈ E)
4) re = ce + 1
5) else

6) re = ce

Recall that each label environment of the ‘false’ node

entails a contradiction. Thus, by taking one element from each

environment of the ‘false’ node, a candidate is constructed.

Repeating this will generate all possible candidates. If all the

duplications are deliberately kept, all the originally generated

candidates will have the same cardinality, equalling to the

number of label environments in the ‘false’ node. From this, all

candidates can be prioritised according to the ranking values

of their members. Alg. 3 shows a two-step sorting method for

this. After the ranking, duplications of candidate elements are

removed, and all those candidates which are a superset of one

other candidate are also removed to guarantee the candidate set

is minimal. Obviously, such removals do not alter the ranking

order of the remaining candidates.

Note that a number of extensions to the classic ATMS

and GDE have been proposed in the literature. A possibilistic

ATMS was proposed in [34], where all the assumptions and

justifications are associated with possibility values and handled

in the framework of possibility theory [35]. A credibilistic

Algorithm 3 The CANDIDATESORTING procedure

CANDIDATESORTING(S)

Input: S, a set of candidates with the same cardinality.

1) foreach C ∈ S

2) SORT (C) // Sort all the members of C in

ascending order by their ranking

values

3) foreach i = |C| : 1
4) STABLESORT(S, i) // Sort all the candidates

in ascending order by

the ranking values of

their ith members

ATMS was proposed in [36], which is developed on the

basis of credibility theory [37]. The approach of [38] and

[39] generalised the classical ATMS to work with reasoning

systems using multi-valued logic. The present work differs

from these extensions as reliability values are used to reflect

certainty degrees. Note too that classical GDE has also been

extended from other perspectives, such as for reducing search

spaces [40], and for modelling in situations where connections

may also be faulty [40]. All these extensions to ATMS and

GDE are interesting in further generalising the present study,

but are beyond the scope of this paper.

F. Illustrative Example - Part 1

The running example in the original work on adaptive

fuzzy rule interpolation [24] is reconsidered herein, but

all the rules and observations are now associated with the

information of certainty degrees. For completeness, the rule

base is provided below:

R1: IF x1 = A1, THEN x2 = B1 (0.80);
R2: IF x1 = A2, THEN x2 = B2 (0.90);
R3: IF x2 = B3, THEN x3 = C3 (0.60);
R4: IF x2 = B4, THEN x3 = C4 (0.70);
R5: IF x3 = C5, THEN x6 = F5 (0.70);
R6: IF x3 = C6, THEN x6 = F6 (0.80);
R7: IF x3 = C7 and x4 = D7, THEN x5 = E7 (0.90);
R8: IF x3 = C8 and x4 = D8, THEN x5 = E8 (0.60);
R9: IF x6 = F9, THEN x7 = G9 (0.90);
R10: IF x6 = F10, THEN x7 = G10 (0.80);
R11: IF x5 = E11, THEN x7 = G11 (0.70);
R12: IF x5 = E12, THEN x7 = G12 (0.90).

The parameter set and representation schemes used in [24] are

also utilised in this work and thus the details are omitted. With

the support of extra information, suppose that the four obser-

vations are now: O1 : x1 = A∗ = (9.0, 9.5, 10.0, 10.5) (0.70),
O2 : x2 = B∗ = (7.0, 7.5, 8.0, 8.5) (0.60), O3 : x4 =
D∗ = (5.5, 6.0, 6.5, 7.0) (0.90) and O4 : x6 = F ∗ =
(11.0, 11.5, 12.0, 12.5) (0.80). By applying the classical scale

and move transformation-based FRI, multiple pairs of contra-

dictions result (e.g., F ∗ and F ∗
2 ), which are summarised in

Fig. 3.

The interpolation procedures are outlined as a component-

based diagram, as illustrated in Fig. 4. In this figure,
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Fig. 4. Discrepancy records in ATMS

Fig. 3. Fuzzy sets and contradictions involved in the example

all the ATMS nodes and contradictions are shown as cir-

cles. Take node P5 as an example. This node is in-

ferred from the nodes P3 and O3 by the FIC F4 which

uses the rules R7 and R8, whose justification is therefore

P3, O3, R7, R8, F4 ⇒ P5, where O3 is an observation and

P3 is a previously interpolated result. By running the label-

updating algorithm of the extended ATMS, the label of the

node P5 ({{O2, O3, R3, R4, F2, R7, R8, F4}}) can be derived

from the labels of: the observation O3 ({{O3}}), the interpo-

lated result P3 ({{O2, R3, R4, F2}}), the rules R7 ({{F7}})
and R8 ({{R8}}), and the FIC F4 ({{F4}}).

The certainty degrees of all FICs can be obtained by

applying the approach introduced in Sec. III-B. For instance,

the certainty degree of the FIC F1 is calculated as follows:

cF1
= 1− | d(A1,A2)

maxx1
−minx1

− d(B1,B2)
maxx2

−minx2

|

= 1− |Rep(A2)−Rep(A1)
maxx1

−minx1

− Rep(B2)−Rep(B1)
maxx2

−minx2

|

= 1− | 16.75−6.75
20−0 − 14.75−5.75

20−0 |

= 0.05,

where Rep(A) denotes the representative value of the fuzzy

set A [12]. The certainty degrees of derived nodes can be

computed by following Eq. 22. As an example, the certainty

degree of the derived node P10 is computed as follows:

cP10
= (cO2

⊗ cO3
⊗ cR3

⊗ cR4
⊗ cF2

⊗ cR7
⊗ cR8

⊗ cF4

⊗cR11
⊗ cR12

⊗ cF6
)⊕ (cO4

⊗ cR9
⊗ cR10

⊗ cF5
)

= max(0.60 ∗ 0.90 ∗ 0.60 ∗ 0.70 ∗ 1.00 ∗ 0.90 ∗ 0.60∗
0.75 ∗ 0.70 ∗ 0.90 ∗ 1.00, 0.80 ∗ 0.90 ∗ 0.80 ∗ 1.00)

= 0.58.

The certainty degrees of all other derived nodes can be

calculated in the same manner. All the ATMS nodes (i.e.,

observations, rules, FICs) and contradictions are summarised

below:

R1 : ⟨x1 = A1 ⇒ x2 = B1, 0.80, {{R1}}⟩;
R2 : ⟨x1 = A2 ⇒ x2 = B2, 0.90, {{R2}}⟩;
R3 : ⟨x2 = B3 ⇒ x3 = C3, 0.60, {{R3}}⟩;
R4 : ⟨x2 = B4 ⇒ x3 = C4, 0.70, {{R4}}⟩;
R5 : ⟨x3 = C5 ⇒ x6 = F5, 0.70, {{R5}}⟩;
R6 : ⟨x3 = C6 ⇒ x6 = F6, 0.80, {{R6}}⟩;
R7 : ⟨x3 = C7, x4 = D7 ⇒ x5 = E7, 0.90, {{R7}}⟩;
R8 : ⟨x3 = C8, x4 = D8 ⇒ x5 = E8, 0.60, {{R8}}⟩;
R9 : ⟨x6 = F9 ⇒ x7 = G9, 0.90, {{R9}}⟩;
R10 : ⟨x6 = F10 ⇒ x7 = G10, 0.80, {{R10}}⟩;
R11 : ⟨x5 = E11 ⇒ x7 = G11, 0.70, {{R11}}⟩;
R12 : ⟨x5 = E12 ⇒ x7 = G12, 0.90, {{R12}}⟩;
F1 : ⟨R1R2, 0.95, {{F1}}⟩;
F2 : ⟨R3R4, 1.00, {{F2}}⟩;
F3 : ⟨R5R6, 0.65, {{F3}}⟩;
F4 : ⟨R7R8, 0.75, {{F4}}⟩;
F5 : ⟨R9R10, 1.00, {{F5}}⟩;
F6 : ⟨R11R12, 1.00, {{F6}}⟩;
O1 : ⟨x1 = A∗, 0.70, {{O1}}⟩;
O2 : ⟨x1 = B∗, 0.60, {{O2}}⟩;
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O3 : ⟨x4 = D∗, 0.90, {{O3}}⟩;
O4 : ⟨x6 = F ∗, 0.80, {{O4}}⟩;
P1 : ⟨x2 = B∗

1 , 0.48, {{O1, R1, R2, F1}}⟩;
P2 : ⟨x3 = C∗

1 , 0.20, {{O1, R1, R2, F1, R3, R4, F2}}⟩;
P3 : ⟨x3 = C∗

2 , 0.25, {{O2, R3, R4, F2}}⟩;
P4 : ⟨x5 = E∗

1 , 0.07, {{O1, O3, R1, R2, F1, R3, R4, F2, R7,

R8, F4}}⟩;
P5 : ⟨x5 = E∗

2 , 0.09, {{O2, O3, R3, R4, F2, R7, R8, F4}}⟩;
P6 : ⟨x6 = F ∗

2 , 0.09, {{O2, R3, R4, F2, R5, R6, F3}}⟩;
P7 : ⟨x6 = F ∗

1 , 0.07, {{O1, R1, R2, F1, R3, R4, F2, R5, R6,

F3}}⟩;
P8 : ⟨x7 = G∗

2, 0.06, {{O2, R3, R4, F2, R5, R6, F3, R9, R10,

F5}}⟩;
P9 : ⟨x7 = G∗

1, 0.05, {{O1, R1, R2, F1, R3, R4, F2, R5, R6,

F3, R9, R10, F5}}⟩;
P10 : ⟨x7 = G∗

3, 0.58, {{O2, O3, R3, R4, F2, R7, R8, F4, R11,

R12, F6}, {O4, R9, R10, F5}}⟩;
P11 : ⟨x7 = G∗

4, 0.05, {{O1, O3, R1, R2, F1, R3, R4, F2, R7,

R8, F4, R11, R12, F6}}⟩;
⊥1 : ⟨⊥, {{O1, O2, O3, R1, R2, F1, R3, R4, F2, R7, R8, F4}}⟩;
⊥2 : ⟨⊥, {{O2, O4, R3, R4, F2, R5, R6, F3}}⟩;
⊥3 : ⟨⊥, {{O1, O2, R1, R2, F1, R3, R4, F2, R5, R6, F3}}⟩;
⊥4 : ⟨⊥, {{O2, O3, R3, R4, F2, R5, R6, F3, R7, R8, F4, R9,

R10, F5, R11, R12, F6}, {O2, O4, R3, R4, F2, R5, R6, F3,

R9, R10, F5}}⟩;
⊥5 : ⟨⊥, {{O1, O2, R1, R2, F1, R3, R4, F2, R5, R6, F3, R9,

R10, F5}}⟩;
⊥6 : ⟨⊥, {{O1, O3, O4, R1, R2, F1, R3, R4, F2, R7, R8, F4,

R9, R10, F5, R11, R12, F6}, {O1, O2, O3, R1, R2, F1, R3,

R4, F2, R7, R8, F4, R11, R12, F6}}⟩;
⊥7 : ⟨⊥, {{O1, O2, O3, R1, R2, F1, R3, R4, F2, R5, R6, F3,

R7, R8, F4, R9, R10, F5, R11, R12, F6}}⟩;
⊥8 : ⟨⊥, {{O1, O3, R1, R2, F1, R3, R4, F2, R5, R6, F3, R7,

R8, F4, R9, R10, F5, R11, R12, F6}}⟩.
The ‘false’ node, denoted by P⊥, collectively represents

all the contradictions ⊥1,⊥2, ...,⊥8 by only containing a

minimal set of label environments, which is given as follows:

P⊥ : ⟨⊥, {{O1, O2, O3, R1, R2, F1, R3, R4, F2, R7, R8, F4},
{O2, O4, R3, R4, F2, R5, R6, F3}, {O1, O2, R1, R2, F1, R3,

R4, F2, R5, R6, F3}, {O2, O3, R3, R4, F2, R5, R6, F3, R7, R8,

F4, R9, R10, F5, R11, R12, F6}, {O1, O3, O4, R1, R2, F1,

R3, R4, F2, R7, R8, F4, R9, R10, F5, R11, R12, F6}, {O1,

O3, R1, R2, F1, R3, R4, F2, R5, R6, F3, R7, R8, F4, R9, R10,

F5, R11, R12, F6}}⟩.
Applying the extended GDE as introduced in Sec. III-D,

a ranked list of minimal candidates (including 85 candidates)

are generated as follows:

C1 = [R3, 0.6], C2 = [O2, 0.6;R8, 0.6],
C3 = [R8, 0.6;F3, 0.65], C4 = [O2, 0.6;F3, 0.65;O4, 0.8],
C5 = [O2, 0.6;O1, 0.7], C6 = [R8, 0.6;R5, 0.7],
C7 = [O2, 0.6;R11, 0.7], C8 = [O2, 0.6;R5, 0.7;O4, 0.8],
C9 = [R8, 0.6;O1, 0.7;O4, 0.8], C10 = [O2, 0.6;F4, 0.75],
C11 = [O2, 0.6;R1, 0.8], C12 = [O2, 0.6;O4, 0.8;R6, 0.8],
C13 = [R8, 0.6;O4, 0.8;R1, 0.8],
C14 = [R8, 0.6;R6, 0.8], C15 = [O2, 0.6;R10, 0.8],
C16 = [R8, 0.6;O4, 0.8;R2, 0.9],
C17 = [R8, 0.6;O4, 0.8;F1, 0.95],
C18 = [O2, 0.6;O3, 0.9], C19 = [O2, 0.6;R2, 0.9],

C20 = [O2, 0.6;R7, 0.9], C21 = [O2, 0.6;R9, 0.9],
C22 = [O2, 0.6;R12, 0.9], C23 = [O2, 0.6;F1, 0.95],
C24 = [O2, 0.6;F5, 1.0], C25 = [O2, 0.6;F6, 1.0],
C26 = [F3, 0.65;O1, 0.7], C27 = [F3, 0.65;F4, 0.75],
C28 = [F3, 0.65;R1, 0.8], C29 = [F3, 0.65;O3, 0.9],
C30 = [F3, 0.65;R2, 0.9], C31 = [F3, 0.65;R7, 0.9],
C32 = [F3, 0.65;F1, 0.95],
C33 = [O1, 0.7;R5, 0.7;O1, 0.7], C34 = [R4, 0.7],
C35 = [O1, 0.7;R11, 0.7;O4, 0.8],
C36 = [R5, 0.7;F4, 0.75],
C37 = [O1, 0.7;F4, 0.75;O4, 0.8],
C38 = [O1, 0.7;R6, 0.8],
C39 = [O1, 0.7;O4, 0.8;R10, 0.8],
C40 = [R5, 0.7;R1, 0.8], C41 = [O1, 0.7;O4, 0.8;O3, 0.9],
C42 = [O1, 0.7;O4, 0.8;R7, 0.9],
C43 = [O1, 0.7;O4, 0.8;R9, 0.9],
C44 = [O1, 0.7;O4, 0.8;R12, 0.9],
C45 = [O1, 0.7;O4, 0.8;F5, 1.0],
C46 = [O1, 0.7;O4, 0.8;F6, 1.0],
C47 = [R5, 0.7;O3, 0.9], C48 = [R5, 0.7;R2, 0.9],
C49 = [R5, 0.7;R7, 0.9], C50 = [R5, 0.7;F1, 0.95],
C51 = [R11, 0.7;R1, 0.8;O4, 0.8;R1, 0.8],
C52 = [R11, 0.7;R1, 0.8;R6, 0.8],
C53 = [R11, 0.7;O4, 0.8;R2, 0.9],
C54 = [R11, 0.7;O4, 0.8;F1, 0.95],
C55 = [F4, 0.75;O4, 0.8;R1, 0.8],
C56 = [F4, 0.75;R6, 0.8],
C57 = [F4, 0.75;O4, 0.8;R2, 0.9],
C58 = [F4, 0.75;O4, 0.8;F1, 0.95],
C59 = [R1, 0.8;R6, 0.8;R1, 0.8],
C60 = [R1, 0.8;O4, 0.8;R1, 0.8;R10, 0.8],
C61 = [R1, 0.8;O4, 0.8;R1, 0.8;R9, 0.9],
C62 = [R1, 0.8;O4, 0.8;R1, 0.8;R12, 0.9],
C63 = [R1, 0.8;O4, 0.8;R1, 0.8;F5, 1.0],
C64 = [R1, 0.8;O4, 0.8;R1, 0.8;F6, 1.0],
C65 = [O4, 0.8;R1, 0.8;O3, 0.9],
C66 = [O4, 0.8;R1, 0.8;R7, 0.9], C67 = [R6, 0.8;O3, 0.9],
C68 = [R6, 0.8;R2, 0.9], C69 = [R6, 0.8;R7, 0.9],
C70 = [O4, 0.8;R10, 0.8;R2, 0.9],
C71 = [R6, 0.8;F1, 0.95],
C72 = [O4, 0.8;R10, 0.8;F1, 0.95],
C73 = [O4, 0.8;R2, 0.9;O3, 0.9],
C74 = [O4, 0.8;R2, 0.9;R7, 0.9],
C75 = [O4, 0.8;R2, 0.9;R9, 0.9],
C76 = [O4, 0.8;R2, 0.9;R12, 0.9],
C77 = [O4, 0.8;O3, 0.9;F1, 0.95],
C78 = [O4, 0.8;R7, 0.9;F1, 0.95],
C79 = [O4, 0.8;R2, 0.9;F5, 1.0],
C80 = [O4, 0.8;R2, 0.9;F6, 1.0],
C81 = [O4, 0.8;R9, 0.9;F1, 0.95],
C82 = [O4, 0.8;R12, 0.9;F1, 0.95],
C83 = [O4, 0.8;F1, 0.95;F5, 1.0],
C84 = [O4, 0.8;F1, 0.95;F6, 1.0], C85 = [F2, 1.0].
From this, the reasoning consistency can be restored by

successfully modifying one of the above candidates, which

is detailed in Sec. IV.
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G. Discussion on Generated Candidates

In order to effectively modify a candidate, it is necessary

to examine if multiple related diagnosable ATMS nodes re-

garding a single interpolation step can be included in one

candidate. If this is the case, the modifications of the related

components must be considered jointly; otherwise, the mod-

ification of the candidate can be decomposed into that of its

individual members.

Given a step of interpolation M1,M2, ... ,Mn, Ri, Rj ,

RiRj ⇒ C, for notational simplicity, let NM1
, NM2

, ...,

NMn
, NRi

, NRj
, NRiRj

and NC denote the following nodes:

M1, M2, ... , Mn, Ri, Rj , RiRj and the consequence C,

respectively. Recall that the environment of each primitive

ATMS node, which may be an observation, a rule or a FIC,

contains only one node which represents itself [25]–[27].

Based on the label updating algorithm, every combination of

one label environment from each node NM1
, i ∈ {1, 2, ..., n},

and those label environments of nodes {NRi
, NRj

, NRiRj
}

jointly form a label environment of the node NC . Assume

that NC contributes to a certain contradiction. Then, if any of

its label environments contains NRiRj
, it must also contain

NRi
and NRj

, and vice versa. Since a candidate is gen-

erated by taking one element from every label environment

of each contradiction and any candidate which is a superset

of another is removed, it is impossible that {NRi
, NRiRj

}
or {NRj

, NRiRj
} is contained within a minimal candidate.

Similarly, suppose that the node N is any element in the label

environments of the nodes NM1
, NM2

, ... , and NMn
, then

{N,NRi
}, {N,NRj

}, or {N,NRiRj
} cannot jointly appear

in any single minimal candidate.

Note that NRi
may also be used in conjunction with

another rule rather than NRj
to perform interpolation, and

vice versa. Thus, it is possible that one label environment

of the ‘false’ node only contains NRi
but not NRj

while

another only contains NRj
but not NRi

. Therefore, a minimal

candidate may contain both NRi
and NRj

. In this situation,

the modification of related candidate elements NRi
and NRj

needs to be considered jointly.

IV. GENERALISING CANDIDATE MODIFICATION

Having generated and prioritised all the candidates, one

(and only one) of them needs to be modified in order to

restore system consistency. This process naturally starts from

the highest prioritised candidate. The principle underlying the

consistency-restoring algorithm as given in Alg. 1 is extended

here by treating all observations, rules, and FICs as modifiable

candidate elements. Recall that a candidate in general consists

of a number of elements. Given a candidate, the modification

of each of its elements will lead to a set of constraints in the

format of equalities and inequalities. A satisfied solution of all

joint equalities and inequalities imposed by the modifications

of all the elements within a candidate will guarantee the

modified result to be β0-contradiction-free. The modification

of FICs has been briefed in Sec. II-D, and thus omitted here.

The modification processes regarding observations, individual

rules, and pairs of rules corresponding to a single interpolation

step, are discussed below.

A. Observation Modification

It has an intuitive appeal to amend an observation based

on the uncertainty value without changing the vagueness level

associated with the relevant piece of information, which is

reflected by the shape and area of the underlying fuzzy set.

Such amendment may help maintain the interpretability of

the fuzzy sets whilst offering an opportunity of removing

inconsistencies in interpolation during the process of inference.

Thus, the modification of a defective observation associated

with a certainty degree of c is to shift the fuzzy set within its

value range while keeping its shape and area unchanged. The

shifting is required to satisfy the following:

1) The range of the shifting is bounded by Eqs. 15 and 16,

regarding the given c.

2) The shifted result should not cause disruption regarding

the definitions of the other object values of the same

variable, maintaining consistency in the specification of

that variable’s value domain. This is a similar constraint

as that imposed in Step 5 for the modification of a FIC

as described in Sec. II-D.

3) The propagation of the shifted result should maintain

mutual consistency with that of any other object value

of the same variable. This is a similar constraint as that

imposed in Step 6 for the modification of a FIC, again

as described in Sec. II-D.

All three constraints listed above can be satisfied by con-

structing and then solving a set of simultaneous equalities

and inequalities. The modification of observations can then be

readily propagated by applying the modified results as inter-

polation inputs within the process of fuzzy rule interpolation.

Note that as indicated above, constraints 2 and 3 are enforced

in a way similar to those required over the case of modifying a

FIC, whilst the computation implementing such modification

has been generally presented in detail in [24]. Therefore, such

common sub-procedures of modification are omitted here; they

are also omitted from the description of the modifications of

interpolation rules that is to be described next.

B. Single Rule Modification

The problem considered here is for situations where only

one of a given pair of neighbouring rules is identified as

defective. Following the scale and move transformation-based

FRI (which AFRI is developed upon), the interpolated result

in response to a given input (that may be an observation or

a previously inferred value) is derived from the consequent

of an artificially created intermediate rule through the process

outlined in Sec. II-A. This process involves the use of a pair

of neighbouring rules regarding the given input. Whilst the

antecedent of the intermediate rule and the input share the

same overall location, the interpolated value is achieved by

transferring the consequence of the intermediate rule with the

same proportion of the area and shape differences between

them. Therefore, in order to maintain interpretability, the single

defective rule should be modified while keeping the shape and

area of its consequence unchanged. The present work follows

on this intuition.
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Similar to the process of modifying an observation, the

modification of a defective rule is to shift the consequence

of the rule within its value range by satisfying the three

constraints listed in the last sub-section. However, all the

interpolated results that have been generated by applying this

defective rule also need to be modified accordingly, as the

defective rule has been utilised for their interpolation.

Although AFRI is applicable to fuzzy inference problems

with multiple-antecedent rules, for illustrative simplicity, rules

with two antecedents are taken in this work as an example to

show the underlying approach. The method can be extended

to rules with more than two antecedent variables in a straight-

forward manner. Given an input (A∗
k, B

∗
k), suppose that the

(closest) neighbouring rules Ai, Bi ⇒ Ci and Aj , Bj ⇒ Cj

flank this input. Without losing generality, assume that the

second rule is defective and is included in the candidate to be

modified, and that (Ai, Bi) is less than (Aj , Bj) in accordance

with the integration of their representative values (for a given

integration method). Based on the location of the antecedent of

this defective rule, in reference to the other rule that was jointly

fired with it to derive the detected contradictory interpolated

result, two mirrored cases need to be addressed.

First, consider the case where the location relation between

the input (A∗
k, B

∗
k), and its corresponding interpolated conse-

quence C∗
k is mapped by the line P1P3 within the assumed

three dimensional space, as shown in Fig. 5. This line is

determined by the locations of the two neighbouring rules used

for interpolation. Suppose that the defective rule consequence

is modified from Cj to Ĉj , then the original mapping line

P1P3 is accordingly shifted to the line P1P5. To quantitatively

measure the extent of such shifting, the following correction

rate c− is introduced:

c− =
d(Ci, Ĉj)

d(Ci, Cj)
, (24)

where d(C,C ′) stands for the distance between the fuzzy sets

C and C ′, computed as the distance between the representative

values of these two fuzzy sets. Suppose that the modified result

of C∗
k is denoted as Ĉ∗

k . Then, by applying the correction rate

c− to the distance between Ci and C∗
k , the distance from Ci

to Ĉ∗
k can be determined. Having known the locations of Ci

and C∗
k , the location of Ĉ∗

k can be computed, resulting in the

modified interpolated value.

The case discussed above covers the case where an input

which has invoked the defective rule for interpolation is less

than the integrated antecedent of the rule. For the case where

an input is greater than the antecedent, a mirrored procedure

is followed to perform the modification, with a different

correction rate c+. Assume that the input (A∗
k, B

∗
k) is flanked

by the defective rule Ai, Bi ⇒ Ci and the other neighbouring

rule, Aj , Bj ⇒ Cj , then c+ is defined as:

c+ =
d(Ĉi, Cj)

d(Ci, Cj)
. (25)

The modified result of (A∗
k, B

∗
k) can then be calculated using

this correction rate, in a way similar to that utilised in the first

case.

A , B = Ci        i         i>
x

y

z

p (A ,B ,C )

p (A ,B ,C )

p (A ,B ,C )
p

p

A , B = Cj        j          j>
j      j       j       

j      j       j

1

2

3
4

5

k jA
B

C

C

A

B

i      i      i

j

k

j

j

*

*

C
k
*

^

^
^

^ A , B = Cj        j          j>C

k
*

    

Fig. 5. Propagation of rule modification

C. Modification of Both Neighbouring Rules

Having addressed the situations where only one of the two

neighbouring rules appears in a candidate for modification, this

sub-section discusses the modification of both neighbouring

rules which are defective (i.e., both are included in a given

candidate).

Suppose that the two defective neighbouring rules are

Ai, Bi ⇒ Ci and Aj , Bj ⇒ Cj , and denote the (to be)

modified consequences of them as Ĉi and Ĉj , respectively.

For easy reference, call the defective rule whose integrated

antecedent is less than the input the left rule and the other

the right. If the left rule is modified first as illustrated in

Fig. 6(a), then the right defective rule will be modified using

the result of modifying the left rule, as shown in Fig. 6(b).

Then, the final modification can be represented by shifting the

original defective location mapping line P1P3 to the line P6P5

as also illustrated in Fig. 6(b). If, however, the modification

begins with the right defective rule, the modification will be

performed as illustrated in Fig. 7, which also results in the final

result that is the same as the one represented by the line P6P5

in Fig. 6(b). From this, due to the generality in the expression

of the two rules, it can be concluded that the revised result

is independent of the order of modifications. Therefore, the

modification of both neighbouring rules in a single candidate

can be done by revising the two individual defective rules

separately in either order.

D. Illustrative Example - Part 2

Continue the example given in Sec. III-F, the candidate C1,

which is of the highest priority, will be modified first. As only

one modifiable element R3 (If x2 = B3, THEN x3 = C3) is

contained in this candidate, the modification procedure given

in Section IV-B is applied. With respect to Eqs. 15 and 16,

the modification of the defective rule, R3 needs to satisfy:




Ĉ3 ≥ C3 −
1−0.6

2 (20− 0)

Ĉ3 ≤ C3 +
1−0.6

2 (20− 0)

min(supp(Ĉ3)) ≥ 0

max(supp(Ĉ3)) ≤ 20.
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(b) Right rule modification second

Fig. 6. Rule modification starting from left defective rule

Running interpolation with the two neighbouring rules con-

sisting of the rule R4 and the defective one R3 leads to the

following two interpolated rules:

IR1 : IF x2 is B∗, THEN x3 is C∗
2

IR2 : IF x2 is B∗
1 , THEN x3 is C∗

1 .

Since both antecedents of IR1 and IR2 are greater than the

antecedent of the defective rule, C+ is applied:

c+ =
d(Ĉ3, C4)

d(C3, C4)
.

From this, the overall location of the modified results will then

satisfy: {
d(Ĉ∗

1 , C4) = d(C∗
1 , C4) · c

+

d(Ĉ∗
2 , C4) = d(C∗

2 , C4) · c
+.

These results are then utilised to further constrain the modified

interpolated values such that
{
Ĉ∗

1 = C∗
1 + (d(Ĉ∗

1 , C4)− d(C∗
1 , C4))

Ĉ∗
2 = C∗

2 + (d(Ĉ∗
2 , C4)− d(C∗

2 , C4)).

The remaining process of the modification is to ensure that

the modified results and their propagations are consistent with
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(a) Right rule modification first
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(b) Left rule modification second

Fig. 7. Rule modification starting from right defective rule

the rest. This sub-process is again, the same as that of the

modification of a FIC as previously reported [24]. However,

by solving all the simultaneous equalities and inequalities

as listed above, including those imposed by the consistency-

ensuring sub-process, there is no solution found. Therefore,

the candidate with the second highest priority, that is C2 in

this example, is modified next.

The candidate C2 includes two elements, the observation

O2 and the rule R8, both of which need to be modified simul-

taneously in order to remove inconsistency. The modifications

of O2 and R8 are carried out based on the procedures given in

Sections IV-A and IV-B, respectively. In particular, according

to constraint number 1 of the observation modification process,

the modified value of O2 must satisfy:




B̂∗ ≥ B∗ − 1−0.6
2 (20− 0)

B̂∗ ≤ B∗ + 1−0.6
2 (20− 0)

min(supp(B̂∗)) ≥ 0

max(supp(B̂∗)) ≤ 20.

Similar constraints are also applied to the modified result

of the consequence of R8. As the modification procedure of

R8 is the same as that of R3, as described above, the compu-

tational details are omitted here. By solving the equalities and
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inequalities, including those posed for consistency-ensuring,

one solution is obtained as illustrated in Fig. 8. With the

consistency restored, this concludes this illustrative example.

Fig. 8. One solution of the running example

E. Computational Complexity

As the generalisation of AFRI, it may be expected that

the generalised AFRI will involve more computation than

its original. In particular, as compared to the computational

complexity of AFRI, that of the generalised version can be

considered from the following two viewpoints:

• Impact of adding rules and observations as diagnosable

candidate elements during candidate generation;

• Impact of the constraints led by these extra candidate

elements during candidate modification.

The computational complexity of candidate generation mainly

depends on the complexity of the ATMS. It is well known

that the standard ATMS has a computational complexity of

exponential order in the worst case [41], but the average-case

complexity can be greatly improved during practice use [42],

[43]. The introduction of observations and rules as diagnosable

candidate elements certainly increases the processing time

because of a more sophisticated problem is being addressed.

However, this does not affect the general time complexity

of the underlying ATMS. The complexity of the candidate

modification stage is mainly determined by the constraint sat-

isfaction mechanism which for the problem of FRI in general,

can be resolved in polynomial time complexity [24]. Although

the introduction of additional constraints may increase the

absolute computing time, the general time complexity will

not be affected as the constraints introduced by the extra

modifiable candidate elements are of the same type with those

used in AFRI. Putting both aspects together, at the system

level, the overall computational complexity of the generalised

version does not deteriorate from that of the original AFRI

approach.

V. APPLICATION AND DISCUSSION

Disease burden may result from environmental

changes [44]–[46]. An example study of this concerns

how a previously roadless area in northern coastal Ecuador

may be affected by the construction of a new road or railway

in term of epidemiology of infectious diseases [47]. The

causal relationship between the key factors driven by road

construction has been established in the work of [47], which

has been further quantitatively investigated using AFRI

in [24]. As the theoretical development reported in this paper

carries a substantial extension of [24], the application problem

is reconsidered in this paper to facilitate direct comparison.

For completeness, the sparse rule base is given below and the

fuzzy values included in the rules are listed in Table I.

R1: IF x1 = A1 and x2 = B1, THEN x3 = C1 (0.9);

R2: IF x1 = A2 and x2 = B2, THEN x3 = C2 (0.9);

R3: IF x3 = C3 and x4 = D3, THEN x5 = E3 (0.7);

R4: IF x3 = C4 and x4 = D4, THEN x5 = E4 (0.8);

R5: IF x5 = E5, THEN x6 = F5 (0.8);

R6: IF x5 = E6, THEN x6 = F6 (0.6);

R7: IF x6 = F7, THEN x7 = G7 (0.7);

R8: IF x6 = F8, THEN x7 = G8 (0.7);

R9: IF x5 = E9, THEN x8 = H9 (0.8);

R10: IF x5 = E10, THEN x8 = H10 (0.6);

R11: IF x8 = H11, THEN x9 = I11 (0.7);

R12: IF x8 = H12, THEN x9 = I12 (0.9);

R13: IF x9 = I13, THEN x10 = J13 (0.7);

R14: IF x9 = I14, THEN x10 = J14 (0.8);

R15: IF x7 = G15 and x10 = J15, THEN x11 = K15 (0.6);

R16: IF x7 = G16 and x10 = J16, THEN x11 = K16 (0.8).

Suppose that four pieces of uncertain information are ob-

served: O1 : x1 = A∗ = (0.16, 0.18, 0.20, 0.22)(0.7),
O2 : x2 = B∗ = (0.34, 0.36, 0.38, 0.40)(0.9), O4 : x4 =
D∗ = (0.65, 0.67, 0.69, 0.71)(0.6), and O8 : x8 = H∗ =
(0.54, 0.56, 0.58, 0.60)(0.7). These observations do not invoke

any rule in the rule base (with only B∗ overlapping with

the second antecedent attribute B2 of the rule R2). Thus,

traditional fuzzy system techniques that are based on the use of

compositional rule of inference cannot be employed to address

the problem. However, fuzzy rule interpolation may help.

Assume that the set-theory-based similarity measure is

utilised to compute the degree of contradiction, and let β0 =
0.5. β0-contradictions will result from most of the existing

interpolation methods [24]. In particular, the interpolated result

using the scale and move transformation-based FRI, which the

proposed work is built upon, leads to multiple (indeterminate)

β0-inconsistencies as shown in Fig. 9.

To obtain a consistent solution, the proposed adaptive fuzzy

interpolation approach is applied. From the modifiable com-

ponents (i.e., observations, rules and FICs) upon which the
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TABLE I
FUZZY VARIABLES AND THEIR NORMALIZED OBJECT VALUES

Var Meaning Object value

x1 Railway station proximity A1 = {0.02, 0.04, 0.06, 0.08}; A2 = {0.28, 0.30, 0.32, 0.34}

x2 Road proximity B1 = {0.18, 0.20, 0.22, 0.24}; B2 = {0.39, 0.41, 0.43, 0.45}

x3 Connectivity to transportation systems
C1 = {0.46, 0.48, 0.50, 0.52}; C2 = {0.62, 0.64, 0.66, 0.68}
C3 = {0.52, 0.54, 0.56, 0.58}; C4 = {0.85, 0.87, 0.89, 0.91}

x4 Distance to the closest town D3 = {0.52, 0.54, 0.56, 0.58}; D4 = {0.82, 0.84, 0.86, 0.88}

x5 Remoteness

E3 = {0.41, 0.43, 0.45, 0.47}; E4 = {0.72, 0.74, 0.76, 0.78}
E5 = {0.27, 0.29, 0.31, 0.33}; E6 = {0.58, 0.60, 0.62, 0.64}
E9 = {0.39, 0.41, 0.43, 0.45}; E10 = {0.62, 0.64, 0.66, 0.68}

x6 Contact outside of the community
F5 = {0.62, 0.64, 0.66, 0.68}; F6 = {0.30, 0.32, 0.34, 0.36}
F7 = {0.38, 0.40, 0.42, 0.44}; F8 = {0.70, 0.72, 0.74, 0.76}

x7 Reintroduction of pathogenic strains
G7 = {0.46, 0.48, 0.50, 0.52}; G8 = {0.65, 0.67, 0.69, 0.71}
G15 = {0.30, 0.32, 0.34, 0.36}; G16 = {0.60, 0.62, 0.64, 0.66}

x8 Demographic changes
H9 = {0.60, 0.62, 0.64, 0.66}; H10 = {0.30, 0.32, 0.34, 0.36}
H11 = {0.46, 0.48, 0.50, 0.52}; H12 = {0.68, 0.70, 0.72, 0.74}

x9 Social connectedness
I11 = {0.52, 0.54, 0.56, 0.58}; I12 = {0.20, 0.22, 0.24, 0.26}
I13 = {0.28, 0.30, 0.32, 0.34}; I14 = {0.55, 0.57, 0.59, 0.61}

x10 Hygiene and sanitation infrastructure
J13 = {0.26, 0.28, 0.30, 0.32}; J14 = {0.61, 0.63, 0.65, 0.67}
J15 = {0.36, 0.38, 0.40, 0.42}; J16 = {0.58, 0.60, 0.62, 0.64}

x11 Infectious disease rates K15 = {0.18, 0.20, 0.22, 0.24}; K16 = {0.68, 0.70, 0.72, 0.74}

Fig. 9. Interpolated result by the HS method

detected contradictions depend, GDE generates 16 minimal

candidates: C1 = [R10, 0.6], C2 = [O1, 0.7], C3 = [R3, 0.7],
C4 = [R11, 0.7], C5 = [O3, 0.8], C6 = [R4, 0.8], C7 =
[R9, 0.8], C8 = [O2, 0.9], C9 = [R1, 0.9], C10 = [R2, 0.9],
C11 = [R12, 0.9], C12 = [F6, 0.92], C13 = [F5, 0.93],
C14 = [F1, 0.94], C15 = [F2, 0.99], and C16 = [O4, 1.6]. One

solution resulted from the modification of the first prioritised

candidate C1 is shown in Fig. 10.

From this figure, it can be seen that there is no β0-

contradiction any more and thus consistency has been success-

Fig. 10. Interpolated result by the adaptive approach (based on the HS
method)

fully restored. That is, the original inconsistent interpolated

result has been successfully removed, demonstrating the effec-

tiveness of the present work. Interestingly, different from the

problem-solving process of the previous work reported in [24],

this solution has resulted from the modification of the very first

candidate C1. This is due to the employment of the proposed

candidate prioritisation method. By this method, the priority of

each candidate is calculated from their reliability rather than

from the informal intuition as used previously.
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VI. CONCLUSIONS

This paper has presented a generalised framework for

adaptive fuzzy rule interpolation. The generalisation allows

the identification and modification of observations and rules,

in addition to that of interpolation procedures that were ad-

dressed in the previous work. This is supported by introducing

extra information of certainty degrees associated such basic

elements of fuzzy rule interpolation. The work also allows for

all candidates for modification to be prioritised, based on the

extent to which a candidate is likely to lead to all detected

contradictions, by extending the classic ATMS and GDE. The

working of the extended approach is illustrated with a running

example throughout Secs. III and IV, and also demonstrated

by a realistic application in Sec. V.

This research can be further improved in several directions.

At the present, it works with interpolation involving just two

multiple-antecedent rules. It is worthwhile to investigate how

this work may be generalised to perform interpolation and

extrapolation with multiple multi-antecedent rules. Note that

the FRI approach proposed in [48] also deals with inconsis-

tency problems, but in a different way by considering the

relevant degrees of rules relevant to a given observation. In

particular, the relevant degree of a certain rule is determined

by the reciprocal distance from the observation to the rule. An

interesting piece of further work is therefore to compare these

two approaches. In addition, the proposed adaptive approach

is developed on the HS method only. It is desirable to apply

the adaptive approach to other FRI methods, such as those

implemented in Matlab FRI toolbox [49], and to compare the

generated results. Finally, it is of great interest to study how the

classical ATMS and GDE can be utilised to support traditional

fuzzy inference systems, and to develop an integrated incon-

sistency detection and fault-correction platform that supports

both standard fuzzy inference and fuzzy rule interpolation.
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