
Generalized Additive Models with Implicit Variable
Selection by Likelihood-Based Boosting

G. Tutz and H. Binder

A Discussion, by Robin Evans

Abstract

We examine the GAMBoost method and R package of Tutz and Binder (2006), and its effectiveness.
Whilst in many examples the algorithm performs relatively well, we find significant difficulties with the
approach taken, particularly in terms of computational time, automatic smoothing parameter selection
and the claimed ‘implicit’ variable selection. We also find that GAMBoost performs particularly poorly
in cases of high signal-to-noise ratio.

1 Introduction

Generalized additive models (GAMs) were first introduced by Hastie and Tibshirani (1986), as a natural
extension of generalized linear models (GLMs). As with GLMs, the data Y1, . . . , Yn are assumed to
be generated independently from some exponential family, with EYi = µi = g−1(ηi) for some smooth,
invertible link function g. In the case of GAMs however, the predictor ηi is an additive function of the
covariates xi1, . . . , xip rather than a linear one. That is,

ηi = f1(xi1) + · · ·+ fp(xip)

for some unknown functions f1, . . . , fp, usually chosen to be smooth. This clearly leads to a far broader
and more flexible class of models, and it is necessary for restrictions to be placed on the functions fj in
order to be able to fit them sensibly to observed data; for instance, if we choose the fjs to be polynomials
of large enough degree, we can easily find a curve which passes through all the observations, however it is
unlikely to be the optimal method for the purposes of prediction. The usual strategy is to consider each
fj to be a linear combination of some possibly infinite known set of basis functions, B1, B2, . . .

fj(x) =
∞∑
k=1

βjkBk(x),

where the βjk coefficients are to be estimated. In general it is not required that each of the functions fj
have the same basis. Even with a finite basis, it can quickly become impossible to identify a model unless
the number of covariates is much smaller than the number of observations.

There are various strategies available to deal with this difficulty; Wood (2006) advocates restricting the
degrees of freedom available to each covariate to a relatively small value (e.g. 4) and then performing
model selection afterwards if necessary.

1

Tutz and Binder introduce a new procedure, GAMBoost, in their paper Generalized Additive Modeling
with Implicit Variable Selection by Likelihood-Based Boosting ; we will occasionally refer to this as ‘the
paper’, and Tutz and Binder as ‘the authors’. The idea behind boosting is to provide a method which can
cope with large numbers of possibly uninformative covariates, whilst avoiding over-fitting. GAMBoost
uses an approach designed to avoid any fitting of covariates which are uninformative, hence ‘implicit
variable selection’ is carried out. Other methods such as Thin Plate Regression Splines (see for example
Wood (2006)) and Back Fitting (Hastie and Tibshirani (1986)) do not shrink parameters completely to
zero even when there is no significant evidence of any effect.

We will consider the problem of prediction, and we introduce Tutz and Binder’s measure of predictive
error.

Definition 1
Suppose that independent observations (x1, Y1), . . . , (xn, Yn) from a family of distributions indexed by a
parameter θ, are used to fit a model, and that a further set of independent observations are given by
(x∗1, Y

∗
1), . . . , (x∗N , Y

∗
N). Then the predictive deviance is given by

−2
N∑
i=1

[l(Y ∗i |θ̂i)− l(Y ∗i |θ̂∗i)]

where θ̂i is the parameter estimate from the fitted model, and θ̂∗i is the parameter estimate under the
saturated model. In the GLM or GAM case, the saturated model sets µ̂∗i = Y ∗i .

Justification for this loss function can be found in Spiegelhalter et al. (1998) and an example of its use in
Knorr-Held and Rainer (2001).

In section 2 we introduce boosting and Tutz and Binder’s GAMBoost algorithm, as well as discussing
smoothing parameter selection. In section 3 we replicate some of the paper’s initial simulations, and in
section 4 we replicate the paper’s comparison of GAMBoost and other methods. In section 5 we fit the
model to some real data, and section 6 contains conclusions and discussion of work in this area since the
publication of the paper.

2 Boosting

Boosting has its origins in classification problems from the field of machine learning. The idea, according
to Schapire (1990), is to use a weak learner, which is an algorithm that improves a model (or classification)
by a small amount at each iteration. This is then repeatedly run on different sections of the training data,
and the results combined in some form of ‘committee vote’. A simple example for a two-group classifier
comes from Friedman et al. (2000):

1. Run the weak learner on a subset of the training data of size k < n; call the resulting
classifier h1.

2. Run again on a new subset of size k, of which half were misclassified by h1; call this
h2.

2

3. Run again on a set of k points which h1 and h2 classify differently; call this h3.

4. Call the boosted classifier h = MajorityVote(h1, h2, h3).

Schapire shows that such a procedure will always improve the accuracy of the weak learner alone. The
term ‘boosting’ refers to the act of boosting the accuracy of a classification hypothesis. Friedman et al.
(2000) show that in the case of a two state classifier with covariates, that a boosting procedure called
‘Adaboost’ is approximately equivalent to fitting GAMs. This led to the further development of regression
boosting procedures—see for example Bühlmann and Yu (2003).

A general description of a regression-type boosting procedure, as described by Bühlmann and Hothorn
(2007), is as follows:

1. Take a ‘base procedure’, which maps weighted data (X1, Y1), . . . , (Xn, Yn) to a real-
valued function estimate ĝ.

2. Collect some initial weights w(0) (usually w(0)
i = n−1 for each i).

3. For each m = 1, . . . ,M :

(i) fit the base procedure to the data with weights w(m−1) to obtain an estimate
ĝ(m);

(ii) use the results to obtain new weights w(m), such as up-weighting poorly fitted
observations. Weights based on (working) residuals are common.

4. Aggregate the estimates to obtain

f̂ =
M∑
m=1

αmĝ
(m)

It is easy to see that the structure of the aggregated estimate lends itself naturally to additive functions of
the covariates: if the base procedure gives an additive function, then f̂ will also be additive. The choice
of base procedure, reweighting method, M , and aggregation method are, of course, crucial, and thus the
meaning of boosting in a regression context is potentially very broad. The base procedure usually tries to
minimise some loss function; in the case of fitting GAMs, it is common to proceed by fitting one covariate
at a time.

2.1 Functional Gradient Descent

Suppose that we are working to minimise

Eρ(Y, f(X))

3

over a set of functions f ∈ F for some loss function ρ. Then given some data, we can seek to minimise
the empirical risk, i.e.

n−1
n∑
i=1

ρ(Yi, f(Xi)).

Functional gradient descent (FGD) is a procedure of the following form, as given by Bühlmann and
Hothorn (2007):

1. Choose an offset value f (0) ≡ c to start, such as the value which minimises the
empirical risk.

2. For m = 1, . . . ,M :

(i) set

Ui = − ∂

∂f (m−1)(x)
ρ(y, f (m−1)(x))

∣∣∣∣
y=Yi, x=Xi

.

(ii) fit (X1, U1), . . . , (Xn, Un) using the base procedure, giving ĝ(m);

(iii) update f̂ (m) = f̂ (m−1) + νĝ(m).

The pseudo-residuals Ui are refitted to the base procedure in order to determine what additional informa-
tion exists in the covariates; this additional explanatory power is then added to the predictor. Justification
for this form is given in Appendix B.

Here 0 < ν ≤ 1 is chosen in such a way as to prevent the algorithm from becoming too ‘greedy’. An
analogy can be made with surfaces in Rn, where the steepest line of descent may be a curve; in this case
ĝ(m) is a local linear approximation to this curve, and if we attempt to follow it ‘too far’ it will significantly
diverge from the optimal, curved, path. Instead we do better by taking small steps, and re-approximating
the line of steepest descent at each step. ν = 0.1 is a common choice, and the default in mboost. If ν is
chosen too high, the the algorithm will tend to over-fit; a simulation study in Friedman (2001) illustrates
this effect.

In the case of L2-boosting, which uses the squared error loss, this procedure is equivalent to repeatedly
fitting the vector of residuals at each step. In likelihood-based boosting, the loss function is minus the
log-likelihood, or equivalently the deviance, which enables us to deal with any exponential family of
distributions. In spite of the persistence of the name ‘boosting’ in the context of regression, we feel that
‘functional gradient descent’ is a more apt description.

2.2 P-splines and Stumps

The two classes of weak learning procedure considered by Tutz and Binder are based upon P-splines and
stumps, which we now introduce.

Definition 2
Let z1 < · · · < zK+m+2 be a series of evenly spaced knots. The ith B-spline basis function of order m,

4

0.00 0.25 0.50 0.75 1.00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

y

Figure 1: B-spline basis for m = 2, K = 7, with knots z1 = −0.75 < −0.5 < −0.25 < · · · < 1.75 = z11.

denoted by Bm
i is a polynomial of degree m + 1 on the interval (zi, zi+m+2), such that Bm

i and its first
m derivatives vanish at the end points zi and zi+m+2. Outside this interval, the function is defined to be
zero.

A complete B-spline basis consists of K such functions, all identical except for a shifted domain. The
actual interval over which the splines will be evaluated is [xm+2, xK+1] See figure 1 for an illustration.

Fitting then takes the form

f(x) =
K∑
i=1

βiB
m
i (x)

This basis has the nice property that each function Bm
i is only locally non-zero, and hence the coefficients

are easier to interpret; it may be used to suggest, for example, whether particular ranges of a covariate
have any significant effect on the response. The choice m = 2 leads us to a cubic spline basis, although
this is not how cubic splines are usually presented.

A P-spline fit penalises differences in coefficients between neighbouring B-spline basis functions. For
example, a first order penalty would be

λ

K−1∑
i=1

(βi+1 − βi)2.

for some λ > 0. Tutz and Binder fit P-splines by using one step of Fisher scoring on one covariate at a
time, which is a form of Newton’s method applied to the log-likelihood. The algorithm is derived below,
in section 2.3.

5

An alternative is stumps, which fit piecewise constant functions; the learner begins with a constant
predictor η(0)

i ≡ c, and at each step k chooses a ‘split’ δ in one of the covariates (say the jth). Then the
new predictor is given by

η
(k+1)
i = η

(k)
i + c11{xij≤δ} + c21{xij>δ}.

In the likelihood-based boosting case, the choice of j, δ, c1 and c2 is made to reduce the deviance by the
greatest amount. In order to reduce over-fitting, we can penalise the stumps; Tutz and Binder subtract the
penalty λ(c1− c2)2 from the log-likelihood being maximised, which encourages shrinkage in the difference
between c1 and c2.

Although unpenalised stumps may be considered a weak learner, they are not necessarily ‘weak enough’;
that is to say that they tend to over-fit because they are too sensitive to the data. The penalty has a
similar effect to the parameter ν in the functional gradient descent above, and reduces over-fitting. This
phenomenon is observed by Bühlmann and Yu (2003), and we will encounter it in section 3.

2.3 GAMBoost

Tutz and Binder (2006) introduce methods for fitting generalized additive models using likelihood-based
boosting; any procedure of this form yielding a predictor which is additive in the covariates is called
GAMBoost. Looking at the form of the regression-type boosting and FGD procedures outlined above, it
is clear that if we fit only one covariate at each iteration, then the predictor will indeed be additive in the
covariates.

This componentwise approach of fitting one covariate at a time can be seen as a form of FGD where
the steepest descent along one axis is chosen. This also has an advantage in models which have many
covariates, some of which are redundant, since if a covariate has very little information the procedure is
discouraged from fitting it at all. This is the heart of the implicit variable selection in GAMBoost. Tutz
and Binder implement this procedure in the R package GAMBoost, using P-splines with 20 evenly spaced
knots. They choose to use a penalty based on second order differences, with a parameter λ.

Since we are dealing with a simple exponential family, we can write the log-likelihood in the form

l(θ, φ | y) = φ−1(yθ − b(θ)) + c(y, φ).

The next result establishes the GAMBoost algorithm.

Lemma 1
Suppose that Y1, . . . , Yn are independent observations from an exponential family and EYi = g−1(zTi β) =
µi for an n × p matrix of covariates Z and a p-dimensional vector of parameters β. Suppose further
that the dispersion parameter φ is known. Then one Fisher scoring iteration on the penalised likelihood
amounts to

β̂new = (ZT ŴZ + λΛ)−1ZT Ŵ D̂−1(y − µ̂),

where Z is the model matrix, D̂ = D(µ̂) is a diagonal matrix with entries g′(µ̂i)−1 and Ŵ = W (µ̂) is a
diagonal matrix of weights

Ŵii =
D̂2
ii

φb′′(θ̂i)
.

6

Proof. See appendices.

Remark 1
It is clear from the proof of Lemma 1, that the result extends to the Gaussian case even if the dispersion
parameter is unknown, because of the orthogonality of φ and θ.

Then using the above result, we can establish the GAMBoost algorithm for P-splines given in the paper.

1. Fit an intercept model ηi = η(0) by maximum likelihood estimation.

2. For each m = 0, 1, . . . ,M − 1

(i) For each covariate s = 1, . . . , p, compute

fs,new = Zsβ̂s,new = Zs(ZTs ŴZs + λΛ)−1ZTs Ŵ D̂−1(y − µ̂),

where each of Ŵ , D̂ and µ̂ are computed at step m, and Zs is the matrix of
parameters relating to the sth covariate.

(ii) For each covariate s = 1, . . . , p: compute the deviance reduction

reduction(s) = Dev(η̂(m))−Dev(η̂(m) + fs,new).

Choose j = arg mins reduction(s), the covariate which maximises this reduction
in the deviance.

(iii) Update the linear predictor using the jth covariate: η̂(m+1) = η̂(m) + fj,new.

The algorithm for stumps is very similar, but replaces step 2 with:

2. For each m = 0, 1, . . . ,M − 1

(i) Define

(c1, c2)T = c(s, ξ) = (ZTs,ξŴZs,ξ + λΛ)−1ZTs,ξŴ D̂−1(y − µ̂),

where Zs,ξ is an n×2 matrix with ith row (1{xis≤ξ}, 1{xis>ξ}), and Λ =
(

1 −1
−1 1

)
.

(ii) Set fs,ξ,new = c11{xis≤ξ} + c21{xis>ξ}, and then

reduction(s, ξ) = Dev(η̂(m))−Dev(η̂(m) + fs,ξ,new).

Choose (j, δ) = arg mins,ξ reduction(s, ξ), the covariate and split which maximise
this reduction in the deviance.

(iii) Update the linear predictor using the jth covariate with a split at δ: η̂(m+1) =
η̂(m) + fj,new.

7

2.4 Choosing λ

The next two subsections concern the two parameters which must be chosen in GAMBoost: the smoothing
parameter λ, and the number of steps used, M . The two choices are interdependent, since if we increase
λ, the fitting performed at each step will be more conservative, and so we will need to increase M as well
in order to arrive at the best fit.

Choosing λ is, as we will see, crucial to ensuring that the procedure behaves sensibly. Tutz and Binder
reason that the number of steps used to fit the model should be sufficiently large so as to prevent the
algorithm being too greedy; further they state that if M is too large, then the procedure will simply take
too long. They also claim that choosing a perfectly optimal λ does not improve the model enough to
make it a priority, and choosing λ coarsely is sufficient; our empirical investigations appeared to confirm
this, although it is hardly a satisfactory solution.

The authors therefore recommend choosing λ so as to ensure that the number of steps taken is between
50 and 200. The ad hoc nature of this choice turns out to be a problem, as we see in section 4. To
implement this, GAMBoost uses a coarse line search, which proceeds approximately as follows. An initial
value for the smoothing parameter λ1 is chosen, and set k = 1.

1. The fitting procedure is run for M = 200 iterations with λ = λk, and each fit between
50 and 200 is examined.

2. Let m ∈ {50, 51, . . . , 200} be the iteration with the best observed fit; the authors use
AIC to decide, see section 2.5 below.

(i) if m lies well between 50 and 200, then λ = λk is considered acceptable, and we
stop.

(ii) if m is very close to 200, then λk is assumed to be too large, and we take
λk+1 = λk/2, increase k by 1 and return to step 1.

(iii) if m is very close to 50, then λk is assumed to be too small, and we take λk+1 =
2λk, increase k by 1 and return to step 1.

In the event that we ‘overshoot’ (i.e. λk is too small and λk+1 is too large or vice-versa), then we move
in the opposite direction more conservatively. The default in GAMBoost is to take λ1 = 500, and m is
considered ‘very close’ to the upper-limit M if m > 0.95M .

2.5 Stopping Criteria

As we shall see in section 3 the number of fitting iterations is also crucial to how well the model will fit.
Tutz and Binder consider two stopping criteria: AIC and cross-validation.

AIC tries to minimise the deviance subject to a penalty based on the number of degrees of freedom in
the model. In order to calculate the approximate degrees of freedom associated with a fit, we consider
the hat matrix, defined by

µ̂ = Hy.

8

Then the effective degrees of freedom is

df = tr(H) =
n∑
i=1

∂µi
∂yi

,

i.e. the total amount of sensitivity in the fitted values to changes in the observations. This is consistent
with the theory of linear models. In general the relationship between µ̂ and y is not linear, so we need
some approximation µ̂ ≈ H̃y.

Lemma 2
An approximate expression for the hat matrix H after m boosting iterations is given by

Hm = L0 +
m∑
j=1

Lj(I − Lj−1) · · · (I − L0),

for n× n matrices L0, . . . , Lm.

Proof. See appendices for proof and definition of matrices Li.

The accuracy of this approximation is not formally discussed by the authors, but it appears to depend
upon the sum of squared differences between fits at successive iterations; thus the accuracy should increase
if smaller steps are taken. The AIC is defined by

AIC = Dev η̂(m) + 2dfm,

and hence approximated using Lemma 2, dfm ≈ tr(Hm). With this result we can fit the model over many
boosting steps, and then look to see which number of steps minimises the AIC.

An alternative, and in our view more natural approach, is to use cross-validation. AK-fold cross-validation
approach divides the data randomly and as evenly as possible into K groups. The model is then fitted
to the data with each group removed in turn, and then omitted data is used to judge the quality of the
fit; in particular Tutz and Binder’s GAMBoost uses the predictive deviance by default. The mean of the
predictive deviances at each iteration is calculated across the K ‘folds’, and the step which minimises this
average is selected as the stopping point of the full model.

The difficulty with this approach is computational cost: the accuracy of the method increases with K,
with K = n being the usual ‘leave one out’ cross-validation, but the computational complexity also
increases. An advantage is that it is also possible to experiment with different smoothing parameters, but
again this slows down the procedure dramatically.

2.6 Standard Deviations

The following result can be used to derive approximate confidence bands for GAMBoost fits.

Lemma 3
Let f̂ (m)

j be the fitted estimate of fj after m iterations. Then
f̂

(m)
j (x1j)

...
f̂

(m)
j (xnj)

 ≈ Qm,jy

9

for some matrix Qm,j .

Proof. Proof and definition of Qm,j given in appendices.

We then use Cov f̂ (m)
j ≈ Cov(Qm,jy) = Qm,j diag(φb′′(θi)) QTm,j . The authors report that a small

simulation study, not produced in the paper, suggested that the approximate confidence bands behaved
well; we discuss this further in section 6.

3 Exploratory Simulation Study

Tutz and Binder perform various simulations in order to compare the effectiveness of GAMBoost to other
methods. In all simulations, data are generated as follows: for each observation in a sample of size n,
the p covariates xi1, . . . , xip are generated as independent uniform random variables on [−1, 1]. Then the
Yi are generated as independent random variables from a simple exponential family with canonical link
(either Poisson or binary) with predictor g(µi) = ηi.

3.1 Stumps or splines?

The first simulations are designed to compare the properties of using P-splines and stumps as weak
learners. We take n = 100 and p = 5, and generate from a binary distribution with an additive predictor

g(µi) = c(−0.7 + xi1 + 2x2
i3 + sin(5xi5)). (1)

In this case c = 3. GAMBoost was applied to these data with smoothing parameter λ = 30 for P-splines
and λ = 2 for stumps; the number of boosting steps used is not mentioned, so we use M = 30 for stumps,
and M = 100 for P-splines, which gives visually similar results to the paper’s∗. Fits for each of the five
covariates, both methods and two separate data sets are given in figure 2; these should be compared to
figure 1 in the paper. The first data set, shown in the top half of the diagram, gives a very similar fit to
that illustrated by Tutz and Binder: both methods track the first and third covariates closely, and do not
over-fit the uninformative second and fourth covariates. Both slightly miss the peak and trough of the
sine wave in the fifth covariate, because of the inherent smoothing.

However, the second data set (bottom half) shows a different picture; here the stumps perform very
poorly, incorrectly assigning values close to −2 for both uninformative covariates, and failing to model
the first and fifth covariates well at all. P-splines continue to work well, which suggests that the data is
not unusual. The experiment being replicated here is rather ad hoc, and yields mixed results.

A further simulation was carried out to assess how mean square error (MSE) is related to the number
of boosting steps. Data was generated from the same model, and P-splines, penalised stumps and unpe-
nalised stumps are fitted; the mean square error between the predicted η(x) and the fitted η̂(x) was then
calculated at each step.

MSE = 2−p
∫

(η(x)− η̂(x))2 dx.

∗Since the smoothing parameters have been chosen differently and apparently arbitrarily, there seems to be no reason to
make the number of boosting steps the same for the two methods. One can count the number of splits in Tutz and Binder’s
figure 1 to come up with the figure of around 30 steps for stumps.

10

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x1

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x2

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x3

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x4

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x5

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x1

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x2

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x3

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x4

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x5

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x1

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x2

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x3

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x4

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0
−

6
−

4
−

2
0

2
4

6

x5

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x1

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x2

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x3

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x4

et
a

co
nt

rib
ut

io
n

−1.0 −0.5 0.0 0.5 1.0

−
6

−
4

−
2

0
2

4
6

x5

et
a

co
nt

rib
ut

io
n

Figure 2: Comparison of fits for two data sets (top 10 panels are one data set, bottom 10 the other) with
P-splines (first and third rows) and penalised stumps (second and fourth rows). Dashed lines indicate
true values.

11

0 20 40 60 80 100

2
4

6
8

10
Smooth Predictor

No. steps

M
S

E

0 20 40 60 80 100

2
3

4
5

6
7

Stump Predictor

No. steps

M
S

E

B−splines
pen. stumps
unpen. stumps

Figure 3: Mean curves of mean square error for P-splines (solid line), penalised stumps (dashed) and
unpenalised stumps (dot-dashed) at different numbers of boosting steps. Left panel data uses smooth
true predictor, right panel uses piecewise constant predictor. All based upon 20 repetitions.

This was repeated 20 times, and the mean MSE over these 20 realisations recorded. The results are found
in the first panel of figure 3, and should be compared to figure 2 of Tutz and Binder. The results are
entirely consistent with those in the paper. The lack of smoothness in our reproduced curves is due to
how the MSE was calculated: we used the R function adapt to integrate over the five-dimensional surface,
and in order to obtain a reasonable running time the relative error tolerance was set at 0.5, which is quite
high.

The right hand panel from figure 3 is generated very similarly, but uses a piecewise constant predictor to
favour stumps: let K(x) = 21{x≥0} − 1, then the predictor is given by

c(0.5K(xi1) + 0.25K(xi3) +K(xi5)). (2)

From these results we see that while unpenalised stumps converge more quickly to the correct solution
initially, they quickly become over-fitted, and do not reach a minimum as low as the other two methods;
this is what we would expect, since it moves greedily to reduce the deviance at each step. Further,
P-splines fit better than stumps in the smooth case, and are less vulnerable to over-fitting. As we
might suspect, stumps perform better than splines in terms of minimum MSE when the predictor is itself
piecewise constant. Based on these two experiments, Tutz and Binder conclude that P-splines are a better
approach when the underlying predictors are believed to be smooth, both because the mean square error

12

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

2 4 6 8

2
4

6
8

Binomial

AIC

C
V

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Poisson

AIC
C

V

Figure 4: Mean square error of model fitted using cross-validation plotted against that of model fitted
using AIC. 20 repetitions were used to both binary data (left panel) and Poisson (right).

appears to be smaller, and because the fits are more visually pleasing. Intuitively, it also makes sense to
use a smooth estimator for a smooth function.

3.2 Stopping Criteria

To compare the relative merits of cross-validation and AIC as stopping criteria, the paper includes a short
simulation. Data were generated using the predictor (1) with n = 100 and p = 5, both for the binary
case with c = 2.5 and the Poisson case with c = 1. In the paper it states that λ was chosen to ensure
that the number of steps used is similar for both cross-validation and AIC procedures; we use the default
value λ = 100 for the cross-validation, and Tutz and Binder’s coarse line search approach (see below)
for AIC. 5-fold cross-validation was used, and the MSE over the two approaches recorded for 20 separate
realisations of the data. The results are shown in our figure 4, which should be compared to figure 3 in
the paper.

Contrary to Tutz and Binder’s findings, we see almost no difference between AIC and cross-validation for
the Poisson model, and indeed one example where AIC does very poorly for the Binomial model. The
authors suggest that the relative consistency of the mean square error under the AIC suggests that the
approximation given in Lemma 2 is a good one; we do not follow this argument. We caution that the
MSE in our figure 4 was calculated with the same high relative error discussed for figure 3, but this does
not explain the extremely large value seen in one case; it may be the result of numerical instability in
adapt.

13

4 Comparison to Alternative Methods

The authors provide two larger simulations to compare the relative merits of GAMBoost to better known
fitting procedures. The various models fitted and compared were:

Base. This was simple a GLM with only a constant term, used as a baseline measure for comparison
purposes. This was reproduced using the R function glm. The value of the constant c is supposedly
chosen so that the full GLM model was able to improve significantly upon this baseline.

GLM. The full GLM model using all p covariates. Again, this was easily reproduced using R.

GLMse. The full GLM model was fitted, but then subjected to step-wise selection using AIC. The
R function stepAIC facilitated this. As in the paper, the degrees of freedom in the model were
multiplied by 1.4 to conform with wGAM (see below).

bfGAM. Hastie and Tibshirani’s back fitting algorithm for GAMs. This is easily implemented using the
function gam in the package gam. Degrees of freedom also multiplied by 1.4.

wGAM. Fitting of GAMs using P-splines with a first order penalty and smoothing parameter chosen by
cross-validation. The effective degrees of freedom are scaled by a factor of 1.4 as suggested by Wood
(2006); this modification was observed by Kim and Gu (2004) to eliminate occasional over-fitting,
though it has little theoretical justification.

wGAMfb. Wood’s model as above, but with stepwise selection applied afterwards. It was unclear how
this procedure was implemented, and so we were unable to assess this model.

GAMBoost. Tutz and Binder’s model with a coarse line search. This was implemented using their own
GAMBoost package and the function optimGAMBoostPenalty.

Optimal. GAMBoost with an optimal number of boosting steps, as chosen by K-fold cross-validation.
K was unspecified, so we used the default value 10 from the function cv.GAMBoost.

The precise R code we use for each model is presented in the appendices.

In each part, the models were trained on n = 100 complete data points; then, a further N = 1000
observations (x∗i , Y

∗
i) were generated in the same manner, and the fitted models were used to predict

the outcomes using the covariates only. The quality of their prediction was assessed using the predictive
deviance. In the binary case, this is

Dev(Y ∗i ; Ŷi) = 2(Y ∗i log Y ∗i + (1− Y ∗i) log(1− Y ∗i)− Y ∗i log Ŷi − (1− Y ∗i) log(1− Ŷi))

= 2Y ∗i log
(
Y ∗i
Ŷi

)
+ 2(1− Y ∗i) log

(
1− Y ∗i
1− Ŷi

)
= −2Y ∗i log Ŷi − 2(1− Y ∗i) log(1− Ŷi)

where the last simplification follows from the fact that Y ∗i is either 0 or 1; here Ŷi is the fitted probability
of the response being 1. In the Poisson case,

Dev(Y ∗i ; µ̂i) = 2(Y ∗i log Y ∗i − Y ∗i − Y ∗i log µ̂i + µ̂i)

= 2Y ∗i log
(
Y ∗i
µ̂i

)
+ 2(µ̂i − Y ∗i)

where µ̂i is the fitted mean.

14

4.1 Linear Predictors

In the first part, data were generated from exponential families via a linear function of the covariates,
so a GLM ought to be an adequate model; the purpose of this was to check that GAMBoost does not
over-fit models where simple relationships are the correct ones. Data were generated as in section 3, but
with predictor

g(µi) = c(xi1 + 0.7xi3 + 1.5xi5), (3)

where c = 2 in the binomial case, and c = 0.5 in the Poisson; p = 5 and p = 10 were both tested. There
were 50 repetitions of each experiment, and in each case the mean predictive deviance over the 1000
predictions was recorded. The results are shown in figure 5, where each boxplot shows the spread of the
50 repetitions; this should be compared to figure 4 from the paper.

We find that the results for the Base, GLM, GLMse, GAMBoost and Optimal models are all completely
comparable with those given by Tutz and Binder. Our results give noticeably worse predictions for the
other GAM fitting methods, which we assume is due to choosing different settings from the authors. The
results suggest that GAMBoost performs very well, and in particular does no worse than GLM, which
should be the ‘correct’ procedure given the true model. There is no evidence of GAMBoost over-fitting,
whereas bfGAM and wGAM both appear to over-fit, especially in the p = 10 Binomial case.

However, we encounter significant problems when c is increased. Repeating the same experiment with
c = 2 in the Poisson case, which increases the signal-to-noise ratio in the model, we find that GAMBoost
performs extremely badly. In many, although not all examples, it is observed to massively over-fit the
data, resulting in a model which does not predict well at all. The appropriate remedy appeared to be
to increase the upper limit on the number of steps allowed from its default of 200, and use a high value
of λ; however in order to achieve this, the time taken to fit the model becomes very large. In the worst
cases observed, increasing the number of steps to 5000 gave a good fit, but required around 10 minutes
computing time.

4.2 Additive Model

For their main simulation, the authors return to model (1), using p = 3, 10, 50, with c = 1, 2, 3 for the
binomial case, and c = 0.5, 0.75, 1 for the Poisson case. They give results for both n = 100 and n = 400,
but the latter case proved to be far too slow for reproduction† (when fitted using their GAMBoost package).
Again there were 50 repetitions of each experiment; the mean over the 50 repetitions is recorded in table
4.2, and should be compared to table 1 from the paper. GLMse, bfGAM and wGAM could not be fitted
to the p = 50 case, as the fits were either intractable or had too many degrees of freedom.

There were also problems of non-convergence in the binary case—if fitted probabilities are too close to 0
or 1 we exclude them because it results in much larger deviances for wGAM and bfGAM. The number of
times this happened is recorded in table 4.2.

The results are broadly comparable to those obtained by Tutz and Binder, although the GAMBoost de-
viances for binomial data with p = 3 are higher than expected; we can think of no satisfactory explanation
for this. The Optimal fit seems to behave as expected, however. GAMBoost appears to fit as well as
bfGAM and wGAM in the p = 3 and p = 10 cases, and has the advantage of being able to make sensible
fits in the p = 50 case, which the other two methods cannot do without some adjustment. Simple GLM
†The entire experiment for the n = 100 case ran in approximately 24 hours, whereas in the n = 400 case, only one of the

eighteen cases was finished in this time.

15

●

●●

●

●

●

●

●

●

●

●

●

●

base GLM GLMse bfGAM wGAM GB optimal

1.
0

1.
5

2.
0

2.
5

Binomial, p = 5

●● ●

●

●

●

●

base GLM GLMse bfGAM wGAM GB optimal

1.
0

1.
5

2.
0

2.
5

Binomial, p = 10

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

base GLM GLMse bfGAM wGAM GB optimal

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

Poisson, p = 5

●

●

●

●

●

●

●

●●

●

base GLM GLMse bfGAM wGAM GB optimal

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

Poisson, p = 10

Figure 5: Mean predictive deviance for 50 repetitions over various models and methods. Here GB =
GAMBoost and other methods are explained above.

16

Family c p Base GLM GLMse bfGAM wGAM GAMBoost Optimal

Bin

1
3 1.40 1.36 1.36 1.32 1.30 1.40 1.28
10 1.39 1.47 1.41 1.50 (1) 3.06 1.40 1.35
50 1.40 5.05 (40) – – – 1.61 1.41

2
3 1.39 1.30 1.31 1.02 (1) 1.02 1.92 1.00
10 1.40 1.39 1.34 1.24 (1) 8.27 1.07 1.06
50 1.39 5.35 (42) – – – 1.31 1.27

3
3 1.39 1.28 1.28 0.81 1.90 1.71 0.82
10 1.40 1.40 1.34 0.92 10.38 (3) 0.90 0.89
50 1.39 4.50 (45) – – – 1.06 1.05

Pois

0.5
3 1.44 1.38 1.38 1.26 (2) 1.22 1.32 1.25
10 1.44 1.51 1.45 1.34 1.39 1.48 1.35
50 1.46 3.78 – – – 1.75 1.42

0.75
3 1.95 1.78 1.77 1.21 1.19 1.32 1.21
10 1.93 1.94 1.89 1.30 (1) 1.40 1.57 1.39
50 1.94 5.91 – – – 2.01 1.58

1
3 2.92 2.48 2.48 1.20 1.16 1.32 1.20
10 2.87 2.77 2.73 1.27 1.31 1.58 1.36
50 2.88 16.01 – – – 2.24 1.69

Table 1: Mean predictive deviance over 50 repetitions for various model fits, and various methods of data
generation. Brackets indicate the number of times convergence failed in each example.

performs poorly due to over-fitting in the p > 3 cases. Overall, the results show the benefits of GAMBoost
in being able to handle large numbers of uninformative covariates.

4.3 Computational Cost

The time taken to fit complex models is a concern, as shown in table 2. Although GAMBoost takes
a comparable amount of time to wGAM and bfGAM for the n = 100 case, its complexity appears to
increase rapidly for larger n; in contrast, none of the other methods seem significantly to depend upon n‡.
Apparently paradoxically, the Optimal method does not seem to slow down with larger n; we suspect that
this is because as n increases, the default settings for the smoothing parameter in GAMBoost become
unhelpful, and thus the coarse line search is invoked many more times to choose a sensible value. Further
work to establish a good initial ‘guess’ for λ, varying with n, might be able to resolve this problem.

5 Bodyfat Data

Tutz and Binder analyse some psychiatric data, which we were unable to obtain. Instead we look at
the ‘bodyfat’ data, found in the package mboost, and analysed by Garcia et al. (2005). It consists of
p = 9 covariates from n = 71 women, as well as body fat percentage measured using Dual Energy X-Ray
Absorptiometry, which is accurate but very expensive; the covariates are age and eight anthropometric
measurements. The question of interest is to create a model which is simple and accurately predicts body
‡The observed decrease in, for example, wGAM between n = 100 and n = 200 is almost certainly due to the small sample

size used in this experiment (10 fits).

17

n Base GLM GLMse bfGAM wGAM GAMBoost Optimal
100 0.0084 0.0164 0.273 16.2 40.0 21 369
200 0.0092 0.0172 0.331 13.2 12.8 140 57
400 0.0108 0.0216 0.488 18.3 8.0 491 120
800 0.0144 0.0269 0.779 26.6 10.9 3780 350

Table 2: Time in seconds to fit model to various methods and sizes of data set. Each value is an average
of 10 fits to binary responses using model (1) with p = 10, c = 2.

fat from the easily measured covariates. These data are comparable to Tutz and Binder’s data as they
were also trying to fit a predictive model with n = 59 and p = 13.

Exploratory plots of the bodyfat data (not shown) make it clear that the covariates are highly dependent,
and so the aim is to keep the model simple, and not introduce covariates which provide little additional
information. From a healthcare provider’s perspective, a quick and simple way of measuring body fat,
perhaps from three or four measurements is desired. Garcia et al. suggest a linear model using three
covariates. We will attempt to fit GAMs with Gaussian responses.

GAMBoost with 10-fold cross-validation fits 8 of the 9 covariates; the contributions of each covariate are
shown in figure 6. This presents a problem, since we do not want a model which uses this many covariates.
We could use the confidence bands to try and eliminate variables which are not significant, but this seems
to defeat the ‘implicit variable selection’ claimed to be part of GAMBoost. The age covariate in particular
does not appear to be significant, and other model fits corroborate this, but it is selected for two iterations.
In Tutz and Binder’s example, 12 of the 13 covariates are fitted, but the confidence bands shown in the
paper suggest that many are not significant for a large proportion of their range.

This may be a fundamental problem with having such a small sample size; we ought to be suspicious
of any model with n = 59 which uses 12 covariates, especially when the covariates are certainly highly
dependent, which is the case in both data sets. The curse of dimensionality suggests that we should not
expect to get much information, and using a class of curves as broad as cubic splines may cause the model
to imply nuance which does not really exist.

As an alternative using gam from package mgcv, we try fitting the data with a P-spline basis and second
order penalisation. Setting the basis dimension of the P-splines to 5 allows us to fit all the covariates,
and we use the correction factor of 1.4 for degrees of freedom. Using the standard summary table, we are
then easily able to identify candidate covariates to remove.

The approximate procedure we use is as follows: if the effective degrees of freedom (e.d.f.) are very close to
1, this suggests that this covariate really only has a linear effect, and so we try refitting it as a linear term.
If the p-value indicated for the linear term is not significant, then we remove the covariate altogether. To
choose between covariates with e.d.f. close to 1, we look at the approximate p-values provided and remove
the covariate whose p-value is highest§. Proceeding in this manner leads to the removal of 4 covariates,
and keeps only linear terms of 2 more; this much more parsimonious model explains 94.3% of the total
deviance, compared to the original model’s 94.8%.

GAMBoost does not have such a simple method for eliminating unnecessary covariates.
§We do not use this p-value for model selection directly because, as Wood cautions, it is only very approximate.

18

20 30 40 50 60
−

0.
4

−
0.

2
0.

0
0.

2
age

70 80 90 100

−
6

−
2

2
4

6

waistcirc
90 100 110 120 130

−
6

−
2

0
2

4

hipcirc

5.5 6.0 6.5 7.0

−
0.

5
0.

0
0.

5

elbowbreadth
8 9 10 11

−
2

0
2

4
6

kneebreadth
2.5 3.0 3.5 4.0 4.5

−
4

−
2

0
2

4
6

anthro3a

2.5 3.0 3.5 4.0 4.5 5.0

−
2

0
1

2
3

anthro3b
2.0 2.5 3.0 3.5 4.0 4.5

−
1.

0
0.

0
1.

0

anthro3c
3.5 4.5 5.5

−
1.

0
0.

0
0.

5
1.

0
anthro4

Figure 6: Contributions to predictor for each covariate as fitted using GAMBoost with cross-validation.
Dashed lines are approximate 95% confidence bands.

6 Conclusions

GAMBoost as a procedure seem fairly limited when we take full account of its merits and difficulties.
Choice of smoothing parameter is a matter of particular concern: the coarse line search advocated by
Tutz and Binder seems ad hoc at best, and as we saw in section 4, it sometimes fails completely.

The failure of the model in cases of high signal-to-noise ratio is the most worrying problem we have
encountered. It is counter intuitive that having relatively more information should cause over-fitting, but
because of the attempt to place an upper limit on the number of steps used in the coarse line search, the
model attempts to converge too quickly. The only way around this is to increase the number of steps and
the smoothing parameter, but this makes the fitting procedure extremely slow.

The authors’ choice of AIC for model selection is confusing given the lack of justification for their approxi-
mation of the effective degrees of freedom. The proof reproduced here relies on the sum of m approximate
expressions, and it is not clear that this is necessarily a good approximation; presumably it would im-
prove as the sample size n increases. cross-validation is a more robust method for model evaluation, and
we would recommend it unless more results are provided concerning the AIC approximation. The same
approximation is used to estimate confidence bands, so these are not well justified either; in their data
analysis, Tutz and Binder suggest that over dispersion may be present in their example, and so use a
bootstrap method to widen their bands. Altogether this seems a rather unsatisfactory approach. We
believe that it would required only simple modifications to allow GAMBoost to support models where

19

dispersion parameter estimation is required. This would allow quasi-likelihood fits as well as use of gamma
distributions, whereas currently only Gaussian, binomial and Poisson distributions are supported.

More positively, GAMBoost does fit models with large numbers of covariates without resort to artificially
restricting the degrees of freedom, and seems to perform particularly well when fitting binary data, which
is known to be a difficult problem. Computational complexity is a potential worry but sample computation
times (table 2) show that GAMBoost performs well in comparison to other fitting methods, at least in
the n = 100 case. The authors mention that this is particularly impressive given that model selection
may need to be performed afterwards for fitting procedures such as wGAM, but we dispute the idea that
GAMBoost is completely automatic.

Since its publication, the paper has largely been cited in papers which explore variations of boosting
applications. Binder and Tutz (2008) perform more simulations to come to essentially the same conclusion
as in their 2006 paper, that GAMBoost performs well when applied to problems with many uninformative
covariates. An overview of various regression boosting methods, including brief mention of GAMBoost, is
found in Bühlmann and Hothorn (2007). Tutz and Reithinger (2007) apply the same techniques seen here
to semi-parametric mixed models, and Tutz and Binder (2007) apply what they term ‘partial boosting’
to ridge regression. There is no sign yet of a unifying framework for these techniques.

More widespread practical use of boosting is unlikely to emerge until a more solid foundation of theoretical
results is obtained. Furthermore, the problems which Tutz and Binder suggest that GAMBoost can
be used to solve, such as implicit covariate selection and smoothing parameter selection, are not really
addressed in a satisfactory way; the coarse line search is an undesirable tool to use. Hastie and Tibshirani’s
back fitted GAMs and Wood’s spline methods for GAMs are much better understood, and as we saw,
may be used for covariate selection; thus we recommend an applied statistician give these methods first
preference.

20

References

H. Binder and G. Tutz. A comparison of methods for the fitting of generalized additive models. Stat
Comput, 18:87–99, 2008.

P. Bühlmann and T. Hothorn. Boosting algorithms: regularization, prediction and model fitting. Stat.
Sci., 22(4):477–505, 2007.

P. Bühlmann and B. Yu. Boosting with the l2 loss: regression and classification. Journal of the American
Statistical Association, 98(462):324–339, 2003.

J. Friedman. Greedy function approximation: a gradient boosting machine. Ann. Stat., 29(5):1189–1232,
2001.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting.
Ann. Stat., 28(2):337–374, 2000.

A.L. Garcia, K. Wagner, T. Hothorn, C. Koebnick, H.F. Zunft, and U. Trippo. Improved prediction of
body fat by measuring skinfold thickness, circumferences, and bone breadths. Obesity Research, 13(3):
626–634, 2005.

T. Hastie and R. Tibshirani. Generalized additive models. Statistical Science, 1(3):297–310, 1986.

Y.-J. Kim and C. Gu. Smoothing spline gaussian regression: More scalable computation via effcient
approximation. Journal of the Royal Statistical Society, Series B, 66(2):337–356, 2004.

L. Knorr-Held and E. Rainer. Projections of lung cancer mortality in West Germany: a case study in
Bayesian prediction. Biostatistics, 2(1):109–129, 2001.

R.E. Schapire. The strength of weak learnibility. Machine Learning, 5:197–227, 1990.

D.J. Spiegelhalter, N.G. Best, and B.P. Carlin. Bayesian deviance, the effective number of parameters, and
the comparison of arbitrarily complex models. Technical report, MRC Biostatistics Unit, Cambridge,
1998.

G. Tutz and H. Binder. Generalized additive modeling with implicit variable selection by likelihood-based
boosting. Biometrics, 62:961971, 2006.

G. Tutz and H. Binder. Boosting ridge regression. Computational Statistics & Data Analysis, 51(12):
2872–2900, 2007.

G. Tutz and F. Reithinger. A boosting approach to flexible semiparametric mixed models. Statistics in
Medicine, 26(14):2872–2900, 2007.

G. Wahba. Spline models for observational data. Philidelphia: SIAM, 1990.

S.N. Wood. Generalized linear models: an introduction with R. Chapman Hall, 2006.

21

A Proofs

Proof of Lemma 1
Since we are considering an exponential family, we can write the penalised log-likelihood in the form

lλ(θ) =
n∑
i=1

[
φ−1(yiθi − b(θi)) + c(yi, φ)

]
+ 1

2λβ
TΛβ.

Fisher scoring is given by

β̂n+1 = β̂n + Î−1
λ (β̂n)ŝλ(β̂n)

where Iλ is the penalised Fisher information matrix, and sλ is the penalised score function.

∂

∂β
lλ =

∂η

∂β

∂µ

∂η

∂θ

∂µ

∂

∂θ

n∑
i=1

[
φ−1(yiθi − b(θi)) + c(yi, φ)

]
+ 1

2

∂

∂β
λβTΛβ

=
∂η

∂β

∂µ

∂η

∂θ

∂µ

∂

∂θ

n∑
i=1

[
φ−1(yiθi − b(θi)) + c(yi, φ)

]
+ λΛβ

=
∂η

∂β

∂µ

∂η

∂θ

∂µ
φ−1(y − µ) + λΛβ,

since µi = b′(θi). Now,

ηi = zTi β

η = Zβ

∂η

∂β
= Z

where Z is the standard matrix of covariates. Also,

η =

g(µ1)
· · ·
g(µn)

so

∂µ

∂η
= diag g′(µi)−1 := D(µ)

and

∂µi
∂θj

=
∂b′(θi)
∂θj

= b′′(θi)1{i=j}

so
∂µ

∂θ
= diag b′′(θi)

∂θ

∂µ
= diag b′′(θi)−1

22

and letting Σ = diag σ2
i where σ2

i = φ b′′(θi) we have

∂

∂β
lλ = ZTDΣ−1(y − µ) + λΛβ.

Letting W = DΣ−1D then

∂

∂β
lλ = ZTWD−1(y − µ) + λΛβ.

Then the penalised Fisher information is

Iλ = E
[
− ∂2lλ
∂βT∂β

]
.

It is easy to see that when the differentiation and expectation are applied to the second term we will get
λΛ. The first term is just the unpenalised score, and hence we can use the well known identity,

E
[
− ∂2l

∂βT∂β

]
= E

[(
∂l

∂β

)(
∂l

∂β

)T]
= EZTDΣ−1(y − µ)(y − µ)TΣ−1DZ

= ZTDΣ−1ΣΣ−1DZ

= ZTWZ.

Thus the Fisher scoring iteration involves

lβ̂n+1 = β̂n + (ZT ŴZ + λΛ)−1(ZT Ŵ D̂−1(y − µ̂) + λΛβ̂n);

where Ŵ , D̂ and µ̂ are all evaluated at β̂n. For the first iteration, we have β0 = 0, so

β̂1 = (ZT ŴZ + λΛ)−1ZT Ŵ D̂−1(y − µ̂).

This gives the result.

Proof of Lemma 2
Letting η̂(k) denote the vector of fitted predictors after k iterations, we have

η̂(k+1) = η̂(k) + Zjγ̂j

where j is the covariate selected for updating, and Zj is matrix of parameters for the jth covariate. Then

γ̂j = (ZTj ŴkZj + λΛ)−1ZTj ŴkD̂
−1
k (y − µ̂(k))

as shown in Lemma 1. Let h(η) = (h(η1), . . . , h(ηn))T , where h(·) = g−1(·). Then a Taylor expansion of
the inverse link function (which is always twice differentiable) gives

h(η′) = h(η) +
(
∂h(η)
∂η

)T
(η′ − η) + o(η′ − ηT)

23

and thus

h(η̂(k+1)) ≈ h(η̂(k)) + D̂k(η̂(k+1) − η̂(k))

µ̂(k+1) ≈ µ̂(k) + D̂k(η̂(k+1) − η̂(k))

where D̂k = D(µ̂k) is as in Lemma 1.

µ̂(k+1) − µ̂(k) ≈ D̂kZj(ZTj ŴkZj + λΛ)−1ZTj ŴkD̂
−1
k (y − µ̂(k))

= Lk+1(y − µ̂(k))

where Lk+1 = D̂kZj(ZTj ŴkZj + λΛ)−1ZTj ŴkD̂
−1
k . Then, recursively,

µ̂(k+1) − µ̂(k) ≈ Lk+1(y − µ̂(k))

= Lk+1(y − µ̂(k−1) + (µ̂(k) − µ̂(k−1)))

≈ Lk+1(I − Lk)(y − µ̂(k−1))
...

...
≈ Lk+1(I − Lk)(I − Lk−1) · · · (I − L1)(y − µ̂(0)).

Further, since µ̂(0) = (ȳ, . . . , ȳ)T = n−111Ty, then letting L0 = n−111T we have

µ̂(k+1) − µ̂(k) ≈ Lk+1(I − Lk) · · · (I − L1)(I − L0)y,

and then by summing differences,

µ̂(m) − µ̂(0) ≈
m∑
j=1

Lj(I − Lj−1) · · · (I − L0)y

µ̂(m) ≈ L0y +
m∑
j=1

Lj(I − Lj−1) · · · (I − L0)y.

Proof of Lemma 3
Suppose that the jmth covariate is selected at the mth iteration, then by Lemma 1,

Ziβ
(m)
i = Ziβ

(m−1)
i +Rm(y − µ̂(m−1))1{i=jm}

where Rm = Zj(ZTj Ŵm−1Zj + λΛ)−1ZTj Ŵm−1D̂
−1
m−1. Then by Lemma 2,

µ̂(m) ≈ Hmy,

so

Ziβ
(m)
i ≈ Ziβ(m−1)

i +Rm(I −Hm−1)y1{i=jm}
...

...

≈ Ziβ(0)
i +

m∑
k=1

Rk(I −Hk−1)y1{i=jk}

= 0 +
m∑
k=1

Rk(I −Hk−1)y1{i=jk}

24

and thus the claimed result holds with Qm,j =
∑m

k=1Rk(I −Hk−1)1{i=jk}.

B Form of Functional Gradient Descent

This sketch derivation is mostly taken from Friedman (2001). We are interested in minimising

EX,Y [ρ(Y, f(X))],

and we assume that f takes the form

f(x) =
M∑
m=0

h(m)(x)

f (k)(x) =
k∑

m=0

h(m)(x),

where each h(m) is an incremental step or ‘boost’. For a fixed x, to obtain a steepest descent we have

h(m)(x) = −νφ(m)(x)

where ν is a scalar and

φ(m)(x) =
∂

∂f (m−1)(x)
EY [ρ(Y, f (m−1)(x))].

Now, assuming we may interchange the differentiation and expectation, we get

φ(m)(x) = EY

[
∂

∂f (m−1)(x)
ρ(Y, f (m−1)(x))

]
.

Now, in general we can only observe the pair (x, Y) at a finite number of n data points, so we can use

−Ui = φ(m)(Xi) =
∂

∂f (m−1)(x)
ρ(Y, f (m−1)(x))

∣∣∣∣
(x,Y)=(Xi,Yi)

,

but φ(m) is not defined elsewhere; we must use the strength of our observations to regress over the whole
space. Thus we can choose a function from our weak learner class G, which is most highly correlated with
φ(m) at the data points. But then we are just fitting the pseudo-responses Ui to the data Xi using the
base procedure. We then use this n-dimensional approximation to the true function of steepest descent,
which lies in a possibly infinite dimensional space of functions, and set

h(m)(x) = νg(m)(x).

C Model Code

Sample code for the binomial case with p = 3. Here Y is the vector of observations, and X a matrix of
covariates, with columns x1, x2, x3.

25

Base. From package stats:

glm(Y ~ 1, family=binomial())

GLM. From package stats:

glm(Y ~ x1 + x2 + x3, data=X, family=binomial())

GLMse. Model fitted as GLM, then from package MASS:

stepAIC(glm.mod, direction="backward", k=2.8)

bfGAM. From package gam:

bfGAM.mod = gam(Y ~ s(x1) + s(x2) + s(x3), data=X, family=binomial())
step.gam(bfGAM.mod, data=X, scope = Y ~ s(x1) + s(x2) + s(x3))

step.gam was modified to give the suggested factor of 1.4 to the degrees of freedom.

wGAM. From package mgcv:

gam(Y ~ s(x1, bs="ps") + s(x2, bs="ps") + s(x3, bs="ps"), data=X,
family=binomial(), gamma=1.4)

GAMBoost. From package GAMBoost:

optimGAMBoostPenalty(X, Y, family=binomial())

Optimal. From package GAMBoost:

cv.GAMBoost(X, Y, family=binomial())

26

