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Generalized additive models for medical research
Trevor Hastie and Robert Tibshirani* Department of Statistics and Division of Biostatistics, Stanford
University, Stanford, California, USA

This article reviews flexible statistical methods that are useful for characterizing the effect of potential
prognostic factors on disease endpoints. Applications to survival models and binary outcome models are
illustrated.

1 Introduction

In the statistical analysis of clinical trials and observational studies, the identification
and adjustment for prognostic factors is an important component. Valid comparisons
of different treatments requires the appropriate adjustment for relevant prognostic
factors. The failure to consider important prognostic variables, particularly in observa-
tional studies, can lead to errors in estimating treatment differences. In addition,
incorrect modelling of prognostic factors can result in the failure to identify nonlinear
trends or threshold effects on survival. This article describes flexible statistical
methods that may be used to identify and characterize the effect of potential
prognostic factors on disease endpoints. These methods are called ’generalized
additive models’.
Two of the most commonly used statistical models in medical research are the

proportional hazards regression model for survival data and the logistic regression
model for binary data. Both of these techniques (and many others) model the effects of
prognostic factors xj in terms of a linear predictor of the form X~~, where the Pj are
parameters. The generalized additive model replaces ~x~~3~ with ~7j(xj) where f is an
unspecified (’nonparametric’) function. This function is estimated in a flexible manner
using a scatterplot smoother. The estimated function i(Xj) can reveal possible
nonlinearities in the effect of the xj.
We illustrate how this approach is used to extend the proportional hazards model in

Section 2. Section 3 gives some background on the methodology, while Section 4
illustrates the logistic regression model and its generalization. Some related develop-
ments are discussed in Section 6.

2 Example: the proportional hazards model

The proportional hazards model of Cox’ is a popular tool for analysing censored
failure time data. It is semiparametric; that is, the model does not make any
distributional assumptions about the failure times, but does specify the form in which
covariates (prognostic factors) affect the hazard rate of failure. It is most commonly
used for right censored data but can also be adapted to left censored and truncated
data. The model is expressed in terms of the hazard rate h(t ~ I xil,.. xi,), defined as the
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probability that an individual with covariates x~ , ...x,, fails in a short time interval after
time t, given survival to time t. The (linear) proportional hazards model expresses the
hazard rate as

where ho(t) is a baseline hazard function of arbitrary form. The quantities Xi!&dquo; . ,Xip are
fixed covariates, and (31,...,(3p are unknown parameters. A nonmathematical descrip-
tion of this model is given in Tibshirani . 

2

While some prognostic factors (such as disease stage) may be linearly related to
survival, the influence of other factors, such as patient characteristics and clinical
laboratory values, may be more accurately described by a nonlinear relationship. The
methods described here relax the linearity assumptions and allow smooth nonlinear
functions of the covariates to be included into the log hazard ratio. A linear

relationship remains a special case.
The generalized additive proportional hazards model has the form

Here the ts are smooth functions. Rather than specify a specific form for each £., like
linear or logarithmic, we estimate them in a flexible manner using scatterplot smooth-
ers.

Details of this procedure are given later; first we illustrate the model on data from a
clinical trial for the treatment of node-positive breast cancer. A more detailed analysis
of this example is given in Hastie, Sleeper and Tibshirani . This clinical trial is based
on 260 postmenopausal women and is described in detail in Taylor et at. 

4

The median follow-up time as of November 1991 was 6.86 years. By that date, 143
(54%) deaths and 176 (67%) disease recurrences have been observed. All cases were
69 years or younger (mean ± 1 SD, 57.4 ± 4.7 years) and underwent mastectomy and
axillary node dissection within eight weeks of randomization; no postoperative
radiation therapy was allowed. Patients were randomized to one of three treatment
arms: (1) observation only; (2) CMFP (a drug combination of cyclophosphamide,
methotrexate, fluorouracil, and prednisone); or (3) CMFPT (CMFP plus tamox-
ifen).
The endpoint is disease-free survival, and there are 260 cases. The following

variables were considered as potential prognostic factors for disease-free survival:

1) the presence or absence of tumour necrosis;
2) tumour size;
3) number of nodes examined;
4) age of the patient; 

2
5) body mass index (kg/m2);
6) number of days from surgery to randomization.

With the exception of tumour necrosis, all of these variables may be modelled using
the smoothing methods described above. Although the number of nodes examined is
not a continuous variable, it is ordinal and ranges from 1 to 48.

Patients were randomized within four strata, defined by ER (oestrogen receptor)
status positive or negative, and number of positive nodes ~3 or >3. We used the

appropriate partial likelihood for stratified data in our analysis . 5
We fit a generalized additive model of the form (2.2), which included all six
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potential prognostic factors as well as treatment effects. A flexible function fit was used
for each of the five continuous covariates, and indicator variables were used for the
tumour necrosis and the treatment groups. The three arms of treatment are repre-
sented in the model in order to determine their relative impact on disease recurrence
while the effect of prognostic factors is modelled simultaneously. A multivariate model
will help to correct imbalances among the treatment groups with respect to important
factors. For example, in this trial, women receiving CMFPT were somewhat more
likely to have smaller tumours and evidence of tumour necrosis, and had fewer nodes
examined than women on the Observation-only and CMFP arms.
Two of the quantitative covariates were positively associated with the risk of disease

recurrence: tumour size (p < 0.01) and the number of days between surgery and
randomization p < 0.05). Furthermore, the graphs of the estimated risk function 6j
for each of these factors was quite linear. The presence of tumour necrosis was also
identified as an important risk factor (p < 0.05).
The fitted curves for number of nodes examined, age and body mass index are

shown in Figure 1. A threshold effect is suggested with respect to the number of nodes
examined: risk decreases from one to 16 nodes, and then remains fairly constant. The
log hazard ratio as a function of age is roughly an inverted U-shaped function: risk is
similar for women aged 50 to 60 years (with a slight dip around 56 years); women
below 50 and above 60 years are at decreased risk. The body mass index fit reveals no
change in risk until approximately 32 kg/M ; thereafter, risk decreases. However, the
standard error curves around the decreasing portion of the curve are very wide,
reflecting the very small number of women with high BMI. The decreasing risk in this
region may be the result of this small group of patients having unusually long disease-
free survival times.

3 Smoothing methods and generalized additive models

In this section we give some background on the methodology that was used in the
previous example, and indicate the way in which it is applied to other models.
The building block of the generalized additive model algorithm is the scatterplot

smoother. We will first describe scatterplot smoothing in a simple setting, and then
indicate how it is used in models like the proportional hazards model
Suppose that we have a scatterplot of points (xi, yZ) like that shown in Figure 2. Here

y is a response or outcome variable, and x is a prognostic factor. We wish to fit a
smooth curve f(x) that summarizes the dependence of y on x. If we were to find the
curve that simply minimizes ICYi - f(Xi))2, the result would be an interpolating curve
that would not be smooth at all.
The cubic spline smoother imposes smoothness on f(x) . We seek the function f(x)

that minimizes

Notice that if’(X)2 measures the ’wiggliness’ of the function f linear fs have if’(X)2 = 0,
while nonlinear fs produce values bigger than zero. ’A. is a nonnegative smoothing
parameter that must be chosen by the data analyst. It governs the tradeoff between the
goodness of fit to the data and (as measured by Y-(yi _ f(xt))2) and wiggliness of the
function. Larger values of X force f to be smoother.
For any value of A, the solution to (3.1 ) is a cubic spline, i.e. a piecewise cubic
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polynomial with pieces joined at the unique observed values of x in the dataset. Fast
and stable numerical procedures are available for computation of the fitted curve. The
right panel of Figure 2 shows a cubic spline fit to the data.
What value of X did we use in Figure 2? In fact it is not convenient to express the

desired smoothness of f in terms of A, as the meaning of X depends on the units of the
prognostic factor x. Instead, it is possible to define an ’effective number of parameters’
or ’degrees of freedom’ of a cubic spline smoother, and then use a numerical search to
determine the value of X to yield this number. In Figure 2 we chose the effective
number of parameters to be 5. Roughly speaking, this means that the complexity of the
curve is about the same as a polynomial regression of degrees 4. However, the cubic
spline smoother ’spreads out’ its parameters in a more even manner, and hence is

Figure 1 Function plots for three of the terms in the additive proportional hazards model. Each curve is centred to
have average zero over the range of the data. The broken curves indicate approximate pointwise 95% confidence
intervals, and the vertical bars at the base of the plots represent a frequency plot of the predictor variable.
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Figure 2 Left panel shows a fictitious scatterplot of an outcome measure y plotted against a prognostic factor x. In
the right panel, a scatterplot smooth has been added to describe the trend of y on x.

much more flexible than a polynomial regression. Note that the degrees of freedom of
a smoother need not be an integer.
The above discussion tells how to fit a curve to a single prognostic factor. With

multiple prognostic factors, if xij denotes the value of the jth prognostic factor the ith
observation, we fit the additive model

A criterion like (3.1 ) can be specified for this problem, and a simple iterative procedure
exists for estimating the fs. We apply a cubic spline smoother to the outcome
Yi - ~~#,~~(xt~) as a function of xtk, for each prognostic factor in turn. The process
continues until the estimates ii stabilize. This procedure is known as ’backfitting’ and
the resulting fit is analogous to a multiple regression for linear models.
For models such as the proportional hazards model and other generalized additive

models, the appropriate criterion is a penalized log-likelihood or a penalized log
partial-likelihood. To maximize it, the backfitting procedure is used in conjunction
with a maximum likelihood or maximum partial likelihood algorithm. The usual
Newton-Raphson routine for maximizing log-likelihoods in these models can be cast
in an IRLS (iteratively reweighted least squares) form. This involves a repeated
weighted linear regression of a constructed response variable on the covariates: each
regression yields a new value of the parameter estimates which give a new constructed
variable, and the process is iterated. In the generalized additive model, the weighted
linear regression is simply replaced by a weighted backfitting algorithm. Details can be
found in Chapter 6 of Hastie and Tibshirani . 

6

4 The generalized additive logistic model
Generalized additive models can be used in virtually any setting where linear models
are used. The basic idea is to replace ~x,~~3~, the linear component of the model with an
additive component Vj(xij). Along with the proportional hazards model described
earlier, probably the most widely used model in medical research is the logistic model
for binary data. In this model the outcome Yi is 0 or 1, with 1 indicating an event (like
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death or relapse of a disease) and 0 indicating no event. We wish to model

p(y2 I Xil,Xi2&dquo; . ,XiP)’ the probability of an event given prognostic factors xtl,xi2,...xzp. The
linear logistic model assumes that the log-odds are linear:

The generalized additive logistic model assumes instead that

The functions fl, f2,...fp are estimated by an algorithm like the one described earlier.
To illustrate this, we describe a second example on the survival of children after

cardiac surgery for heart defects, taken from Williams et at. The data was collected
during the period 1983-1988. A preoperation warm-blood cardioplegia procedure,
thought to improve chances for survival, was introduced in February 1988. This was
not used on all of the children after February 1988, only on those for which it was
thought appropriate and only by surgeons who chose to use the new procedure. The
main question is whether the introduction of the warming procedure improved
survival; the importance of risk factors age, weight and diagnostic category is also of
interest.

If the warming procedure was given in a randomized manner, we could simply focus
on the post-February 1988 data and compare the survival of those who received the
new procedure with those who did not. However allocation was not random so we can
only try to assess the effectiveness of the warming procedure as it was applied. For this
analysis, we use all the data (1983-1988). To adjust for changes that might have
occurred over the five-year period, we include the date of the operation as a covariate.
However operation date is strongly confounded with the warming operation and thus a
general nonparametric fit for date of operation might unduly remove some of the effect
attributable to the warming procedure. To avoid this, we allow only a linear effect for
operation date. Hence we must assume that any time trend is either a consistently
increasing or decreasing trend.
We fit a generalized additive logistic model to the binary response death, with

smooth terms for age and weight, a linear term for operation date, a categorical
variable for diagnosis, and a binary variable for the warming operation. All the smooth
terms are fitted with 4 degrees of freedom. Note that the numerical algorithm is not
able to achieve exactly 4 degrees of freedom for the age and weight terms, but 3.80 and
3.86 degrees of freedom respectively.
The resulting curves for age and weight are shown in Figure 3. As one would expect,

the highest risk is for the lighter babies, with a decreasing risk over 3 kg. Somewhat
surprisingly, there seems to be a low risk age around 200 days, with higher risk for
younger and older children.

In the table each line gives the fit summary for the factor listed in the right column.
diagl - diag5 are the five indicator variables for the six diagnosis categories. df is
the degrees of freedom used for that variable. For ease of interpretation, the estimated
curve for each variable is decomposed into a linear component and the remaining
nonlinear component (the linear component is essentially a weighted least squares fit
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Figure 3 Estimated functions for weight and age for warm cardioplegia data. The shaded region represents twice
the pointwise asymptotic standard errors of the estimated curve.

of the fitted curve on the predictor, while the nonlinear part is the residual). coef ,
std-err and p-value are the estimated coefficient, standard error and normal score
for the linear component of the factor. nonlinear p-value is the p-value for a test
of nonlinearity of the effect. Note however that the effects of the other factors (e.g.
treatment) are fully adjusted for the other factors, not just for their linear parts.
We see that warming procedure is strongly significant, with an estimated coefficient

of 1.43 and a standard error of 0.45, indicating a survival benefit. There are strong
differences in the diagnosis categories, while the estimated effect of operation date is
not large.

Since a logistic regression is additive on the logit scale but not on the probability
scale, a plot of the fitted probabilities is often informative. Figure 4 shows the fitted
probabilities broken down by age and diagnosis, and is a concise summary of the
findings of this study. The beneficial effect of the treatment at the lower weights is
evident. As with all nonrandomized studies, the results here should be interpreted with
caution. In particular, one must ensure that the children were not chosen for the
warming operation based on their prognosis. To investigate this, we perform a second

Table 1 Results of generalized model to fit warm cardioplegia data

Null deviance (-2 log likelihood ratio) = 590.97
Model deviance = 453.18
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Figure 4 Estimated probabilities for warm cardioplegia data, conditioned on two ages (columns), and three
diagnostic classes (rows). Broken line is standard treatment, solid line is warm cardioplegia. Bars indicate ± one
standard error.

analysis in which a dummy variable (say period), corresponding to before versus after
February 1988, is inserted in place of the dummy variable for the warming operation.
The purpose of this is to investigate whether the overall treatment strategy improved
after February 1988. If this turns out not to be the case, it will imply that warming was
used only for patients with a good prognosis, who would have survived anyway. A
linear adjustment for operation date is included as before. The results are qualitatively
very similar to the first analysis: age and weight are significant, with effects similar to
those in Figure 3; diagnosis is significant, while operation date (linear effect) is not.
Period is highly significant, while operation date (linear effect) is not. Period is highly
significant, with a coefficient of -1.12 and a standard error of 0.33. Hence there seems
to be a significant overall improvement in survival after February 1988. For more
details, see Williams et al.7
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5 Discussion

The nonlinear modelling procedures described here are useful for two reasons. First,
they help to prevent model misspecification, which can lead to incorrect conclusions
regarding treatment efficacy. Secondly, they provide information about the relation-
ship between prognostic factors and disease risk that is not revealed by the use of
standard modelling techniques. Linearity always remains a special case, and thus
simple linear relationships can be easily confirmed with flexible modelling of covariate
effects.
The most comprehensive source for generalized additive models is the text of that

name by Hastie and Tibshirani , from which the second example was taken. The
proportional hazards example was taken from the more comprehensive analysis in
Hastie et a1.,3 where the regression spline approach to additive modelling is also
described. Different applications of this work in medical problems are discussed in
Hastie, Botha and Schnitzler8 and Hastie and Herman.9 Green and Silverman’o
discuss penalization and spline models in a variety of settings. VUahball is a good
source for the mathematical background of spline models.
Efron and Tibshiranil2 give an exposition of modem developments in statistics

(including generalized additive models), for a nonmathematical audience.
There have been some recent related work in this area. Kooperberg, Stone and

Truong 13 3 describe a different method for flexible hazard modelling. Friedman 14
proposed a generalization of additive modelling that finds interactions among prog-
nostic factors. Of particular interest in the proportional hazards setting is the varying
coefficient model of Hastie and Tibshirani,15 in which the parameter effects can change
with other factors such as time. The model has the form.

The parameter functions ~3~(t) are estimated by scatterplot smoothers in a similar
fashion to the methods described earlier. This gives a useful way of modelling
departures from the proportional hazards assumption by estimating the way in which
the parameters (3~ change with time.

Software for fitting generalized additive models is available as part of the S/S-PLUS
statistical language Becker, Chambers and Wilks, 16 Chambers and Hastie,&dquo; in a
Fortran program called gamfit available at statlib (in general/gamfit at the ftp site
lib.stat.cmu.edu) and also in the GAIM package for MS-DOS computers (informa-
tion available from the authors).
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