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1 Abstract9

In biomedical research, the outcome of longitudinal studies has been traditionally analyzed using the repeated mea-10

sures analysis of variance (rm-ANOVA) or more recently, linear mixed models (LMEMs). Although LMEMs are less11

restrictive than rm-ANOVA as they can work with unbalanced data and non-constant correlation between observations,12

both methodologies assume a linear trend in the measured response. It is common in biomedical research that the true13

trend response is nonlinear and in these cases the linearity assumption of rm-ANOVA and LMEMs can lead to biased14

estimates and unreliable inference.15

In contrast, GAMs relax the linearity assumption of rm-ANOVA and LMEMs and allow the data to determine the fit16

of the model while also permitting incomplete observations and different correlation structures. Therefore, GAMs17

present an excellent choice to analyze longitudinal data with non-linear trends in the context of biomedical research.18

This paper summarizes the limitations of rm-ANOVA and LMEMs and uses simulated data to visually show how both19

methods produce biased estimates when used on data with non-linear trends. We present the basic theory of GAMs20

and using reported trends of oxygen saturation in tumors, we simulate example longitudinal data (2 treatment groups,21
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10 subjects per group, 5 repeated measures for each group) to demonstrate their implementation in R. We also show22

that GAMs are able to produce estimates with non-linear trends even when incomplete observations exist (with 40%23

of the simulated observations missing). To make this work reproducible, the code and data used in this paper are24

available at: https://github.com/aimundo/GAMs-biomedical-research.25
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2 Background28

Longitudinal studies are designed to repeatedly measure a variable of interest in a group (or groups) of subjects, with29

the intention of observing the evolution of effect across time rather than analyzing a single time point (e.g., a cross-30

sectional study). Biomedical research frequently uses longitudinal studies to analyze the evolution of a “treatment”31

effect across multiple time points, with subjects of analysis ranging from animals (mice, rats, rabbits), to human pa-32

tients, cells, or blood samples, among many others. Tumor response1–4, antibody expression5,6, and cell metabolism7,8
33

are examples of different situations where researchers have used longitudinal designs to study some physiological re-34

sponse. Because the frequency of the measurements in a longitudinal study is dependent on the biological phenomena35

of interest and the experimental design of the study, the frequency of such measurements can range from minute in-36

tervals to study a short-term response such as anesthesia effects in animals9, to weekly measurements to analyze a37

mid-term response like the evolution of dermatitis symptoms in breast cancer patients10, to monthly measurements to38

study a long-term response such as mouth opening following radiotherapy (RT) in neck cancer patients11.39

Traditionally, a “frequentist” or “classical” statistical paradigm is used in biomedical research to derive inferences40

from a longitudinal study. The frequentist paradigm regards probability as the limit of the expected outcome when41

an experiment is repeated a large number of times12, and such view is applied to the analysis of longitudinal data42

by assuming a null hypothesis under a statistical model that is often an analysis of variance over repeated measures43

(repeated measures ANOVA or rm-ANOVA). The rm-ANOVA model makes three assumptions regarding longitudi-44

nal data: 1) linearity of the response across time, 2) constant correlation across same-subject measurements, and 3)45

observations from each subject are obtained at all time points through the study (a condition also known as complete46

observations)13,14.47

The expected linear behavior of the response through time is a key requisite in rm-ANOVA15. This “linearity assump-48
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tion” in rm-ANOVA implies that the model is misspecified when the data does not follow a linear trend, which results49

in unreliable inference. In longitudinal biomedical research, non-linear trends are the norm rather than the exception.50

A particular example of this non-linear behavior in longitudinal data arises in measurements of tumor response to51

chemo and/or radiotherapy in preclinical and clinical settings1,8,16. These studies have shown that the collected signal52

does not follow a linear trend over time, and presents extreme variability at different time points, making the fit of53

rm-ANOVA model inconsistent with the observed variation. Therefore, when rm-ANOVA is used to draw inference54

of such data the estimates are inevitably biased because the model is only able to accommodate linear trends that fail55

to adequately represent the biological phenomenon of interest.56

A post hoc analysis is often used in conjunction with rm-ANOVA to perform repeated comparisons to estimate a p-57

value, which in turn is used as a measure of significance. Although it is possible that a post hoc analysis of rm-ANOVA58

is able to find “significant effects ( p-value<0.05)” from data with non-linear trends, the validity of such a metric is59

dependent on how adequate the model fits the data. In other words, p-values are valid only if the model and the data60

have good agreement; if that is not the case, a “Type III” error (known as “model misspecification”) occurs17. For61

example, model misspecification will occur when a model that is only able to explain linear responses (such as rm-62

ANOVA) is fitted to data that follows a quadratic trend, thereby causing the resulting p-values and parameter estimates63

to be invalid18.64

Additionally, the p-value itself is highly variable, and multiple comparisons can inflate the false positivity rate (Type I65

error or α)19,20, consequently biasing the conclusions of the study. Corrections exist to address the Type I error issue66

of multiple comparisons (such as Bonferroni21), but they in turn reduce statistical power (1-β )22, and lead to increased67

Type II error (failing to reject the null hypothesis when it is false)23,24. Therefore, the tradeoff of post hoc comparisons68

in rm-ANOVA between Type I, II and III errors might be difficult to resolve in a biomedical longitudinal study where69

a delicate balance exists between statistical power and sample size.70

On the other hand, the assumption of constant correlation in rm-ANOVA (often known as the compound symme-71

try assumption) is typically unreasonable because correlation between the measured responses often diminishes as72

the time interval between the observation increases25. Corrections can be made in rm-ANOVA in the absence of73

compound symmetry26,27, but the effectiveness of the correction is limited by the size of the sample, the number of74

measurements28, and group sizes29. In the case of biomedical research, where living subjects are frequently used,75

sample sizes are often not “large” due to ethical and budgetary reasons,30 which might cause the corrections for lack76

of compound symmetry to be ineffective.77

Due to a variety of causes, the number of observations during a study can be different between all subjects. For exam-78

ple, in a clinical trial patients may voluntarily withdraw, whereas attrition due to injury or weight loss in preclinical79

animal studies is possible. It is even plausible that unexpected complications with equipment or supplies arise that80
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prevent the researcher from collecting measurements at certain time points. In each of these scenarios, the complete81

observations assumption of classical rm-ANOVA is violated. When incomplete observations occur, a rm-ANOVA82

model is fit by excluding all subjects with incomplete observations from the analysis13. This elimination of partially83

missing data from the analysis can result in increased costs if the desired statistical power is not met with the remaining84

observations, because it would be necessary to enroll more subjects. At the same time, if the excluded observations85

contain insightful information that is not used, their elimination from the analysis may limit the demonstration of86

significant differences between groups.87

During the last decade, the biomedical community has started to recognize the limitations of rm-ANOVA in the88

analysis of longitudinal data. The recognition on the shortcomings of rm-ANOVA is exemplified by the use of linear89

mixed effects models (LMEMs) by certain groups to analyze longitudinal tumor response data8,16. Briefly, LMEMs90

incorporate fixed effects, which correspond to the levels of experimental factors in the study (e.g., the different drug91

regimens in a clinical trial), and random effects, which account for random variation within the population (e.g., the92

individual-level differences not due to treatment such as weight or age). When compared to the traditional rm-ANOVA,93

LMEMs are more flexible as they can accommodate incomplete observations for multiple subjects and allow different94

modeling strategies for the variability within each measure in every subject15. However, LMEMs impose restrictions95

in the distribution of the random effects, which need to be independent13,31. And even more importantly, LMEMs96

also assume by default a linear relationship between the response and time15 (polynomial effects can be used, but this97

approach has its own shortcomings as we discuss in Section 4.2.1) .98

As the rm-ANOVA and the more flexible LMEM approaches make overly restrictive assumptions regarding the trend99

of the response, there is a need for biomedical researchers to explore the use of statistical tools that allow the data100

(and not a model assumption) to determine the trend of the fitted model and to enable appropriate inference. In this101

regard, generalized additive models (GAMs) present an alternative approach to analyze longitudinal data. Although102

not frequently used by the biomedical community, these semi-parametric models are customarily used in other fields103

to analyze longitudinal data. Examples of the use of GAMs include the analysis of temporal variations in geochem-104

ical and palaeoecological data32–34, health-environment interactions35 and the dynamics of government in political105

science36. There are several advantages of GAMs over LMEMs and rm-ANOVA models: 1) GAMs can fit a more106

flexible class of smooth responses that enable the data to dictate the trend in the fit of the model, 2) they can model107

non-constant correlation between repeated measurements37, and 3) can easily accommodate incomplete observations.108

Therefore, GAMs provide a more flexible statistical approach to analyze non-linear biomedical longitudinal data than109

LMEMs and rm-ANOVA.110

The current advances in programming languages designed for statistical analysis (specifically R), have eased the com-111

putational implementation of traditional models such as rm-ANOVA and more complex approaches such as LMEMs112
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and GAMs. In particular, R38 has an extensive collection of documentation and functions to fit GAMs in the package113

mgcv37,39 that speed up the initial stages of the analysis and enable the use of advanced modeling structures (e.g. hier-114

archical models, confidence interval comparisons) without requiring advanced programming skills. At the same time,115

R has many tools that simplify data simulation.116

Data simulation methods are an emerging technique that allow the researcher to create and explore different alternatives117

for analysis without collecting information in the field, reducing the time window between experiment design and its118

implementation. In addition, simulation can be also used for power calculations and study design questions28.119

This work provides biomedical researchers with a clear understanding of the theory and the practice of using GAMs to120

analyze longitudinal data using by focusing on four areas. First, the limitations of LMEMs and rm-ANOVA regarding121

an expected trend of the response, constant correlation structures, and complete observations are explained in detail.122

Second, the key theoretical elements of GAMs are presented using clear and simple mathematical notation while123

explaining the context and interpretation of the equations. Third, we illustrate the type of non-linear longitudinal124

data that often occurs in biomedical research using simulated data that reproduces patterns in previously reported125

studies16. The simulated data experiments highlight the differences in inference between rm-ANOVA, LMEMs and126

GAMs on data similar to what is commonly observed in biomedical studies. Finally, reproducibility is emphasized127

by providing the code to generate the simulated data and the implementation of different models in R, in conjunction128

with a step-by-step guide demonstrating how to fit models of increasing complexity.129

In summary, this work will allow biomedical researchers to identify when the use of GAMs instead of rm-ANOVA or130

LMEMs is appropriate to analyze longitudinal data, and provide guidance on the implementation of these models to131

improve the standards for reproducibility in biomedical research.132

3 Challenges presented by longitudinal studies133

3.1 The repeated measures ANOVA and Linear Mixed Model134

The repeated measures analysis of variance (rm-ANOVA) and the linear mixed model (LMEM) are the most com-135

monly used statistical analysis for longitudinal data in biomedical research. These statistical methodologies require136

certain assumptions for the model to be valid. From a practical view, the assumptions can be divided in three areas:137

1) an assumed relationship between covariates and response, 2) a constant correlation between measurements, and, 3)138

complete observations for all subjects. Each one of these assumptions is discussed below.139
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3.2 Assumed relationship140

3.2.1 The repeated measures ANOVA case141

In a longitudinal biomedical study, two or more groups of subjects (e.g., human subject, mice, samples) are subject to142

different treatments (e.g., a “treatment” group receives a novel drug or intervention vs. a “control” group that receives143

a placebo), and measurements from each subject within each group are collected at specific time points. The collected144

response is modeled with fixed components. The fixed component can be understood as a constant value in the response145

which the researcher is interested in measuring, i.e., the average effect of the novel drug/intervention in the “treatment”146

group.147

Mathematically speaking, a rm-ANOVA model with an interaction can be written as148

yi jt = β0 +β1 × treatment j +β2 × timet +β3 × timet × treatment j + εi jt , (1)

In this model yi jt is the response for subject i, in treatment group j at time t, which can be decomposed in a mean value149

β0, fixed effects of treatment (treatment j), time (timet ), and their interaction timet ×treatment j which have linear slopes150

given by β1,β2 and β3, respectively. Independent errors εi jt represent random variation from the sampling process151

assumed to be i.i.d.∼ N(0,σ2) (independently and identically normally distributed with mean zero and variance σ2). In152

a biomedical research context, suppose two treatments groups are used in a study (e.g., “placebo” vs. “novel drug”,153

or “saline” vs. “chemotherapy”). Then, the group terms in Equation (1) can be written as below with treatment j = 0154

representing the first treatment group (Group A) and treatment j = 1 representing the second treatment group (Group155

B). With this notation, the linear model then can be expressed as156

yi jt =


β0 +β2 × timet + εi jt if Group A,

β0 +β1 +β2 × timet +β3 × timet + εi jt if Group B.
(2)

To further simplify the expression, substitute β̃0 = β0 +β1 and β̃1 = β2 +β3 in the equation for Group B. This substi-157

tution allows for a different intercept and slope for Groups A and B. The model is then written as158

yi jt =


β0 +β2 × timet + εi jt if Group A,

β̃0 + β̃1 × timet + εi jt if Group B.
(3)

Presenting the model in this manner makes clear that when treating different groups, an rm-ANOVA model is able159
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to accommodate non-parallel lines in each case (different intercepts and slopes per group). In other words, the rm-160

ANOVA model “expects” a linear relationship between the covariates and the response. This means that either pre-161

sented as Equations (1), (2) or (3), an rm-ANOVA model is only able to accommodate linear patterns in the data. If162

the data show non-linear trends, the rm-ANOVA model will approximate this behavior with non-parallel lines.163

3.2.2 The Linear Mixed Model (LMEM) Case164

A LMEM is a class of statistical models that incorporates fixed effects to model the relationship between the covariates165

and the response, and random effects to model subject variability that is not the primary focus of the study but that166

might be important to account for15,40. A LMEM with interaction between time and treatment for a longitudinal study167

can be written as168

yi jt = β0 +β1 × treatment j +β2 × timet +β3 × timet × treatment j +αi j + εi jt . (4)

When Equations (1) and (4) are compared, it is noticeable that LMEMs and rm-ANOVA have the same construction169

regarding the fixed effects of time and treatment, but that the LMEM incorporates an additional source of variation (the170

term αi j). This term αi j corresponds to the random effect, accounting for variability in each subject (subjecti) within171

each group (group j). The random component can also be understood as modeling some “noise” in the response, but172

that does not arise from the sampling error term εi jt from Equations (1) through (3).173

For example, if the blood concentration of a drug is measured in certain subjects in the early hours of the morning while174

other subjects are measured in the afternoon, it is possible that the difference in the collection time introduces some175

“noise” in the data that needs to be accounted for. As the name suggests, this “random” variability needs to be modeled176

as a variable rather than as a constant value. The random effect αi j in Equation (4) is assumed to be αi j ∼ N(0,σ2
α). In177

essence, the random effect in a LMEM enables fitting models with different intercepts at the subject-level15. However,178

the expected linear relationship of the covariates and the response in Equation (1) and in Equation (4) is essentially the179

same, representing a major limitation of LMEMs to fit a non-linear response.180

Of note, LMEMs are capable of fitting non-linear trends using an “empirical” approach (using polynomial fixed effects181

instead of linear effects such as in Equation (4)), which is described in detail by Pinheiro and Bates15. However,182

polynomial fits have limited predictive power, cause bias on the boundaries of the covariates36, and more importantly,183

their lack of biological or mechanistic interpretation limits their use in biomedical studies15.184
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3.3 Covariance in rm-ANOVA and LMEMs185

In a longitudinal study there is an expected covariance between repeated measurements on the same subject, and186

because repeated measures occur in the subjects within each group, there is a covariance between measurements187

at each time point within each group. The covariance matrix (also known as the variance-covariance matrix) is a188

matrix that captures the variation between and within subjects in a longitudinal study41 (For an in-depth analysis of189

the covariance matrix see West40 and Weiss42).190

In the case of an rm-ANOVA analysis, it is typically assumed that the covariance matrix has a specific construction191

known as compound symmetry (also known as “sphericity” or “circularity”). Under this assumption, the between-192

subject variance and within-subject correlation are constant across time26,42,43. However, it has been shown that193

this condition is frequently not justified because the correlation between measurements tends to change over time44;194

and is higher between consecutive measurements13,25. Although corrections can be made (such as Huyhn-Feldt or195

Greenhouse-Geisser)26,27 their effectiveness is dependent on sample size and number of repeated measurements28, and196

it has been shown that corrections are not robust if the group sizes are unbalanced29. Because biomedical longitudinal197

studies are often limited in sample size and can have an imbalanced design, the corrections required to use an rm-198

ANOVA model may not be able to provide a reasonable adjustment that makes the model valid.199

In the case of LMEMs, one key advantage over rm-ANOVA is that they allow different structures for the variance-200

covariance matrix including exponential, autoregressive of order 1, rational quadratic and others15. Nevertheless, the201

analysis required to determine an appropriate variance-covariance structure for the data can be a challenging process202

by itself. Overall, the spherical assumption for rm-ANOVA may not capture the natural variations of the correlation in203

the data, and can bias the inferences from the analysis.204

3.4 Unbalanced data205

In a longitudinal study, it is frequently the case that the number of observations is different across subjects. In biomed-206

ical research, this imbalance in sample size can be caused by reasons beyond the control of the investigator (such as207

dropout from patients in clinical studies and attrition or injury of animals in preclinical research) leading to what is208

known as “missing”, “incomplete”, or (more generally speaking) unbalanced data45. The rm-ANOVA model is very209

restrictive in these situations as it assumes that observations exist for all subjects at every time point; if that is not the210

case subjects with one or more missing observations are excluded from the analysis. This is inconvenient because the211

remaining subjects might not accurately represent the population and statistical power is affected by this reduction in212

sample size46.213
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On the other hand, LMEMs and GAMs can work with missing observations, and inferences from the model are valid214

when the imbalance in the observations are missing at random (MAR) or completely missing at random (MCAR)40,42.215

In a MAR scenario, the pattern of the missing information is related to some variable in the data, but it is not related216

to the variable of interest47. If the data are MCAR, this means that the missingness is completely unrelated to the217

collected information48. Missing observations can also be missing not at random (MNAR) and in the case the missing218

observations are dependent on their value. For example, if attrition occurs in all mice that had lower weights at the219

beginning of a chemotherapy response study, the missing data can be considered MAR because the missigness is220

unrelated to other variables of interest.221

However, it is worth reminding that “all models are wrong”49 and that the ability of LMEMs and GAMs to work with222

unbalanced data does not make them immune to problems that can arise due to high rates of incomplete data, such as223

sampling bias or a drastic reduction in statistical power. Researchers must ensure that the study design is statistically224

sound and that measures exist to minimize missing observation rates.225

3.5 What does the fit of an rm-ANOVA and LMEM look like? A visual representation using226

simulated data227

To visually demonstrate the limitations of rm-ANOVA and LMEMs for longitudinal data with non-linear trends, this228

section presents a simulation experiment of a normally distributed response of two groups of 10 subjects each. An229

rm-ANOVA model (Equation (1)), and a LMEM (Equation (4)) are fitted to each group using R38 and the package230

nlme50.231

Briefly, two cases for the mean response for each group are considered: in the first case, the mean response in each232

group is a linear function over time with different intercepts and slopes; a negative slope is used for Group 1 and a233

positive slope is used for Group 2 (Figure 1A). In the second case, a second-degree polynomial (quadratic) function234

is used for the mean response per group: the quadratic function is concave down for Group 1 and it is concave up for235

Group 2 (Figure 1D). In both the linear and quadratic simulated data, the groups start with the same mean value in order236

to simulate the expected temporal evolution of some physiological quantity, starting at a common initial condition.237

Specifically, the rationale for the chosen linear and quadratic functions is the expectation that a measured response in238

two treatment groups is similar in the initial phase of the study, but as therapy progresses a divergence in the trend of239

the response indicates a treatment effect. In other words, Group 1 can be thought as a “Control” group and Group 2 as240

a “Treatment” group. From the mean response per group (linear or quadratic), the variability or “error” of individual241

responses within each group is simulated using a covariance matrix with compound symmetry (constant variance242

across time). Thus, the response per subject at each timepoint in both the linear and quadratic simulation corresponds243
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to the mean response per group plus the error (represented by the points in Figure 1 A, D).244

A more comprehensive exploration of the fit of rm-ANOVA and LMEMs for linear and non-linear longitudinal data245

can be obtained from the code that appears in Appendix B, (Figures B.1 and B.2), where a simulation with compound246

symmetry and independent errors (errors generated from a normal distribution that are not constant over time) is247

presented. We are aware that the simulated data used in this section present an extreme case that might not occur248

frequently in biomedical research, but they are used to 1) present the consequences of modeling non-linear trends in249

data with a linear model such as rm-ANOVA or a LMEM with “default” (linear) effects and, 2) demonstrate that a250

visual assessment of model fit is an important tool that helps determine the validity of any statistical assumptions. In251

Section 5 we use simulated data that does follow reported trends in the biomedical literature to implement GAMs.252
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Figure 1: Simulated responses from two groups with correlated errors using a LMEM and a rm-ANOVA model. Top row: linear re-
sponse, bottom row: quadratic response. A: Simulated linear data with known mean response (thick lines) and individual responses
(points) showing the dispersion of the data. D: Simulated quadratic data with known mean response (thick lines) and individual
responses (points) showing the dispersion of the data. B,E: Estimates from the rm-ANOVA model for the mean group response
(linear of quadratic). Points represent the original raw data. The rm-ANOVA model not only fails to pick the trend of the quadratic
data (E) but also assigns a global estimate that does not take into account the between-subject variation. C, F: Estimates from the
LMEM in the linear and quadratic case (subject: thin lines, population: thick lines) . The LMEM incorporates a random effect
for each subject, but this model and the rm-ANOVA model are unable to follow the trend of the data and grossly bias the initial
estimates for each group in the quadratic case (bottom row).

The simulation shows that the fits produced by the LMEM and the rm-ANOVA model are good for linear data (1B),253

as the predictions for the mean response are reasonably close to the “truth” of the simulated data (Figure 1A). Note254

that because the LMEM incorporates random effects, is able to provide estimates for each subject and a “population”255
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estimate (Figure 1C).256

However, consider the case when the data follows a non-linear trend, such as the simulated data in Figure 1D. Here, the257

mean response per group was simulated using a quadratic function, and errors and individual responses were produced258

as in Figure 1A. The mean response in the simulated data with quadratic behavior changes in each group through259

the timeline, and the mean value is the same as the initial value by the fifth time point for each group. Fitting an260

rm-ANOVA model (Equation (1)) or a LMEM (Equation (4)) to this data produces the fit that appears in Figure 1E, F.261

Comparing the fitted responses of the LMEM and the rm-ANOVA models used in the simulated quadratic data (Figure262

1E, F) indicates that the models are not capturing the changes within each group. Specifically, note that the fitted mean263

response of both models shows that the change (increase for Treatment 1 or decrease for Treatment 2) in the response264

through time points 2 and 4 is not being captured.265

The LMEM is only able to account for between-subject variation by providing estimates for each subject (Figure266

1F), but both models are unable to capture the fact that the initial values are the same in each group, and instead267

fit non-parallel lines that have initial values that are markedly different from the “true” initial values in each case268

(compare Figure 1D with Figure 1E, F). If such a change has important physiological implications, both rm-ANOVA269

and LMEMs omit it from the fitted mean response. Thus, even though the model correctly detects a divergence270

between treatment groups, the exact nature of this difference is not correctly identified, limiting valuable inferences271

from the data. It could be argued that a LMEM with quadratic effects should have been used to fit the data in Figure1F.272

However, because in reality the true function is not known, choosing a polynomial degree causes more questions (e.g.,273

is it quadratic?, cubic?, or a higher degree?). Additionally, polynomial effects have other limitations, which we cover274

in Section 4.2.1.275

This section has used simulation to better convey and visualize the limitations of linearity and correlation in the276

response in data with non-linear trends using an rm-ANOVA model and a LMEM, where the main issue is the expected277

linear trend in the response. Notice that the model misspecification is easily noticeable if the model fit and the response278

are visualized. In the following section, we provide a brief overview of linear models, general linear models and279

generalized linear mixed models before presenting the theory of GAMs, a class of semi-parametric models that can fit280

non-linear trends in data and that overcome the limitations of rm-ANOVA and LMEMs in the analysis of biomedical281

longitudinal data.282
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4 Linear Models, and beyond283

Linear models (LMs) are those that assume a normal (Gaussian) distribution of the errors, and only incorporate fixed284

effects (such as rm-ANOVA). These are by far the models most commonly used to analyze data within the biomedical285

research community. On the other hand, Linear Mixed Effect Models (LMEMs) also incorporate random effects, as it286

has been described in Section 3.2.2.287

In reality, rm-ANOVA and LMEMs are just special cases of a broader class of models (General Linear Models and288

Generalized Linear Mixed Models, respectively). In order to fully capture the constraints of such models and to289

understand how GAMs overcome those limitations this section will briefly provide an overview of the different classes290

of models and indicate how rm-ANOVA, LMEMs, and GAMs fit within this framework.291

4.1 Generalized Linear Models (GLMs)292

A major limitation of LMs is their assumption of normality in the errors. If the residuals are non-normal, a transfor-293

mation is necessary in order to properly fit the model. However, transformation can lead to poor model performance51,294

and can cause problems with the biological interpretation of the model estimates. McCullagh and Nelder52 introduced295

General Linear Models (GLMs) as an extension of LMs, where the errors do not need to be normally distributed. To296

achieve this, consider the following model297

yi jt ∼ D(µi jt ,φ), (5)

where yi jt is the observation i in group j at time t, that is assumed to come from some distribution of the exponential298

family D , with some mean µi jt , and potentially, a dispersion parameter φ (which in the Gaussian case is the variance299

σ2). The mean (µi jt ) is also known as the expected value (or expectation) E(yi jt) of the observed response yi jt .300

Then, the linear predictor η , which defines the relationship between the mean and the covariates can be defined as301

ηi jt = β0 +β1 × treatment j +β2 × timet +β3 × timet × treatment j, (6)

where ηi jt is the linear predictor for each observation i in each group j, at each timepoint t. Following the notation302

from Equation (1) the model parameters for each group are β0 (the intercept), β1, β2, and β3; timet represents the303

covariates from each subject in each group at each time point, treatment j represents the different treatment levels, and304

timet × treatment j represents their interaction.305

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2022. ; https://doi.org/10.1101/2021.06.10.447970doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447970
http://creativecommons.org/licenses/by/4.0/


Finally,306

E(yi jt) = µi jt = g−1(ηi jt), (7)

where E(yi jt) is the expectation, and g−1 is the inverse of a link function (g). The link function transforms the values307

from the response scale to the scale of the linear predictor η (Equation (6)). Therefore, it can be seen that LMs (such308

as rm-ANOVA) are a special case of GLMs where the response is normally distributed.309

4.2 Generalized linear mixed models (GLMMs)310

Although GLMs relax the normality assumption, they only accommodate fixed effects. Generalized Linear Mixed311

Models (GLMMs) are an extension of GLMs that incorporate random effects, which have an associated probability312

distribution53. Therefore, in GLMMs the linear predictor takes the form313

ηi jt = β0 +β1 × treatment j +β2 × timet +β3 × timet × treatment j +αi j, (8)

where αi j corresponds to the random effects that can be estimated within each subject in each group, and all the314

other symbols correspond to the notation of Equation (6). Therefore, LMEMs are special case of GLMMs where the315

distribution of the response is normally distributed52, and GLMs are a special case of GLMMs where there are no316

random effects. In-depth and excellent discussions about LMs, GLMs and GLMMs can be found in Dobson54 and317

Stroup55.318

4.2.1 GAMs as a special case of Generalized Linear Models319

4.2.1.1 GAMs and Basis Functions Notice that in the previous sections, the difference between GLMs and320

GLMMs resides on their linear predictors (Equations (6), (8)). Generalized additive models (GAMs) are an exten-321

sion of the GLM family that allow the estimation of smoothly varying trends where the relationship between the322

covariates and the response is modeled using smooth functions34,37,56. In a GAM, the linear predictor has the form323

ηi jt = β0 +β1 × treatment j + f (timet |β j), (9)

where β0 is the intercept, and β1 is the coefficient for each treatment group. Notice that the construction of the predictor324

is similar to that of Equation (6), but in this case the parametric terms involving the effect of time, and the interaction325
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between time and treatment have been replaced by the smooth term f (timet |β j). The smooth term f (timet |β j) gives a326

different smooth response for each treatment. 1 A GAM version of a linear model can be written as327

yi jt = β0 +β1 × treatment j + f (timet | β j)+ εi jt , (10)

where yi jt is the response at time t of subject i in group j, and εi jt represents the deviation of each observation from328

the mean.329

In contrast to the linear functions used to model the relationship between the covariates and the response in rm-330

ANOVA or LMEM, the use of smooth functions in GAMs is advantageous as it does not restrict the model to a linear331

relationship, although a GAM can estimate a linear relationship if the data is consistent with a linear response. One332

possible set of functions for f (timet | β j) that allow for non-linear responses are polynomials (which can also be used333

in LMEMs), but a major limitation is that polynomials create a “global” fit as they assume that the same relationship334

exists everywhere, which can cause problems with inference36. In particular, polynomial fits are known to show335

boundary effects because as t goes to ±∞, f (timet | β j) goes to ±∞ which is almost always unrealistic and causes bias336

at the endpoints of the time period.337

The smooth functional relationship between the covariates and the response in GAMs is specified using a semi-338

parametric relationship that can be fit within the GLM framework, using a basis function expansion of the covariates339

and estimating random coefficients associated with these basis functions. A basis is a set of functions that spans the340

mathematical space within which the true but unknown f (timet) is thought to exist34. For the linear model in Equation341

(1), the basis coefficients are β1, β2 and β3 and the basis vectors are treatment j, timet , and timet × treatment j. The342

basis function then, is the linear combination of basis coefficients and basis vectors that map the possible relationship343

between the covariates and the response57, which in the case of Equation (1) is restricted to a linear family of functions.344

In the case of Equation (10), the basis functions are contained in the expression f (timet | β j), which means that the345

model allows for non-linear relationships among the covariates.346

Splines (which derive their name from the physical devices used by draughtsmen to draw smooth curves) are com-347

monly used as basis functions that have a long history in solving semi-parametric statistical problems and are often348

a default choice to fit GAMs as they are a simple, flexible, and powerful option to obtain smoothness58. Although349

different types of splines exist, cubic, thin plate splines, and thin plate regression splines will be briefly discussed next350

to give a general idea of these type of basis functions, and their use within the GAM framework.351

Cubic splines (CS) are smooth curves constructed from cubic polynomials joined together in a manner that enforces352

1If the smooth term represented a linear relationship, then f (timet |β j) = β2 × timet +β3 × timet × treatment j; however, in general, the smooth
term is a more flexible function than a linear relationship, with parameter vectors β j for each treatment
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smoothness. The use of CS as smoothers in GAMs was discussed within the original GAM framework56, but they353

are limited by the fact that their implementation requires the selection of some points along the covariates (known as354

‘knots’, the points where the basis functions meet) to obtain the finite basis, which affects model fit59. A solution to355

the knot placement limitation of CS is provided by thin plate splines (TPS), which provide optimal smooth estimation356

without knot placement, but that are computationally costly to calculate37,59. In contrast, thin plate regression splines357

(TPRS) provide a reasonable “low rank” (truncated) approximation to the optimal TPS estimation, which can be358

implemented in an computationally efficient59. Like TPS, TPRS only requires specifying the number of basis functions359

to be used to create the smoother (for mathematical details on both TPS and TPRS see Wood37,59).360

To further clarify the concept of basis functions and smooth functions, consider the simulated response for Group 1361

that appears in Figure 1D. The simplest GAM model that can be used to estimate such response is that of a single362

smooth term for the time effect; i.e., a model that fits a smooth to the trend of the group through time. A computational363

requisite in mgcv is that the number of basis functions to be used to create the smooth cannot be larger than the364

number of unique values from the independent variable. Because the data has six unique time points, we can specify365

a maximum of six basis functions (including the intercept) to create the smooth. It is important to note that is not366

necessary to specify a number of basis equal to the number of unique values in the independent variable; fewer basis367

functions can be specified to create the smooth as well, as long as they reasonably capture the trend of the data.368

Here, the main idea is that the resulting smooth matches the data and approximates the true function without becoming369

too “wiggly” due to the noise present. A detailed exploration of wiggliness and smooth functions is beyond the scope of370

this manuscript, but in essence controlling the wiggliness (or “roughness”) of the fit is achieved by using a smoothness371

parameter (λ ), which is used to penalize the likelihood by multiplying it with the integrated square of the second372

derivative of the spline smooth. The second derivative of the spline smooth is a measure of curvature, or the rate373

of change of the slope34,37, and increasing the penalty by increasing λ results in models with less curvature. As λ374

increases, the parameter estimates are penalized (shrunk towards 0) where the penalty reduces the wiggliness of the375

smooth fit to prevent overfitting. In other words, a low penalty estimate will result in wiggly functions whereas a high376

penalty estimate provides evidence that a linear response is appropriate.377

With this in mind, if four basis functions (plus the intercept) are used to fit a GAM for the data of Group 1 (concave378

down trend) that appears in Figure 1D, the resulting fitting process is shown in Figure 2. In Figure 2A the four basis379

functions (and the intercept) are shown. Each of the five basis functions is evaluated at six different points (because380

there are six points on the timeline). The coefficients for each of the basis functions of Figure 2A are estimated using a381

penalized regression with smoothness parameter λ , that is estimated when fitting the model. The penalized coefficient382

estimates fitted are shown in Figure 2B.383

To get the weighted basis functions, each basis (from Figure 2A) is multiplied by the corresponding coefficients in384
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Figure 2B, thereby increasing or decreasing the original basis functions. Figure 2C shows the resulting weighted basis385

functions. Note that the magnitude of the weighting for the first basis function has resulted in a decrease of its overall386

contribution to the smoother term (because the coefficient for that basis function is negative and its magnitude is less387

than one). On the other hand, the third basis function has roughly doubled its contribution to the smooth term. Finally,388

the weighted basis functions are added at each timepoint to produce the smooth term. The resulting smooth term for389

the effect of time is shown in Figure 2D (brown line), along the simulated values which appear as points.390
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Figure 2: Basis functions for a single smoother for time. A: Basis functions for a single smoother for time for the simulated data
of Group 1 from Figure 2. B: Matrix of basis function weights. Each basis function is multiplied by a coefficient which can be
positive or negative. The coefficient determines the overall effect of each basis in the final smoother. C: Weighted basis functions.
Each of the four basis functions (and the intercept) of panel A has been weighted by the corresponding coefficient shown in Panel
B. Note the corresponding increase (or decrease) in magnitude of each weighted basis function. D: Smoother for time and original
data points. The smoother (line) is the result of the sum of each weighted basis function at each time point, with simulated values
for Group 1 shown as points.
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4.2.2 A Bayesian interpretation of GAMs391

Bayes’ theorem states that the probability of an event can be calculated using prior knowledge and observed data60.392

In the case of data that shows non-linear trends, the prior that the true trend of the data is likely to be smooth393

rather than “wiggly” introduces the concept of a prior distribution for wiggliness (and therefore a Bayesian view)394

of GAMs37. Moreover, GAMs are considered “empirical” Bayesian models when fitted using the package mgcv be-395

cause the smoothing parameters are estimated from the data (and not from a posterior distribution as in the “fully396

Bayesian” case, which can be fitted using JAGS, Stan, or other probabilistic programming language)61. Therefore, the397

confidence intervals (CIs) calculated by default for the smooth terms using mgcv are considered empirical Bayesian398

credible intervals33, which have good across the function (“frequentist”) coverage37.399

To understand across the function coverage, recall that a CI provides an estimate of the region where the “true” or400

“mean” value of a function exists, taking into account the randomness introduced by the sampling process. Because401

random samples from the population are used to calculate the “true” value of the function, there is inherent variability402

in the estimation process and the CI provides a region with a nominal value (usually, 95%) where the function is403

expected to lie. In an across the function CI (like those estimated by default for GAMs using mgcv), if we average the404

coverage of the interval over the entire function we get approximately the nominal coverage (95%). In other words,405

we expect that about 95% of the points that compose the true function will be covered by the across the function CI.406

As a consequence, some areas of the CI for the function have more than nominal coverage and some areas less than407

the nominal coverage.408

Besides the across the function CI, “simultaneous” or “whole function” CIs can also be computed, which contain409

the whole function with a specified probability37. Suppose we chose a nominal value (say, 95%) and compute a410

simultaneous CI; if we obtain 100 repeated samples and compute a simultaneous CI in each case, we would expect411

that the true function lies completely within the computed simultaneous CI in 95 of those repeated samples. Briefly,412

to obtain a simultaneous CI we simulate 10,000 draws from the empirical Bayesian posterior distribution of the fitted413

smooths. Then, we obtain the maximum absolute standardized deviation of the differences in smooth estimates which414

is used to correct the coverage of the across the function CI62 in a similar fashion to how q-values correct p-values to415

control false positive discovery rates63.416

In-depth theory of the Bayesian interpretation of GAMs and details on the computation of simultaneous and across417

the function CIs are beyond the scope of this paper, but can be found in Miller61, Wood37, Simpson34, Marra64, and418

Ruppert62. What we want to convey is that a Bayesian interpretation of GAMs allows for robust estimation using419

simultaneous empirical Bayesian CIs, as their estimates can be used to make comparisons between different groups in420

a similar way that multiple comparisons adjustments make inference from ANOVA models more reliable.421
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With this in mind, in the next section we consider the use of GAMs to analyze longitudinal biomedical data with422

non-linear trends, and use simultaneous empirical Bayesian CIs to assess significance between treatment groups.423

5 The analyisis of longitudinal biomedical data using GAMs424

The previous sections provided the basic understanding of the GAM framework and how these models are more425

advantageous to analyze non-linear longitudinal data when compared to rm-ANOVA or LMEMs. This section will use426

simulation to present the practical implementation of GAMs for longitudinal biomedical data using R and the package427

mgcv. A brief guide for model selection and diagnostics appears in Appendix A, and the code for the simulated data428

and figures can be found in Appendix B.429

5.1 Simulated data430

The simulated data is based on the reported longitudinal changes in oxygen saturation (StO2) in subcutaneous tumors431

(Figure 3C in Vishwanath et. al.16), where diffuse reflectance spectroscopy was used to quantify StO2 changes in both432

groups at the same time points (days 0, 2, 5, 7 and 10). In the “Treatment” group (chemotherapy) an increase in StO2433

is observed through time, while a decrease is seen in the “Control” (saline) group. Following the reported trend, we434

simulated 10 normally distributed observations at each time point with a standard deviation (SD) of 10% (matching435

the SD in the original paper). The simulation based on the real data appears in Figure 3A.436

5.2 An interaction GAM for longitudinal data437

An interaction effect is typically the main interest in longitudinal biomedical data, as the interaction takes into account438

treatment, time, and their combination. In a practical sense, when a GAM is implemented for longitudinal data, a439

smooth can be added to the model for the time effect for each treatment to account for the repeated measures over440

time. Although specific methods of how GAMs model correlation structures is a topic beyond the scope of this paper,441

it suffices to say that GAMs are flexible and can handle correlation structures beyond compound symmetry. A detailed442

description on the close relationship between basis functions and correlation functions can be found in Hefley et. al.57.443

For the data in Figure 3A, the main effect of interest is how StO2 changes over time for each treatment. To estimate444

this, the model incorporates separate smooths for each Group as a function of Day. The main thing to consider is that445

model syntax accounts for the fact that one of the variables is numeric (Day) and the other is a factor (Group). Because446

the smooths are centered at 0, the factor variable needs to be specified as a parametric term in order to identify any447

differences between the group means. Using R and the package mgcv the model syntax is:448
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449

gam_02 <- gam(StO2_sim ~ Group + s(Day , by = Group , k = 5) , method ='REML '450

, data = dat_sim)451
452

This syntax specifies that gam_02 (named this way so it matches the model workflow from Appendix A) contains453

the fitted model, and that the change in the simulated oxygen saturation (StO2_sim) is modeled using independent454

smooths over Day for each Group (the parenthesis preceded by s) using four basis functions (plus intercept). The455

smooth is constructed by default using TPRS, but other splines can be used if desired, including Gaussian process456

smooths34 (a description of all the available smooths can be found by typing ?mgcv::smooth.terms in the Console).457

Finally, the parametric term Group is added to quantify overall mean differences in the effect of treatment between458

groups, as we have indicated above.459

Although the default method used to estimate the smoothing parameters in mgcv is generalized cross validation (GCV),460

Wood37 showed the restricted maximum likelihood (REML) to be more resistant to overfitting while also easing the461

quantification of uncertainty in the smooth parameters; therefore in this manuscript REML is always used for smooth462

parameter estimation. An additional argument (family) allows to specify the expected distribution of the response,463

but it is not used in this model because we expect a normally-distributed response (which is the default family in464

mgcv).465

When the smooths are plotted over the raw data, it is clear that the model has been able to capture the trend of the466

change of StO2 for each group across time (Figure 3B). Model diagnostics can be obtained using the gam.check467

function, and the function appraise from the package gratia65 as we show in Appendix A. Additional discussions on468

model selection can be found in Wood37 and Harezlak66.469

One question that might arise at this point is “what is the fit that an rm-ANOVA model produces for the simulated470

data?”. The fit of an rm-ANOVA model, which corresponds to Equation (1), is presented in Figure 3C. This is a typical471

case of model misspecification: The slopes of each group are different, which would lead to a p-value indicating472

significance for the treatment and time effects, but the model is not capturing the changes that occur at days 2 and473

between days 5 and 7, whereas the GAM model is able to reliably estimate the trend over all timepoints (Figure 3B) .474

Because GAMs do not require equally-spaced or complete observations for all subjects (as rm-ANOVA does), they475

are advantageous to analyze longitudinal data where unbalanced data exists. The rationale behind this is that GAMs476

are able to pick the trend in the data even when some observations are incomplete. However, this usually causes the477

resulting smooths to have wider confidence intervals and less ability to discern differences in trends. To exemplify478

this, consider the random deletion of 40% of the simulated StO2 values from Figure 3A. If the same interaction GAM479

(gam_02) is fitted to this data with unbalanced observations, the resulting smooths appear in (Figure 3D). Note that480
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Figure 3: Simulated data and smooths for oxygen saturation in tumors. A: Simulated data (thin lines) that follows previously
reported trends (thick lines) in tumors under chemotherapy (Treatment) or saline (Control) treatment. Simulated data is from a
normal distribution with standard deviation of 10% with 10 observations per time point. B: Smooths from the GAM model for the
full simulated data with interaction of Group and Treatment. Lines represent trends for each group, shaded regions are 95% across
the function (narrow region) and simultaneous (wide region) confidence intervals. C: The rm-ANOVA model for the simulated
data, which does not capture the changes in each group over time. D: Smooths for the GAM model for the simulated data with
missing observations (40%). Lines represent trends for each group, shaded regions are 95% across the function (narrow region) and
simultaneous (wide region) confidence intervals.
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the model is still able to show a different trend for each group, but with a somewhat more linear profile in some areas.481

Additionally, note that in Figure 3B,D we show two CIs for each of the fitted smooths (shaded regions). The across the482

function CIs are represented by the narrow regions and because the simultaneous CIs contain the whole function on483

a nominal value, they are wider than the across the function CI, resulting in the wide shaded regions. For the dataset484

with incomplete observations, the CIs for the smooths overlap during the first 3 days because the estimates are less485

robust with fewer data points, and the trend is less pronounced than in the full dataset. However, the overall trend of486

the data is picked by the model in both cases, with as few as 4 observations per group at certain time points.487

5.3 Determination of significance in GAMs for longitudinal data488

At the core of a biomedical longitudinal study lies the question of a significant difference between the effect of two489

or more treatments in different groups. In linear models (such as rm-ANOVA), if there is a significant p-value after a490

post-hoc analysis we then can make inference about the effect size using the slope or the intercept from the model. In491

GAMs however, there is no single p-value to determine the significance of an effect as in linear models. Therefore,492

the coefficients of GAMs do not provide a simple interpretation as in the linear model case, but the changes in slope at493

specific timepoints can be used to determine the instantaneous effect size. In essence, the idea behind the estimation of494

significance in GAMs across different treatment groups is that the difference between the separate smoothers per group495

(such as in gam_02) can be computed pairwise, followed by the estimation of an empirical Bayesian simultaneous CI496

around this difference.497

The pairwise difference in smooths can be conceptualized in the following manner: Different time trends in each498

group are an indication of an effect by the treatment as in Figure 3A, where the chemotherapy causes StO2 to increase499

over time. With this expectation of different trends in each group, computing the difference between the trends will500

identify if the observed difference is significant. A difference between groups with similar trends is unlikely to be501

distinguishable from zero, which would indicate that the treatment is not causing a change in the response in one502

of the groups (assuming the other group is a Control or Reference group). Therefore, the computation of both the503

difference between the smooths and the corresponding simultaneous empirical Bayesian CI around this difference is504

able to provide an estimation of when and by how much there is a significant difference between the different groups.505

Additionally, the correction provided by the simultaneous empirical Bayesian CI makes the estimation robust as we506

know that on average, the simultaneous CI will contain the whole function at a nominal value (say, 95%).507

To visualize this, consider the calculation of pairwise differences for the fitted smooths that appear in Figure 3B, D.508

Figure 4 shows the difference between each treatment group trend for the full and missing datasets with a simultaneous509

CI computed around the difference. Here, the “Control” group is used as the reference to which “Treatment” group510
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Figure 4: Pairwise comparisons for smooth terms. A: Pairwise comparisons for the full dataset. B: Pairwise comparisons for the
dataset with incomplete observations. Significant differences exist where the 95% empirical Bayesian simultaneous CI does not
cover 0. In both cases the effect of treatment is significant after day 3. For the difference, we have included the means so the value
of the difference has direct correspondence with the scale of the response (Figure 3A).
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is being compared. Notice that because we have included the means of each group, there is correspondence between511

the scale of the original data and the scale of the pairwise comparisons. This can be seen in Figure 3B, where at day 5512

there is essentially a difference of 50% between StO2 in both groups, which corresponds to the -50% difference in 4A.513

However, if there are multiple parametric terms in the model (more factors that need to be specified), such inclusion514

of the means can become problematic. However, we believe that the model we have presented here suffices in a wide515

range of situations where adding the group means is a relatively easy implementation that can help better visualize the516

estimation from the model from a biological perspective.517

In Figure 4A, the shaded regions over the confidence interval (where the CI does not cover 0) indicate the time interval518

where each group has a different mean effect than the other. Notice that the shaded region between days 1 and ≈ 2 for519

the full dataset indicates that through that time, the “Control” group has higher mean StO2, but as therapy progresses520

the effect is reversed and by day ≈ 3 it is the “Treatment” group that statistically on average has greater StO2. This521

would suggest that the effect of chemotherapy in the “Treatment” group becomes significant after day 3 for the given522

model. Moreover, notice that although there is no actual measurement at day 3, the model is capable of providing an523

estimate of when the shift in mean StO2 occurs.524

On the data with missing observations (Figure 3D), the smooth pairwise comparison (Figure 4B) shows that because525

the confidence intervals overlap zero for the first two days there is no statistically significant difference between the526

groups. However, because the model is still able to pick the overall trend in StO2, the pairwise comparison is able to527

estimate the change on day 3 where the mean difference between groups becomes statistically significant as in the full528

dataset smooth pairwise comparison.529

For biomedical studies, the ability of smooth comparisons to provide an estimate of when and by how much a biological530

process becomes significant is advantageous because it can help researchers gain insight on metabolic changes and531

other biological processes that can be worth examining, and can help refine the experimental design of future studies532

in order to obtain measurements at time points where a significant change might be expected.533

6 Discussion534

Biomedical longitudinal data is particularly challenging to analyze due to the frequency of incomplete observations535

and different correlation structures in the data, which limit the use of rm-ANOVA. Although LMEMs can handle536

unbalanced observations and different correlation structures, both LMEMs and rm-ANOVA yield biased estimates537

when they are used to fit data with non-linear trends as we have visually demonstrated in Section 3.5. When these538

models do not capture the non-linear trend of the data, this results in a “model misspecification error”. This “model539
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misspecification” error, also is known as a “Type III” error17 is particularly important because although the p-value is540

the common measure of statistical significance, the validity of its interpretation is determined by the agreement of the541

data and the model.542

Guidelines for statistical reporting in biomedical journals exist (the SAMPL guidelines)67 but they have not been543

widely adopted and in the case of longitudinal data, we consider that researchers would benefit from reporting a visual544

assessment of the correspondence between the model fit and the data, rather than merely relying on a R2 or p-value545

value, whose interpretation is not clear in the case of a Type III error.546

In this paper we have presented GAMs as a suitable method to analyze longitudinal data with non-linear trends. It is547

interesting to note that although GAMs are a well established method to analyze temporal data in different fields (e.g.,548

which are palaeoecology, geochemistry, and ecology)33,57 they are not routinely used in biomedical research despite549

an early publication from Hastie and Tibshirani that demonstrated their use in medical research68. This is possibly due550

to the fact that the theory behind GAMs can seem very different from that of rm-ANOVA and LMEMs.551

However, in Section 4.2.1 we demonstrated that at its core the principle underlying GAMs is quite simple: Instead of552

using a linear relationship to model the response (as rm-ANOVA and LMEMs do), GAMs use basis functions to build553

smooths that are capable of learning non-linear trends in the data. The use of basis functions is a major advantage over554

models where the user has to know the non-linear relationship a priori, such as in the case of polynomial effects in555

LMEMs where in addition, there is no biological interpretation for such polynomial assumptions. This does not mean,556

however, that as any other statistical model GAMs do not have certain limitations. In particular, beyond the range of557

the data GAMs only reflect the assumptions built into the basis functions, be that flat values or linear extrapolation of558

the slope. Therefore, researchers need to be careful when using GAMs for extrapolating purposes. In addition, both559

polynomial and GAMs show higher variance in estimates near the boundary of the data, but additive models generally560

have less variance than polynomials. However, because GAMs let the data speak for themselves, they provide estimates561

that are consistent with non-linear trends and therefore can be used to obtain an accurate representation of the effect562

of time in a biological process.563

Beyond the theory, from a practical standpoint is equally important to demonstrate how GAMs are computationally564

implemented. We have provided an example on how GAMs can be fitted using simulated data that follows trends565

reported in biomedical literature16 using R and the package mgcv37 in Section 5, while a basic workflow for model566

selection is in Appendix A.567

One of the features of GAMs is that their Bayesian interpretation allows for inference about differences between568

groups without the need of a p-value, thereby providing a time-based estimate of shifts in the response that can be569

directly tied to biological values as the pairwise smooth comparisons in Figure 4 indicate. The GAM is therefore570
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able to identify changes between the groups at time points where data was not directly measured and in the case of571

incomplete observations ( ≈ day 3 in Figure 4 A, B ). This more nuanced inference can be used by researchers as572

feedback on experiment design and to further evaluate important biological changes in future studies.573

We have used R as the software of choice for this paper because it provides a fully developed environment to fit GAMs,574

enables simulation (which is becoming increasingly used for exploratory statistical analysis and power calculations),575

and provides powerful and convenient methods of visualization, which are key aspects that biomedical researchers576

might need to consider to make their work more reproducible. In this regard, reproducibility is still an issue in577

biomedical research69,70, but it is becoming apparent that what other disciplines have experienced in this aspect is578

likely to impact this field sooner rather than later. Researchers need to plan on how they will make their data, code,579

and any other materials open and accessible as more journals and funding agencies recognize the importance and580

benefits of open science in biomedical research. We have made all the data and code used in this paper accessible, and581

we hope that this will encourage other researchers to do the same with future projects.582

7 Conclusion583

We have presented GAMs as a method to analyze longitudinal biomedical data. Future directions of this work will584

include simulation-based estimations of statistical power using GAMs, as well as demonstrating the prediction capa-585

bilities of these models using large datasets. By making the data and code used in this paper accessible, we hope to586

address the need of creating and sharing reproducible work in biomedical research.587
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Two Appendices which contain a basic workflow to implement GAMs in R and all the code used to create this594

manuscript are available as PDFs in the Supplementary Material. A GitHub repository containing all the code used for595

this paper along with detailed instructions for its use is available at https://github.com/aimundo/GAMs-biomedical-596
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