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Generalized Affine Invariant
Image Normalization

Dinggang Shen and Horace H. S. Ip

Abstract —We provide a generalized image normalization technique which basically solved all problems in image normalization.
The orientation of any image can be uniquely defined by at most three non-zero generalized complex (GC) moments. The
correctness of our method is demonstrated theoretically as well as in practice by applying them to a number of "degenerate" images
which have failed other previously reported techniques for image normalization.

Index Terms —Image normalization, image orientation, invariant image matching, symmetry detection,  fold detection,  complex
moment, rotationally symmetric image.

——————————   ✦   ——————————

1 INTRODUCTION

ECHNIQUES on invariant pattern recognition include
integral transformations, construction of algebraic

moments and the use of structured neural networks [1]. The
image normalization method, developed as an elegant pre-
processing technique, transforms the distorted input pat-
tern into its corresponding normal form such that it is in-
variant under translation, scaling, skew, and rotation.

The following overview will clarify that the existing
techniques do not provide for a complete solution to the
problem in the sense that they are not able to produce a
unique normalization representation for any type of im-
ages, particularly for the rotationally symmetric images
(RSI). More importantly, it becomes clear to us that the de-
tection of the orientation and the fold number of the compact
image are the key issues to be tackled in order to provide a
complete solution for generalized image normalization.

Abu-Mostafa and Psaltis [2] used complex moment and
circular harmonic coefficient function to analyze RSI, while
the technique is not applicable to the skewed patterns. Leu
[3] proposed a compact algorithm to handle skew distortion
efficiently. However, the problem of rotational invariance
remained unsolved. Pei [4] later extended the method to
achieve rotation invariance. Based on the tensor theory, he
derived simple equations based on the third-order central
moments of the compact image. From these equations an
orientation could be calculated to make the pattern invari-
ant to rotation. However, as noted in [5], the method fails
when all the third-order central moments of the tested pat-
tern are zero, which happens frequently for the RSIs. For
such cases, Pei [5] further introduced a method called the
modified Fourier descriptor to normalize the RSI. There are
certain limitations on the method. For example, based on
the observation that the first non-zero Fourier coefficient is

located on the fundamental frequency, the method was able
to detect the fold number and the rotation angle simultane-
ously. Unfortunately, this observation is not always true for
most cases, particularly for patterns in Fig. 1c through
Fig. 1g and Fig. 1i. Pei [6] further proposed to reduce the 2D
pattern in the radial direction to several 1D discrete data
sequences, not to a single 1D sequence as done in [5]. Since
these 1D discrete data sequences are locally extracted, this
method is unable to detect the fold number and rotation
angle of the pattern where the internal fold number is dif-
ferent from the external fold number. Examples of such
patterns are shown in Figs. 1e and Fig. 1i. Also, this method
does not solve other limitations in [5].

There are many techniques developed for detecting a
pattern’s orientation, such as principal axes [7], shape ma-
trices [8], mirror-symmetry axes [9], [10, [11], the line
through the centroid, and radius weighted mean [12].
However, these methods are usually inapplicable when the
input pattern is an RSI, or not mirror symmetric. To remedy
this, GPA [13], FPA [14], and FISSP [15] were proposed for
defining the orientation of an RSI. However, a disadvan-
tage respectively related to GPA and FPA is that “double-
matching” or “multi-matching” is required in real applica-
tions. In FISSP, two shape-specific points often do not exist
for many kinds of shapes. Furthermore, since all the above
methods require the fold number of an RSI be a known pri-
ori, they are neither efficient nor generalized.

Leou and Tsai [17] solved the fold number of a simple
rotationally-symmetric closed contour by finding the num-
ber of crossing points between the average radius and the
contour. In general, most RSIs cannot be easily represented
by only one single closed contour, particularly for RSIs with
complicated boundary and inside hole. In [18], Lin detected
the fold number by a simple mathematical property, and
the orientation of an RSI was viewed as a by-product of his
method. However, this by-product fails when the pattern’s
fold number is a factor of the smallest order making the
complex moment non-zero. Examples of RSIs making the
by-production failed are Figs. 1c through 1g and 1i. Lin [19]
developed a convenient tool to define universal principal
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axes of pattern. Its advantage is that no preprocessing is
required to judge whether the input pattern is RSI or not,
while its disadvantage is that it usually uses more than one
axes to represent the pattern’s orientation. In fact, the ori-
entation of almost every pattern can be uniquely defined.

The main contribution of this paper is the development
of a generalized image normalization method which is ap-
plicable to every kind of patterns. Additionally, the deter-
mination of whether the input pattern is an RSI and the
detection of its fold number are integrated into an algo-
rithm which simultaneously defines a unique orientation
for the input pattern. Also, we show that the Hamming
distance between any two normalized images can be in-
creased by using the magnitude of the first non-zero GC
moment to specify the size and orientation of the normal-
ized image.

2 A COMPACT ALGORITHM
BASED ON REGULAR MOMENTS

A prerequisite for making an image compact is to know the
affine relationship between the normalized image and the
affine-transformed image. The affine relationship using
corresponding points is described in Definition 1, and a
new form of affine relationship using regular moments is
given in Theorem 2.1. In the end of this section, an algo-
rithm (Theorem 2.2) is proposed to obtain the affine coeffi-
cients from the regular moments of the affine-transformed
image.
DEFINITION 1. Let f u v( , ) be the affine-transformed image, and

f x y( , )  the standard normalized image. The affine relation-
ship between f u v( , ) and f x y( , )  are as follows.
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            where [ ]u v T  is the affine-transformed position corre-

sponding to point [ ]x y T , and A is the affine coefficient
matrix.

Although the above definition gives the relationship
between two corresponding points by affine matrix, it is
usually impossible to obtain the affine coefficients since
finding the corresponding points in two real images is not
trivial and is also sensitive to noise. Hence, in Theorem 2.1
we present a new form of affine relationship, which is not
based on points but on regular moments.
THEOREM 2.1.  The affine relationship between regular moments of

the normalized image f x y( , )  and regular moments of the
affine-transformed image f u v( , ) are as follows.
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where mpq  is the pq-order regular moment of the normal-

ized image f x y( , ) , and ¢mpq  the pq-order regular moment

of the affine-transformed image f u v( , ). Their definitions
are
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For the purpose of image normalization, we need to know

the mapping from point u v
T

 to point x y
T

. Theorem
2.2 gives an algorithm for constructing the compact image
f x y¢ ¢,c h from the affine-transformed image f u v,a f. Using
this theorem, patterns can be normalized under translation,
scaling and skew, leaving us to concentrate on detecting the
orientation of the compact image in Section 3. In fact, this is
the key problem in the image normalization.

                    

             (a)               (b)` (c)   (d)    (e)

                    

             (f)                 (g)  (h)    (i)      (j)

Fig. 1. All image shapes used in this paper.
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THEOREM 2.2. The relation between the compact image f x y¢ ¢,b g
and the affine-transformed image f u v,a f is
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where l1  and l2  are the two eigenvalues of the matrix
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and E e e= 1 2 , where e1 and e2  are the corresponding
eigenvectors of ¢U  associated with l1  and l2 .

3 UNIQUE ORIENTATION DETERMINATION
FOR A COMPACT IMAGE

This section will show that the lower-order non-zero GC
moments can be used to determine a unique orientation for
a pattern. We do this by first giving the necessary and suffi-
cient condition for making GCpq  non-zero, then showing

that for GCpq π 0 , there exists exactly q  half-lines to ex-

press the pattern’s orientation (Theorems 3.1 and 3.2). Fi-
nally, we prove that a unique orientation of pattern can be
defined by the fold number detection (Theorem 3.4) and a
third appropriate non-zero GC moment (Theorem 3.5). The
technique is applicable to any type of centralized images.

3.1 Basic Property of Image Function
Suppose that f r( , )q  is the corresponding function of the
centered compact image f x y¢ ¢,b g  in the polar coordinate. In
general, any image f r,qa f can be expanded by Fourier series.
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3.2 First Two Non-Zero GC Moments Used
for Determining Unique Orientation
of Almost Every Kind of Images

The pq-order GC moment of image f r( , )q  is defined as fol-
lows:

GC R e f r r e rdrdpq pq
j p jqpq= =
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2
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where p is a non-negative integer, and q a positive integer.
Since the lower-order non-zero GC moments will be used
to detect the orientation of the given image, it is helpful to

know the condition for making GC moments non-zero.
Using the basic property of image function, we can prove
that the necessary and sufficient condition for making GCpq

non-zero is f r r rdrq
pa f

0
0

•z π . For K-RSI, f rqa f must be zero

when q is not a multiple of K. Based on this property, we
get the following three theorems for determining unique
orientation of almost every kind of images.
THEOREM 3.1. If GCpq ≠ 0, then there exist q half lines starting

from the origin O and having directional angles

q
j p

i
pq i

q=
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 with i q= 1 2, , . . . , , which are in-

variant to the translation, scaling and rotation of the iden-
tical image.

THEOREM 3.2. Let GCPq1
 and GCPq2

be the first and second non-

zero GC moments encountered in the sequence GCPq  with

q = 1 2, , . . . , respectively. The phase of the combined mo-
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with

i xq yq= +1 2 1 2, , . . . , c h
which are invariant to the translation, rotation and scaling
of the identical image.

THEOREM 3.3. There exist appropriate x and y making
1 1 2 1£ + £xq yq qc h . The appropriate values x and y can be
obtained by solving the linear programming problem and
selecting the smaller x  and y  in the solution set. The ob-

jective function is 
x y

xq yq
,

min ( )1 2+  and the constraint con-

dition is xq yq1 2 1+ ≥c h .

Theorem 3.1, first presented in [16], tell us that for cer-
tain P, if the first non-zero GC moment encountered in the
sequence GCPq  with q = 1 2, , . . . , is GCP1, then the image

orientation is unique. Otherwise, more than one half lines
are needed to express the orientations of the image. To re-
duce the number of orientations, Theorems 3.2 and 3.3 are
presented. Theorem 3.2 indicates the possibility that, if
number xq yq1 2+c h  is smaller than q1 , then the number of

orientations will be reduced to xq yq1 2+c h . The best choice

is xq yq1 2 1+ =c h , which means only a single half line is
needed to represent the image’s orientation. Theorem 3.3
gives the method of obtaining appropriate x and y. The re-
sult is that, if the common factor of q1  and q2  is one, then
the resulting xq yq1 2+c h  is one. Otherwise, the resulting

xq yq1 2+c h  is equal to the biggest common factor of q1  and
q2 . Accordingly, we obtained Table 1 which gives the ap-
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propriate values of x and y for various q1  and q2 . In Table 1,
numbers in the first column represent possible q1 and
numbers in the first row represent possible q2 . Numbers in
the other cells correspond to the solutions, x y,c h and

xq yq1 2+c h , for various of q1  and q2 .
In this way, we can conclude:

1) For almost every kind of non-RSIs, unique orientation
can be detected.

 Fig. 2 is the typical example of non-RSIs. Since the
first and second non-zero GC moments of Fig. 2b are
GC0 3,  and GC0 4, , its orientation can be uniquely de-

fined by the directional angle - +j j0 3 0 4, ,d i.
2) For almost every kind of RSIs, the detected number of

half lines is equal to its fold number.
Using our method, even the fold number of the
strange pattern given in [18], now shown in Fig. 3, can
be directly detected. The first and second non-zero
GC moments of this strange shape are GC0 8,  and
GC0 12, . Therefore, the number of the half lines is
12 8 4- = .

   

  (a)                    (b)                     (c)                    (d)

   

  (e)                    (f)                     (g)                    (h)

Fig. 2. Non-RSI. Its first and second non-zero GC moments are GC0 3,

and GC0 4, , and its number of half lines is one.

   

  (a)                    (b)                     (c)                    (d)

   

  (e)                    (f)                     (g)                    (h)

Fig. 3. 4-RSI.  Its first and second non-zero GC moments are GC0 8,

and GC
0 12,

, and its number of half lines is 4.

3.3 Determining the Unique Orientation of the
Degenerate Images by Fold Number Detection
and a Third Appropriate Non-Zero GC Moment

Based on the above analysis, it appears that, if the number
of the detected half lines for an image is bigger than one,
then the image is an RSI and its fold number is equal to the
number of the detected half lines. However, this may not be
the case for some degenerate images, such as those shown
in Figs. 5 and 6. Although Fig. 5 is a non-RSI, its number of
the detected half lines is three. Fig. 6 is a 2-RSI, but its num-
ber of the detected half lines is four, i.e., a multiple of two.
For such cases, if we still wish to uniquely express the im-
age orientation, we have to detect the fold number of the
input image. Theorem 3.4 gives the method of detecting the
fold number of image, which is the necessary condition for
determining the unique orientation of the degenerate image
by first two non-zero GC moments plus a third appropriate
non-zero GC moment in Theorem 3.5.

TABLE  1
APPROPRIATE x AND y MAKING POSITIVE INTEGER ( )xq yq1 2+  NEAR TO ONE.

VALUES IN EACH CELL ARE ( , )x y  AND ( )xq yq1 2+ .

q1 \

q2

3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 (-1, 1) 1 ( 1, 0) 2 (-2, 1) 1 ( 1, 0) 2 ( -3, 1) 1 ( 1, 0) 2 (-4, 1) 1 ( 1, 0) 2 (-5, 1) 1 ( 1, 0) 2 (-6, 1) 1 ( 1, 0) 2 (-7, 1) 1 ( 1, 0) 2

3 (-1, 1) 1 ( 2,-1) 1 ( 1, 0) 3 (-2, 1) 1 ( 3,-1) 1 ( 1, 0) 3 (-3, 1) 1 ( 4,-1) 1 ( 1, 0) 3 (-4, 1) 1 ( 5,-1) 1 ( 1, 0) 3 (-5, 1) 1

4 (-1, 1) 1 (-1, 1) 2 ( 2,-1) 1 ( 1, 0) 4 (-2, 1) 1 (-2, 1) 2 ( 3,-1) 1 ( 1, 0) 4 (-3, 1) 1 (-3, 1) 2 ( 4,-1) 1 ( 1, 0) 4

5 (-1, 1) 1 ( 3,-2) 1 (-3, 2) 1 ( 2,-1) 1 ( 1, 0) 5 (-2, 1) 1 ( 5,-2) 1 (-5, 2) 1 ( 3,-1) 1 ( 1, 0) 5 (-3, 1) 1

6 (-1, 1) 1 (-1, 1) 2 (-1, 1) 3 ( 2,-1) 2 ( 2,-1) 1 ( 1, 0) 6 (-2, 1) 1 (-2, 1) 2 (-2, 1) 3 ( 3,-1) 2

7 (-1, 1) 1 ( 4,-3) 1 ( 3,-2) 1 (-3, 2) 1 (-5, 3) 1 ( 2,-1) 1 ( 1, 0) 7 (-2, 1) 1 ( 7,-3) 1

8 (-1, 1) 1 (-1, 1) 2 (-4, 3) 1 (-1, 1) 4 ( 5,-3) 1 ( 2,-1) 2 ( 2,-1) 1 ( 1, 0) 8

9 (-1, 1) 1 ( 5,-4) 1 (-1, 1) 3 ( 3,-2) 1 (-3, 2) 1 ( 2,-1) 3 (-7, 4) 1

10 (-1, 1) 1 (-1, 1) 2 ( 4,-3) 1 ( 3,-2) 2 (-1, 1) 5 (-3, 2) 2

11 (-1, 1) 1 ( 6,-5) 1 (-5, 4) 1 (-4, 3) 1 ( 3,-2) 1

12 (-1, 1) 1 (-1, 1) 2 (-1, 1) 3 (-1, 1) 4
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Let the number of the detected half lines be
N x q y q= +1 1 1 2 , and the original phase f j j= +x yPq Pq1 11 2

.

The ith fold of an image is defined in the area
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Let FCN N¥  be a matrix, whose element FCij  describes the

fold difference between the fold images of fold i and fold j,
and is defined as
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Here, R is the maximum radius.
From matrix FCN N¥ , we can find out which folds are

similar. The similar folds can then be grouped together. Let
groupi  be the ith group with GMi  members, and GN  be the
total number of groups. From these, there are then two pos-
sibilities related to this image.

1) If the biggest common factor of GM1, GM2 , ..., and
GMGN  is one, then this image is non-RSI.

 In this case, if there exists one and only one group and
the number of member in the group is one, then the
orientation of this non-RSI can be determined by a
unique half line. Otherwise, a third appropriate non-
zero GC moment has to be used in order to describe
this image by a unique half line. For example, the im-
age shown in Fig. 5 consists of three half lines, which
indicates three folds. Since two of the folds are identi-
cal, the half line for the third fold can then be re-
garded as the normalized orientation of this image.

2) If the biggest common factor of GM1, GM2 , ..., and
GMGN  is bigger than one, then this image may be an
RSI.

THEOREM 3.4. Let L  be the biggest common factor of GM1, GM2 ,
..., and GMGN . Clearly, L  is the factor of N . Assume
that b i Ii|1 £ £m r  be the set of all positive factors of L
with L b b bI= > > > ≥1 2 1. . . . Then all possible fold num-
bers of this image are included in the set b i Ii|1 £ £m r .
Suppose bi  be the actual fold number of this image, and
FRb bi i¥  its corresponding fold-difference matrix. Matrix

FRb bi i¥  can be obtained from matrix FCN N¥ .
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b
N FCmn
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The order for detecting the fold number of the image is
from b1  to bI , until the actual fold number of the image is
detected.

Although the fold number of any type of images can be
detected using the above algorithm, for the image in Fig. 6,
however, since its actual fold number is two which is a
factor of N = 4, it is thus impossible to uniquely express
the orientation of this image. Even for such images, a

   

  (a)                    (b)                     (c)                    (d)

   

  (e)                    (f)                     (g)                    (h)

Fig. 4. 2-RSI. Its first and second non-zero GC moments are GC
2 4,

 and

GC
2 6,

, and its number of half lines is 2.

   

  (a)                    (b)                     (c)                    (d)

   

  (e)                    (f)                     (g)                    (h)

Fig. 5. Non-RSI. Its first and second non-zero GC moments are GC
0 3,

and GC
0 6,

, and its number of half lines is three. However, it is a non-

RSI.

   

  (a)                    (b)                     (c)                    (d)

   

  (e)                    (f)                     (g)                    (h)

Fig. 6. 2-RSI. Its first, second, and third non-zero GC moments are
GC

0 4,
, GC

0 8,
, and GC

0 10,
, respectively. Four fine half lines (in Fig. 6b or

Fig. 6f) are computed by GC
0 4,

 and GC
0 8,

. Two coarse arrows are cal-

culated by GC
0 4,

, GC
0 8,

, and GC
0 10,

, and the solid one is the final direc-

tion.
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unique half line can still be found by using a third appro-
priate non-zero GC moment (Theorem 3.5).
THEOREM 3.5. The number of the detected half lines is

N x q y q= +1 1 1 2 , where x1  and x2  are obtained for q1  and
q2  based on Theorem 3.3. RN , the factor of N , is the ac-
tual fold number of the image. Then there must exist a
third non-zero GC moment GCPq3

 which makes the com-

mon factor of N  and q3  equal to RN , that is

RN x N y q x x q y q y q= + = + +2 2 3 2 1 1 1 2 2 3c h

Therefore, the orientations of the image can be expressed by
RN  half lines, with directional angles

q
j j j p

i
Pq Pq Pqx x y y i

RN i RN=
+ + + - ¥

£ £
2 1 1 21 2 3

1 2
1

e j a f
,

Any one of these half lines can be regarded as the unique
orientation of the image because this image isRN-RSI.

3.4  Using Alternating Energy
to Control Orientation Detection

Since the order p  in GCpq  is always fixed when GCpq  is ap-

plied in the image orientation detection, it is necessary to
propose a selection rule for determining the appropriate p.
We do this by using the alternating energy of the Fourier
spectrum of the image.

Suppose that hp qa f  is a 1D function obtained from f r,qa f,
h f r r rdrp

p( ) ,q q=
•z a f
0

. Although the 2D image has very

strong periodicity, however, periodicity may become weak
in some hp qa f  pictures. We thus have to suggest a rule so as

to select a hp qa f  with strong periodicity. The Fourier trans-

form of hp qa f  is

H q h e dp p
jq( ) = z1

2 0

2

p q qqp a f

which leads to h d H qp p
q

( ) ( )q q p
p 2
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2 2
2z Â=
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. Notice that

GC H qpq p= b g , which implies that GCpq  can be directly ob-

tained from the Fourier transform of the 1D function hp qa f
when the order p  has been fixed. Then the ratio
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2 0
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2

p

q q
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can be used to determine whether the 1D function hp qa f  has

a strong periodicity. Large value, ap , means strong alter-

nating energy in the function hp qa f . In our study, we select

1D function whose corresponding ap  is over 5 percent.

Fig. 8 shows the plots of h Hi i( ) /q 0a f  with i = 0 5, . . . , , all
of which are the radial projections of Fig. 4b. Among these
plots, Fig. 8c is chosen, that is p P= = 2 . As for circular

disks and rings, all of their ap  are equal or near to zero. The

value of ap  also serves to determine whether the image is a

circular disk or a ring, and hence no orientation is needed.
It should be noted that for almost all existing algorithms
including [19], they are not able to do so.

   

   (a)                    (b)                     (c)                (d)

   

   (e)                    (f)                     (g)                    (h)

Fig. 7. 4-RSI. Only one non-zero GC moment of Fig. 7b can be dis-
tinctly detected.

Besides applying function energy to determine the order
p , function energy is also suggested here to determine
whether the remaining non-zero GC moments can be de-
tected, or not. Let
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If bq  is small, it means that there is little alternating energy

left, and no more non-zero GC moments can be detected. In
our study, the threshold for bq  has been set to one percent.

This rule is useful for special images, such as Fig. 7, where
only the first non-zero GC moment can be distinctly detected.

4 IMPROVING HAMMING DISTANCE-BASED
MATCHING OF THE NORMALIZED IMAGES

While the goal of image normalization is to reduce different
views of the same image objects to its canonical size and
principal orientation, it also causes different image objects
when normalized to have similar size and principal orien-
tation. Consequently the Hamming distance between dif-
ferent normalized image objects becomes small, which in
turn affects the efficiency and the sensitivity of Hamming
distance based pattern matching.

To improve the sensitivity of Hamming distance based
matching of normalized images, we need find a way to make
different normalized objects to have different sizes and dif-
ferent principal orientations. Previous normalization meth-
ods make use of the phase of moment only. However, the
magnitude of the moment also contains much information
about pattern. In the following, the magnitude of moment is
proposed to specify the size and the orientation of the nor-
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malized image. The magnitude-based scaling and specifica-
tion of orientation are defined respectively as below.

s g
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g x
x

x other
x
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here  

y
p

where RPq1
 is the magnitude of the first non-zero GC mo-

ment. RN  is the actual fold number of the image. Notice for
non-RSI, RN = 1. According to the definition of s, the pos-
sible distribution of s  ranges from 0.7 to 1.3. The possible

range of y  is from -
p

RN  to +
p

RN .

5 GENERALIZED IMAGE NORMALIZATION
ALGORITHM AND EXPERIMENTS

5.1 A Generalized Image Normalization Algorithm
The complete algorithm for generalized image normaliza-
tion can be summarized as follows:

1) Calculate the moments of the affine-transformed im-
age f u v,a f, ¢mpq  with1 2£ + £p q . Then obtain the co-

variance matrix ¢U  defined in Theorem 2.2.
2) Compute the two eigenvalues and the two eigenvec-

tors of ¢U .
3) Obtain the compact image f x y( , )¢ ¢  according to Theo-

rem 2.2.
4) Select an appropriate P  to make 1D function hP qa f

with strong alternating energy. If all of their ap  are

equal or near to zero, then this object must be a cir-
cular disk or ring.

5) Detecting the first non-zero GC moment GCPq1
.

a) If q1 1= , a unique orientation is obtained. Its angle
is j Pq1

. Go to step 10.

b) If bq1
1< percent , go to step 8.

6) Detecting the second non-zero GC moment GCPq2
 as

long as bq1
1≥ percent .

7) Get x1 , y1  and N x q y q= +1 1 1 2  from Table 1 for the
values of q1  and q2 .
a) If N = 1, then this compact image is a non-RSI. Go

to step 10.
b) If N > 1, go to next step.

8) Determine the actual fold number RN  of the compact
image, here 1 £ £RN N .
a) If RN N= , then this compact image is RSI. Any

half line, given in Theorem 3.2, can be regarded as
the unique orientation of this image. Go to step 10.

b) Otherwise, go to next step.
9) Detect a third appropriate non-zero GC moment

GCPq3
, and compute the unique orientation according

to Theorem 3.5.
10)  Rotate the compact image, making its orientation

match the x axis.
11)  Scale and rotate the normalized image based on the

method described in Section 4.

Obviously, step 10 and step 11 can be merged for less-
ening computation time.

5.2 Experiments
We design a series of examples (four cases) to demonstrate
clearly that the generalized image normalization can be
successfully achieved by our method. Notice that the
method in [4] will fail in all of our examples.

5.2.1 Image Normalization
In Figs. 2 to 7, Subfig. a is the affine-transformed images;
Subfig. b is, respectively, the compact images of Subfig. a;

          

          (a) (b)     (c)

          

        (d) (e)     (f)

Fig. 8. Radial projections of Fig. 4b. Figs. 8a to 8f represent functions h H
0 0

0( ) / ( )q  to h H
5 5

0( ) / ( )q , respectively.
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Subfig. c is the normalized images; and Subfig. d is the post-
normalized images. The corrupted images in Subfig. e, f, g,
and h are separately similar to images in Subfig. a, b, c, d.
Notice that Subfig. c and Subfig. g are almost identical, and
Subfig. d and Subfig. h are almost identical.

CASE 1: Non-RSI Under Random Transformation (Fig. 2)
Fig. 2a shows a non-RSI under random affine-

transformation, and its compact image is shown in Fig. 2b.
Since the radial projection function h0 qa f  of Fig. 2b meets
the requirement that a0 5>  percent , then p = 0 . The first
and second non-zero moments of the compact image are
separately GC0 3,  and GC0 4, . Hence, its orientation can be
uniquely defined by a half line with directional angle
- +j j0 3 0 4, ,d i. That is the solid arrow in Fig. 2b. Rotating

the orientation of the compact image to x-axis leads to
Fig. 2c. The magnitude of GC0 3,  is smaller than 0.7, which
leads to s < 1. Thus, the size of the normalized image is
lessened, and its orientation is clockwise rotated by an angle.

If the method in [6] is used to normalize this compact
image, this compact image will be regarded as a three-RSI,
which is incorrect. If algorithm in [19] is used to define the
orientations of Fig. 2b, it will need three universal principal
axes, which is obviously redundant.

Case 2: N-RSI Under Random Affine Transformation (Figs. 3
and 4)

The original image of Fig. 3 was obtained from the Fig. 3
shown in [18]. Fig. 3a is a randomly affine-transformed
four-RSI. The first non-zero GC moment of Fig. 3b is GC0 8, .

Note that the methods in [5] and [6] will regard the
compact image as eight-RSI, whilst the method in [15] will
give a zero for FISSP, and the method in [19] will require
eight universal principal axes. All of these results are un-
reasonable. Although the method in [18] is able to detect
the fold number of Fig. 3b correctly, but it is unable to de-
fine the orientation for Fig. 3b. The second non-zero GC
moment of figure is GC0 12, , then the number of half lines is
four. Using our algorithm for detecting the fold number of
the compact image, the fold number of Fig. 3b is actually
four. Hence, the half line whose directional angle is coun-
terclockwise the smallest is selected as the orientation of
Fig. 3b. That is the solid arrow shown in Fig. 3b. The mag-
nitude of GC0 8,  is bigger than 0.7, thus Fig. 3c is enlarged
and rotated counterclockwise, as shown in Fig. 3d.

Another example shown in Fig. 4 is a two-RSI. This is an
excellent example to illustrate the necessity of selecting an
appropriate parameter p  for GCpq . The radial projections of

Fig. 4b is shown in Fig. 8, and Fig. 8c, which shows
h H2 2 0qa f a f/ , meets the requirement of strong periodicity.
Thus p = 2 .

Case 3: Degenerate Non-RSI (Fig. 5)
Since the first and second non-zero GC moments of

Fig. 5b are GC0 3,  and GC0 6, , respectively, three half lines
are needed to express the orientation of Fig. 5b, which are
the two dotted arrows and the one solid arrow. However,
by using our fold number determining algorithm, it was
found that the fold number of Fig. 5b is one. That is, Fig. 5b
is a non-RSI. Based the fold-difference matrix FC3 3¥ , the

two folds associated with two dotted arrows are in fact
identical, while the fold associated with the solid arrow is
unique. Thus the solid arrow is chosen as the orientation of
Fig. 5b. Fig. 5d is the enlarged and counterclockwise rotated
form of Fig. 5c based on the magnitude of GC0 3, .

Case 4: Degenerate N-RSI (Fig. 6)
The compact image is shown in Fig. 6b, where the inter-

nal fold number is four and the external fold number is six.
The number of the directional half lines for Fig. 6b is four,
multiple of two, since the first and second non-zero GC
moments of Fig. 6b are GC0 4,  and GC0 8, , respectively. The
four lines in Fig. 6b define these four directions. The result
of our fold number determining algorithm indicates that
this compact image is in fact a two-RSI. In this case, Theo-
rem 3.5 is used and the orientation of this compact image is
defined by GC0 4, , GC0 8, , and GC0 10, , where GC0 10,  is the
third appropriate non-zero GC moment. The two coarse
arrows shown in Fig. 6b, with directional angle

- ¥ - + + + - ¥
=

2 1 2

2 1 2
0 4 0 8 0 10j j j p, , ,

, ,
d ie j a fi

i

define the orientation of this compact image. Finally, the
solid arrow is chosen as the orientation of Fig. 6b.

5.3 Increasing Hamming Distance
To demonstrate that the Hamming distance between two
normalized images can be increased by adjusting the scale
and the orientation of the normalized images based on the
magnitude of the first non-zero GC moment of the compact
image using equations in Section 4, Table 2 shows the in-
crease, in percentages, of the Hamming distance between
every pair of the image objects used in our experiments.
The numbers in the first row and first column of the table
represent 10 objects in Fig. 1. It can be seen from Table 2,
that the proposed algorithm for most cases increases the
Hamming distance between the objects. There are however
four cases when the post-normalized images constructed by
this method do not differ significantly from their normal-
ized images.

5.4 Robustness of the Algorithm Against Noise
In our experiments, Gaussian noise is added to all of our

TABLE 2
INCREASED PERCENT FOR HAMMING DISTANCE BETWEEN

EVERY COUPLE OF OBJECTS AFTER THE NORMALIZED IMAGES
ARE RESCALED AND REROTATED

Objects 2 3 4 5 6 7 8 9 10

1 31 2 37 38 59 17 -8 1 1

2 48 5 1 8 12 9 63 37

3 15 53 88 25 3 -6 -9

4 -3 12 8 2 13 13

5 15 0 14 59 55

6 15 27 89 82

7 15 24 17

8 2 0

9 2
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examples to show that the proposed method is able to en-
dure certain degree of noise. Gaussian noise is added
around the edges of the objects because these areas are the
most sensitive areas to be corrupted as a result of image
segmentation. The method used for adding noise is that,
random noise is first added onto every edge-point’s W W¥
neighboring pixels, then the noisy image is converted into a
binary image. The size of neighbor window W determines
the noise level.

In our experiments, different versions of the same object
are obtained by adding noise to the original object with
different window sizes (W). The window size (W) changes
from one to 18, which leads to 18 corrupted versions.
Fig. 9a shows Fig. 1d and its three corrupted versions, cor-
responding to three window sizes, six, 12, and 18. The
“eye”-like feature area shown with each of the input objects
in Fig. 9a is the fixed reference point for orientation com-
parisons. Notice that this feature area will be transformed
similarly during image normalization, but it will not affect
image object’s normalization. The position of the final
transformed feature area can be used to represent the ori-
entation of the normalized image. Suppose that the nor-
malized orientation for the normalized image of the noise-
free version is O0 , and the normalized orientations for the
corrupted versions are O ii , , , . . . ,= 1 2 18. Fig. 9b shows
the normalized orientations for four normalized images.
The values O O ii - =0 1 2 18c h, , , . . . , , represent the devia-
tions of the normalized orientations under normalization

procedure with different noise levels. Table 3 shows these
deviations for the first five objects in Fig. 1. The first row in
this table represents the noise levels from one to 18, while
the first column represents five objects and the last column
gives the means and the standard deviations. Values in the
other cells are the deviations of the normalized orientations
compared with their corresponding noise-free versions. The
unit for these values is degree. It can be seen that the devia-
tions are not too significant under these noise levels. And,
the normalized orientation of Fig. 1a is affected most, com-
pared with other figures.

6 CONCLUSIONS

In this paper, we have proposed an efficient and reliable
new method for generalized 2D image normalization which
provides the solutions for all the problems typically en-
countered in image normalization. The images can be any
complex shapes irrespective of whether they are  rotation-
ally symmetric or not.

Defining image orientation is the key problem in image
normalization. We have proved that, for almost all image,
its orientation can be uniquely defined by the polar angles
of the first two non-zero GC moments. For other degenerate
objects, its orientation can be uniquely determined by the
first two non-zero GC moments plus a third appropriate
non-zero GC moment.

For the purpose of shape matching, the magnitude of the
first non-zero GC moment is used to regulate the size and
orientation of the normalized images, so that different im-
age would be given different normalized size and orienta-
tion. Hence, increasing the Hamming distance computed
for any pair of these images.

To demonstrate clearly the feasibility of the approach, in
our experiments, a series of examples are given to show
that the proposed method is applicable to a number of im-
ages which have been shown to fail other previous image
normalized techniques. We also show that the approach is
relatively insensitive to certain degree of Gaussian noise. It
should be noted that whilst our approach is able to determine
a unique normalized size and orientation for all of our test
images, all other previously reported methods failed to do so
at least for some of them.  In summary, the proposed method
provides a complete solution for image normalization.

  0x0                 6x6                 12x12              18x18

                      Fea. Area    

(a)

    O0

 
    O6

 
    O12

 
    O18

(b)

Fig. 9. Robustness of the proposed method against noise. (a) Fig. 1d
and its three corrupted versions under different noise levels. (b) Corre-
sponding normalized objects and their normalized orientations Oi .

TABLE  3
DEVIATION VALUES OF THENORMALIZED ORIENTATION WITH INCREASING NOISE LEVEL

Figs / noise

level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (mean,

std. dev.)

fig 1(a) 0.01 -8.5 -0.69 -1.80 -5.27 -4.22 -8.5 -5.06 0 -8.06 -3.72 -0.87 -3.05 -3.72 -1.08 -2.58 -3.05 -8.19 (-3.8, 2.86)

fig 1(b) 0.23 -0.9 -0.28 -1.22 1.28 1.4 -2.25 -2.84 -0.78 -1.01 -0.93 -3.33 -0.12 1.55 -0.3 -0.81 0.3 -2.51 (-0.69, 1.36)

fig 1(c) 0 -1.20 -1.34 -2.50 -3.25 -4.14 -2.93 2.62 0.96 2.82 0.90 2.64 1.89 -0.46 0.70 2.63 1.33 2.26 (0.16, 2.2)

fig 1(d) 0 -0.51 -2.02 -3.53 -0.03 0.09 -1.02 -1.52 -1.52 -1.52 -2.01 -0.95 1.44 -4.43 -2.51 1.96 -2.52 3.3 (-0.96, 1.86)

fig 1(e) 0 0.15 -0.26 -0.51 -0.33 -0.54 0.07 -0.63 1.1 -1.22 -1.06 -1.5 -1.03 1.01 0.09 1.22 1.08 2.55 (0.01, 1.01)
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