
EURASIP Journal on Applied Signal Processing 2004:5, 662–675
c© 2004 Hindawi Publishing Corporation

Generalized Alamouti Codes for Trading Quality
of Service against Data Rate in MIMO UMTS

Christoph F. Mecklenbräuker
Forschungszentrum Telekommunikation Wien (ftw), Donau-City Straße 1, 1220 Vienna, Austria
Email: cfm@ftw.at

Markus Rupp
Institut für Nachrichtentechnik und Hochfrequenztechnik, Technische Universität Wien,
Gusshausstraße 25-29, 1040 Vienna, Austria
Email: mrupp@nt.tuwien.ac.at

Received 17 December 2002; Revised 26 August 2003

New space-time block coding schemes for multiple transmit and receive antennas are proposed. First, the well-known Alamouti
scheme is extended to NT = 2m transmit antennas achieving high transmit diversity. Many receiver details are worked out for
four and eight transmit antennas. Further, solutions for arbitrary, even numbers (NT = 2k) of transmit antennas are presented
achieving decoding advantages due to orthogonalization properties while preserving high diversity. In a final step, such extended
Alamouti and BLAST schemes are combined, offering a continuous trade-off between quality of service (QoS) and data rate. Due
to the simplicity of the coding schemes, they are very well suited to operate under UMTS with only very moderate modifications
in the existing standard. The number of supported antennas at transmitter alone is a sufficient knowledge to select the most
appropriate scheme. While the proposed schemes are motivated by utilization in UMTS, they are not restricted to this standard.
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1. INTRODUCTION

One of the salient features of UMTS is the provisioning
of moderately high data rates for packet switched data ser-
vices. In order to maximize the number of satisfied users,
an efficient resource assignment to the subscribers is de-
sired allowing flexible sharing of the radio resources. Such
schemes must address the extreme variations of the link qual-
ity. Standardization of UMTS is progressing steadily, and
various schemes for transmit diversity [1] and high-speed
downlink packet access (HSDPA) with multiple transmit
and receive antennas (MIMO) schemes [2] are currently un-
der debate within the Third Generation Partnership Project
(http://www.3gpp.org/).

Recently, much attention has been paid to wireless
MIMO systems, (cf. [3, 4, 5]). In [6, 7], it was shown that
the wireless MIMO channel potentially has a much higher
capacity than was anticipated previously. In [8, 9, 10], space-
time coding (STC) schemes were proposed that efficiently
utilize such channels. Alamouti [11] introduced a very sim-
ple scheme allowing transmissions from two antennas with
the same data rate as on a single antenna but increasing
the diversity at the receiver from one to two in a flat-fading
channel. While the scheme works for BPSK even with four

and eight antennas, it was proven that for QPSK, only the
two-transmit-antenna scheme offers the full diversity gain
[8, 12].

In order to evaluate the (single-) symbol error probabil-
ity for a random channel H with NT statistically independent
transmission paths with zero-mean channel coefficients hk
(k = 1, . . . ,NT) of equal variance,1 known results from lit-
erature for maximum likelihood (ML) decoding of uncoded
QPSK (with gray-code labelling) can be employed [13]:
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Here the fading factor αML is introduced as a random vari-
able with χ2

2NT
density, the index indicating 2NT degrees of

freedom, that is, a diversity order of NT . In case of indepen-
dent complex Gaussian distributed variables hk, the follow-

1We normalize
∑NT

k=1 E[|hk|2] = 1.
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ing explicit result for QPSK modulation is obtained accord-
ing to [13, Section 14.4, equations (15)]:

BERML = 1
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µ =
√

Eb/N0

NT + Eb/N0
. (3)

In contrast to this behavior, the performance for a linear ze-
roforeing (ZF) receiver is different. The bit error rate (BER)
for a ZF receiver with NT transmit and NR receive antennas
is given by [14]

BERZF = 1
2

EαZF

[
erfc

(√
αZF

σ2
V

)]
, (4)

with αZF being χ2-distributed with 2(NT − NR + 1) degrees
of freedom rather than 2NT . A good overview of the various
single symbol error performances is given in [15] and some
early results on multiple symbol errors in [16]. The pro-
posed coding schemes of this paper will be compared with
these results for uncoded transmissions. In particular, select-
ing space-time codes will result in different degrees of free-
dom for the resulting fading factor α when compared to (1)
and (4).

The paper is composed as follows. In Section 2, the well-
known Alamouti scheme is introduced setting the notation
for the remaining of the paper. In Section 3, the Alamouti
space-time codes for transmission diversity is extended re-
cursively to M = 2m antenna elements at the transmitter.
While it is well known that the resulting transmission ma-
trix for flat-fading looses its orthogonality for m ≥ 2, it is
shown that the loss in orthogonality for the new schemes
is not severe when utilizing gray-coded QPSK modulation.
Starting with a four-antenna scheme in Section 3, it will be
demonstrated that linear receivers perform close to the theo-
retical bound for four-path diversity offering significant gain
over the two-antenna case proposed by Alamouti. Even more
interestingly, linear interference suppression can be imple-
mented at low-complexity because the channel matrix ex-
hibits a high degree of structure, enabling factorization in
closed-form. In Section 4, this observation is generalized
to extended Alamouti schemes for an arbitrary number of
transmit antennas NT = 2m preserving as much orthogo-
nality as possible. In particular, results will be presented for
the case NT = 8. Transmission schemes with more than one
receive antenna will be considered in Section 5 and it will
be shown that even in cases with NT �= 2m transmit anten-
nas, preservation of orthogonality is possible. Variable bit
rate services and bursty packet arrivals are handled flexibly in
UMTS by dynamically changing the spreading factor in con-
junction with the transmit power, thus preserving an average
Eb/N0, but without changing the diversity order and outage
probability. A combination of BLAST and extended Alam-
outi schemes is proposed in Section 6 that makes use of the

existing diversity in a flexible manner, trading diversity gain
against data rate and thus augmenting the diversity order and
outage probability for fulfilling the quality of service (QoS)
requirements. Not considered in this paper is the impact of
the modulation scheme on the achieved diversity. It is well
known that a certain rank criterion [8] needs to be satisfied
in order to utilize full channel diversity in MIMO systems.

2. ALAMOUTI SCHEME

A very simple but effective scheme for two (NT = 2) antennas
achieving a diversity gain of two was introduced by Alamouti
[8, 11]. It works by sending the sequence {s1, s∗2 } on the first
antenna and {s2,−s∗1 } on the other. Assuming a flat-fading
channel and denoting the two channel coefficients by h1 and
h2, the received vector r is formed by stacking two consecu-
tive data samples [r1, r2]T in time:

r = Sh + v̄. (5)

Here, the symbol block S and the channel vector h are de-
fined as follows:

S =
[
s1 s2

s∗2 −s∗1

]
, h =

[
h1

h2

]
. (6)

This can be reformulated as[
r1

r∗2

]
=

[
h1 h2

−h∗2 h∗1

][
s1

s2

]
+

[
v1

v∗2

]
(7)

or in short notation:

y = Hs + v, (8)

where the vector y = [r1, r∗2 ]T is introduced. The resulting
channel matrix H is orthogonal, that is, HHH = HHH =
h2I2, where the 2× 2 identity matrix I2 as well as the gain of
the channel h2 = |h1|2 + |h2|2 are introduced. The transmit-
ted symbols can be computed by the ZF approach

ŝ = [
HHH

]−1
HHy = 1

h2
HHy = s +

[
HHH

]−1
HHv, (9)

revealing a noise filtering. Note that due to the particular
structure of H, the two noise components are orthogonal.
For a fixed channel matrix H and complex-valued Gaussian
noise v, it can be concluded that they are both i.i.d. and thus
are two decoupled noise components. The noise variance for
each of the two symbols is given by 2σ2

V /h
2. Comparing to

the optimal ML result for two-path diversity, the results are
identical indicating that with a simple ZF receiver technique,
the full two-path diversity of the transmission system can
be obtained. Using complex-valued modulation, only for the
two-antenna scheme such an improvement is possible. Only
in the case of binary transmission, higher schemes with four
and eight antennas exist [12]. In UMTS, QPSK is utilized on
CDMA preventing perfectly orthogonal schemes with an im-
provement larger than a diversity of two.
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3. FOUR-ANTENNA SCHEME

In UMTS with frequencies around 2 GHz, four or even
eight antennas are quite possible at the base stations and
two or four antennas at the mobile [17]. Since the num-
ber of antennas will vary among base stations and mo-
bile devices, it is vital to design a flexible MIMO trans-
mission scheme supporting various multielement anten-
nas. As a minimum requirement, the mobile station might
only be informed about the number of transmit anten-
nas at the base station. Based on its own number of re-
ceive antennas, it can then decide which decoding algo-
rithm to apply. Some codes offer complexity proportional to
the number of receive antennas, for example, cyclic space-
time codes [18]. Another example being Hadamard codes,
retransmitting the symbols in a specific manner. For the
case of four transmit antennas, the resulting matrix becomes
[s1, s2, s3, s4; s1, s2,−s3,−s4; s1,−s2,−s3, s4; −s1, s2,−s3, s4].
In such schemes, the receiver can be built with very low-
complexity, and higher diversity is achievable with more re-
ceiver antennas. However, by only utilizing multiple receiver
antennas, the maximum possible diversity is not utilized in
such systems unless transmit diversity is utilized as well.

In the following, simple block codes supporting much
higher diversity in a four transmit antenna scheme for UMTS
are proposed which do take advantage of additional transmit
diversity.2

Proposition 1. Starting with the 2 × 2-Alamouti scheme, the
following recursive construction rule (similar to the construc-
tion of a complex Walsh-Hadamard code) is applied:

[
h1 h2

−h∗2 h∗1

]
−→




h1 h2 h3 h4

−h∗2 h∗1 −h∗4 h∗3
−h∗3 −h∗4 h∗1 h∗2
h4 −h3 −h2 h1


 . (10)

That is, the complex scalars h1 and h2 appearing to the
left of the arrow “→” are replaced by the 2× 2 matrices

H1 =
[

h1 h2

−h∗2 h∗1

]
,

H2 =
[

h3 h4

−h∗4 h∗3

]
,

(11)

and then reinserted into the Alamouti space-time channel
matrix

[
H1 H2

−H∗
2 H∗

1

]
, (12)

where ∗ denotes complex conjugation without transposi-
tion.

2The outage capacity of this scheme was originally reported in [19].

This results in the following symbol block S for transmit-
ting the four symbols s = [s1, . . . , s4]T :

S =



s1 s2 s3 s4

s∗2 −s∗1 s∗4 −s∗3
s∗3 s∗4 −s∗1 −s∗2
s4 −s3 −s2 s1


 . (13)

The received vector can be expressed in the same form as (5).
Converting the received vector by complex conjugation

y1 = r1, v1 = v̄1,

y2 = r∗2 , v2 = v̄∗2 ,

y3 = r∗3 , v3 = v̄∗3 ,

y4 = r4, v4 = v̄4,

(14)

results in the following equivalent transmission scheme:

y = Hs + v, (15)

in which H appears again as channel transmission matrix. If
v̄ is a complex-valued Gaussian vector with i.i.d. elements,
then so is v.

3.1. ML receiver performance

While a standard ML approach is possible with correspond-
ingly high complexity, an alternative ML approach applying
matched filtering is first possible with much less complex-
ity. After the matched filtering operation, the resulting ma-
trix HH is

G = HHH = HHH = h2

[
I2 XJ2

−XJ2 I2

]
, (16)

where the 2× 2 matrix

J2 =
[

0 1
−1 0

]
(17)

as well as the Grammian G have been introduced. The gain
of the channel is

h2 = ∣∣h1
∣∣2

+
∣∣h2

∣∣2
+
∣∣h3

∣∣2
+
∣∣h4

∣∣2
, (18)

and the channel dependent real-valued random variable X is
defined as follows:

X = 2 Re
(
h1h

∗
4 − h2h

∗
3

)
h2

. (19)

By applying the matched filter HH , this results in the recep-
tion of the following vector:

z = HHy = HHHs + HHv = h2



s1 + Xs4

s2 − Xs3

s3 − Xs2

s4 + Xs1


 + HHv (20)
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in which the pair {s1, s4} is decoupled from {s2, s3} allowing
for a low-complexity solution based on the newly formed re-
ceiver vector z.

The ML decoder selects s minimizing

Λ1(s) = ‖y −Hs‖2 = sHGs− 2Re
(

yHHs
)

+ ‖y‖2 (21)

for all permissible symbol vectors s from the transmitter al-
phabet and spatially white interference plus noise was as-
sumed. Alternatively, the matched filter can be applied to y
and the ML estimator can be implemented on its output z
given in (20) leading to

Λ2(s) = (z−Gs)HG−1(z−Gs). (22)

Note that it needs to be taken into account that the noise
plus interference is spatially correlated after filtering. As-
suming the elements vk of v to be zero mean and spatially
white with variance σ2

V results in w = HHv with covariance
matrix

E
[

wwH
] = σ2

VHHH = σ2
VG. (23)

The advantage of this approach is that this partly decouples
the symbols. The pair {s1, s4} is decoupled from {s2, s3} al-
lowing for a low-complexity ML receiver using the partial
metrics

Λ2a
(
s1, s4

)
= ∣∣z1 − h2(s1 + Xs4

)∣∣2
+
∣∣z4 − h2(s4 + Xs1

)∣∣2

− 2X Re
{[
z1 − h2(s1 + Xs4

)][
z∗4 − h2(s∗4 + Xs∗1

)]}
,

Λ2b
(
s2, s3

)
= ∣∣z2 − h2(s2 − Xs3

)∣∣2
+
∣∣z3 − h2(s3 − Xs2

)∣∣2

+ 2X Re
{[
z2 − h2(s2 − Xs3

)][
z∗3 − h2(s∗3 − Xs∗2

)]}
.

(24)

Note that the two metrics Λ2a and Λ2b are positive definite
when |X| < 1. They become semidefinite for |X| = 1. In
UMTS with QPSK modulation, this requires a search over
2× 16 vector symbols rather than over 256.

3.2. Performance of linear receivers

Linear receivers typically suffer from noise enhancement. In
this section, the increased noise caused by ZF and minimum
mean squared error (MMSE) detectors is investigated. Both
receivers can be described by the following detection princi-
ple:

ŝ = (
HHH + µI4

)−1
z, (25)

where µ = 0 for ZF and µ = σ2
V for MMSE. It turns out that

both detection principles have essentially the same receiver
complexity. The following lemmas can be stated.

Lemma 1. Given the 4 × 4 Alamouti scheme as described in
(10), the eigenvalues of HHH/h2 are given by

λ1 = λ2 = 1 + X , λ3 = λ4 = 1− X , (26)

where h2 and X are defined in (18) and (19).

Proof. The Grammian HHH is diagonalized by VT
4 HHHV4

with the orthogonal matrix

V4 = 1√
2

[
I2 J2

J2 I2

]
. (27)

Some favorable properties are worth mentioning. The
eigenvectors of HHH which are stacked in the columns of V4

do not depend on the channel; they are constant. The scaled
matrix

√
2V4 is sparse, that is, half of its elements vanish and

the nonzero entries are ±1.

Lemma 2. If the channel coefficients hi (i = 1, . . . , 4) are i.i.d.
complex Gaussian variates with zero mean and variance 1/4,
then the following properties hold:

(1) X and h2 are independent;
(2) let λi be an eigenvalue of HHH/h2. The probability den-

sity of λi is fλ,4(λ) = (3/4)λ(2 − λ) for 0 < λ < 2 and
zero elsewhere. Likewise, λi/2 is beta(2,2)-distributed;

(3) let ξi be an eigenvalue of HHH. The probability density
of ξi is fξ(ξ) = 4ξe−2ξ for ξ > 0.

Proof. The joint distribution of X and h2 is derived in
Appendix A. The eigenvalues ξi of HHH and λi of HHH/h2

are proportional to each other, that is, ξi = h2λi for i =
1, . . . , 4.

It can be concluded that E [λi] = 1 and Var(λi) = 0.2 for
all i, indicating that the normalized channel matrix HHH/h2

is close to a unitary matrix with high probability.
Let γ ≥ 1 be the following random variable which de-

pends on the channel gain if µ > 0:

γ = h2 + µ

h2
=




1 for ZF,

1 +
σ2
V

h2
for MMSE.

(28)

For evaluating the BER of the linear receiver for general µ �=
0,

tr
[(

HHH + µI4
)−1

HHH
(

HHH + µI4
)−1

]

=
(

4
h2

)
γ2 + X2(1− 2γ)(

γ2 − X2
)2

(29)

needs to be evaluated which is obtained via

[
HHH + µI4

]−1 = 1
h2

(
γ2 − X2

)
(
γI2 −XJ2

XJ2 γI2

)
. (30)

When replacing the arguments of the complementary error
function with (29), two interpretations can be discussed.
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Comparing the arguments of the complementary error
function with the standard ML solution for multiple diver-
sity, one recognizes the beneficial diversity term h2 indicating
four times diversity together with an additional term, say

δ4 � γ2 + X2(1− 2γ)(
γ2 − X2

)2 = 1
γ2 − X2

− 2(γ − 1)
X2(

γ2 − X2
)2 .

(31)

In Appendix A, it is shown that X and h2 are statistically in-
dependent variates. Therefore, δ4 can be interpreted as an
increase in noise while h2 causes full fourth-order diver-
sity. Alternatively, one can interpret the whole expression
αZF,4 = h2δ4 as defining a new fading factor with the true
diversity order without noise increase. Both interpretations
can be used to describe the scheme’s performance.

3.2.1. Noise enhancement

If the first interpretation is favoured, the following result is
obtained.

Lemma 3. Given the 4 × 4 Alamouti scheme in independent
flat Rayleigh fading as described in (10), a four-times diversity
is obtained at the expense of a noise enhancement of

E
[
δ4
] = 3

2
− 2µ2 + 2µe2µE1(2µ)

(
2µ2 + µ− 2

)
, (32)

where En(x) denotes the exponential integral defined for Re (x)
> 0 as follows:

En(x) �
∫∞

1

e−xt

tn
dt. (33)

Proof. The expectation E[δ4] in (A.10) needs to be evaluated.
Note that δ4 depends on X and h2. It is shown in Appendix A
that X and h2 are independent if h1, . . . ,h4 are i.i.d. complex-
valued zero-mean Gaussian variates. Therefore, we can eval-
uate E[δ4] via (A.11) which leads to the result (32).

In case of a ZF receiver, the noise is increased by a factor
of 3/2 which corresponds to 1.76 dB, a value for which the
four-times diversity scheme gives much better results as long
as Eb/N0 is larger than about 3 dB. Therefore, the noise en-
hancement E[δ4] is maximum for ZF receivers (µ = 0) and it
does not exceed 1.76 dB for MMSE. The formula

E
[
δNT

]
�

(
1
NT

)2

E
[

tr
((

HHH
)−1

)
tr
(

HHH
)] = 2

NT − 1
NT

(34)

seems to describe the noise enhancement for ZF receivers
for the general case of NT transmit antennas. Note that
tr(HHH) is the squared Frobenius norm of H. The argu-
ment of the expectation operator is closely related to the
numerical condition number κ of H. Let ξNT and ξ1 be the
largest and the smallest eigenvalue of HHH, respectively.
Then tr((HHH)−1) tr(HHH) ≥ ξNT /ξ1 = κ2. The noise en-
hancement can be lower bounded by the squared numerical
condition number, that is, E[δNT ] ≥ E[κ2].
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Figure 1: Comparison of the noise enhancement versus Eb/N0 =
1/σ2

V for ZF and MMSE receivers.

The formula was explicitly validated for NT = 2, 4, and
8 and with Monte Carlo simulations for larger values of NT .
Although no formal proof exists, the upper limit for the noise
enhancement was found at 3 dB. The behavior of (32) versus
1/µ (which equals Eb/N0 for the MMSE) is shown in Figure 1
indicated by crosses labeled “x.”

Additional insight into the behavior of (32) is gained by
regarding the channel gain h2 as approximately constant, an
assumption that holds asymptotically true for NT →∞. This
assumption enables us to replace the joint expectation over
X and γ in (32) by a conditional one, that is, conditioned on
h2,

E
[
δ4|h2] = 9

2
γ − 3 +

(
9
4
γ2 − 3

2
γ − 3

4

)
log

γ − 1
γ + 1

. (35)

This approximation is compared with the exact expression
of (32) in Figure 1 where the approximation obtained from
(35) is plotted versus E [1/(γ − 1)] = Eb/N0. The values are
indicated by circles labeled “◦.” The horizontal shift in Eb/N0

between (32) and (35) is generally less than 1 dB. This ap-
proximation becomes exact for the case of ZF receiver where
µ→ 0, that is, the limit for γ → 1 of (35) is 3/2.

3.2.2. True diversity

The second interpretation of (29) leads to a refined diversity
order. In this case, the term in γ and X purely modifies the
diversity but leaves the noise part unchanged. The BER per-
formance can be computed explicitly. We restrict ourselves to
the ZF case for which γ = 1 and δ4 = 1/[1−X2]. In this case,
δ4 and h2 are statistically independent. We obtain

BERZF =
∫
h

∫
δ

erfc

(
h2δ

2σ2
V

)
h3e−h

2Γ(4)
fδ(δ)dhdδ. (36)
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Figure 2: Histogram of a sample of z defined in (40) and its density
fz(z) in (43).

Using the result from [13], (2) is obtained correspondingly,
however, with a different solution for a random variable µ:

µ(X) =
√

Eb/N0

2(1− X2) + Eb/N0
, (37)

leading to rather involved terms. A much simpler method is
to interpret the term h2δ as a new fading factor αZF,4 with
χ-statistics. Since δ is a fractional number, the new factor
αZF,4 = h2δ cannot be expected to have an integer number of
freedoms. Comparing with a Nakagami-m density, the mean
value of h2δ corresponds to the number of degrees of free-
dom m for this density. Computing E[h2δ4] = m = 3.2 is
obtained. Figure 2 displays a histogram of αZF,4 from 5,000
runs. Furthermore, the exact density function is shown and
a close fit obtained by the squared Nakagami-m distribution
with m = 3.2, or equivalent χ2 with 6.4 degrees of freedom.
This result contradicts the general belief that ZF receivers ob-
tain only 2(NR −NT + 1) = 2 degrees of freedom. The result
is different here due to the channel structuring.

An exact derivation of the probability density for this
random variable is lengthy and is only sketched here. The
random variable (1 − X2)h2 can be constructed from two
independent variables uHu and vHv which are each χ2-
distributed with four degrees of freedom (diversity order
two). Substitute

xT = [
h1,h2

]
, yT = [

h4,−h3
]
. (38)

Then X = (xHy + yHx)/(xHx + yHy). Using u = [x − y]/
√

2
and v = [x + y]/

√
2, the following result is obtained:

(
1− X2)h2 = 4

uHuvHv
uHu + vHv

= 4
1/uHu + 1/vHv

. (39)

The joint density pw,z(w, z) of this expression can be com-
puted via the transformation

z = 1
1/uHu + 1/vHv

, w = vHv, (40)

achieving

pw,z(w, z) = w3z

(w − z)3
exp

(
− w2

w − z

)
. (41)

The density of z is found by marginalizing the joint density
p(w, z). The density can be expressed using a Whittaker func-
tion (see [20]):

fz(z) = 29z
∫∞
u

t3/2 exp(−4t)√
t − z

dt (42)

= 26z3/2Γ
(

1
2

)
exp(−2z)W1,−1(4z) ≈ 43.2z2.2e4z

Γ(3.2)
.

(43)

This last approximation is also shown in Figure 2, obviously
a good fit.

3.3. Simulation results

Figure 3 displays the simulated behavior of the uncoded BER
transmitting QPSK (gray coded) of the linear MMSE re-
ceiver and zero fading correlation between the four transmit
paths. The BER results were averaged over 16,000 symbols
and 3,200 selections of channel matrices H for each simu-
lated Eb/N0. For comparison, the BER from the ZF receiver
and the cases of ideal two- and four-path diversity are also
shown. The values marked by circles “◦” labeled “expected
theory” are the same as for four-path diversity, but shifted
by the noise enhancement (n.e.) of 1.76 dB. Compared to the
ZF receiver performance, there is just a little improvement
for MMSE.

For practical considerations, it is of interest to investigate
the performance when the four paths are correlated, as can
be expected in a typical transmission environment. Figure 4
displays the situation when the antenna elements are corre-
lated by a factor of {0.5, 0.75, 0.95}. As the figure reveals, no
further loss is shown until the value exceeds 0.5. Only with
very strong correlation (0.95), a degradation of 4 dB was no-
ticed.

3.4. Diversity cumulating property of receive antennas

An interesting property is worth mentioning coming with
the 4 × 1 extended Alamouti scheme when using more than
one receive antenna. Typically adding more receive antennas
gives rise to expect a higher diversity order in the transmis-
sion system, however, available only at the expense of more
complexity in the receiver algorithms. In the extended Alam-
outi scheme, the behavior is slightly different as stated in the
following lemma.

Lemma 4. When utilizing an arbitrary number NR of receive
antennas, the extended Alamouti scheme can obtain an NR-fold
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Figure 3: BER for four-antenna scheme with linear MMSE receiver
and zero correlation between antennas.
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Figure 4: BER for four-antenna scheme with ZF receiver, fading
correlation between adjacent antenna elements is {0.5, 0.75, 0.95}.

diversity compared to the single receive antenna case requiring
only an asymptotically linear complexity O(NR) for ML as well
as linear receivers.

Proof. The proof will be shown for two receive antennas. Ex-
tending it to more than two is a straight forward exercise:

r1 = H1s + v1; r2 = H2s + v2. (44)

Matched filtering can be applied and the corresponding

terms are summed up to obtain

HH
1 r1 + HH

2 r2 =
[

HH
1 H1 + HH

2 H2
]

s + HH
1 v1 + HH

2 v2

= [
HH

1 H1 + HH
2 H2

]
s + ṽ.

(45)

Note that the new matrix [HH
1 H1+HH

2 H2] preserves the form
(16):

HH
1 H1 + HH

2 H2 =
(
h2

1 + h2
2

)



1 0 0 X
0 1 −X 0
0 −X 1 0
X 0 0 1


 , (46)

with X = [X1h
2
1 +X2h

2
2]/[h2

1 +h2
2]. Thus, the matrix maintains

its form and therefore, complexity of ML or a linear receiver
remains identical to the one antenna case. Only the matched
filtering needs to be performed additionally for as many re-
ceive antennas are present. The leading term h2

1 +h2
2 describes

the diversity order, being twice as high as before. For NR re-
ceiver antennas, a sum of all terms h2

k, k = 1, . . . ,NR, will
appear in this position indicating an NR-fold increase in ca-
pacity.

Note that NR receiver antennas can be purely virtual and
do not necessarily require a larger RF front end effort. For ex-
ample, UMTS’s WCDMA scheme enables RAKE techniques
to be utilized. Thus, at tap delays τk where large energies oc-
cur, a finger of the RAKE receiver is positioned. Correspond-
ingly, the channel matrix H consists in this case of several
components, all located at K different delay times. The re-
ceived values can be structured in one vector as well and
y = Hs + v is obtained again, however now with y is of
dimension 4K × 1 and H of dimension 4K × 4, while s re-
mains of dimension 4×1 as before. The previously discussed
schemes can be applied as well and each term h2 now con-
sists of K times as many components as before, thus increas-
ing diversity by a factor of K . In conclusion, such techniques
work as well in a scenario with interchip interference as in flat
Rayleigh fading with the additional benefit of having even
more diversity and thus a better QoS, provided the cross-
correlation between different users remains limited.

4. EIGHT AND MORE ANTENNA SCHEMES

Applying (10) several times (m − 1 times), solutions for
NT = 2m×1 antenna schemes can be obtained. The obtained
matrices exhibit certain properties that will be utilized in the
following. They are listed in the following lemma and proven
in Appendix B.

Lemma 5. Applying rule (10) m−1 times results in matrices H
of dimension NT×NT , NT = 2m, with the following properties:

(1) all entries of HHH are real-valued;
(2) the matrix HHH is of the form

HHH =
[

A B
−B A

]
(47)
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and the inverse of HHH is of block matrix form

[
HHH

]−1 =
[

A −B
B A

][(
A2 + B2

)−1 ∅
∅

(
A2 + B2

)−1

]
. (48)

Due to the form (47), all eigenvalues are double;3

(3) each nondiagonal entry Xi of HHH/tr[HHH] is either
zero, or Xi follows the distribution

fX(ξ) = 1
2NT−2B

(
NT/2,NT/2

)(1− ξ2)NT/2−1
, |ξ| ≤ 1.

(49)

Applying rule (10) two times in succession results in the
8 × 8 scheme. It can immediately be verified that the matrix
HHH is given by

HHH = h2




I2 XJ2 −ZJ2 YI2

−XJ2 I2 −YI2 −ZJ2

ZJ2 −YI2 I2 XJ2

YI2 ZJ2 −XJ2 I2


 , (50)

with

h2 =
8∑

k=1

∣∣hk∣∣2
,

X = 2 Re
(
h1h

∗
4 − h2h

∗
3 + h5h

∗
8 − h6h

∗
7

)
h2

,

Y = 2 Re
(
h1h

∗
7 − h3h

∗
5 + h2h

∗
8 − h4h

∗
6

)
h2

,

Z = 2 Re
(
h2h

∗
5 − h1h

∗
6 + h4h

∗
7 − h3h

∗
8

)
h2

.

(51)

According to property (2), the block structure of this ma-
trix can be recognized. Note that A2 + B2 = αI4 + βJ4, with

J4 =
[
∅ J2

−J2 ∅
]

,

α = X2 − Y 2 − Z2 + 1, β = 2(X − YZ),

(52)

and the inverse can also be expressed by a combination of I4

and J4:

[
A2 + B2]−1 = 1

α2 − β2

(
αI4 − βJ4

)
(53)

if |α| �= |β| which enables a computationally efficient imple-
mentation.

The ML receiver decouples into two 4 × 4 schemes by
exploiting the structure of these matrices, (cf. Section 3.1).
For UMTS with QPSK modulation, this leads to a search over
2× 256 vector symbols rather than 48 = 65 536.

3The proof of the latter statement is simple: if an eigenvector [x, y] exists
for an eigenvalue λ, then also [y,−x] must be an eigenvector, linear inde-
pendent of the first one, and thus the eigenvalues must be double.

4.1. Performance of linear receivers

Proceeding analogously to Section 3.2, the noise enhance-
ment E[δ8] for the eight-antenna scheme is governed by
tr[(HHH + µI8)−1HHH(HHH + µI8)−1] = 8δ8/h2, where
γ = 1 + µ/h2 and

δ8 � 1
8

8∑
i=1

λi
(γ + λi − 1)2

. (54)

Lemma 6. All eigenvalues λi of HHH/h2 in (50) are given by

λ1 = λ2 = (1− X) + (Y − Z),

λ3 = λ4 = (1 + X)− (Y + Z),

λ5 = λ6 = (1 + X) + (Y + Z),

λ7 = λ8 = (1− X)− (Y − Z).

(55)

Proof. The Grammian HHH is diagonalized by VT
8 HHHV8

with the orthogonal matrix

V8 = 1
2




I2 J2 J2 I2

J2 I2 −I2 −J2

J2 I2 I2 J2

−I2 −J2 J2 I2


 (56)

resulting in the above given eigenvalues.

Lemma 7. If the channel coefficients hi (i = 1, . . . , 8) are i.i.d.
complex-valued Gaussian variates with zero mean and vari-
ance 1/8, then the following properties hold:

(1) let λi be an eigenvalue of HHH/h2. The probability den-
sity of λi is fλ,8(λ) = (21/8192)λ(4 − λ)5 for 0 <
λ < 4 and zero elsewhere. Likewise, λi/4 is beta(2,6)-
distributed;

(2) let ξi be an eigenvalue of HHH. The probability density
of ξi is fξ(ξ) = 4ξe−2ξ for ξ > 0 and zero elsewhere.

Proof. It is sufficient to give the proof for one eigenvalue, say
λ5. The proof for the remaining eigenvalues proceeds simi-
larly. By completing the squares (as in Appendix A), h2λ5/4
can be regarded as the sum of two χ2

n-distributed variables
with n = 2 degrees of freedom each, that is,

∣∣∣∣h1 + h4 − h6 + h7

2

∣∣∣∣
2

+
∣∣∣∣h2 − h3 + h5 + h8

2

∣∣∣∣
2

. (57)

By introducing an orthogonal transformation via the matrix
VT

8 from (56), the proof is completed following the procedure
in Appendices A and B.

The noise enhancement for the eight-antenna case and
a ZF receiver (µ = 0) is evaluated by using the eigenvalue
statistics from Lemma 7:

E
[
δ8
] =

∫ 4

0
λ−1 fλ,8(λ)dλ = 7

4
= 1.75 (58)



670 EURASIP Journal on Applied Signal Processing

100

10−1

10−2

10−3

10−4

10−5

10−6

U
n

co
de

d
B

E
R

−10 −5 0 5 10 15 20 25
Eb/N0 (dB)

Eight-antenna scheme: ZF simulated
Eight-antenna scheme: MMSE simulated
Perfect eight times diversity
Theory including n.e. of 2.43 dB

Figure 5: BER for eight-antenna scheme for ZF and MMSE re-
ceivers compared to theory.

or around 2.43 dB. The noise enhancement for the general
linear receiver (µ ≥ 0) is obtained similarly to the four-
antenna scheme; the result is

E
[
δ8
] = 7

4
+ 2µ− µ2 + µe2µE1(2µ)

(
2µ2 − 3µ− 6

)
. (59)

Thus, the noise enhancement of the MMSE receiver is always
smaller than 2.43 dB. Figure 1 compares the noise enhance-
ment versus SNR for the ZF and MMSE receivers and for
Alamouti’s two-, and the proposed four-, and eight-antenna
schemes. The noise enhancement for each scheme is calcu-
lated numerically by averaging over 4000 realizations of the
channel matrix H. For each realization, the eigenvalues λi
of HHH are numerically computed and subsequently aver-
aged over (h2/NT)

∑NT
i=1 λi/(λi +µ)2, where NT = 2, 4, 8, or 16.

The resulting averaged curves are shown in Figure 1 labeled
“2 Tx,” “4 Tx,” and so forth.

The theoretical values marked by small crosses, labeled
“x,” are calculated according to (32) versus Eb/N0 = 1/σ2

V =
1/µ for the MMSE case. The values marked by small circles,
labeled “◦,” are calculated according to the approximation in
(35) versus Eb/N0 = E [1/(γ − 1)].

4.2. Simulation results

Figure 5 displays the simulated behavior of the uncoded BER
for QPSK modulation and zero-fading correlation between
the eight transmit paths. The BER results were averaged over
12,800 symbols and 4,000 selections of channel matrices H
for each simulated Eb/N0. The results are shown for a signif-
icance level of 99.7%. In other words, the scheme assumes a
tolerated outage probability of 0.3%. Outage is assumed to
occur if the numerical condition of HHH which is the ratio
of the largest to the smallest eigenvalue exceeds 100 ≈ 27. In-

verting these rare but adverse (nearly singular) channel ma-
trices HHH lead to the loss of at least seven bits of numerical
accuracy in the receiver. The values marked by little circles
“◦” labeled “expected theory” are the same as for eight-path
diversity, but shifted by the noise variance increase of 2.43 dB.

5. ALAMOUTIZATION

So far, mostly NT × 1 antenna schemes have been consid-
ered. However, in the future several antennas are likely to oc-
cur at the receiver as well. A cellular phone can carry two
and a laptop as many as four antennas [17]. The proposed
schemes can be applied, however, it remains unclear how to
combine the received signals in an optimal fashion. In the
following, an interesting approach is presented allowing an
increase in diversity when the number of receiver antennas is
more than one but typically less than the number of transmit
antennas. The proposed STC schemes preserve a large part
of the orthogonality so that the receivers can be implemented
with low-complexity. The diversity is exploited in full and the
noise enhancement remains small.

Proposition 2. Assume that a block matrix form of the channel
matrix H is given by

H = [
H1H2

]
, (60)

where the matrices {H1, H2} are not necessarily quadratic.
Then, the scheme can be Alamouted by performing the fol-
lowing operation:

G =




H1 H2

−H∗
2 H∗

1

H∗
2 H∗

1

H1 −H2


 . (61)

At the receiver, a ZF operation is performed, obtaining
the corresponding term GHG with the property

GHG = 2

[
HH

1 H1 + HT
2 H∗

2 ∅
∅ HT

1 H∗
1 + HH

2 H2

]
. (62)

Thus perfect orthogonality on the nondiagonal block entries
is achieved indicating little noise enhancement while the di-
agonal block terms indicate high diversity values.4

Example 1. A two-transmit-two-receive antenna system is
considered:

H1 =
[
h1

h2

]
, H2 =

[
h3

h4

]
. (63)

The matrix GHG becomes

GHG = 2
(∣∣h1

∣∣2
+
∣∣h2

∣∣2
+
∣∣h3

∣∣2
+
∣∣h4

∣∣2
)[

1 0
0 1

]
. (64)

4This was proposed in [4] in a simpler form.
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Thus, the full four times diversity can be explored, without a
matrix inverse computation. Note that in this case, the trans-
mit sequence at the two antennas reads

{
s1 s2 −s∗3 −s∗4 s∗3 s∗4 s1 s2

s3 s4 s∗1 s∗2 s∗1 s∗2 −s3 −s4

}
. (65)

Note also that during eight time periods, only four symbols
are transmitted, that is, this particular scheme has the draw-
back of offering only half the symbol rate!

Example 2. Consider a 4×2 transmission scheme. The ma-
trices are identified to

H1 =
[
h11 h12

h21 h22

]
, H2 =

[
h13 h14

h23 h24

]
. (66)

The matrix GHG consists of two block matrices of size 2 × 2
on the diagonal. Thus, the scheme is still rather simple since
only a 2×2 matrix has to be inverted although a four-path di-
versity is achieved. A comparison of the noise enhancement
shows that for this 4× 2 antenna system, 3 dB is gained com-
pared to the 4 × 1 antenna system. Note that now the data
rate is at full speed!

Example 3. The previously discussed 4 × 1 antenna system
can be obtained when setting

H1 =
[
h1 h2

]
, H2 =

[
h3 h4

]
. (67)

The reader may also try schemes in which the number of re-
ceive antennas is not given by NR = 2n. As long as NR is even,
the scheme can be separated in two matrices H1 and H2 of
same size allowing the Alamoutization rule (Proposition 2)
to be applied.

6. COMBINING BLAST AND ALAMOUTI SCHEMES

Although the proposed extended Alamouti schemes allow for
utilizing the channel diversity without sacrificing the receiver
complexity, not much has been said on data rates yet. In the
case of NT × 1 antenna schemes, the NT symbols were re-
peated NT times in a different and specific order guarantee-
ing a data rate of one. Thus, the data rates in the proposed
schemes typically remain constant (equal to one) when the
schemes are quadratic and can be lower when the receive
antenna number is smaller than the transmit antennas as
pointed out in the previous section. In BLAST transmissions,
this is different. In its simplest form, the V-BLAST coding
[21], NT new symbols are offered to the NT transmit anten-
nas at every symbol time instant thus achieving data rates NT

times higher than in the Alamouti schemes. A combination
of schemes can be achieved by simply transmitting more or
less of the different repetitive transmissions. By utilizing the
obtained transmission matrix structures, the diversity inher-
ent in the transmission scheme can be exploited differently
offering a trade-off between data rate and diversity order. In
order to clarify this statement, an example is presented.

Table 1

Antenna n = 1 n = 2
1 s1 s∗2
2 s2 −s∗1
3 s3 s∗4
4 s4 −s∗3

Example 4. A 4 × 2 antenna scheme is considered for trans-
mission. In a flat-fading channel system, eight Rayleigh co-
efficients are available describing the transmissions from the
four transmit to the two receive antennas, the transmission
matrix being

H =
[
h11 h12 h13 h14

h21 h22 h23 h24

]
. (68)

It should thus be possible to transmit either four times the
symbol data rate with diversity gain two, or two times the
data rate with diversity four, or only at the symbol data rate
but with diversity gain eight. In the first case, the 4×1 scheme
as proposed in Section 3 will be used, repeating the four
symbols four times, resulting in the reception of eight sym-
bols. When assigning two paths each to one 2× 2 matrix Hi,
i = 1, . . . , 4, the following transmission matrix is obtained:

H =




H1 H2

−H∗
2 H∗

1

H3 H4

−H∗
4 H∗

3


 . (69)

Computing HHH, a 4× 4 matrix is obtained in a similar way
to the 4 × 1 antenna case, however with twice the diversity.
Thus in this case, a diversity of eight is achieved with a data
rate of one.

On the other hand, by transmitting the sequences only
twice, according to Table 1, the received signals at the two
antennas can be formed to


y11

y12

y21

y22


 =



h11 h12 h13 h14

−h∗12 h∗11 −h∗14 h∗13

h21 h22 h23 h24

−h∗22 h∗21 −h∗24 h∗23





s1

s2

s3

s4


 = Hs. (70)

Thus, computing HHH results simply in the following block
matrix:

HHH =
[
γ1I B
BH γ2I

]
(71)

with γ1 = |h11|2 + |h12|2 + |h13|2 + |h14|2 and γ2 = |h21|2 +
|h22|2 + |h23|2 + |h24|2. Due to the condition BHB = BBH ,
such matrices can be inverted with a 2 × 2 matrix inversion
rather than a 4× 4:

[
HHH

]−1 =
[
γ2I −B
−BH γ1I

][
C ∅
∅ C

]
(72)

with C = [γ1γ2I − BBH]−1. Thus, the underlying Alamouti
scheme gives us the advantage of lower complexity while the
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BLAST scheme offers higher data rate. This specific scheme
was investigated in [22, 23], where a diversity factor of six was
found to closely match the diversity gain and the correspond-
ing unitary matrices to diagonalize the scheme are presented.

Finally, the third transmission mode would send only one
set of four symbols to the four transmit antennas. The corre-
sponding matrix HHH is not of full rank and therefore, can-
not be inverted. The entries on its diagonal consist of two
times diversity terms like |h11|2 + |h12|2. The decoding can
be performed either in MMSE mode or with an ML decoder
[24] allowing only for diversity of two but with a data rate of
four. Gaining such insight, the following conjecture can be
made.

Conjecture 1. Given a wireless communications system with
NT transmit and NR receive antennas in a flat Rayleigh fad-
ing environment with maximum diversity NRNT (see also [25]
for definition), an Alamoutization scheme can be found with
diversity order D and data rate R, if D ∈ N and R ∈ N ap-
proximately factorizing the maximum diversity, that is, DR ≈
NTNR.

Note that this statement was not formulated in terms of
a lemma since it may not be exactly true in the sense that ex-
actly a diversity of say eight is obtained when actually only 6.4
is achieved. It is thus to apply with some care. On non-flat-
fading channels, the UMTS transmission allows the diversity
to increase by assigning a number of fingers to each major
energy contribution in the impulse response. In this case, all
finger values are combined in a correspondingly larger ma-
trix H. However, HHH remains of the same size as before.
The various fingers only contribute to higher diversity gain
allowing to utilize BLAST schemes in which HHH would not
be of full rank in a flat Rayleigh scenario.

7. CONCLUSION

In this paper, several extensions to the Alamouti space-time
block code supporting very high transmit and receiver diver-
sity have been proposed and their performance is evaluated.
By combining conventional BLAST and new extended Alam-
outi schemes, a trade-off between diversity gain (and thus
QoS) and supported data rate is offered allowing very high
flexibility while the receiver complexity is kept approximately
proportional to the transmitted data rate.

Not considered in this paper is the influence of the mod-
ulation scheme on the diversity. It is well known [8] that a
rank criterion on the modulation scheme needs to be satis-
fied in order achieve the full diversity. In QPSK transmission,
this rank criterion is, for example, not satisfied in the four-
and eight-antenna transmission schemes. In other words,
for some transmitted symbols, the full diversity will not be
achieved. One can exclude such symbols or use different
modulation schemes. In [26, 27], the possibility to use off-
set QPSK was proposed. This can be implemented in UMTS
without sacrificing much of the existent hardware solutions.
Another possibility very suitable for UMTS is to work with
feedback schemes. In [28, 29], it is shown for the 4 × 1 as
well as the 8× 1 antenna scheme that a very simple feedback

scheme retransmitting only one or two bits can reinstall the
full diversity.

APPENDICES

A. PROOFS FOR LEMMAS 2 AND 3

Starting from the definition of X in (19), it is observed that
the squares in the denominator can be appended:

X + 1 =
∣∣h1 + h4

∣∣2
+
∣∣h2 − h3

∣∣2

∣∣h1
∣∣2

+
∣∣h2

∣∣2
+
∣∣h3

∣∣2
+
∣∣h4

∣∣2 . (A.1)

In the case of i.i.d. complex-valued Gaussian distributed vari-
ables hi, the two variates h1 +h4 and h2 +h3 become complex
Gaussian distributed and independent of each other. They
depend, however, on the variates in the nominator. Now, a
linear orthogonal coordinate transformation is defined:

u =
(
h1 + h4

)
√

2
, v =

(
h2 − h3

)
√

2
,

u′ =
(
h1 − h4

)
√

2
, v′ =

(
h2 + h3

)
√

2
,

(A.2)

such that
∑4

i=1 |hi|2 = |u|2 + |v|2 + |u′|2 + |v′|2 and

X + 1
2

= |u|2 + |v|2
|u|2 + |v|2 + |u′|2 + |v′|2 =

X2
1

X2
1 + X2

2
. (A.3)

Generally, if X2
1 and X2

2 are independent random variables
following chi-square distributions with ν1 and ν2 degrees
of freedom, respectively, then X2

1 /(X
2
1 + X2

2 ) is said to fol-
low a beta(p, q) distribution with ν1 = 2p and ν2 = 2q
degrees of freedom and the probability density is given by
(1/B(p, q))ξ p−1(1 − ξ)q−1, with p = ν1/2, q = ν2/2. This
matches our case (A.3) for ν1 = ν2 = 4 and the probabil-
ity density specializes to 6ξ(1− ξ). Transforming this back to
X gives the probability density

fX(x) =



3
4

(
1− x2

)
for |x| < 1,

0 elsewhere.
(A.4)

The independency of X and η = h2 can be established by
transformation of variables starting from the two indepen-
dent variates Zi = X2

i defined above which are (up to a scal-
ing) χ2

4 distributed, that is, their joint probability density is
given by

fZ1Z2

(
z1, z2

) = 1
16

z1z2e
−(z1+z2)/2 for z1 > 0, z2 > 0. (A.5)

The 2 × 2 transformation between the variates X , η and Z1,
Z2 is derived from (A.3):



X = Z1 − Z2

Z1 + Z2

η = Z1 + Z2


 ,



Z1 = 1 + X

2
η

Z2 = 1− X

2
η


 . (A.6)

The rules for transformation of variates result in the follow-
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ing joint probability density for X , η:

fX ,η(x,η) = 1
64

(
1− x2)η3e−η/2

= fX(x) fη(η), for |x| < 1, η > 0,
(A.7)

where fX is given above and fη is the χ2
8-density rescaled to

unit mean, that is,

fη(η) =



128
3

η3e−4η for η > 0,

0 elsewhere.
(A.8)

For the ZF receiver (where µ = 0), it follows that the noise is
increased by a factor of

E
[
δ4
] = E

[
1

1− X2

]
=

∫ 2

0
λ−1 fX(λ− 1)dλ = 3

2
. (A.9)

For the general linear receiver with µ > 0 (including the
MMSE),

E
[
δ4
] = 1

2
E

[
1 + X(

1 + µ/h2 + X
)2 +

1− X(
1 + µ/h2 − X

)2

]
(A.10)

is evaluated by exploiting independency of X and η = h2:

E[δ4] =
∫∞
η=0

∫ 1

x=−1

1 + x

(1 + µ/η + x)2
fX(x) fη(η)dx dη. (A.11)

The integration over x is straightforward. The remaining in-
tegral

E
[
δ4
] = 32

∫∞
0

(
2η2 + 6µη − µ(3µ + 4η) log(2η + µ)

+ µ(3µ + 4η) logµ
)
ηe−4ηdη

(A.12)

is evaluated in terms of the exponential integral which leads
to (32).

B. SOME PROPERTIES OF HHH

In the following it will be shown that all entries of HHH
are real valued. The proof is performed by induction. Using
block matrix notation HHH at a certain level m equals

HHH =
[

HH
1 H1 + HH

2 H2 HH
1 H2 −HT

2 H∗
1

HH
2 H1 −HT

1 H∗
2 HH

1 H1 + HH
2 H2

]
. (B.1)

Thus, if the property is given at the lower level scheme, HH
1 H1

and HH
2 H2 are real valued and so are the diagonal block ma-

trices. In the next step, the recursion for the nondiagonal
block matrix HH

1 H2 − HT
2 H∗

1 is investigated. Assuming H1

is constructed by H11 and H12 and H2 in a similar manner by
the matrices H21 and H22, then the term HH

1 H2 is given by

HH
1 H2 =

[
HH

11H21 + HT
12H∗

22 HH
11H22 −HT

12H∗
21

HH
12H21 −HT

11H∗
22 HH

12H22 + HT
11H∗

21

]
(B.2)

and the nondiagonal block matrix is obtained by such value
minus its transposed form HT

2 H∗
1 . Thus, every term HH

1 H2−
HT

2 H∗
1 is replaced by a sum of terms of the form HH

klHmn −
HT

mnH∗
kl. If the property holds for the level below, it also holds

for the current level. To complete the induction argument, it
has to be shown that the property also holds for the first level
(m = 1). In this case, the diagonal elements are |h1|2 + |h2|2
and the nondiagonal values are h∗1 h2 ± h2h

∗
1 , that is, either

zero or 2�{h∗1 h2}. Thus, all entries are real valued. Note that
due to the different signs occurring, it cannot be concluded
that the terms become zero.

The second property is shown in [30]. For the third
property, it is observed that every nondiagonal term X
consists of either elements (hih∗k + h∗i hk)/h2 or −(hlh∗m +
h∗l hm)/h2. Thus building X+1 allows to consider (h2 +hih

∗
k +

h∗i hk)/h2 and (h2 − hlh∗m + h∗l hm)/h2, further allowing to
reorganize the terms into (hi + hk)(hi + hk)∗/h2 and (hl +
hm)(hl−hm)∗/h2. By applying the same transformation as in
Appendix A:

u =
(
hi + hk

)
√

2
, v =

(
hl − hm

)
√

2
,

u′ =
(
hi − hk

)
√

2
, v′ =

(
hl + hm

)
√

2
,

(B.3)

the terms X+1 can be written in terms of independent Gaus-
sian variables and the same rules as before apply. The result-
ing term then reads (X + 1)/2 = X2

1 /(X
2
1 + X2

2 ) with X1 and
X2 being χ2-distributed with ν = 2m = NT degrees of free-
dom each and

1
B(NT/2,NT/2)

ξNT/2−1(1− ξ)NT/2−1 (B.4)

is obtained, resulting in the density (49) for X .
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