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The invention of analog-based, pulse-modulated, 
two-band, active lighting sensors (Beck and Vyse, 1994, 

1995) and the equivalent digitally based sensor (Stone et al., 
2003, 2005) have contributed to the potential use of these 
technologies for variable-rate application of N fertilizers. One 
of the more common reflectance indices used in agriculture is 
the normalized difference vegetation index (NDVI). The index 
is computed as (NIR – Red)/(NIR + Red), where NIR is the 
fraction of emitted near-infrared radiation returned from the 
sensed area (reflectance) and Red is the fraction of emitted red 
radiation returned from the sensed area (reflectance). Work by 
Filella and Penuelas (1994) and Liu et al. (2004a) noted that red 
edge reflectance can be indicative of plant chlorophyll content 
and biomass. Kanke et al. (2011) reported that NDVI better 
detected differences in plant growth, especially at early growth 
stages, than red edge reflectance. Spectral measurements of 
plants correlated with numerous physiological and morphologi-
cal factors affecting growth and yield. Because of the difficulty 
in accounting for all confounding factors, models for comput-
ing N fertilizer rates are generally empirical and plant species 
specific and do not account for environmental factors, particu-
larly rainfall, and their interactions with plant growth factors.

Biggs et al. (2002) proposed a reference strip, where fertilizer is 
applied at a sufficient rate such that crop yield reaches a response 
plateau, that would subsequently be used to manage N fertiliza-
tion. He patented a concept to measure reflectance with an opti-
cal sensor of the strip and the adjacent field rate and calculated 
the N application rate based on the ratio of the two readings 
(Biggs et al., 2002). The sensors were mounted on a center pivot 
irrigation system and paired measurements were made on-the-go.

Researchers use linear or exponential models to describe the 
relationship between vegetative indices and plant yield. Linear 
relationships have been identified between yield and NDVI for 
corn (Diker et al., 2004), wheat (Nidumolu et al., 2008; Liu et 
al., 2004b), tomato (Solanum lycopersicum L.) (Bala et al., 2007), 
cotton lint (Gossypium hirsutum L.) (Plant et al., 2000), and barley 
(Hordeum vulgare L.) (Kancheva et al., 2007). Multiple linear 
regression was used for winter wheat (Salazar et al., 2006; Kumar 
et al., 1999). Exponential relationships were used for NDVI and 
yield in cotton lint (Plant et al., 2000), winter wheat (Enclona et 
al., 2004; Raun et al., 2005), spinach (Spinacia oleracea L.) (Jones 
et al., 2007), canola (Brassica napus L. var. napus) (Osborne, 2007), 
and corn (Raun et al., 2005). One model incorporated additional 
variables to account for other confounding factors such as the 
date of planting (Kumar et al., 1999). A comprehensive theory is 
needed to account for effects of the growth stage, rate of growth, 
date of sensing, and environment on crop growth and yield.

Raun et al. (2005) recognized that N algorithms should 
account for the independence of the crop response to addi-
tional N and potential maximum yield. As such, they must be 
measured individually. Because N is highly mobile (Khosla and 
Alley, 1999), the maximum potential crop yield is temporally 
and spatially (Girma et al., 2007) variable, and the amount N 

ABSTRACT
Many different mathematical algorithms have been developed and used in conjunction with commercial sensors for sensor-based 
nutrient management. Several of the N algorithms have led to the precise mid-season prediction of yields and calculation of 
sidedress N rates. The original Oklahoma State University (OSU) algorithm identified several limitations that were addressed 
in this study. Based on data analyses from more than 390 winter wheat (Triticum aestivum L.) and 200 corn (Zea mays L.) experi-
ments and analyses of more than 100 N-rich strips, a generalized algorithm (for both corn and wheat) was developed to estimate 
the optimum N application rate based on spectral measurements. The generalized model adjusts the yield calibration curve for 
growth stages and better predicts corn and wheat yields. The coefficients of determination of the generalized model explained 5 
to 6% less of the model error than the individual regressed data for both crops. Mean absolute error (MAE) was approximately 0.9 
Mg/ha greater with the generalized model than with the individually regressed model. The larger MAE with the OSU general-
ized model was due to sensitivity to location of the inflection point; however, this sensitivity did not impact the calculated fer-
tilizer rates. The generalized model reported here using normalized difference vegetation index sensor measurements collected 
midseason can be used to apply fertilizer N with changing growth stage for both corn and wheat.

J.B. Solie and M.L. Stone, Biosystems and Agricultural Engineering Dep., 
Oklahoma State Univ., Stillwater, OK 74078; W.R. Raun, Plant and Soil 
Sciences Dep., Oklahoma State Univ., Stillwater, OK 74078; and A.D. Monroe, 
Dep. of Management and Marketing, Angelo State Univ., San Angelo, TX 
76909. Received 10 Aug. 2011. *Corresponding author (bill.raun@okstate.edu).

Abbreviations: MAE, mean absolute error; NDVI, normalized difference 
vegetation index; OSU, Oklahoma State University.



Agronomy	 Journa l 	 • 	 Volume	104,	 Issue	2	 • 	 2012	 379

available from soil nitrification or denitrification varies greatly 
from year to year (Johnson and Raun, 2003). Furthermore, there 
is a strong agronomic basis for the argument that N algorithms 
must account for these factors by year and location. Any algo-
rithm that combines the two without considering their indepen-
dence will result in flawed recommendations (Raun et al., 2011).

Algorithms using other strategies, such as the sufficiency con-
cept for recommending fertilizer N (Varvel et al., 2007), do not 
account for the temporal variability of these factors. An example 
of the sufficiency approach is work done by Varvel et al. (2007), 
which used normalized chlorophyll meter readings and relative 
or normalized yields to calculate N application rates. The use of 
a sufficiency index approach is appropriate for soil nutrients that 
are immobile, but models based on data averaged across years 
disregard the variability of yield responsiveness to N applied pre-
plant and the yield response to unlimited N, both bound by the 
environment (year). As a result, the final N rate recommended is 
fixed to a sufficiency percentage determined from historical data 
and not tied to the yield level that would be achievable that year. 
Furthermore, the potential yield achievable is fundamental to 
calculating the total N demand for cereal crops in any crop year.

Lukina et al. (2001) proposed that the midseason N fertil-
izer required to maximize the grain yield for a specific season 
could be used to calculate the midseason N application rate. 
They proposed the following to predict the N application rate: 
[(YPmax – YP0)GN]/0.70, where YPmax is the maximum poten-
tial yield, YP0 is the potential yield with no additional fertilizer, 
GN is the predicted amount of total N in the grain, and 0.70 is 
the expected efficiency of the N fertilizer under ideal conditions. 
This method of determining in-season fertilizer need was shown 
to decrease large-area N rates while increasing wheat grain yields 
when each 1-m2 area was sensed and fertilized independently. 
Later research by Raun et al. (2005) suggested that midseason 
N fertilizer rates be based on predicted yield potential and a 
response index. Their work showed that they could increase 
the N use efficiency by >15% in winter wheat, compared with 
conventional methods, at a 0.4-m2 resolution.

Ferguson et al. (2002) suggested that improved recommenda-
tion algorithms may often need to be combined with methods 
such as remote sensing to detect the crop N status at early, critical 
growth stages followed by carefully timed, spatially adjusted 
supplemental fertilization to achieve optimum N use efficiency. 
Later work by Noh et al. (2005) confirmed that it was technically 
feasible to design a machinery-mounted multispectral imaging 
sensor to reliably and accurately detect crop N stress.

Zillmann et al. (2006) indicated that sensor-based measure-
ments can be used efficiently for variable N application in cereal 
crops when N is the main growth-limiting factor. They further 
cautioned that the causes of variability must be adequately 
understood before sensor-based, variable-rate fertilization can 
be properly used to optimize N sidedressing in cereals.

Tubaña et al. (2008) found that using an algorithm that 
predicted the N responsiveness and yield potential (YP0), with a 
modification for plant stand estimated using the coefficient of vari-
ation from sensor readings, resulted in net returns to N fertilizer 
that were higher when spatial variability was treated at <13.4-m2 
resolution (they also tested 0.84 and 26.8 m2). Limited work has 
attempted to treat spatial variability in N at this small of a scale.

Ortiz-Monasterio and Raun (2007) showed that using a 
combination of an N-rich strip, together with the use of a 
GreenSeeker sensor and an algorithm to interpret the results 
from the sensor, allowed farmers to obtain significant savings 
in N use and thus farm profits. Farm income was increased by 
US$56/ha when averaged across all trials and years.

MATERIALS AND METHODS
Lukina et al. (2001) developed a methodology that 

accounted for the spatial variation in crop response to addi-
tional N fertilizer. With time, this was modified to address the 
temporal variability in N response (Mullen et al., 2003) and 
that led to a procedure to calculate N fertilizer application rates 
using optical sensor measurements of plant reflectance (Raun 
et al., 2005). In this algorithm, they delineated the following:

1.  Measurements of light reflectance in one or more 
bands could be used to estimate a crop’s potential yield 
during the growing season.

2.  The ratio of paired reflectance measurements of 
an actively growing crop in an area of a field with 
standard fertility practices compared with similar 
measurements of the crop with nonlimiting N 
fertilizer in an immediately adjacent area could be 
used to determine the quantitative yield response with 
sufficient N fertilizer.

3.  There is a maximum potential yield for any field or soil 
type within a field for any year, and this yield serves as 
a cap on yield that is independent of the amount of N 
fertilizer applied.

4.  The fertilizer N application rate may be based on 
the mass of N removed in the grain at harvest. The 
N mass removal is a function of the difference in 
yields between a well-fertilized crop and the crop 
fertilized using the farmer’s practice, multiplied by the 
percentage of N contained in the grain of the two, and 
divided by the efficiency at which N is taken up by the 
crop and processed into grain.

Extensive research, principally on wheat, established that the 
NDVI calculated using red and near-infrared reflectance was a 
good predictor of potential yield. This index was evaluated by 
Wanjura and Hatfield (1987) and is a good predictor of living 
plant biomass and grain yield, and is correlated to numerous 
plant stressors. The NDVI is calculated by

NIR Red

NIR red

NDVI
r -r

=
r -r

 
[1]

where ρNIR and ρRed are the reflectance values in the near 
infrared (780–880 nm) and red (650–670 nm) wavelengths, 
respectively. Although the original and generalized models use 
the spectral NDVI, other spectral indices and spectral bands 
may be used in these algorithms (Shaver et al., 2011). A simple 
exponential growth model is commonly used to predict the 
grain yield potential (YP):

( )YP exp NDVIa b=  [2]

where coefficients a and b are determined empirically. Raun et al. 
(2005) showed that the regression coefficient for the model could 
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be improved by dividing the NDVI by the number of days with 
active growth, particularly for winter wheat. They defined the 
index created from these variables as INSEY, or in-season estimate 
of yield, where INSEY = NDVI/number of days from planting to 
sensing during which growth was possible. Growing-days equa-
tions are a function of the plant species. For example, days when 
winter wheat grows actively or when growth is possible occur when 
the daily average temperature is ≥4°C (Porter and Gawith, 1999). 
From data collected between 1998 and 2003 at 30 locations, Raun 
et al. (2005) modified the exponential growth model as

( )YP 0.359exp 324.4 INSEY=   [3]

To be able to make correct N recommendations, establishing 
the plant response to applied N is important. Mullen et al. 
(2003) and Raun et al. (2005) observed that paired optical 
measurements of the crop with and without sufficient N could 
be used to estimate the increase in crop yield with additional 
N, which they termed the sensor response index, RINDVI:

NDVI
NDVI

NDVI

NR
RI

FP
=   [4]

where NRNDVI is the average NDVI value taken from a strip 
where N is not a limiting factor and FPNDVI is the average 
NDVI value measured from an adjacent strip with fertilizer 
applied at the field or farmer practice rate.

Their research demonstrated that NDVI calculated from 
these measurements could be used to predict yield with and 
without additional N. The potential yield with additional N, 
YPN, was calculated as the product of RINDVI and the yield 
potential without additional N:

N NDVI 0YP RI YP=  [5]

where YP0 is calculated with Eq. [2] and the NDVI value of the 
farmer practice rate of the paired comparison is used to calculate 
the RINDVI. They noted, however, that YPN could be calculated as

( )N NDVIYP RI exp NDVIa b=  [6]

During the process of developing the theory to determine the N 
application rate, they elected to use Eq. [3] with an adjustment 
equation to compensate for underestimating the harvest yield.

As implemented, YPN was calculated as

( )N NDVI 0 maxYP min RI YP , YP=  [7]

Eleven years of testing the first N application algorithm (Lukina 
et al., 2001) identified the following issues and limitations:

1.  There are discontinuities in the yield model.
2.  The maximum potential yield is not incorporated into 

a continuous function.
3.  Boundary conditions are not included, specifically:

a.  The yield potential, Eq. [2], does not predict zero 
yield on bare soil nor is it bounded at FPNDVI = 
1. At FPNDVI = 1, the potential yield must 
equal the highest potential yield within a field. 
Consequently, an additional measurement was 

required to estimate the maximum yield potential.

b.  Equation [2] calculated the average potential 
yield of a number of fields across several years, not 
the yield in a particular field in a particular year.

4.  Examination of field data collected during a 10-yr 
period indicated that the response index varied 
continuously across the entire range of the vegetative 
index (Raun et al., 2008).

5.  Bare soil was arbitrarily defined as NDVI = 0.25.
6.  Crop growth stage and varying rates of biomass at 

each growth stage are not fully accounted for.
7.  A procedure is needed to incorporate the maximum 

potential yield for a specific field, a location within a field, 
and year, as well as growth stage, in the yield model.

8. Parameters need to be generated for each crop species.

To address these and related issues of existing models to predict 
N application rates, a generalized algorithm was created to predict 
the N application rate based on spectral measurements. The 
model was composed so as to require that boundary conditions be 
met without requiring maximum or minimum constraints and 
that the model be continuous across the range of application. The 
model was fit based on 7 yr of data acquired since the introduc-
tion of the original model (Lukina et al., 2001).

MODEL DEVELOPMENT
An examination of the data relating NDVI to measured 

yield accumulated during 11 yr at numerous locations demon-
strated the need to revise the theory for predicting potential 
yield and response to additional N.

Generalized Theory for Topdress 
Nitrogen Application

Spectral and Agronomic Considerations
Researchers have known for some time that certain spectral 

wavelengths are associated with biological processes within a 
crop. In particular, the amount of energy in the red band that 
is absorbed by a plant is a function of the plant’s photosyn-
thetic potential. There is a finite amount of energy that can be 
absorbed by the plant, which in all cases is less than the amount 
of energy reaching the plant. The ratio of the incident and 
reflected light is the reflectance. The value of peak reflectance 
in the red band (ρRED) is typically 5 to 10%.

A second critical band is the near infrared, which measures 
a plant’s ability to reflect unwanted light energy (heat) in 
the infrared region (wavelength λ ≥ 780 nm). Reflectance in 
the near-infrared region (ρNIR) varies among species and is a 
function of the health of the plant. Typical reflectance in the 
near-infrared region is 50%.

Reflectance measurements of these bands (or other bands of 
interest) are generally incorporated into a spectral vegetative 
index. These indices serve several purposes. Of particular inter-
est, they can increase the magnitude and sensitivity of the mea-
surements and in the case of normalizing indices, remove or 
minimize the effect of other variables on the index value. These 
indices have been correlated with a number of plant responses 
including plant biomass and yield. Numerous spectral indices 
have been created, but for the purpose of creating an algorithm 
for N fertilizer application, the NDVI (Eq. [1]) will be used 



Agronomy	 Journa l 	 • 	 Volume	104,	 Issue	2	 • 	 2012	 381

to infer the shape of the yield prediction curve. Extensive 
research, principally on wheat, established that the NDVI 
calculated using red and near-infrared reflectance was a good 
predictor of potential yield. Kanke et al. (2011) showed that an 
alternative red-edge index (computed using two different meth-
ods) behaved very similarly to the NDVI in winter wheat.

The following inferences can be made on the shape of the 
curve created by the NDVI yield model based on knowledge of 
the NDVI and the general relationship of biomass and N nutri-
ent management:

1.  A yield model with NDVI as the independent variable 
will have no potential yield for any value of NDVI less 
than the bare-soil NDVI (Fig. 1).

2.  There is a central region where potential yield 
increases rapidly with increasing levels of biomass 
(Fig. 1). Because biomass is roughly proportional to 
the NDVI, crop yield is also roughly proportional 
to the NDVI. The bulk of the variation in yield and 
biomass occurs in this region.

3.  There is a transition region between bare soil and the 
central region where there is a limited increase in yield 
with increasing spectral index (Fig. 1). In this region, 
crop stands are poor or growth is retarded due to 
other agronomic factors.

4.  The yield curve reaches a plateau, which is the 
maximum potential yield (Fig. 1). In this region there 
is limited or no response of yield to changes in spectral 
measurements. In this region, the photosynthetic 
potential is great enough to effectively use all available 
incoming light. There is sufficient N to produce the 
maximum potential yield, and crop growth is limited 
by other agronomic factors including the genetic yield 
potential of the cultivar.

5.  There is a second transition region where potential yield 
changes to maximum potential yield. In this region, 
response to additional N fertilizer is limited (Fig. 1).

6.  The point where the yield/NDVI curve reaches 
the maximum potential yield is the value of NDVI 
measured from the N-rich reference strip (Fig. 1). This 

would be the maximum yield under fully sufficient N 
or the reference strip where N is not limiting.

7.  Although the general shape of potential yield curves 
are defined in Fig. 1, the model must account for the 
growth stage. Early in the growing season, differences 
in crop growth are obvious, but even plants with 
sufficient N have not closed the crop canopy. The 
NDVI values of these plants with nonlimiting N will 
be much less than NDVI = 1. Because the crop yield 
reaches a plateau at NDVI < 1, the curve relating 
the spectral index to the potential yield must shift to 
lower values of the vegetative indices, i.e., the curve 
must shift to the left (Fig. 2).

8.  Similarly, at later growth stages the crop fully covers 
the canopy and even poor and irregular plant stands 
have achieved substantial growth. Values of the NDVI 
from the N-rich reference strip should then approach 
1. The maximum yield plateau may be a point. The 
potential yield curve must be shifted to the right to 
account for higher spectral values (Fig. 2).

Nitrogen Rate Prediction Model

A parameterized symmetric sigmoid model with zero inter-
cept satisfies these boundary condition requirements (Fig. 3). 
The model relating NDVI to yield is

( )
max

NDVI

YP
YP

1 exp FP Inf K
=

é ù+ - -ë û
 [8]

where YPmax is the maximum potential yield of the crop 
within a field or area within a field, Inf is the location of the 
inflection point of the model, which is the point where the pre-
dicted yield is one-half the maximum yield, and K controls the 
curvature of the sigmoid model, with the slope of the sigmoid 
at the inflection point decreasing with increasing values of K. 
In addition, because bare soil yields NDVI values generally 
appreciably greater than zero, the minimum value of the NDVI 
for calculation of the N rate must account for bare soil.

The sigmoid curve (Fig. 3) generated from Eq. [7] closely 
conforms to the agronomic requirements depicted in Fig. 1. 

Fig. 1. Regions of model relating plant yield to the 
vegetative index inferred from the general knowledge of 
the relationships of plant biomass, normalized difference 
vegetation index (NDVI), and crop yield.

Fig. 2. Regions of model relating plant yield to the 
vegetative index inferred from the general knowledge of the 
relationships of plant biomass, plant growth stage, normalized 
difference vegetation index (NDVI), and crop yield.
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The mathematical model does not allow the curve to shift to 
reflect the growth stage of the crop. This is because the equa-
tion coefficients are constants; however, these coefficients can 
be converted to parameters that are continuous equations and 
functions of the independent variable, NDVI.

Model Validation and Parameter Regression
Model Validity

To empirically verify the validity of the sigmoid as a yield 
model, the model was evaluated against 390 site-year-date wheat 
experiments and 92 site-year-date corn experiments. These experi-
ments were conducted from 1998 to 2008. All trials had in com-
mon three or more N fertilizer rates plus a zero-rate check. Some 
of the long-term experiments included in this study (Raun et al., 
2001) evaluated other factors such as P, K, and S, but these treat-
ments were not included in the analysis. All were optically sensed 
by either a GreenSeeker optical sensor (NTech Industries, Ukiah, 
CA) or the natural lighting sensor described in Lukina et al. 
(2001). Both sensors were calibrated against a BaSO4 white plate. 
Those experiments that were optically sensed only once were 
dropped from the analysis because change in the sigmoid curve 
shape as a function of time was important for model testing.

The remaining experiment site-year data were nonlinearly 
regressed to a zero-intercept sigmoid model using the curve-
fitting program TableCurve (Systat Software, San Jose, CA), 
as were the single-sensing site-years, which were included in 
the final validation of the model. Data sets that could not be 
regressed by TableCurve were removed. These data sets con-
tained data that had no trend. This left 37 corn site-year-dates 
and 86 wheat site-year-dates to build the parameterized model. 
The TableCurve nonlinear regression was able to fit the zero-
intercept sigmoid model, with all boundary conditions satis-
fied, for the remaining 123 site-year-date data sets for corn and 
wheat (site examples in Fig. 4a and 4b). Approximately 60% of 
the 390 site-year-date experiments were incomplete, and when 
regressed using TableCurve with the zero-intercept sigmoid 
model, all of the boundary conditions could not be satisfied 
(Fig. 4c). The example in Fig. 4c shows no clear maximum, 

thus no sigmoidal plateau could be defined within the NDVI 
boundary (0.0–1.0 NDVI). Other data sets like this, where 
maximum yields were not discernable, could not be used for 
developing the parameterized model. The balance of the data 
sets did not demonstrate any clear trends and usable sigmoid 
models could not be fitted to these site-years (Fig. 4d). These 
distributions were observed for corn (not shown) and wheat 
(shown). Once the parameterized model was created, however, 
the model was validated with all data sets, including those that 
did not have defined boundaries and data sets where there was 
no clear relationship between yield and the NDVI.

Defining Maximum Yield
The original theory allowed the producer, crop advisor, fer-

tilizer dealer, agronomist, or other specialist to define the maxi-
mum expected yield for a specific year and field. Farmers, with 
long-term yield data coupled with their intuition, have demon-
strated that they can make reasonable yield estimates within a 
field. An optical sensor was used to measure the NDVI along a 
non-N-limiting strip through a field. The maximum yield was 
predicted by Eq. [2]. Exponential models relating the NDVI to 
yield (e.g., Eq. [2]) can generally provide reasonable estimates of 
the expected maximum yield. These models are based on com-
posited data for many site-years, however, and must be adjusted 
for the field and growing conditions (Raun et al., 2005).

Crop growth models can be useful in predicting maximum 
yield. Yield estimates can be made or adjusted based on fertil-
izer costs and the market value of the grain. In the absence of 
field-level yield data, county grain yield weighted by soil class 
and general weather conditions provides a basis on which to 
estimate maximum yield. Unfortunately, with existing tools, 
predicting maximum yield remains challenging.

Model Parameter Definition
The optical sensor measures bare soil, which typically has a 

bare-soil NDVI (BSNDVI) value greater than zero, normally rang-
ing between 0.12 and 0.25. Consequently, measurements with 
living biomass have NDVI values ranging from BSNDVI < NDVI 
≤ 1.0. Because optical sensor measurements include bare soil, 
the model must satisfy two end conditions: (i) the model yield 
prediction must asymptotically approach the bare soil NDVI (the 
transition zone in the conceptual model), and (ii) the yield must 
asymptotically approach the maximum yield when NDVI = 1. 
The latter end condition can be derived from the mathematical 
definition of the NDVI because much of the incident red light is 
theoretically absorbed by the plant for photosynthesis.

To define the inflection parameter, Inf, as a function of the 
NDVI the nonlinear regressions of each data set (determined 
by TableCurve) were graphed against the maximum value of the 
NDVI in the experiment (Fig. 5). This value should be the value 
of the crop when N is not a limiting factor, NRNDVI. The maxi-
mum NDVI value was assumed to be non-N-limiting and, in all 
cases, came from plots with the highest N application rates.

Inflection Point
Linear models were fitted to data from the 127 experiments 

with complete data sets (Fig. 5a). Before analyzing the data, we 
hypothesized that parameter values equaled zero on bare soil. This 
was clearly the case for the Inf in corn but not for wheat (Fig. 5b). 

Fig. 3. Sigmoid yield model with critical parameters. The 
bare soil factor offset is 0.1; FPNDVI is the average value of 
the normalized difference vegetation index (NDVI) measured 
from an adjacent strip with fertilizer applied at the field or 
farmer practice rate.
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The slope of the curve for wheat (Fig. 5b) was varied, and only a 
slight decrease in r2 (data not reported) was observed with positive 
values of the bare-soil NDVI (0.03 ≤ BSNDVI ≤ 0.04). Consider-
ing the number of site-year-date data sets incorporated into this 
analysis, the r2 and MAE (Table 1) values are reasonable.

Curvature

The parameter K enables the boundary conditions of the sig-
moid model to remain satisfied as the inflection point is shifted 
along the abscissa. To do this, the radius of curvature (or the 
tangent of the curve at the inflection point) must change. 
In this case, where the abscissa is the NDVI, the inflection 
point values range from 0 to 1. Because the biomass increases 
throughout the growing season, the value of the NDVI for any 
area within a field increases with crop growth. This implies that 
although the biomass and NDVI change, the yield model must 
continue to satisfy the boundary conditions. This requirement 
can only be satisfied if K approaches zero at NDVI = 0 and 
NDVI = 1, i.e., the slope of the model approaches infinity at 
the inflection point. At NDVI = 0.5, K equals a finite value 
where all boundary conditions are satisfied. The same results 
were predicted qualitatively in Fig. 2.

A close examination of the curvature data in Fig. 6 and Table 
1 indicates that:

1.  Corn and wheat K responded the same to changes in 
the NRNDVI.

2.  Bare soil was not clearly a factor affecting K; however, 

Fig. 4. (a,b) Typical sigmoid model nonlinear regressed yield and normalized difference vegetation index (NDVI) sensor data, with 
sufficient data to define the maximum potential yield and region of high response to change in the NDVI; (c) insufficient data to 
establish maximum potential within the genetic yield potential for hard red winter wheat under dryland conditions; and (d) the 
limited number of experiments where data were insufficient or so scattered to prevent fitting a sigmoid curve with certainty. 
Similar distributions were observed for corn.

Fig. 5. Linear regression to determine the relationship of (a) 
corn and (b) wheat inflection points to the average value of the 
normalized difference vegetation index (NDVI) taken from 
a strip where N is not a limiting factor (NRNDVI). The corn 
inflection point is highly sensitive to bare soil (NDVI = 0.17), while 
the wheat inflection point curve appears insensitive to bare soil.
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r2 was insensitive to the intercept value (Table 1).
3.  Unexpectedly, both data sets exhibited a void in the 

data, and both corn and wheat data located above the 
void appeared to fall on the same curve (Fig. 6).

We contend that a single linear curve best represents the 
data. Values of K above the void were associated with NDVI–
yield data sets with a limited range of NDVI or data sets with 
nearly constant values for yield for lower NDVI values. There 
were a few NDVI–yield data sets with high values of K. These 
outliers were responsible for the low r2 values and MAE values 
for the parametric equation predicting K.

Model Optimization and Validation

Model optimization and comparison of the OSU yield model 
to the TableCurve sigmoid regression models were performed. 
To validate the hypothesis that a single model could be created to 
predict the yield of two morphologically different cereal grains 
(corn and wheat), the generalized model was fit to all crop-site-
year-date data sets. This included data sets that were apparently 
incomplete because they did not depict the entire curve. Each 
data set was nonlinearly regressed with a zero-intercept sigmoid 
model and the maximum yield and r2 recorded. The MAE was 
calculated. Equations to calculate the parameters using the 
generalized algorithm were incorporated into each data set and 

linked to a table of values for the constants of these equations. 
The parametric equations were formulated so that the BSNDVI 
defined the intercept of the NDVI axis. The maximum yield 
value of the data set was used to set the maximum yield in the 
TableCurve regression. Data sets where TableCurve produced 
maximum yield values clearly outside of the ranges biologically 
possible for corn and wheat were excluded. Because constants 
in the equations were interlinked, they could be adjusted to 
optimize their values. Mean and median values of the MAE and 
r2 were optimized for all data sets by adjusting the constants 
for the two parametric equations and BSNDVI. The parametric 
equations were optimized for corn and wheat data individually 
and optimized as a single set of equations for all data.

As expected, r2 values for the generalized model were lower 
than for the individually regressed data. However, r2 of the 
generalized model explained only 5 to 6% less of the model 
error than the individually regressed data for both crops. The 
MAE was approximately 0.2 Mg/ha greater with the general-
ized model than with the individually regressed model. The 
larger MAE with the generalized model was a result of sensitiv-
ity to the location of the inflection point, as shown below. This 
sensitivity had little effect on fertilizer rates.

It had been assumed that BSNDVI could be included directly 
to generate the parametric equation. Optimization showed, 
however, that bare soil had less of an effect than expected 
(Table 1). The implication is that considerable error can occur 
in the transition region between bare soil and the crop, but 
because neither corn nor wheat should be fertilized in this 
region, any error in fertilizer rate will be small.

Several important observations can be gleaned from Fig. 7 and 8:

1.  The generalized models were better predictors of corn 
yield and conformed closely to the regression model.

2.  The generalized model adjusts the yield calibration 
curves for growth stage as days from planting increase. It 
does so by compensating for plant growth (accumulated 
living biomass). The fundamental assumption of 
N-rich strips or N reference strips is that the rate of 
plant growth is proportional to the available N in 
the root zone. Once plants begin growing vigorously, 
the differentiation in growth rate (as indicated by 
cumulative biomass) is easily observed and measured 

Table 1. Comparison of generalized yield model using the normalized difference vegetation index (NDVI) fit to all corn and all 
wheat data with a sigmoid regression model fit to individual data sets.

 
Crop

Yield  
model

Parametric  
model

Bare- soil 
NDVI

 
Estimate

Sigmoid 
regression r2†

Generalized 
model r2‡

Sigmoid 
regression MAE§

Generalized 
model MAE¶

MAE  
difference

Mg/ha %
Corn corn	only Inf	=	0.738NDVI	–	0.0480 0.068 mean 0.421 0.374 0.607 0.710 16.9

K	=	0.155NDVI	–	0.0101 median 0.494 0.379 0.532 0.570 7.1
corn	and	
wheat

Inf	=	0.773NDVI	–	0.0479 0.065 mean 0.421 0.374 0.607 0.795 30.9
K	=	0.168NDVI	–	0.0104 median 0.494 0.381 0.532 0.722 35.7

Wheat wheat	
only

Inf	=	0.808NDVI	–	0.0477 0.059 mean 0.592 0.528 0.422 0.465 10.2
K	=	0.1923NDVI	–	0.0113 median 0.593 0.529 0.381 0.405 6.4

wheat	and	
corn

Inf	=	0.773NDVI	–	0.0479 0.065 mean 0.592 0.525 0.422 0.505 19.7
K	=	0.168NDVI	–	0.0104 median 0.593 0.537 0.381 0.447 17.5

†	TableCurve	sigmoid	regression	model	r2.
‡	Oklahoma	State	University	(OSU)	generalized	model	r2.
§	TableCurve	regression	model	mean	absolute	error.
¶	OSU	generalized	model	mean	absolute	error.

Fig. 6. Relationship between curvature K and the average value 
of the normalized difference vegetation index (NDVI) taken 
from a strip where N is not a limiting factor (NRNDVI) for corn 
and wheat. Both species exhibited some data with high K values.
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with a sensor. This differentiation generally begins in 
wheat at growth stage Feekes 4 and in corn by the five-
leaf stage. The differentiation caused by variations in 
the available N continues until flowering. The sensor 
measurement of the non-N-limiting N-rich or reference 
N strip increases with growth stage, but in all cases the 
value (of NDVI) is equivalent to the potential grain 
yield when N is nonlimiting. In other words, the sensor 
reading is an analog for both accumulated biomass and 
potential grain yield at any time after the plant reaches 
the minimum growth stage.

3.  The range in NDVI for the earliest sampling dates was 
narrow, which was reflected in the poor r2 values for all 
models. These sampling dates occurred before the date 
when the crops fully displayed available N. Nevertheless, 
the generalized model could be used to apply N 
differentially based on optical sensor measurements.

4.  The magnitude of BSNDVI did not directly affect 
the parametric equations, which were optimized 
for a BSNDVI value of approximately 0.06. This is a 
consequence of the zero-intercept symmetric sigmoid 
function, which does not necessarily approach zero 
yield at zero NDVI and whose fit is not optimized at 
BSNDVI; however, BSNDVI should be incorporated into 
the algorithm to halt fertilizer application on bare soil.

Calculating Nitrogen Application Rate
The N fertilizer application rate was calculated using an 

approach similar to Lukina et al. (2001). Grain yield with suf-
ficient N was calculated as

( )
max

N
NDVI NDVI

YP
YP

1 exp RI FP Inf K
=

é ù+ -ë û
 [9]

This equation incorporates the expected increase in yield with 
additional fertilizer, incorporating RINDVI to calculate the value of 
NDVI with sufficient N at a specific location. The value of RINDVI 
is calculated from the N-rich calibration strip using Eq. [3].

Nitrogen Topdress Rate Calculation

The N application rate (Nrate) can be calculated using the same 
equation used in the functional algorithm (Lukina et al., 2001):

( )N 0
rate

YP YP %N
NUE

N
- -

=  [10]

where %N is the percentage of N contained in the grain or for-
age and NUE is the N use efficiency.

The N rate increases with the NDVI to a point where the 
potential yield is achieved. Beyond that, any increase in the 
NDVI will lead to a decline in the N rate applied (Fig. 9). If a 
high NRNDVI is used in calculating the N rate, the dispersion 
of the curve will be wider than with a lower NDVI, but the N 
rate required to attain the potential yield will stay the same. 
Although the trend remains the same, the curve with which 
the N rate was calculated using 0.4 NRNDVI shifts left, while 
the curve using 0.8 NRNDVI shifts to the right (Fig. 9). The 
parameter K responds to changes in NRNDVI and maintains 
the boundary conditions of the sigmoid model as the inflection 
point is shifted along the abscissa.

Algorithm to Calculate Nitrogen 
Fertilizer Application Rates

The following procedure implements the generalized algorithm 
for calculating application rates for variably applied N fertilizer:

1. Estimate the maximum yield for the field under current 
growing conditions. We have developed a method to 

Fig. 7. Predicted corn yield sensed 46 and 60 d after planting 
based on field-sensed normalized difference vegetation index 
(NDVI) using sigmoid regression, the generalized model for 
wheat, and the generalized model for corn and wheat.

Fig. 8. Predicted wheat yield sensed 57 and 131 d after planting 
based on field-sensed normalized difference vegetation index 
(NDVI) using sigmoid regression, the generalized model for 
wheat, and the generalized model for wheat and corn.

Fig. 9. The effect of the normalized difference vegetation 
index (NDVI) taken from a strip where N is not a limiting 
factor (NRNDVI) on the N application rate.
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estimate the potential yield for winter wheat. Models 
exist with varying degrees of complexity that are 
accurate in predicting yield. Our experience is that 
farmers with good yield records can estimate grain 
yields midway through the growing season with a 
reasonable degree of accuracy and precision.

2. Measure the NDVI of paired areas in an N-rich strip and 
adjacent farmer practice strip. These areas should be 
located in a region of the strip where the topography 
and soils are uniform. Measuring in areas where the 
effect of sufficient N is obvious will improve the 
precision of subsequent calculations. Four to five 
paired measurements will improve the precision 
of the calculations. The most responsive of these 
measurements should be used for further calculations.

3. Define the potential yield curve. Determine which 
equations (corn, wheat, or corn and wheat combined, 
Table 2) will be used to calculate the yield curve 
parameters curvature (K) and the inflection point 
(Inf ). Use the N-rich (reference) NDVI from the 
N-rich strip. Enter the maximum expected yield 
within the field, YPmax, into the yield model to create 
the upper boundary for the model.

4.  Calculate the response indices from the paired N-rich 
strip measurements. Use Eq. [4] to calculate RINDVI 
(one to five values).

5.  Calculate the values of the coefficients for the 
parameters Inf and K. Use the appropriate equations 
in Table 1. Use the value for NDVI (RINDVI) from 
the N-rich reference strip.

6.  Scan the area to be treated.
7.  Calculate the expected yield curve without additional 

N using Eq. [8].
8.  Calculate the yield with additional fertilizer using Eq. 

[9], which incorporates the response index.
9.  Calculate the N fertilizer application rate. Values 

for the percentage of N in grain, forage, fruit, and 
other crops are well known. Nitrogen use efficiency 
is typically between 50 and 60% for topdress or 
sidedress fertilizer applications. Equation [10] 
provides a method for calculating the application rate. 
Standard equations should be used to adjust the rates 

for the specific forms of fertilizer.

CONCLUSIONS

The improved models for predicting the yield potential and 
the response index overcome the limitations of the Lukina et 
al. (2001) algorithm. The equations and procedures presented 
here are based on data from more than 200 corn and wheat 
experiments and analyses of more than 100 N-rich strips. 
Reflectance measurements in the red and near-infrared bands 
are incorporated into the spectral index (NDVI), which cor-
relates with plant biomass and yield. Yield models with NDVI 
have zero potential yield for values less than the BSNDVI. It was 
established that yield increased with biomass and that there is a 
transition region between bare soil and the central region, where 
there were limited increases in yield with increasing NDVI. The 
response to additional N was limited when the potential yield 
approached the maximum potential yield. The OSU generalized 
model resulted in equations for the calculation of the N rate by 
introducing new parameters: the inflection point (Inf) and the 
curvature (K). The inflection point, ranging from 0 to 1, equaled 
zero on bare soil in corn but not in wheat. The slope of the curve 
for wheat had a slight decrease in r2 with positive BSNDVI values 
(0.03 ≤ BSNDVI ≤ 0.04). The curvature enabled the boundary 
of the sigmoid model to be satisfied when K approaches zero at 
NDVI = 0 and NDVI = 1 as the inflection point shifts along the 
abscissa. Corn and wheat K responded to changes in NRNDVI 
and bare soil was not a factor, although the BSNDVI should still 
be incorporated into the algorithm to stop fertilizer applica-
tion on bare soil. Based on the equations in the model, a single 
model could be created to predict the yield of two morphologi-
cally different cereals (corn and wheat). The generalized model 
was able to adjust for growth stage and better predict corn and 
wheat yields. The range in NDVI values recorded from very early 
growth stages were narrow and were reflected in poor r2 values. 
These coefficients were lower for the generalized model than 
the individual regressed data; however, the r2 of the generalized 
model explained only 5 to 6% less of the model error than the 
individual regressed data for both crops. The MAE was approxi-
mately 0.9 Mg/ha and was greater with the generalized model 
than with an individually regressed model. The larger MAE with 
the OSU generalized model was due to sensitivity to location 
of the inflection point; this sensitivity, however, had little effect 

Table 2. Comparison of the generalized yield model fitted to all corn and all wheat data with a sigmoid regression model fitted to 
individual data sets.

Crop Experiment Plant growth 
present

Yield model Sigmoid 
regression r2†

Generalized 
model r2‡

Sigmoid 
regression MAE§

Generalized 
model MAE¶

MAE difference
from regression model

d Mg/ha %
Corn LCB	2006,	

99-d	maturity
46 corn	only 0.365 0.160 0.876 1.081 16.9

corn	and	wheat 0.365 0.172 0.876 1.216 30.9
60 corn	only 0.533 0.347 0.779 0.810 4.0

corn	and	wheat 0.533 0.362 0.779 0.947 21.6
Wheat LCB	2006 57 wheat	only 0.141 0.107 1.114 1.129 1.3

wheat	and	corn 0.141 0.101 1.114 1.089 0.0
131 wheat	only 0.821 0.816 0.502 0.517 3.0

wheat	and	corn 0.821 0.809 0.502 0.630 25.4
†	TableCurve	sigmoid	regression	model	r2.
‡	Oklahoma	State	University	(OSU)	generalized	model	r2.
§	TableCurve	regression	model	mean	absolute	error.
¶	OSU	generalized	model	mean	absolute	error.
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on the fertilizer rates. The error could also occur in transition 
regions, but neither wheat nor corn benefit greatly from fertilizer 
applied in these regions. The generalized model reported here 
using NDVI sensor measurements can be used to apply fertilizer 
N with changing stages of growth for both corn and wheat.
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