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GENERALIZED ANALYTIC FEYNMAN INTEGRAL

VIA FUNCTION SPACE INTEGRAL

OF BOUNDED CYLINDER FUNCTIONALS

Seung Jun Chang, Jae Gil Choi, and Hyun Soo Chung

Abstract. In this paper, we use a generalized Brownian motion to define
a generalized analytic Feynman integral. We then obtain some results for
the generalized analytic Feynman integral of bounded cylinder functionals

of the form
F (x) = ν̂((g1, x)

∼, . . . , (gn, x)
∼)

defined on a very general function space Ca,b[0, T ]. We also present a

change of scale formula for function space integrals of such cylinder func-
tionals.

1. Introduction

In 1987, Cameron and Storvick expressed the analytic Feynman integral as
the limit of a sequence of Wiener integrals and derived a change of scale formula
for Wiener integrals of bounded functionals in a Banach algebra S on classical
Wiener space, see [2] and [3]. Various kinds of those studies for Wiener integrals
of bounded and unbounded functionals were developed on Yeh-Wiener space
[16, 21], abstract Wiener space [12], [17], [18], [19], [20] and space of abstract
Wiener space valued continuous functions on compact interval in R [10, 11].

In this paper, we establish a relationship between the generalized analytic
Feynman integral and the function space integral for bounded cylinder func-
tionals of the form

F (x) = ν̂((g1, x)
∼, . . . , (gn, x)

∼),

where ν̂ : Rn → C is the Fourier transform of complex-valued Borel measure ν
on B(Rn) and (g, x)∼ denotes the Paley-Wiener-Zygmund stochastic integral,
but with x in a very general function space Ca,b[0, T ] rather than in classical
Wiener space. We then present a change of scale formula for function space
integrals of such cylinder functionals.
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The function space Ca,b[0, T ] induced by generalized Brownian motion was
introduced by J. Yeh in [14] and was used extensively by Chang and Chung
[6] and Chang and Skoug [9]. The Wiener process used in [2], [3], [10], [11],
[12], [16], [17], [18], [19], [20], [21] is free of drift and stationary in time while
the stochastic process used in this paper, as well as in [6], [7], [8], [9], [14],
is nonstationary in time and is subject to a drift a(t). It turns out, as noted
in Remark 3.5 below, that including a drift term a(t) makes establishing the
existence of generalized analytic Feynman integrals of functionals on Ca,b[0, T ]
very difficult.

2. Definitions and preliminaries

In this section, we briefly list some of the preliminaries from [7], [8], [9] that
we need to establish our results in next section; for more details, see [7], [8],
[9].

Let (Ca,b[0, T ],B(Ca,b[0, T ]), µ) denote the function space induced by the
generalized Brownian motion process Y determined by a(t) and b(t) where
B(Ca,b[0, T ]) is the Borel σ-algebra induced by sup-norm, see [14] and [15,
Chapters 3 and 4]. We assume in this paper that a(t) is an absolutely con-
tinuous real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ], and b(t)
is a strictly increasing, continuously differentiable real-valued function with
b(0) = 0 and b′(t) > 0 for each t ∈ [0, T ]. Then we can consider the coordinate
process X : [0, T ]×Ca,b[0, T ] → R given by X(t, x) = x(t) which is a continuous
version of Y [15, Theorem 14.2]. Thus, for any t ∈ [0, T ] and x ∈ Ca,b[0, T ] we
have

X(t, x) = x(t) ∼ N(a(t), b(t)).

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable provided ρB
is µ-measurable for all ρ > 0, and a scale-invariant measurable set N is said
to be scale-invariant null provided µ(ρN) = 0 for all ρ > 0. A property that
holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere (s-a.e.).

Let L2
a,b[0, T ] be the set of functions on [0, T ] which are Lebesgue measurable

and square integrable with respect to the Lebesgue-Stieltjes measures on [0, T ]
induced by a(·) and b(·); i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) <∞ and

∫ T

0

v2(s)d|a|(s) <∞
}
,

where |a|(t) denotes the total variation of the function a(·) on the interval [0, t].
For u, v ∈ L2

a,b[0, T ], let

(u, v)a,b =

∫ T

0

u(t)v(t)d[b(t) + |a|(t)].

Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and ∥u∥a,b =

√
(u, u)a,b is a norm

on L2
a,b[0, T ]. In particular, note that ∥u∥a,b = 0 if and only if u(t) = 0 for
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mL-a.e. on [0, T ], where mL is the Lebesgue measure on [0, T ]. Furthermore,
(L2

a,b[0, T ], ∥ · ∥a,b) is a separable Hilbert space.

Let {ϕj}∞j=1 be a complete orthonormal set of real-valued functions of bound-
ed variation on [0, T ] such that

(ϕj , ϕk)a,b =

{
0 , j ̸= k

1 , j = k.

Then for each v ∈ L2
a,b[0, T ], the Paley-Wiener-Zygmund (PWZ) stochastic

integral ⟨v, x⟩ is defined by the formula

⟨v, x⟩ = lim
n→∞

∫ T

0

n∑
j=1

(v, ϕj)a,bϕj(t)dx(t)

for all x ∈ Ca,b[0, T ] for which the limit exists; one can show that for each
v ∈ L2

a,b[0, T ], the PWZ stochastic integral ⟨v, x⟩ exists for µ-a.e. x ∈ Ca,b[0, T ]

and if v is of bounded variation on [0, T ], then the PWZ stochastic integral ⟨v, x⟩
equals the Riemann-Stieltjes integral

∫ T

0
v(t)dx(t) for s-a.e. x ∈ Ca,b[0, T ]. For

more details, see [9].
Let

C ′
a,b[0, T ] =

{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}
.

For w ∈ C ′
a,b[0, T ], with w(t) =

∫ t

0
z(s)db(s) for t ∈ [0, T ], let Dt : C

′
a,b[0, T ] →

L2
a,b[0, T ] be defined by the formula

Dtw = z(t) =
w′(t)

b′(t)
.

Then C ′
a,b[0, T ] with inner product

(w1, w2)C′
a,b

=

∫ T

0

Dtw1Dtw2db(t)

is a separable Hilbert space. Furthermore, (C ′
a,b[0, T ], Ca,b[0, T ], µ) is an exam-

ple of abstract Wiener space. Note that two separable Hilbert spaces L2
a,b[0, T ]

and C ′
a,b[0, T ] are homeomorphic.

Throughout this paper we assume a ∈ C ′
a,b[0, T ] and for w ∈ C ′

a,b[0, T ], with

w(t) =
∫ t

0
z(s)db(s) for t ∈ [0, T ], we also use the notation (w, x)∼ instead of

⟨z, x⟩ = ⟨Dtw, x⟩. Then we have the following assertions.

(1) For each w ∈ C ′
a,b[0, T ], the random variable x 7→ (w, x)∼ is Gaussian

with mean (w, a)C′
a,b

and variance ∥w∥2C′
a,b

.

(2) (w,αx)∼ = (αw, x)∼ = α(w, x)∼ for any real number α, w ∈ C ′
a,b[0, T ]

and x ∈ Ca,b[0, T ].
(3) If {w1, w2, . . . , wn} is an orthogonal set in C ′

a,b[0, T ], then the random

variables (wi, x)
∼’s are independent.
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We denote the function space integral of a B(Ca,b[0, T ])-measurable func-
tional F by

E[F ] =

∫
Ca,b[0,T ]

F (x)dµ(x)

whenever the integral exists.
Throughout this paper, let C, C+ and C̃+ denote the complex numbers, the

complex numbers with positive real part, and the nonzero complex numbers
with nonnegative real part, respectively.

We are now ready to state the definition of the generalized analytic Feynman
integral.

Definition 2.1. Let F : Ca,b[0, T ] → C be such that the function space integral

J(λ) = E[F (λ−1/2·)] exists as a finite number for all λ > 0. If there exists a
function J∗(λ) analytic in C+ such that J∗(λ) = J(λ) for all λ > 0, then J∗(λ)
is defined to be the analytic function space integral of F over Ca,b[0, T ] with
parameter λ, and for λ ∈ C+ we write

Eanλ [F ] ≡ Eanλ
x [F (x)] = J∗(λ).

Let q ̸= 0 be a real number and let F be a functional such that Eanλ [F ] exists
for all λ ∈ C+. If the following limit exists, we call it the generalized analytic
Feynman integral of F with parameter q and we write

Eanfq [F ] ≡ Eanfq
x [F (x)] = lim

λ→−iq
Eanλ [F ],

where λ approaches −iq through values in C+.

We will finish this section by mentioning the following useful formula for
function space integral.

Theorem 2.2. Let {g1, . . . , gn} be an orthonormal set in C ′
a,b[0, T ] and let

F : Ca,b[0, T ] → C be a measurable functional defined by

F (x) = f((g1, x)
∼, . . . , (gn, x)

∼),

where f : Rn → C is a Borel measurable function. Then

(2.1)

E[F ] ≡
∫
Ca,b[0,T ]

f((g1, x)
∼, . . . , (gn, x)

∼)dµ(x)

= (2π)−n/2

∫
Rn

f(u⃗) exp

{
− 1

2

n∑
j=1

(
uj − (gj , a)C′

a,b

)2}
du⃗

in the sense that if either side exists, both sides exist and equality holds.

To establish our results in next section, the following well-known integration
formula is useful:

(2.2)

∫
R
exp{−αu2 + βu}du =

(
π

α

) 1
2

exp

{
β2

4α

}
for all complex numbers α and β with Re(α) > 0.
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In this paper, for each λ ∈ C̃+, λ
−1/2 (or λ1/2) is always chosen to have

positive real part.

3. Generalized Feynman integral and change of scale formula of
cylinder functionals

In this section, we give a class of certain bounded cylinder functionals whose
analytic function space integral and generalized analytic Feynman integral ex-
ist under appropriate conditions and we show that the generalized analytic
Feynman integral of such cylinder functionals can be expressed as the limit of
a sequence of function space integrals. Finally, we obtain a change of scale
formula for function space integrals of cylinder functionals.

A functional F is called a cylinder functional on Ca,b[0, T ] if there exists a
finite subset {h1, . . . , hm} of C ′

a,b[0, T ] such that

(3.1) F (x) = ψ((h1, x)
∼, . . . , (hm, x)

∼), x ∈ Ca,b[0, T ],

where ψ is a complex-valued Borel measurable function on Rm. It is easy to
show that for given cylinder functional F of the form (3.1) there exists an
orthonormal subset {g1, . . . , gn} of C ′

a,b[0, T ] such that F is expressed as

(3.2) F (x) = f((g1, x)
∼, . . . , (gn, x)

∼), x ∈ Ca,b[0, T ],

where f is a complex-valued Borel measurable function on Rn. Thus we lose
no generality in assuming that every cylinder functional on Ca,b[0, T ] is of the
form (3.2).

Definition 3.1. Let M(Rn) denote the space of complex-valued Borel mea-
sures on B(Rn). It is well known that a complex-valued Borel measure ν nec-
essarily has a finite total variation ∥ν∥, and M(Rn) is a Banach algebra under
the norm ∥ · ∥ and with convolution as multiplication.

For ν ∈ M(Rn), the Fourier transform ν̂ of ν is a complex-valued function
defined on Rn by the formula

(3.3) ν̂(u⃗) =

∫
Rn

exp

{
i

n∑
j=1

ujvj

}
dν(v⃗),

where u⃗ = (u1, . . . , un) and v⃗ = (v1, . . . , vn) are in Rn.

Let {g1, . . . , gn} be an orthonormal subset of C ′
a,b[0, T ]. Define the functional

F : Ca,b[0, T ] → C by

(3.4) F (x) = ν̂((g1, x)
∼, . . . , (gn, x)

∼), x ∈ Ca,b[0, T ],

where ν̂ is the Fourier transform of ν in M(Rn). Then F is a bounded cylinder
functional and |ν̂(u⃗)| ≤ ∥ν∥ < +∞. Throughout this paper, we fix the positive
integer n.

We first show that the analytic function space integral of the functional F
given by the equation (3.4) exists.
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Theorem 3.2. Let F be given by the equation (3.4). Then for each λ ∈ C+,
the analytic function space integral Eanλ [F ] exists and is given by the formula

(3.5) Eanλ [F ] =

∫
Rn

exp

{
− 1

2λ

n∑
j=1

v2j + iλ−1/2
n∑

j=1

(gj , a)C′
a,b
vj

}
dν(v⃗).

Proof. By (3.4), (3.3), the Fubini theorem, (2.1) and (2.2), we have that for all
λ > 0,

J(λ) = Ex[F (λ
−1/2x)]

=

∫
Rn

Ex

[
exp

{
iλ−1/2

n∑
j=1

(gj , x)
∼vj

}]
dν(v⃗)

= (2π)−n/2

∫
Rn

∫
Rn

exp

{
iλ−1/2

n∑
j=1

ujvj

− 1

2

n∑
j=1

(
uj − (gj , a)C′

a,b

)2}
du⃗dν(v⃗)

=

∫
Rn

exp

{
− 1

2λ

n∑
j=1

v2j + iλ−1/2
n∑

j=1

(gj , a)C′
a,b
vj

}
dν(v⃗).

Now let

J∗(λ) =

∫
Rn

exp

{
− 1

2λ

n∑
j=1

v2j + iλ−1/2
n∑

j=1

(gj , a)C′
a,b
vj

}
dν(v⃗)

for λ ∈ C+. Then J
∗(λ) = J(λ) for all λ > 0. We will use the Morera theorem

to show that J∗(λ) is analytic on C+. Let {λl}∞l=1 be a sequence in C+ such

that λl → λ through C+. Then λ
−1/2
l → λ−1/2 and Re(λl) ̸= 0 for all l ∈ N.

Thus we have that for each l ∈ N,

(3.6)

∣∣∣∣ exp{− 1

2λl

n∑
j=1

v2j + iλ
−1/2
l

n∑
j=1

(gj , a)C′
a,b
vj

}∣∣∣∣
= exp

{
− Re(λl)

2|λl|2
n∑

j=1

v2j − Im(λ
−1/2
l )

n∑
j=1

(gj , a)C′
a,b
vj

}

= exp

{
− 1

2

n∑
j=1

(√
Re(λl)

|λl|
vj +

|λl|Im(λ
−1/2
l )√

Re(λl)
(gj , a)C′

a,b

)2

+
1

2

n∑
j=1

|λl|2(Im(λ
−1/2
l ))2

Re(λl)
(gj , a)

2
C′

a,b

}

≤ exp

{
|λl|2(Im(λ

−1/2
l ))2

2Re(λl)

n∑
j=1

(gj , a)
2
C′

a,b

}
.
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Since ν ∈ M(Rn), we see that∣∣∣∣ ∫
Rn

exp

{
|λl|2(Im(λ

−1/2
l ))2

2Re(λl)

n∑
j=1

(gj , a)
2
C′

a,b

}
dν(v⃗)

∣∣∣∣
≤ exp

{
|λl|2(Im(λ

−1/2
l ))2

2Re(λl)

n∑
j=1

(gj , a)
2
C′

a,b

}
∥ν∥ < +∞

for each l ∈ N. Furthermore we have that

lim
l→∞

∫
Rn

exp

{
|λl|2(Im(λ

−1/2
l ))2

2Re(λl)

n∑
j=1

(gj , a)
2
C′

a,b

}
dν(v⃗)

= lim
l→∞

exp

{
|λl|2(Im(λ

−1/2
l ))2

2Re(λl)

n∑
j=1

(gj , a)
2
C′

a,b

}
ν(Rn)

= exp

{
|λ|2(Im(λ−1/2))2

2Re(λ)

n∑
j=1

(gj , a)
2
C′

a,b

}
ν(Rn)

=

∫
Rn

exp

{
|λ|2(Im(λ−1/2))2

2Re(λ)

n∑
j=1

(gj , a)
2
C′

a,b

}
dν(v⃗).

Thus, by Theorem 4.17 in [13, p. 92], J∗(λ) is continuous on C+. Since

k(λ) ≡ exp

{
− 1

2λ

n∑
j=1

v2j + iλ−1/2
n∑

j=1

(gj , a)C′
a,b
vj

}
is analytic on C+, applying the Fubini theorem, we have∫

△
J∗(λ)dλ =

∫
Rn

∫
△
k(λ)dλdν(v⃗) = 0

for all rectifiable simple closed curve △ lying in C+. Thus by the Morera
theorem, J∗(λ) is analytic on C+. Therefore the analytic function space integral
J∗(λ) = Eanλ [F ] exists and is given by the equation (3.5). □

Throughout this section, for convenience, we use the following notation:

(3.7) G(λ, x) = exp

{
1− λ

2

n∑
j=1

[(gj , x)
∼]2 + (λ1/2 − 1)

n∑
j=1

(gj , a)C′
a,b

(gj , x)
∼
}

for λ ∈ C+ and x ∈ Ca,b[0, T ].

Theorem 3.3. Let F be as in Theorem 3.2. Then for each λ ∈ C+,

(1) the function space integral E[G(λ, ·)F ] exists where G is given by the
equation (3.7) above, and

(2) the analytic function space integral Eanλ [F ] of F is given by the formula

(3.8) Eanλ [F ] = λn/2E[G(λ, ·)F ].
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Remark 3.4. Note that the equation (3.8) is indeed a useful formula for ex-
pressing the analytic function space integral in terms of ordinary function space
integrals.

Proof of Theorem 3.3. By (3.4), (3.7), the Fubini theorem, (2.1) and (2.2), we
have that for every λ ∈ C+

(3.9)

Ex[G(λ, x)F (x)]

= (2π)−n/2

∫
Rn

∫
Rn

exp

{
− λ

2

n∑
j=1

u2j +

n∑
j=1

(
λ1/2(gj , a)C′

a,b
+ ivj

)
uj

− 1

2

n∑
j=1

(gj , a)
2
C′

a,b

}
du⃗dν(v⃗)

= λ−n/2

∫
Rn

exp

{
− 1

2λ

n∑
j=1

v2j + iλ−1/2
n∑

j=1

(gj , a)C′
a,b
vj

}
dν(v⃗).

Using (3.6) with λl replaced with λ, we see that the absolute value of the last
expression of (3.9) is less than

|λ|−n/2 exp

{ |λ|2
(
Im(λ−1/2)

)2
2Re(λ)

n∑
j=1

(gj , a)
2
C′

a,b

}
∥ν∥,

and so the function space integral Ex[G(λ, x)F (x)] exists. The equation (3.8)
now follows from equations (3.5) and (3.9). □

The observation below will be very useful in the development of our re-
sults for the generalized analytic Feynman integral of functionals given by the
equation (3.4).

Remark 3.5. If a(t) ≡ 0 on [0, T ], then for all F given by the equation (3.4),
the generalized analytic Feynman integral Eanfq [F ] will always exist for all real
q ̸= 0 and be given by the formula

Eanfq [F ] =

∫
Rn

exp

{
− i

2q

n∑
j=1

v2j

}
dν(v⃗).

However for a(t) as in Section 2, and proceeding formally using equations (3.4),
(2.1) and (2.2), we see that Eanfq [F ] will be given by the equation (3.11) below
if it exists. But the integral on the right-hand side of (3.11) might not exist if
the real part of {

− i

2q

n∑
j=1

v2j + i(−iq)−1/2
n∑

j=1

(gj , a)C′
a,b
vj

}
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is positive. However∣∣∣∣ exp{− i

2q

n∑
j=1

v2j + i(−iq)−1/2
n∑

j=1

(gj , a)C′
a,b
vj

}∣∣∣∣
=

{
exp

{
− (2q)−1/2

∑n
j=1(gj , a)C′

a,b
vj
}
, q > 0

exp
{
(−2q)−1/2

∑n
j=1(gj , a)C′

a,b
vj
}
, q < 0

≤ exp

{
1√
|2q|

n∑
j=1

|(gj , a)C′
a,b

||vj |
}

≤ exp

{∥a∥C′
a,b√

|2q|

n∑
j=1

|vj |
}
,

and so the generalized analytic Feynman integral Eanfq [F ] will certainly exist
provided the associated measure ν of F satisfies the condition∫

Rn

exp

{∥a∥C′
a,b√

|2q|

n∑
j=1

|vj |
}
|dν(v⃗)| < +∞.(3.10)

Note that in case a(t) ≡ 0 and b(t) = t on [0, T ], the function space reduces
to the classical Wiener space C0[0, T ] and (gj , a)C′

a,b
= 0 for all j = 1, . . . , n.

Hence for all λ ∈ C̃+,∣∣∣∣ exp{− 1

2λ

n∑
j=1

v2j + iλ−1/2
n∑

j=1

(gj , a)C′
a,b
vj

}∣∣∣∣
=

∣∣∣∣ exp{− 1

2λ

n∑
j=1

v2j

}∣∣∣∣ = exp

{
− Re(λ)

2|λ|2
n∑

j=1

v2j

}
≤ 1.

Theorem 3.6. Let F be as in Theorem 3.2. Let q0 be a nonzero real number.
Suppose that the associated measure ν of F satisfies condition (3.10) with q
replaced with q0. Then, for all real q with |q| > |q0|, the generalized analytic
Feynman integral Eanfq [F ] exists and is given by the formula

(3.11) Eanfq [F ] =

∫
Rn

exp

{
− i

2q

n∑
j=1

v2j + i(−iq)−1/2
n∑

j=1

(gj , a)C′
a,b
vj

}
dν(v⃗).

Proof. Let {λl}∞l=1 be a sequence of complex numbers such that λl → −iq
through C+ and for each l ∈ N, let

fl(v⃗) = exp

{
−(1/2λl)

n∑
j=1

v2j + iλ
−1/2
l

n∑
j=1

(gj , a)C′
a,b
vj

}
.

Then fl(v⃗) converges to

f(v⃗) ≡ exp

{
−(i/2q)

n∑
j=1

v2j + i(−iq)−1/2
n∑

j=1

(gj , a)C′
a,b
vj

}
.
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By Theorem 3.2, for all l ∈ N,
∫
Rn fl(v⃗)dν(v⃗) exists. Since |arg(λ−1/2

l )| < π/4

for every l ∈ N and λ
−1/2
l = Re(λ

−1/2
l )+ iIm(λ

−1/2
l ) → (−iq)−1/2 = 1/

√
|2q|+

isign(q)/
√
|2q|, we see that Re(λ

−1/2
l ) > |Im(λ

−1/2
l )| for every l ∈ N and there

exists a sufficiently large k ∈ N such that |Im(λ
−1/2
l )| < 1/

√
|q0| for every

l ≥ k. Thus for each l ≥ k,

|fl(v⃗)| =
∣∣∣∣ exp{− 1

2

(
[Re(λ

−1/2
l )]2 − [Im(λ

−1/2
l )]2

+ 2iRe(λ
−1/2
l )Im(λ

−1/2
l )

) n∑
j=1

v2j

+ i
(
Re(λ

−1/2
l ) + iIm(λ

−1/2
l )

) n∑
j=1

(gj , a)C′
a,b
vj

}∣∣∣∣
≤ exp

{
− Im(λ

−1/2
l )

n∑
j=1

(gj , a)C′
a,b
vj

}

≤ exp

{
|Im(λ

−1/2
l )|∥a∥C′

a,b

n∑
j=1

|vj |
}

< exp

{∥a∥C′
a,b√

|2q0|

n∑
j=1

|vj |
}

and so, by the condition (3.10) with q replaced with q0,∣∣∣∣ ∫
Rn

fl(v⃗)dν(v⃗)

∣∣∣∣ ≤ ∫
Rn

∣∣fl(v⃗)∣∣|dν(v⃗)|
<

∫
Rn

exp

{∥a∥C′
a,b√

|2q0|

n∑
j=1

|vj |
}
|dν(v⃗)| < +∞.

Also, by the condition (3.10) with q replaced with q0, we have∣∣∣∣ ∫
Rn

f(v⃗)dν(v⃗)

∣∣∣∣ ≤ ∫
Rn

exp

{∥a∥C′
a,b√

|2q|

n∑
j=1

|vj |
}
|dν(v⃗)|

<

∫
Rn

exp

{∥a∥C′
a,b√

|2q0|

n∑
j=1

|vj |
}
|dν(v⃗)| < +∞.

Hence by the dominated convergence theorem, we have the equation (3.11). □

In our next theorem, we express the generalized analytic Feynman integral
of F as the limit of a sequence of function space integrals on Ca,b[0, T ].

Theorem 3.7. Let F and q0 be as in Theorem 3.6. Let {λl}∞l=1 be a sequence
of complex numbers such that λl → −iq through C+, where q is a nonzero
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real number with |q| > |q0|. Then the generalized analytic Feynman integral
Eanfq [F ] of F is expressed as follows:

(3.12) Eanfq [F ] = lim
l→∞

λ
n/2
l E[G(λl, ·)F ],

where G is given by the equation (3.7) above.

Proof. We can obtain from (3.9) that for all l ∈ N,

λ
n/2
l Ex[G(λl, x)F (x)]

=

∫
Rn

exp

{
− 1

2λl

n∑
j=1

v2j + iλ
−1/2
l

n∑
j=1

(gj , a)C′
a,b
vj

}
dν(v⃗).

Thus, using the dominated convergence theorem, we have

(3.13)

lim
l→∞

λ
n/2
l Ex[G(λl, x)F (x)]

= lim
l→∞

∫
Rn

exp

{
− 1

2λl

n∑
j=1

v2j + iλ
−1/2
l

n∑
j=1

(gj , a)C′
a,b
vj

}
dν(v⃗)

=

∫
Rn

exp

{
− i

2q

n∑
j=1

v2j + i(−iq)−1/2
n∑

j=1

(gj , a)C′
a,b
vj

}
dν(v⃗).

The equation (3.12) follows from equations (3.11) and (3.13). □

Finally, we obtain a change of scale formula for function space integrals of
functionals F given by the equation (3.4).

Theorem 3.8. Let F be as in Theorem 3.2. Then, for any ρ > 0,

E[F (ρ ·)] = ρ−nE[G(ρ−2, ·)F ],

where G is given by the equation (3.7) above.

Proof. Using the equation (3.8) with λ replaced with ρ−2, we have the desired
result. □

4. Examples

In this section we present various functionals to apply our results in previous
section.

Let S : C ′
a,b[0, T ] → C ′

a,b[0, T ] be the linear operator defined by Sw(t) =∫ t

0
w(s)db(s). Then the adjoint operator S∗ of S is given by

S∗w(t) =

∫ t

0

(
w(T )− w(s)

)
db(s).

It is easily shown that S is injective. Let

(4.1) ψ(t) =
√
3b(T )−3/2b(t).
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Using an integration by parts formula, we see that {S∗ψ} is an orthonormal
set in C ′

a,b[0, T ] and

(4.2)
1√
3
b(T )3/2(S∗ψ, x)∼ = (S∗b, x)∼ =

∫ T

0

x(t)db(t).

Example 4.1. For given m⃗ = (m1, . . . ,mn) ∈ Rn and σ⃗2 = (σ2
1 , . . . , σ

2
n) ∈ Rn

with σ2
j > 0, j = 1, . . . , n, let ν

m⃗,σ⃗2 be the Gaussian measure given by

(4.3)

ν
m⃗,σ⃗2(B) =

( n∏
j=1

2πσ2
j

)− 1
2
∫
B

exp

{
−

n∑
j=1

(uj −mj)
2

2σ2
j

}
du⃗, B ∈ B(Rn).

Then ν
m⃗,σ⃗2 ∈ M(Rn) and

ν̂
m⃗,σ⃗2(u⃗) = exp

{
− 1

2

n∑
j=1

σ2
ju

2
j + i

n∑
j=1

mjuj

}
.

We can apply our results in previous section to the functionals of the form

F1(x) = exp

{
− 1

2

n∑
j=1

σ2
j [(gj , x)

∼]2 + i

n∑
j=1

mj(gj , x)
∼
}
.

For example, in the case n = 1, g1 = S∗ψ, m⃗ = m1 = 0 and σ⃗2 = σ2
1 =

2b(T )3/3, we have

(4.4) F2(x) = exp

{
−
(∫ T

0

x(t)db(t)

)2}
.

Using the equation (4.3), the Fubini theorem and the equation (2.2), we
have that for each nonzero real number q,∫

Rn

exp

{∥a∥C′
a,b√

|2q|

n∑
j=1

|vj |
}
|dν

m⃗,σ⃗2(v⃗)|

=
n∏

j=1

[
(2πσ2

j )
−1/2

∫ 0

−∞
exp

{
−

v2j
2σ2

j

+

(
mj

σ2
j

−
∥a∥C′

a,b√
|2q|

)
vj −

m2
j

2σ2
j

}
dvj

+ (2πσ2
j )

−1/2

∫ +∞

0

exp

{
−

v2j
2σ2

j

+

(
mj

σ2
j

+
∥a∥C′

a,b√
|2q|

)
vj −

m2
j

2σ2
j

}
dvj

]
<

n∏
j=1

[
(2πσ2

j )
−1/2

∫
R
exp

{
−

v2j
2σ2

j

+

(
mj

σ2
j

−
∥a∥C′

a,b√
|2q|

)
vj −

m2
j

2σ2
j

}
dvj

+ (2πσ2
j )

−1/2

∫
R
exp

{
−

v2j
2σ2

j

+

(
mj

σ2
j

+
∥a∥C′

a,b√
|2q|

)
vj −

m2
j

2σ2
j

}
dvj

]

=
n∏

j=1

[
exp

{σ2
j ∥a∥2C′

a,b

2|2q|
−
mj∥a∥C′

a,b√
|2q|

}
+ exp

{σ2
j ∥a∥2C′

a,b

2|2q|
+
mj∥a∥C′

a,b√
|2q|

}]



GENERALIZED ANALYTIC FEYNMAN INTEGRAL 487

< +∞.

Thus for all q ∈ R − {0}, Eanfq [F1] (and so thus Eanfq [F2]) exists and we
can apply Theorems 3.6 and 3.7 to obtain the generalized Feynman integrals
Eanfq [F1] and E

anfq [F2].
The functional

(4.5) F3(x) = exp

{
i

∫ T

0

x(t)db(s)

}
also is a functional under our consideration because

F3(x) = exp{i(S∗b, x)∼} = exp

{
i√
3
b(T )3/2(S∗ψ, x)∼

}
=

∫
R
exp{i(S∗ψ, x)∼v}dδ1(v) = δ̂1((S

∗ψ, x)∼),

where ψ is given by the equation (4.1) and δ1 is the Dirac measure concentrated

at v = b(T )3/2/
√
3 in R. Clearly, δ1 satisfies condition (3.10) for all q ∈ R−{0}.

The functionals given by equations (4.4) and (4.5) arise naturally in quantum
mechanics.

In next example we consider functionals of the form (3.1).

Example 4.2. Let τ : 0 = t0 < t1 < · · · < tm = T be a partition of [0, T ].

(i) Let hj(t) =
∫ t

0
χ[0,tj ](s)db(s) for j = 1, . . . ,m. Then {h1, . . . , hm} is a

linearly independent subset of C ′
a,b[0, T ] and

(4.6)
F4(x) = ν̂((h1, x)

∼, . . . , (hm, x)
∼)

= ν̂(x(t1), . . . , x(tm)).

(ii) Let hj(t) =
∫ t

0
χ[tj−1,tj ](s)db(s) for j = 1, . . . ,m. Then {h1, . . . , hm} is

an orthogonal subset of C ′
a,b[0, T ] and

(4.7)
F5(x) = ν̂((h1, x)

∼, . . . , (hm, x)
∼)

= ν̂(x(t1), x(t2)− x(t1), . . . , x(tm)− x(tm−1)).

(iii) For each j = 1, . . . ,m, let wj(t)=
∫ t

0
χ[0,tj ](s)db(s). Then {w1, . . . , wm}

is a linearly independent subset of C ′
a,b[0, T ]. Let hj(t) = S∗wj(t) for

each j = 1, . . . ,m. Since the linear operator S is injective, {h1, . . . , hm}
also is linearly independent. Using an integration by parts formula, we
see that

(hj , x)
∼ =

∫ tj

0

x(t)db(t)

for each j = 1, . . . ,m. In this case,

(4.8)

F6(x) = ν̂((h1, x)
∼, . . . , (hm, x)

∼)

= ν̂

(∫ t1

0

x(s)db(s), . . . ,

∫ tm

0

x(s)db(s)

)
.
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In [1, 4, 5], the functionals of the forms (4.6), (4.7) and (4.8) were studied on
classical Wiener space. By using the Gram-Schmidt process, the functionals
Fk (k = 4, 5, 6) can be rewritten in the form the equation (3.2) for suitable
orthonormal subset {g1, . . . , gn} of C ′

a,b[0, T ], respectively.
Based on quantum mechanics considerations, the most important value of

the parameter q in Eanfq [F ] is q = −1. Thus, if the complex measure ν cor-
responding Fk satisfies condition (3.10) with q replaced with q0 ∈ (0, 1) as the
measures ν

m⃗,σ⃗2 and δ1 in Example 4.1, we can obtain the generalized analytic

Feynman integrals Eanf−1 [Fk] (k = 4, 5, 6) by using the equation (3.11).
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