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VICTOR L. SHAPIROt1)

ABSTRACT. New regularity results in domains of Euclidean 3-space are es-
tablished for the generalized solutions of the nonlinear stationary Navier-Stokes"
equations in terms of Dini criteria on the external force.

1. Introduction. Let £2 be a domain (bounded or unbounded) in Euclidean
3-space F3, and let f = (fx, f2,f3) be a fixed continuous vector defined in £2.
The pair v, p will be said to be a classical solution of the nonlinear stationary Na-
vier-Stokes equations if v is in C2(£2), p is in C1^), and

(1.1) i»Av-(v • V)v-Vp = -f,      divv = 0
in £2 where v is a positive constant.

Following the notation in [4], we shall designate by J(£2) the set of vectors
which are in C°°(£2), solenoidal in Í2, and which vanish outside of a compact sub-
set of £2-.  In J(£2) we introduce the inner product

{w,v]= Le-(1.2) {w,v]= )a^Xk'yXkdx

where w ■ v designates the usual dot product
3

w • V= ZwjVj-
/■=1

By H (£2) we shall designate the Hilbert space which is the closure of J(£2)
under the norm induced by (1.2).

We shall say v is a generalized solution of the nonlinear stationary Navier-
Stokes equations if v is in f/(£2), if f is locally in ¿^£2), and if

(1 '3) Ç, Jn(w** " *** " UfcV ' 0**} dx = Lf ' * dx  for a11 0 in ̂ (S2)'

Received by the editors January 11, 1974.
AMS (MOS) subject classifications (1970). Primary 76D05, 35Q10; Secondary 35D10.
Key words and phrases. Stationary Navier-Stokes equations, generalized solutions, clas-

sical solutions, nonlinear partial differential equations, Dini condition.
(') Research sponsored by the Air Force Office of Scientific Research, Office of Aero-

space Research, USAF, under Grant No. AFOSR 73-2456. The United States Government is
authorized to reproduce and distribute reprints for governmental purposes notwithstanding
any copyright notation hereon.

£-. Copyright © 1976, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



62 V. L. SHAPIRO

Next, we let £2j designate a subdomain of £2 whose closure is compact in
£2, and we denote the diameter of £2j by S(i2j).  Also, we suppose f is in
C°(ñx). Then for 0 < t < 8(Slx), we set

(1.4) a>{t,f,Slx)= sup lf(x)-fO)l.
be—y\<t; x,yinnx

We shall say f satisfies a Dini condition locally in £2 if f is in C°(£2) and if
for every £2X C £2, with £2X as above, the following holds:

(1.5) f5(ni)co(f, f, n^r1 dt   is finite.

Next, we let £22 be a subdomain of £2X whose closure is compact in £2X and
assume that (1.5) holds. We shall say g is in C" *i,f,nt)(^2) ^ there is a con-
stant A such that for x, y in £22,

(1.6) ^-¿rOOl^cAlx-.yUfii),
where for 0<r <5(Í21),

/•f /-«(ÍÍ!)
(1.7) co*(í, f, £2j) =  j   co(s, f, ŒjK1 ds + ij co(s, f, £21)s-2 ds.

For future reference we note that an integration by parts also gives the rep-
resentation

fir«(îîi)(1.8) cj*(t, f, £2X) = co(r)r-2 <&■<&

We observe at this juncture from (1.7) that (1.5) implies that co*(r, f, Slx) -
0 as t —> 0. Also we note that if f is in Ce(Q.x), 0 < 0 < 1, and g is in
Cw*(r,f,n i)(j22); then g is in C9(£22).  Furthermore, we observe that if there is
constant A' such that for x, y in £2,

lf(x)-fO)K^'lloglx-^ir(1+e),      O<0<1,
then g in Cu (f'f,ni^(£22) implies that there is a constant A such that

l«(*) - äOOI < A Uogi* - y\1_9   for ». * » n2-
g in C1+W*(f'f,ni)(n2) will mean that g is in Cl(Sl2) andgx. is in Cw*fcf'°»),
/ = 1, 2, 3. g in C2+W*(f,f,"i)(i22) will be defined in a similar manner using
the second derivatives of g.

In this paper, we intend to establish the following results:

Theorem 1. Let £2 be a domain contained in E3. Suppose that f satisfies
a Dini condition locally in £2. Suppose furthermore that v is in /i"(£2) and is also
a generalized solution of the nonlinear stationary Navier-Stokes equations, i.e., v
satisfies (1.3).  77zen the following hold:

(i) there is a v in C2(£2) such that v' = v almost everywhere in £2;
(ii) there is a p in C1^) such that the pair v', p is a classical solution of

the nonlinear stationary Navier-Stokes equations, i.e., v, p satisfies (1.1);

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONLINEAR STATIONARY NAVIER-STOKES EQUATIONS 63

(iii) //£2] and £22 are bounded subdomains of £2 with £22 C £2, C £2, C £2
and if f is not identically constant in £lx, then v' and p are in C'+aj *f*f,iîl)(£22)
where i = 2 and 1, respectively.

Theorem 2. Let £2 be a domain contained in E3, and let £2' be a subdo-
main contained in £2. Suppose that f = (/,, /2, /3) is locally in F2(£2) and is in
C"(£2'), « a nonnegative integer.  Suppose also that for k = 1, 2, 3, eve/y partial
derivative of order « o//fe satisfies a Dini condition locally in £2'.  Suppose fur-
thermore that v is i« f/(£2) and is also a generalized solution of the nonlinear sta-
tionary Navier-Stokes equations.  Then the following hold:

(i) there is a \ in C"+2(£2') such that v' = v almost everywhere in £2';
(ii) there is a p in C" + '(£2') such that the pair v', p is a classical solution

of the nonlinear stationary Navier-Stokes equations in £2'.

In (iii) of Theorem 1 above, if f is identically constant in £2j, then it follows
from Theorem 2 that v' and p are in C°°(£2,).  Theorem 1 above is to be viewed
as giving an extension of the second part of [4, Theorem 6, p. 131], and Theorem
2 above as giving an extension of the second part of [2, Theorem 4.2, p. 79].

In Euclidean 2-space, the analogues of Theorems 1 and 2 above are also
valid.

2. Stokes flow and multiple Fourier series. To establish the above theorem,
we shall need some lemmas connecting multiple Fourier series with the equations
giving rise to a Stokes flow, namely

(2.1) vAv-X/p = f,      divv = 0.
We shall use the following notation: T3 = {x: — it <*.• < it,}' — 1, 2, 3}; m

will designate an integral lattice point; for a function g in Ll(T3), we shall set

(2.2) g\m) = O)"3 J   g(x)e-^m-x'> dx.
T3

Also, (x, y) = xxyx + x2y2 + x3y3 will designate the usual inner product;
(x, x)Vi will be designated by \x\;B(x, r) will designate the open 3-ball with center
x and radius r, and S(x, r) will designate its boundary.  In particular, 5(0, 1) will
represent the unit 2-sphere {x: bel = 1}.

Next, we discuss the theory of periodic singular integrals. K will be called
a Calderón-Zygmund kernel if

(2.3) K(x) = Z(xl\x\)\x\~3    for 0 < bel< -,

where

(2.4) Z is a function in C7[5(0, 1)],      0 < y < 1,

and
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64 V. L. SHAPIRO

(2.5) $s{üi)Z(%)dS(%) = 0.

For x in E3 - \Jm^0{2nm}, we define

(2.6) ZsT**(x)= lim       ¿2     [K{x + 2nm) - K{2irm)],
R-K" K\m\<R

and observe from [1, pp. 251—252] that the series on the right-hand side of (2.6)
converges uniformly on compact subsets of E3 - JJm;ji:0{27r/n}.  In particular,

(2.7) K** is a bounded continuous function on T3.

Next, we observe from (2.3), (2.4), and (2.5) that

(2.8) lim   I K(x)dx   exists and is finite.
e^0 JT3-B(0,e)

Using (2.7) and (2.8), we define the constant cK by

(2.9) ci = (27rr3lim f [K(x) + K**(x)]dx,
e-*0    13-a(°>el

and set

(2.10) K*(x) = K(x) + K**(x) -cK    for x in E3 - \J {2nm}.
m

We note that
«... K* is a periodic function of period 2it in

each variable in E3 - JJm {2itm}.
Also, we note that

(2.12) lim f K*(x)dx = 0.
V        '                                    e^O J T3-B(0,e)      V '

For g a continuous periodic function in E3 (henceforth, periodic will mean
periodic of period 2it in each variable), we shall set
(2.13) u(t,g,T3)= sup \g{x)-g{y)\,

' bc-y\<t,x,y in E3
and shall say (as before) that g satisfies a Dini condition on T3 if

(2.14) f co(r, g, T3)rl dt   is finite.
JO

Next, for 0 < 7 < 1 and 0 < r < 1, we shall set

(2.15)     «•*(,, g, y) = ¡^{t, g, T3)s~l ds + fifico(s. g, r3)S-<1 +^ ds.

We shall say h is in Cu   ^t,g'y^(T3) if n is a continuous periodic function
in ZT3 and if, furthermore, there is a constant A such that for

( x, y in E3 and lx-yl<l,
^ *   } '\h(x) - hiy)\ <^co**(lx -y\,g, y).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONLINEAR STATIONARY NAVIER-STOKES EQUATIONS 65

With K*(x) defined by (2.10) and g a periodic function in E3 in Ll(T3),
we shall designate the following limit, provided it exists, by

(2.17) g    ix) = lim i»'3 J g(x -y)K*(y) dy.

The first lemma we intend to establish is the following:

Lemma 1. Suppose that g is a continuous periodic function satisfying a Di-
ni condition on T3.  Then £K*(x) exists for every x and is in Cw   ^t,g,y\T3).

For the 1-dimensional analogue of the above result, we refer the reader to

[6, p. 121].
Since g meets a Dini condition on T3 and since Z(£) is uniformly bounded

for l£l = 1, it follows immediately from (2.3) that for every x,

<2-18) •L(o.i)1^ ~y)-gixßK(y)\dy < +~.
But then as a consequence of this fact, (2.10), (2.12), and (2.17), we have that
"gK» exists and is finite for every x and equals

(2.19) gK.(x) = O)"3 ST3[g(x -y)-g(x)]K*(y) dy.

Therefore for Izl < 10-1, we also have from the periodicity of g, (2.11),
and (2.18) that

gK.(x + z) = (2rr)-3 f   [g(x -y) -g(x + z)]K*(y + z)dy
(2.20) K T* for* m T3.

Next, we set

(2.21). '(*) - Ja«,,,)"*W« g> T3)]K*ix)\ <*x>

and observe from (2.19) and (2.20) that for Izl < 10_1 and x in T3,

{2it)31gK.{x+z)-gK.{x)\

(2.22) < 1^(0.3..!)^ -y) -MW**+* - K*w *y
+ l^+z)-^)l|jr3_B(o3ir|)ZC^+z)^ + 2/(4 Izl).

Now it is clear from the observation made after (2.6) that there is a con-
stant cK x such that

(2.23) \K**(x + z)\ < cK ,    for x in T3 and Izl < 10-1.

Letting T3 + z = {y: y = x + z, x in T3}, we see from (2.3) and (2.4)
that there is a constant cK 2 such that
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(J(r3 + z)-B(z,3lzl)       Jr3-B(2,3lzl)J     ^   y <cK2\z\

for IzKlO-1.

Also, we note that there is a constant cK 3 such that

Ja bKl,K4 J*O0l dy<cKt3   forlzKlO-1.
Consequently,

(2.25)
V T3-B(z,3 Izl)       J r3-B(0,3 Izl)/    ^   ^ <C /:,3

for \z\< 10_1.
Observing that lime_>0/r3_B(0e)A'(>') dy exists and is finite, we obtain

from (2.10), (2.23), (2.24), and (2.25) that there is a constant cK 4 such that

(2.26) I'. K*(y+z)dy <cKA    forlzKlOT1.r3-B(0,3lzl)

Next, from (2.3) and (2.4), we observe (as in [1, p. 263,1. 17]) that there,
is a cK s such that

\K{y + z)-K{y)\ <cKS\zHy\-(3+y)

for 3 Izl < \y\< oo and Izl < 10_1.

Also, from (2.6) and (2.27), we observe that there is a constant cK 6 such that

\K**(y+z)-K**{y)\<cK6\z\'Y
(2.28)

for y in T3 -B(0, 3 Izl) and Izl < lflT1.
As a consequence of (2.27), (2.28), and (2.10), we obtain that the first term on
the right-hand side of the inequality in (2.22) is majorized by

ck,s lz|T Jr3_B(0>3 izi)i^ + y) -&)\ bi-(3+7) dy

(2.27)

+ cK,6lziy Jt3-b(o,3\z\Mx +y) -g{x)\dy.

From (2.22), (2.26), and this last fact, we conclude that there is a constant
cK 7 such that

sup lF^*(x + z) -g *(x)l
jcinT3

<^>7[co(izi,g, r3) + z(4izi)+ \z\y Jr3_B(0#3tal)«(K& r3)bl-<3+*>^]

(2.29) forlzKlO-1.
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From (2.3), (2.4), (2.7), and (2.10), we see that there is a constant cK 8
such that

(2.30) IAT*(*)I < cK,s W3    for 0 < bcl< 1.

Consequently, we infer from (2.29) and (2.30) that there is a constant cK 9 such
that

sup \g  t(x +z)-g ,(x)\
xinT3    &

(2.31) < cK,,[f^W. g. T3)rl dt + brP/,),«(/. g, F3)r(1+7) *]

for IzKlO-1.
From (2.31) and the hypothesis of the lemma, we conclude immediately

that gK, is a continuous periodic function. Next, we observe that the expression
in brackets on the right-hand side of the inequality in (2.31) is an increasing func-
tion of Izl for 0 < Izl < 1. Consequently, we infer from (2.15) and (2.31) that

ígK*(x)-gK,(y)\ < l0cKgto**(\x -y\,g, i)

for x, y in E3 and be -y\ < 1.
Therefore,^« is in Cw    *f,i'7^T3), and the proof of the lemma is complete.

The next lemma we establish is the following:

Lemma 2. Suppose that g is a continuous periodic function satisfying a
Dini condition on T3. Then for j, k, a, ß = 1, 2, 3, there are functions gjk and
gjkas ™ C"**«-s-lXT3) with gfk(0) = gfkaß(0) = 0 such that for m * 0,

(2.32) g¡k(m) = m¡mk lml~ V(m)

and
(2.33) gjkccßi™) = mjmkmamß\m\~4gXm).

We shall establish the above lemma for gjkaß, i.e., we shall show (2.33)
holds. A similar proof will prevail for gjk to show that (2.32) holds.

In order to accomplish the assertion concerning g¡kaa, we recall the defini-
tion of a spherical harmonic polynomial of order «, « a nonnegative integer. In
particular, Yn(x) is called a spherical harmonic polynomial of order « if Yn is a
homogeneous polynomial of degree « with the added fact that AYn(x) = 0 for
all x. (Yn = 0 will also be called a spherical harmonic of order n.)

Next fix/, k, a, ß. Then it follows from [3, p. 147] that there are spherical
harmonic polynomials F4 and Y2 and a constant c such that for every x,

XjXkxaxß = Y¿x) + btl2r20) + bcl4c.
Consequently,
(2.34) m¡mkmam0 = Y4(m) + lml2r2(m) + lml4c.
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Comparing the right-hand side of (2.33) with (2.34), we see that (2.33) will
be established once we show the following:

There are functions « and «' in Cw**(ttg,1\T3)
(2.35) with /f (0) = «'~(0) = 0 such that for miO,

h"(m) = Y4(m)\m\~4g~(m)   and   h'\m) = Y2(m)\m\~2g\m).

We shall establish (2.35) for «.    A similar proof will work for «'.
In order to do this, we set

(2.36) K(x) = r40t)bc|-7    for x ± 0.
Since IS(0¡X)Y4(C) dS(%) = 0, we see from (2.3), (2.4), and (2.5) that
(2 37")      ZC is a Calderón-Zygmund kernel where Z(x/\x\) = Y4(x)\x\~4

and Z is in C1 [5(0, 1)].

Consequently from Lemma 1 and (2.37) we have, with £L. defined by
(2.17), that
(2.38) gK. isinCw**^^\T3).

From [1, p. 259], we next observe that

(2.39) gK*(m) = K*Xm)g~(m),

where

K*\m) = (2itT3 lim f e-*m-x)K*(x)dx.
K   '      K     '     e^0Jr3-B(0,e) V '

From (2.12) we obtain that

(2.40) K*~(0) = 0,
and from [1, pp. 257-261] that there is a nonzero constant c such that

(2.41) K*\m) = c'r4(m)lmr4    for m ¥= 0.

We set h(x) = gR » (x)/c' and observe from (2.38) that « is in Cw * *(t'8' ̂ (Tj)
and from (2.39), (2.40), and (2.41) that /f(0) = 0 and «~(m) = r4(m)lmI-Y(«i)
for m#0. Consequently (2.35) is established for h(x), and the proof of the
lemma is complete.

Next, for the sake of completeness, we establish the following remark.
Remark 1. Let g and g¡ be continuous periodic functions, j = 1, 2, 3. Sup-

pose that gj(m) = imjg(m) for every lattice point m.   Then g is in C1(E3) and
dgldXj = gr

We prove the above remark by showing

(2.42) dg(x)/dxx =¿?,(x)   for all x.
Since a similar proof will show that the analogue of (2.42) holds for / = 2, 3, the
establishing of (2.42) is equivalent to establishing the remark.

To do this, set, for t > 0,
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NONLINEAR STATIONARY NAVIER-STOKES EQUATIONS 69

(2.43) g(Xi f) =2-^(m)gi(m.x)-lmlr>
m

and define gx(x, t) in an analogous manner using g\(m) instead of g"{rn). Conse-
quently,

ög(x, t)/bxx =X/Wi^»eí(m,X)"lmlf.
m

and we conclude from the hypothesis of the remark that

(2.44) og(x, t)/dxx = gx(x, t)   for t > 0 and every x.
As a consequence of (2.44), we have that for s > 0,

(2.45) g{xx + s, x2, x3, t) -g(xx, x2, x3, t) = jgx(xj +r,x2,x3,t)dr.

From [5, p. 56], we see that, respectively, g(x, t) and gx(x, t) tend uniform-
ly to g(x) and gx(x) as t —► 0. We conclude from this fact and (2.45) that

g(xx +s,x2,x3)-g(xx,x2,x3)= )0g{xx +r,x2,x3)dr.

But this fact implies that (2.42) holds and the proof of Remark 1 is complete.
In a similar manner, we observe that the following remark can be estab-

lished.
Remark 2. Let g and gjk be continuous periodic functions, j, k = 1,2,3.

Suppose that gfk{m) = - mmkg~(m) for every lattice point m.   Then g is in
C2(E3) and d2gfbXjdxk = gjk.

The proof of Remark 2 proceeds analogously to that of Remark 1 except
that second differences are used. We leave the details of the proof of the reader.

Next, we introduce the functions

H, uk, and q¡, j, k = 1,2, 3, which are
(2.46) periodic in E3 - \Jm {2irm}, and in

L2(T3), L2(T3) and Ll(T3), respectively.
In particular,

(2.47) H\0) = q¡(0) = u}\0) = 0,
and for m¥^0,

H\m) = \mI-2,   q'j(m) = im¡ \m\~2,
(2.48)

-2il^,|-2vuj(m) = [-5* + mjmk\m\ 2]\m\
where 5 * is the Kronecker 8.

To be specific, we define H(x, t), q(x, t) and uk(x, t) for t > 0 in a man-
ner analogous to (2.43) using (2.47) and (2.48). Then in [5, p. 72], it is shown
that the limits of H(x, t) and q(x, t) exist and are finite as t —> 0 for x in E3 -
Um{2irm}. Defining H(x) and q¡{x), respectively, as these limits, it is shown
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furthermore in [5, p. 72] that these functions have the properties enumerated in

(2.46).
Setting G(x) = - Xm^0ei(-m'x^m\~4 and observing that AG(x) = H(x) for

x in E3 - \Jm {2nm}, we see that G is in C°°{E3 - \Jm{2iim}). Defining
vuk(x) = -8kH(x) + 92G(x)/9x/9xfe, we observe furthermore from
the Riesz-Fischer theorem that «* does indeed have the properties enumerated in

(2.46).
For f = (fx,f2,f3) a continuous periodic vector in E3 (i.e.,fj is a continu-

ous periodic function for / = 1,2, 3), we shall set
co(r, f, T3) = sup lf(x) - f(y)\

\x—y\<t,x,y in E3

in a manner analogous to (2.13) for continuous periodic functions. In a similar
manner, the definition that f satisfies a Dini condition on T3, as well as the no-
tions of co**(i, f, 7) and CM**(ttt'y){T3) defined in (2.15) and (2.16), respec-
tively, are carried over to vectors.  Likewise, the notions of C1+w    '*•     {T3)
and C2+"    (f'f-T) are to be given the obvious interpretations.

The next lemma we establish is the following:

Lemma 3. Let f = (fx,f2, f3) be a continuous periodic vector defined in
E3 satisfying a Dini condition on T3. Suppose also that fk(0) = 0, k = 1,2,3.
For j = 1, 2, 3, set

3    f(2.49) v,(x) = OF3 ¿2   I    uf{y)fk(x - y) dy
' k=l JT3  '

and

(2.50) p{x) = (2tt)-3 ¿ J   qk{y)fk{x ~ y) dy.
k=l    T3

Then p and v- are continuous periodic functions in E3 which are in
ci + w**(t,f,i)(T3) and C2+UJ**(f'f,1)(r3), respectively. Furthermore,

vAvj - bpldXj =fj,     / = 1, 2, 3,
(2.51) 3

¿2oVjloXj = 0.
/'=i

In order to establish the lemma, we set

(2.52) »fi*) = (2ff)-3 ST3ufiy)fk{x -y) dy

and observe from the hypothesis of the lemma, (2.46), and (2.52) that

(2 53) Vj is a continuous periodic function in E3.

From (2.52), we next observe that for every lattice point m,

(2.54) if{m) = uk~(m)f;(m).
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Now for m i= 0, we have from (2.48) that

(2.55)    pmamßufXm)fk(m) «= - tfmamß \m\'2fk(m) + mamßmjmk \m\~4fk(m).
Since by hypothesis, fk satisfies a Dini condition on F3, we see from Lem-

ma 2 that there is a function

(2-56) ham in C^'M^\T3)
such that

(2.57) mamßuf-(m)fk(m) = hlßjk(m)  for every m.

We consequently conclude from Remark 2, (2.53), (2.54), (2.56), and
(2.57) that
(2.58) ^isinC2 + tJ**(i^'1)(F3).

Since u(t, fk, T3) < co(r, f, F3), we conclude from (2.49), (2.52), and
(2.58) that

Vj is a continuous periodic function in
(2-59) C2+W"(i,f,i)(r3)

A similar proof using qk(m) and Remark 1 establishes that

.„ , . p is a continuous periodic function in
U-6UJ Ci+w^a.f.i)^ y

Next, it follows from an easy computation, using (2.48), that

-v\m\2vj(m) - imjP~(m) = ff(m),     j- 1, 2, 3,

(2'61) V-     <v ï     n¿^imv-Qn) =0
/=i

for every lattice point m.
But then (2.51) follows immediately from (2.59), (2.60), (2.61), and the

weH-known uniqueness theorem for Fourier coefficients. The proof of Lemma 3
is therefore complete.

Next, we establish the following lemma which is essentially a corollary of
Lemma 3.

Lemma 4. Let f=(fx,f2, f3) be a periodic vector in Cn(E3), n a nonnega-
tive integer. Suppose that for k = 1,2,3, every partial derivative of order n of
fk satisfies a Dini condition on T3,and suppose also that fk(0) = 0. For j = 1,
2, 3, let Vj be defined by (2.49) and let p be defined by (2.50). 77iç« p and v¡
are periodic functions in Cn+1(E3) and Cn+2(E3), respectively, and the pair v, p
satisfies the system of equations in (2.51).

To prove Lemma 4, we proceed by induction. The case « = 0 follows im-
mediately from Lemma 3. Assume therefore that the lemma is true for « <N.
To complete the proof of the lemma, it remains to show the following:
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(2.62)

If 4 is in CN+1(E3) fot k= 1,2, 3, where N is a non-
negative integer, and if every partial derivative of order
N + 1 of fk satisfies a Dim condition on T3, then p and
Vj ate in CN+2(E3) and CN+3(E3), respectively.

Let D represent a partial derivative of order N + 2. Then the conclusion
in (2.62) concerning v¡ will follow if we show

(2.63) Dvj isinC1^).

From (2.49), and the fact that fk is in at least Cl(T3), we see that for a =
1,2,3,

3    f(2.64) viXa = (2tt) 3 Ç J     uf(y)fkXa(x -y)dy.

But now fkx   is in CN(E3) and satisfies a Dini condition on T3. Therefore, by
the inductive assumption,

(2.65) v.     is in CN+2(E3) fot a, j = 1, 2, 3.

But then it follows from (2.65) that DvjXa is in C°(E3) fot a, j = 1,2,3. This
last fact implies that Dv¡ is in C1(E3), and (2.63) is established. Consequently, u
isinCAr+3(£,3).

A similar proof shows that p is in CN+2(E3). Therefore (2.62) is estab-
lished. Since the fact that the pair v, p satisfies the system in (2.51) follows im-
mediately from Lemma 3, we see that the proof of Lemma 4 is complete.

Lemma 5. Let f = (fx, f2, f3) be a periodic vector in Cn+e(E3), n a non-
negative integer and 0 < 6 < 1. Suppose also that fk(0) = 0. Forj = 1, 2, 3,
let Vj be defined by (2.50).  77ze« p and Vj are periodic functions in Cn + 1+e(E3)
and Cn+2+e(E3), respectively, and the pair v, p satisfies the system of equations
in (2.51).

To establish Lemma 5, we first of all deal with the case « = 0. It follows
from the hypothesis of the lemma that in this case there is a constant Ax such
that co(f, f, T3) <Axte for 0 < t < 1. Since 0 < 6 < 1, we consequently ob-
tain from (2.15) that there is a constant A2 such that

(2.66) o,**^, f, i) < a2 t   for 0 < / < 1.

From the conclusion in Lemma 3, we have that vf is in C2+w    (i,f,1)(F3)
for/ = 1, 2, 3. The fact that v- is also a continuous periodic function in conjunc-
tion with (2.66) shows that v¡ is in C2+6(E3). In a similar manner, we have that
p is in C1+d(E3). Therefore, the case « = 0 of Lemma 5 is established.

We proceed by induction and assume Lemma 5 is true when « < N, N a
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nonnegative integer. The proof of the lemma will be complete once we establish
the following:

(2 67) If f is in CN+1+9 {E3), then p is in CN+ 2+e (E3) and
u/.isinCiV+3+e(Zi3),7=l,2,3.

From (2.67), we have that f is at least in C1(E3). Consequently, it follows
from (2.49) that vjx   is given by (2.64) for /, a - 1, 2, 3.  But fkx   is in
CN+6(E3). Consequently, by the inductive assumption, vjXa is in CN+2+d(E3).
This implies that ty is in CN+3+e(E3), and (2.67) is established for vf,j =1,2,
3. A similar approach shows that p is in CN+2+6(E3). (2.67) is therefore estab-
lished, and the proof of Lemma 5 is complete.

Next, we state the following remark:
Remark 3. Let p and ty be, respectively, in C°[B(x°,r0)] and C1[B(x° ,r0)],

j = 1,2,3. Suppose there are constants A= such that

.     w,-Ai// +pr^= „      Aj\pdx
(2 68) J*(*(Vo)  ; dxj     JB(*°>ro)  '

forj = 1, 2, 3 and \p in Cq[B{x° , r0)].
Suppose, furthermore,

(2.69) ¿2vjXi = 0inB(xo,ro).
i=i    '

Then p and ty are in C°°[B(x°, r0)],j = 1, 2, 3, and

(2.70) vAVj - bpldXj = A¡,     j = 1, 2, 3.
Using the method of spherical means (or mollifiers) to further smooth ty

and p, it can be easily shown from (2.68) and (2.69) that p is harmonic in
B(x°, r0). Weyl's lemma, in conjunction with (2.68) then gives that ty is in
C°[B(x°, r0)]. (2.70) then follows from (2.68). We leave the filling in of these
details to the reader and consider the proof of Remark 3 complete.

3. Proof of Theorem 1. We first of all observe that f is bounded on every
compact subset of £2. Consequently we infer from [2, pp. 79-81] that there is a
pair v', p, respectively, in C!(£2) and C°(£2) such that if B is an open 3-ball with
B C £2, then

(3.1) for; = 1,2, 3 and all ip in C¿"(B);

dx

2>U = 0    in B.
k=l       K
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Also,

(3-2) v' = v   almost everywhere in £2.

Furthermore, if £2X is a subdomain of £2 such that £2j is compact in £2,

(3.3) v' is in Cl+9(£lx), and p is in C9(Çlx) for 0 < 6 < 1.
Let £2j be fixed and suppose f is not identically constant in £2X. Then set-

ting co*(r, f, £2a) = 5(£2j) for t > 5(£2t) and cj*(0, f, £2j) = 0, we observe from
(1.8) that co*(r, f, £2j) is a continuous concave nondecreasing function on the in-
terval 0 < t < °°. [In particular, gj*(2i, f, £2j) < 2w*(r, f, £2j).] As a conse-
quence, it is not difficult to see that, in order to establish the theorem, it is suffi-
cient to establish the following:

If B(x°, r0) C £2X with 0 < r0 < xh, then
(3.4) (a) v' is in C2+"*<f-f'ni)[ZíCc0, r0)], and

(b)p is in C1+w*(f'f'i2i)[F(x°, r0)].

We now proceed to establish both parts of (3.4). With no loss in generality
we can assume x° = 0. Also, since Z?(0, r0) E £2X with 0 < r0 < té, we can find
rx, r2, and r3 such that

(3.5) r0 < rx < r2 < r3 < K   and   Z?(0, r3) C £2t.
Next, we select a function X with the following properties:

(3.6) XisinC0°°[5(0,r3)],

(3.7) 0<X<1    and   X=lin B(0, r2).
We then define for/ = 1, 2, 3,

'j = X lZv'kv'jxk -fj)     m fi(°. r3)>
(3-8)

= 0   inF3 -B(0,r3)

and extend g, by periodicity to all of E3;
From (3.3), (3.5), (3.8), and the hypothesis of the theorem, we see that

g = (gx,g2, g3) is a continuous periodic vector
satisfying a Dini condition on T3.

Next, for/ = 1, 2, 3, we set

(3.10) vv, = i»"3 Z L "j iy) [gkix -y)~ ¿¿(O)] dy
fc=l     T 3

and

(3.11) Fix) = (27T)-3 X {   qkiy)[gk(x -y) - g;(0)] dy.
fe=l    r3
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From (3.9) and Lemma 3, we infer immediately that

P and w- are continuous periodic functions in C1+w    ^f,g,1^(r3)
(3'12)      and C2+tJ**(f'g,1)(r3), respectively.
Furthermore,

paw, - oP/b-Xj = g, - gj(0),     j= 1,2,3,

(3.13) 3
Z wkx   = 0.

k=i      K

But then from (3.1), (3.5), (3.7), (3.8), (3.12), and (3.13), we have

(3.14)
for/ = 1, 2, 3 and all $ in C~[5(0, r2)],

and
3

!>*-"*)** = o  mzi(o,r2).
Jt=l

Since uj - w; is in C^O, r3)],/ = 1, 2, 3, and p -P is C°[5(0, r3)], we
obtain immediately from (3.14) and Remark 3 that

(3.15) p - P and v) - wy are in C^ZÍÍO, r2)] for / = 1, 2, 3.
But then it follows, in particular, from (3.12) and (3.15) that p is in

C^ZiiO, rx)] and v] is in C2[ß(0, rx)] for / = 1, 2, 3. Since 5(0, rx) is the proto-
type of a ball whose closure is contained in £2, we conclude that

(3.16) P is in C1 (£2), and v) is in C2(£2),     /= 1,2,3.

From (3.1) and (3.16), we see that (i) and (ii) of Theorem 1 are estab-
lished. To show part (iii) of Theorem 1, namely (3.4) with x° = 0, we proceed
as follows.

We first observe from (3.8) and the fact that/., ty, and ty     are locally
bounded in £2 that there is a constant A x such that

(3.17) co(f, gj, T3) < u[t, gj, 5(0, r3)] + Axco(t, X, E3) for 0 < t < r3.

Next, from (3.7), (3.8), and (3.16), we see that there is a constant A2 such
that

u[t, gj, 5(0, r3)] < u[t, f, 5(0, r3)] + A2t
(3.18)

for 0</<r3 and/= 1,2,3.

We consequently conclude from (1.8), (2.15), (3.17), (3.18), (3.6), and
(3.5) that there is a constant ^43 such that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



76 V. L. SHAPIRO

(3.19) w**(í' gr 1} < w*[í'f'5(0, '3)] + Á** log(1/í)

forO<f <r3 and/= 1,2,3.

From (3.15) and (3.16) we see that there is a constant A4 such that for
0 < t < rx and a, /?,/ =? 1, 2, 3,

(a) u[t, v)        B(0, r,)] < tc[t, w-        B(0, rx)] + A4t;
(3.20) P

(b) co[f, px/, B(0, rx)] < cj[I, F^., 5(0, r,)] + ^l4f.

We consequently conclude from (3.12), (3.19), (3.20), and the fact that
0 < rx < r3 < té that there is a constant /ls such that

(a) co[t, v'jXaXß, B(0, rx)] < A5 {u*[t, f, B(0, r3)] + t log(l/f)},

(3.21) (b) to[t, pXj, B(0, rx)] < A5 {to*[t, f, F(0, r3)] + t \og(l/t)}

fot0<t<rx.

Now by assumption f is not identically constant in £2j. Consequently, it is
not difficult to see (e.g., see [6, p. 45,1. 12]) that there is a positive constant A6
such that w(f, f, £2X) > A6t for 0 < t < 5(£2X). But then it follows that there is
another positive constant An such that

(3.22) rlog(l/f)<^7w*(f, f, £2j)   forO^Oj.

From the fact that 0 < r0 < rx and that u>*[f, f, B(0, r3)] < w*(f, f, £2X)
for 0 < t < r0, we obtain as an immediate consequence of (3.21)(a) and (3.22)
that v'j is in C2*"**-*^^®, r0)].  From (3.21)(b) and (3.22), we likewise ob-
tain that p is in C1 + CJ*(i,f,"i)[Z?(0, r0)]. We have therefore established (3.4),
and the proof of Theorem 1 is complete.

4. Proof of Theorem 2. The proof of Theorem 2 for the case « = 0 is al-
most identical with that given for parts (i) and (ii) of Theorem 1. We therefore
consider this case established and proceed by induction.

Thus, suppose Theorem 2 holds for the case n <N,N a nonnegative integer,
and assume that f is in C'/v+1(£2') and that the partial derivatives of order N + 1
of fk satisfy a Dini condition locally in £2'. It then follows from the inductive as-
sumption that there is a pair v', p such that

(4.1) v' is in CN+ 2(£2'), and p is in CN+1(£2'),

and, furthermore, in £2',
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3

v^'j-Pxj = 2>*U/W -//•     I = ». 2. 3>

it=i   *
Also,
(43) v' = v   almost everywhere in £2'.

To establish Theorem 2, it is sufficient, therefore, to show the following:

If B(x°, r0) C £2' with 0 < r0 < #, then
(4.4) (a) v' is in CN+3[B(x°, rQ)], and

{b)pisinCN+2[B{x°,r0)].

We now proceed to establish both parts of (4.4). With no loss in generality,
we can assume x° = 0. Also, since 5(0, r0) C £2' with.O < r0 < lA, we can find
rx,r2, and r3 such that

(4.5) r0<rx<r2<r3< Vi   and   5(0, r3) C £2'.
Next, we select a function X with the properties enumerated in (3.6) and

(3.7) and define the function g¡ in T3 for / = 1,2, 3 by (3.8). We then extend
the function gy by periodicity to all of E3.

From the fact that fis in CN+l{Q¡) and from (4.1), (4.5), and (3.8), we
observe that
(4.6) g, is in CN+e(E3) for 0<6<1.

Next, for / = 1, 2, 3, and x in E3 we define wy(x) by (3.10) and Zfx) by
(3.11). But then it follows from Lemma 5 and (4.6) that
(4.7) w. is in CN+2+e(E3), and P is in CN+1 +e(E3)

and, furthermore, in E3,

vAwj-Px.=gj-g¡{0),

(4.8) 3
£ »kxk = o.
fc=i

Since X = 1 in 5(0, r2), we see from (3.8) that g¡ = H3.z:.xvkvkx. - f¡ in
5(0, r2). Consequently, we obtain from (4.2) and (4.8) that, in 5(0, r2),

vA(v'j-wj)-(p-P)    =gj(0),
(4.9) 3 '

It follows, therefore, from Remark 3 and (4.9) that ty - w¡ is in
C°°[5(0, r2)]. But then from (4.7) and the fact that rx < r2, we obtain
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(4.10) vfiiinCJf+2+e[B{0,r1y\.

Next, we choose 77 such that

(4.11) TiisinC^O.r,)]
and
(4.12) rj = 1 in F(0, r0).

We define for / = 1,2,3,

g'j = -n[Zv'kv'jXk-f\    inB(0,rx),
(4.13) \k~l I

= 0   inT3-B(0,rx)

and extend g'j by periodicity to all of F3.
Now, by assumption, fk is in CN+1(ü') and its partial derivatives of order

N + 1 satisfy a Dini condition locally in £2'. Consequently, it follows from (4.10)
through (4.13) that

(A 141   s'iis a Peri°dic function CN+1(E3) and every partial derivative
of order N + 1 of g. satisfies a Dini condition on T3.

Next, with g'j replacing g¡, we define w'j(x) by (3.10) and P'(x) by (3.11).
It follows immediately, therefore, from (4.14) and Lemma 4 that

(4.15) w) is in CN+3(E3), and P' is in CN+2(E3)

and, furthermore, that, in E3,

ahv-f; =^-^(o),
(4.16) 3

Z ™'kxk = 0.
fc=l     K

But from (4.11) through (4.13),^ = X3k=xv'kv'jXk -f}ia B(0, r0). There-
fore, we conclude once again from (4.2), Remark 3, and this time (4.16) that

/41T) v'j - w'j is in C°°[B(0,ro)], and
p-p'is in C°°[B(0,r0)].

(4.17) in conjunction with (4.15) gives both parts of (4.4), and the proof of
Theorem 2 is complete.

In closing, we would like to point out that using a fixed function « satisfy-
ing a Dini condition locally in £2' and assuming that f is in cn+w(-t-h'n')[n"]
where £2" is a subdomain with compact closure in £2', it is not difficult to obtain
for Theorem 2 an analogue of part (iii) of Theorem 1. We leave this for the in-

terested reader.
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