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1 Introduction

Non-Gaussian analysis was already introduced in [AKS93] for smooth proba-
bility measure on infinite dimensional linear spaces, using biorthogonal de-
composition as a natural extension of the chaos decomposition that is well
known in Gaussian analysis. This biorthogonal “Appell” system has been
constructed for smooth measures by Yu. L. Daletskii [Dal91]. For a detailed
description of its use in infinite dimensional analysis and for the proof of the
results which were announced in [AKS93] we refer to [ADKS96] which was
based on quasi-invariance of the measures and smoothness of the logarithmic
derivatives.

Kondratiev et al. [KSWY95] considered the case of non-degenerate mea-
sures on the dual of a nuclear space with analytic characteristic functionals
and no further conditions such as quasi-invariance of the measure or smooth-
ness of the logarithmic derivative was required. In this case the important
example of Poisson noise is now accessible. Again for a given measure µ with
analytic Laplace transform [KSWY95] construct an Appell biorthogonal sys-
tem Aµ as a pair (Pµ,Qµ) of Appell polynomials Pµ and a canonical system
of generalized functions Qµ, properly associated to the measure µ. Hence
within this framework they obtained:

• explicit description of the test function space introduced in [ADKS96];

• the test functions space is identical for all measures that they consider;

• characterization theorems for generalized as well as test functions was
obtained analogously as in Gaussian analysis, see [KLP+96] for more
references;

• extension of the Wick product and the corresponding Wick calculus
[KLS96] as well as full description of positive distributions (as mea-
sures).

Aim of the present work. As in [KSWY95] we consider the case of
non-degenerate measures on the dual of a nuclear space with analytic Laplace
transform but instead of the µ-exponential eµ(·, ·) we use the generalized
µ-exponential eα

µ(·, ·) where α is a holomorphic function α on NC which
is invertible in a neighborhood of zero, i.e., α ∈ Hol0(NC,NC). Hence using
eα

µ(·, ·) we construct an generalized Appell orthogonal system Aµ,α as a pair

2



(Pµ,α,Qµ,α) of generalized Appell polynomials Pµ,α and a system of genera-
lized functions Qµ,α.
Central results. In the above framework

• we obtain an explicit description of the test function space introduced
in [ADKS96];

• the spaces of test functions turns out to be the same for all α ∈
Hol0(NC,NC) and for all measures that we consider;

• characterization theorems for generalized as well as test functions are
obtained analogously as in the Gaussian case;

• the spaces of distributions for a fixed measure µ are again identical for
all function α in the above conditions;

• the well known Wick product and the corresponding Wick calculus
[KLS96] extends rather directly;

• in the important case of Poisson white noise a special choice of α pro-
duces the orthogonal system of Charlier polynomials, see Example 5.2.
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2 General theory

2.1 Some facts on nuclear triples

We start with a real separable Hilbert space H with inner product (·, ·)
and norm |·|. For a given separable nuclear space N densely topologically
embedded in H we can construct the nuclear triple

N ⊂ H ⊂ N ′.

The dual pairing 〈·, ·〉 of N ′ and N then is realized as an extension of the
inner product in H

〈f, ξ〉 = (f, ξ) f ∈ H, ξ ∈ N .

Instead of reproducing the abstract definition of nuclear spaces (see e.g.,
[Sch71]) we give a complete (and convenient) characterization in terms of
projective limits of decreasing chains of Hilbert spaces Hp, p ∈ N.

Theorem 2.1 The nuclear Fréchet space N can be represented as

N =
⋂
p∈N

Hp,

where {Hp, p ∈ N} is a family of Hilbert spaces such that for all p1, p2 ∈ N
there exists p ∈ N such that the embeddings Hp ↪→ Hp1, Hp ↪→ Hp2 are
of Hilbert-Schmidt class. The topology of N is given by the projective limit
topology, i.e., the coarsest topology on N such that the canonical embeddings
N ↪→ Hp are continuous for all p ∈ N.

The Hilbert norms on Hp are denoted by |·|p. Without loss of generality
we always suppose that ∀p ∈ N, ∀ξ ∈ N : |ξ| ≤ |ξ|p and that the system of
norms is ordered, i.e., |·|p ≤ |·|q if p < q. By general duality theory the dual
space N ′ can be written as

N ′ =
⋃
p∈N

H−p.

with inductive limit topology τind by using the dual family of spaces {H−p :=
H′p, p ∈ N}. The inductive limit topology (w.r.t. this family) is the finest
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topology on N ′ such that the embeddings H−p ↪→ N ′ are continuous for all
p ∈ N. It is convenient to denote the norm on H−p by |·|−p. Let us mention
that in our setting the topology τind coincides with the Mackey topology
τ(N ′,N ) and the strong topology β(N ′,N ), see e.g., [HKPS93, Appendix
5].

Further we want to introduce the notion of tensor power of a nuclear
space. The simplest way to do this is to start from usual tensor powers
H⊗n

p , n ∈ N of Hilbert spaces. Since there is no danger of confusion we will
preserve the notation |·|p and |·|−p for the norms on H⊗n

p and H⊗n
−p respe-

ctively. Using the definition

N⊗n := pr lim
p∈N

H⊗n
p ,

one can prove [Sch71] that N⊗n is a nuclear space which is called the n-th
tensor power of N .

The dual space of N⊗n can be written

N ′⊗n = ind lim
p∈N

H⊗n
−p .

We also want to introduce the (Boson or symmetric) Fock space Γ(H) of
H by

Γ(H) =
∞⊕

n=0

Hb⊗n
C

with the convention Hb⊗0
C := C and the Hilbert norm

‖~ϕ‖2Γ(H) =
∞∑

n=0

n!
∣∣ϕ(n)

∣∣2 , ~ϕ =
{
ϕ(n) |n ∈ N0

}
∈ Γ(H).

2.2 Holomorphy on locally convex spaces

We shall collect some facts from the theory of holomorphic functions in
locally convex topological vector spaces E (over the complex field C), see
e.g., [Din81]. Let L(En) be the space of n-linear mappings from En into
C and Ls(En) the subspace of symmetric n-linear forms. Also let P n(E)
denote the n-homogeneous polynomials on E . There is a linear bijection
Ls(En) 3 A←→ Â ∈ P n(E). Now let U ⊂ E be open and consider a function
G : U → C. G is said to be G-holomorphic if for all θ0 ∈ U and for all

5



θ ∈ E the mapping from C to C: λ 7→ G(θ0 + λθ) is holomorphic in some
neighborhood of zero in C. If G is G-holomorphic then there exists for every

η ∈ U a sequence of homogeneous polynomials 1
n!
d̂nG(η) such that

G(θ + η) =
∞∑

n=0

1

n!
d̂nG(η)(θ)

for all θ from some open neighborhood V of zero. G is said to be holo-
morphic, if for all η in U there exists an open neighborhood V of zero such
that

∞∑
n=0

1

n!
d̂nG(η)(θ)

converges uniformly on V to a continuous function. Of course, d̂nG(η)(θ)
is the n-th partial derivative of G at η in direction θ. We say that G is
holomorphic at θ0 if there is an open set U containing θ0 such that G is
holomorphic on U . The following Proposition can be found e.g., in [Din81].

Proposition 2.2 G is holomorphic if and only if it is G-holomorphic and
locally bounded.

Let us explicitly consider a function holomorphic at the point 0 ∈ E = NC,
then

1) there exist p and ε > 0 such that for all ξ0 ∈ NC with |ξ0|p ≤ ε
and for all ξ ∈ NC the function of one complex variable λ 7→ G(ξ0 + λξ) is
holomorphic at 0 ∈ C, and

2) there exists c > 0 such that for all ξ ∈ NC with |ξ|p ≤ ε : |G(ξ)| ≤ c.
As we do not want to discern between different restrictions of one function,
we consider germs of holomorphic functions, i.e., we identify F and G if
there exists an open neighborhood U : 0 ∈ U ⊂ NC such that F (ξ) =
G(ξ) for all ξ ∈ U . Thus we define Hol0(NC) as the algebra of germs of
functions holomorphic at zero equipped with the inductive topology given
by the following family of norms

np,l,∞(G) = sup
|θ|p≤2−l

|G(θ)| , p, l ∈ N.

For later use we need the space Hol0(NC,NC) of holomorphic functions
from NC to NC. Let U ⊂ NC be open and consider a function α : U → NC.
α is said to be holomorphic at 0 ∈ NC iff
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1. it is G-holomorphic; i.e., there exist p and ε > 0 such that for all
ξ0 ∈ NC with |ξ0|p ≤ ε and for all ξ ∈ NC the function of one complex
variable λ 7→ α(ξ0 + λξ) is holomorphic at 0 ∈ C;

2. α is locally bounded, i.e., for all p ∈ N there exist Cp > 0 such that
∀η ∈ A with |η|p ≤ Cp then ∀p′ ∈ N there exist Cp′ such that ∀η ∈ A
|α(η)|p′ ≤ Cp′ , where A is an bounded set in NC.

If α is holomorphic at 0 ∈ NC, then for every η ∈ U there exists a sequence

of homogeneous polynomials 1
n!
d̂nα(η) such that

θ 7−→
∞∑

n=0

1

n!
d̂nα(η) (θ)

converges and define a continuous function on some neighborhood of zero.
Let use now introduce spaces of entire functions which will be useful later.

Let Ek
2−l(H−p,C) denote the set of all entire functions on H−p,C of growth

k ∈ [1, 2] and type 2−l, p, l ∈ Z. This is a linear space with norm

np,l,k(ϕ) = sup
z∈H−p,C

|ϕ(z)| exp
(
−2−l|z|k−p

)
, ϕ ∈ Ek

2−l(H−p,C).

The space of entire functions onN ′
C of growth k and minimal type is naturally

introduced by
Ek

min(N ′
C) := pr lim

p,l∈N
Ek

2−l(H−p,C),

see e.g., [Kon91], [BK95], [Oue91]. We will also need the space of entire
functions on NC of growth k and finite type:

Ek
max(NC) := ind lim

p,l∈N
Ek

2l(Hp,C).

2.3 Measures on linear topological spaces

To introduce probability measures on the vector spaceN ′, we consider Cσ(N ′)
the σ-algebra generated by cylinder sets onN ′, which coincides with the Borel
σ-algebras Bσ(N ′) and Bβ(N ′) generated by the weak and strong topology
on N ′, respectively. Thus we will consider this σ-algebra as the natural
σ-algebra on N ′. Detailed definitions of the above notions and proofs of the
mentioned relations can be found in e.g., [BK95].
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We will restrict our investigations to a special class of measures µ on
Cσ(N ′) which satisfy two additional assumptions. The first one concerns
some analyticity of the Laplace transformation

lµ (θ) := Lµ1 (θ) =

∫
N ′

exp 〈x, θ〉 dµ(x) =: Eµ (exp 〈·, θ〉) , θ ∈ NC .

Here we also have introduced the convenient notion of expectation Eµ of a
µ-integrable function.

Assumption 1 The measure µ has an analytic Laplace transform in a neigh-
borhood of zero. That means there exists an open neighborhood U ⊂ NC
of zero, such that lµ is holomorphic on U , i.e., lµ ∈ Hol0(NC). This class of
analytic measures is denoted byMa(N ′).

An equivalent description of analytic measures is given by the following
lemma and the proof can be founded in [KSW95].

Lemma 2.3 The following statements are equivalent

1) µ ∈Ma(N ′);

2) ∃pµ ∈ N, ∃C > 0 :

∣∣∣∣∫
N ′
〈x, θ〉ndµ(x)

∣∣∣∣ ≤ n!Cn |θ|npµ
, θ ∈ Hpµ,C;

3) ∃p′µ ∈ N, ∃εµ > 0 :

∫
N ′

exp(εµ |x|−p′µ
)dµ(x) <∞.

For µ ∈Ma(N ′) the estimate in statement 2 of the above lemma allows

to define the moment kernels Mµ
n ∈ N ′b⊗n. This is done by extending the

above estimate by a simple polarization argument and applying the kernel
theorem. The kernels are determined by

lµ(θ) =
∞∑

n=0

1

n!

〈
Mµ

n , θ
⊗n
〉

(2.1)

or equivalently〈
Mµ

n , θ1⊗̂ . . . ⊗̂θn

〉
=

∂n

∂t1 . . . ∂tn
lµ (t1θ1 + . . .+ tnθn)

∣∣∣∣
t1=...=tn=0

.

Moreover, if p > pµ is such that the embedding ip,pµ : Hp ↪→ Hpµ is Hilbert-
Schmidt then

|Mµ
n |−p ≤

(
nC
∥∥ip,pµ

∥∥
HS

)n ≤ n!
(
eC
∥∥ip,pµ

∥∥
HS

)n
. (2.2)
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Definition 2.4 A function ϕ : N ′ → C of the form

ϕ(x) =
N∑

n=0

〈x⊗n, ϕ(n)〉, x ∈ N ′, N ∈ N,

is called a continuous polynomial (short ϕ ∈ P(N ′)) iff ϕ(n) ∈ N b⊗n
C ,

∀n ∈ N0 := N ∪ {0}.

Now we are ready to formulate the second assumption on µ:

Assumption 2 For all ϕ ∈ P(N ′) with ϕ = 0 µ-almost everywhere we
have ϕ ≡ 0. In the following a measure with this property will be called
non-degenerate.

Note: Assumption 2 is equivalent to:
Let ϕ ∈ P(N ′) with

∫
A
ϕdµ = 0 for all A ∈ Cσ(N ′) then ϕ ≡ 0.

A sufficient condition can be obtained by regarding admissible shifts of the
measure µ. If µ(·+ξ) is absolutely continuous with respect to µ for all ξ ∈ N ,
i.e., there exists the Radon-Nikodym derivative

ρµ (ξ, x) =
dµ (x+ ξ)

dµ (x)
∈ L1 (N ′, µ) , x ∈ N ′,

then we say that µ is N -quasi-invariant see e.g., [GV68], [Sko74]. This is
sufficient to ensure Assumption 2, see e.g., [KV91], [BK95].
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3 The Appell system

The space P(N ′) may be equipped with various different topologies, but there
exists a natural one such that P(N ′) becomes isomorphic to the topological

direct sum of tensor powers N b⊗n
C see e.g., [Sch71, Chap. II 6.1, Chap. II 7.4]

P(N ′) '
∞⊕

n=0

N b⊗n
C

via

ϕ (x) =
∞∑

n=0

〈
x⊗n, ϕ(n)

〉
←→ ~ϕ =

{
ϕ(n) |n ∈ N0

}
.

Note that only a finite number of ϕ(n) is a non-zero. The notion of conver-
gence of sequences in this topology on P(N ′) is the following: for ϕ ∈ P(N ′),
such that

ϕ (x) =

N(ϕ)∑
n=0

〈
x

b⊗n, ϕ(n)
〉

let pn : P(N ′) → N b⊗n
C denote the mapping pn defined by pn(ϕ) := ϕ(n). A

sequence {ϕj, j ∈ N} of smooth polynomials converge to ϕ ∈ P(N ′) iff the

N(ϕj) are bounded and pnϕj −→
j→∞

pnϕ in N b⊗n
C for all n ∈ N.

Now we can introduce the dual space P ′µ(N ′) of P(N ′) with respect to
L2(µ). As a result we have constructed the triple

P(N ′) ⊂ L2(µ) ⊂ P ′µ(N ′)

The (bilinear) dual pairing 〈〈·, ·〉〉µ between P ′µ(N ′) and P(N ′) is connected

to the (sesquilinear) inner product on L2(µ) by

〈〈ϕ, ψ〉〉µ = (ϕ, ψ)L2(µ) , ϕ ∈ L2 (µ) , ψ ∈ P (N ′) .

3.1 Pµ-system

Because of the holomorphy of lµ and since that lµ(0) = 1, there exists a
neighborhood of zero

U0 =
{
θ ∈ NC | 2q0 |θ|p0

< 1
}
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p0, q0 ∈ N, p0 ≥ p′µ, 2−q0 ≤ εµ (p′µ, εµ from Lemma 2.3) such that lµ(θ) 6= 0
for θ ∈ U0 and the normalized µ-exponential

eµ (θ; z) :=
exp 〈z, θ〉
lµ(θ)

for θ ∈ U0, z ∈ N ′
C , (3.1)

is well defined. We use the holomorphy of θ 7→ eµ(θ; z) to expand it in a
power series in θ similar to the case corresponding to the construction of one
dimensional Appell polynomials [Bou76]. We have in analogy to [AKS93],
[ADKS96]

eµ (θ; z) =
∞∑

n=0

1

n!
̂dneµ (0, z) (θ) ,

where ̂dneµ (0, z) is an n-homogeneous form polynomial. But since eµ (θ; z) is
not only G-holomorphic but holomorphic we know that θ 7→ eµ (θ; z) is also
locally bounded. Thus Cauchy’s inequality for Taylor series [Din81] may be
applied, ρ ≤ 2−q0 , p ≥ p0∣∣∣∣ 1

n!
̂dneµ (0, z) (θ)

∣∣∣∣ ≤ 1

ρn
sup
|θ|p=ρ

|eµ (θ; z)| |θ|np

≤ 1

ρn
sup
|θ|p=ρ

1

lµ (θ)
exp

(
ρ |z|−p

)
|θ|np (3.2)

if z ∈ H−p,C. This inequality extends by polarization [Din81] to an estimate
sufficient for the kernel theorem. Thus we have a representation

̂dneµ (0, z) (θ) =
〈
P µ

n (z), θ⊗n
〉
,

where P µ
n (z) ∈ N ′b⊗n

C . The kernel theorem really gives a little more: P µ
n (z) ∈

Hb⊗n
−p′,C for any p′ (> p ≥ p0) such that the embedding operator

ip′,p : Hp′,C ↪→ Hp,C

is Hilbert-Schmidt. Thus we have

eµ(θ; z) =
∞∑

n=0

1

n!

〈
P µ

n (z), θ⊗n
〉

for θ ∈ U0, z ∈ N ′
C. (3.3)

We will also use the notation

P µ
n (ϕ(n))(·) :=

〈
P µ

n (·), ϕ(n)
〉
, ϕ(n) ∈ N b⊗n

C , n ∈ N,
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which is called Appell polynomial. Thus for any measure satisfying As-
sumption 1 we have defined the Pµ-system

Pµ =
{〈
P µ

n (·), ϕ(n)
〉
| ϕ(n) ∈ N b⊗n

C , n ∈ N0

}
.

The following proposition collects some properties of the polynomials
P µ

n (z), (for the proof we refer to [KSWY95]).

Proposition 3.1 For x, y ∈ N ′, n ∈ N the following holds

(P1) P µ
n (x) =

n∑
k=0

(
n

k

)
x⊗k⊗̂P µ

n−k(0). (3.4)

(P2) x⊗n =
n∑

k=0

(
n

k

)
P µ

k (x)⊗̂Mµ
n−k. (3.5)

(P3) P µ
n (x+ y) =

∑
k+l+m=n

n!

k! l!m!
P µ

k (x)⊗̂P µ
l (y)⊗̂Mµ

m

=
n∑

k=0

(
n

k

)
P µ

k (x)⊗̂y⊗(n−k). (3.6)

(P4) Further we observe

Eµ(〈P µ
m(·), ϕ(m)〉) = 0 for m 6= 0 , ϕ(m) ∈ N b⊗m

C . (3.7)

(P5) For all p > p0 such that the embedding Hp ↪→ Hp0 is Hilbert–Schmidt
and for all ε > 0 small enough (ε ≤ (2q0e ‖ip,p0‖HS)−1) there exists a constant
Cp,ε > 0 with

|P µ
n (z)|−p ≤ Cp,ε n! ε−n e(ε|z|−p), z ∈ H−p,C. (3.8)

The following lemma describes the set of polynomials P(N ′).

Lemma 3.2 For any ϕ ∈ P(N ′) there exists a unique representation

ϕ (x) =
N∑

n=0

〈
P µ

n (x) , ϕ(n)
〉
, ϕ(n) ∈ N b⊗n

C (3.9)

and vice versa, any functional of the form (3.9) is a smooth polynomial.
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3.2 Qµ-system

To give an internal description of the type (3.9) for P ′µ(N ′) we have to cons-
truct an appropriate system of generalized functions, the Qµ-system. We
propose to construct the Qµ-system using differential operators.

For Φ(n) ∈ N ′b⊗n
C define a differential operator,D(Φ(n)), of order n and con-

stant coefficients Φ(n) ∈ N ′b⊗n
C , such that, applied to monomials 〈x⊗m, ϕ(m)〉,

ϕ(m) ∈ N b⊗m
C ,m ∈ N

D
(
Φ(n)

) 〈
x⊗m, ϕ(m)

〉
=


m!

(m− n)!

〈
x⊗(m−n)⊗̂Φ(n), ϕ(m)

〉
for m ≥ n

0 for m < n
(3.10)

and extend by linearity from the monomials to P(N ′).

Lemma 3.3 D(Φ(n)) is a continuous linear operator from P(N ′) to P(N ′).

Remark For Φ(1) ∈ N ′ we have the usual Gâteaux derivative as e.g., in
white noise analysis [HKPS93]

D
(
Φ(1)

)
ϕ = DΦ(1)ϕ :=

d

dt
ϕ
(
·+ tΦ(1)

)∣∣
t=0

for ϕ ∈ P(N ′). Moreover we have D((Φ(1))⊗n) = (DΦ(1))n, thus D((Φ(1))⊗n)
is a differential operator of order n.

In view of Lemma 3.3 it is possible to define the adjoint operator

D(Φ(n))∗ : P ′µ(N ′) −→ P ′µ(N ′), Φ(n) ∈ N ′b⊗n
C .

Further we introduce the constant function 1 ∈ L2(µ) ⊂ P ′µ(N ′) such that
1 (x) ≡ 1 for all x ∈ N ′, so

〈〈1, ϕ〉〉µ =

∫
N ′
ϕ (x) dµ (x) = Eµ (ϕ) .

Now we are ready to define the Qµ-system.

Definition 3.4 For any Φ(n) ∈ N ′b⊗n
C we define a generalized function Qµ

n(Φ(n)) ∈
P ′µ(N ′) by

Qµ
n

(
Φ(n)

)
= D

(
Φ(n)

)∗
1.
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We want to introduce an additional formal notation which stresses the
linearity of Φ(n) 7→ Qµ

n(Φ(n)) ∈ P ′µ(N ′) :〈
Qµ

n,Φ
(n)
〉

:= Qµ
n

(
Φ(n)

)
Example 3.5 The simplest non trivial case can be studied using finite di-
mensional real analysis. We consider the nuclear ”triple”

R⊆ R ⊆ R

where the dual pairing between a ”test function” and a ”distribution” degene-
rates to multiplication. On R we consider a measure dµ (x) = ρ (x) dx where
ρ is a positive C∞-function on R such that assumptions 1 and 2 are fulfilled.
In this setting the adjoint of the differentiation operator is given by(

d

dx

)∗
f (x) = −

((
d

dx

)
+ β (x)

)
f (x) , f ∈ C∞ (R) ,

where β is the logarithmic derivative of the measure µ and given by

β =
ρ′

ρ
.

This enables us to calculate the Qµ-system. One has

Qµ
n (x) =

((
d

dx

)∗)n

1

= (−1)n

(
d

dx
+ β (x)

)n

1

= (−1)n ρ
(n) (x)

ρ (x)
,

where the last equality can be seen by simple induction (for ρ non smooth this
construction produce generalized functions Qµ

n even in this one dimensional
case).

If ρ (x) = 1√
2π

exp(−1
2
x2) is the Gaussian density, then Qµ

n is related to
the n-th Hermite polynomial:

Qµ
n (x) = 2−n/2Hn

(
x√
2

)
.
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Definition 3.6 We define the Qµ-system in P ′µ(N ′) by

Qµ =
{
Qµ

n

(
Φ(n)

)
| Φ(n) ∈ N ′b⊗n

C , n ∈ N0

}
,

and the pair (Pµ,Qµ) will be called the Appell system Aµ generated by the
measure µ.

We have the following central property of the Appell system Aµ.

Theorem 3.7 (Biorthogonality w.r.t. µ)〈〈
Qµ

n(Φ(n)), P µ
m

(
ϕ(m)

)〉〉
µ

= δm,n n! 〈Φ(n), ϕ(n)〉 (3.11)

for Φ(n) ∈ N ′b⊗n
C and ϕ(m) ∈ N b⊗m

C .

Now we are going to characterize the space P ′µ(N ′).

Theorem 3.8 For all Φ ∈ P ′µ(N ′) there exists a unique sequence {Φ(n) |n ∈
N0}, Φ(n) ∈ N ′b⊗n

C such that

Φ =
∞∑

n=0

Qµ
n

(
Φ(n)

)
≡

∞∑
n=0

〈
Qµ

n,Φ
(n)
〉

(3.12)

and vice versa, every series of the form (3.12) generates a generalized func-
tion in P ′µ(N ′).

The proofs of this result can be found in [KSWY95].
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4 The triple (N )1 ⊂ L2(µ) ⊂ (N )−1
µ

4.1 Test functions

On the space P(N ′) we can define a system of norms using the Appell de-
composition from Lemma 3.2. Let

ϕ (x) =
N∑

n=0

〈
P µ

n (x) , ϕ(n)
〉
∈ P(N ′)

be given, then ϕ(n) ∈ Hb⊗n
p,C for each p ≥ 0 (n ∈ N0). Thus we may define for

any p, q ∈ N a Hilbert norm on P(N ′) by

‖ϕ‖2p,q,µ =
∞∑

n=0

(n!)2 2nq
∣∣ϕ(n)

∣∣2
p

The completion of P(N ′) w.r.t. ‖·‖p,q,µ is denoted by (Hp)
1
q,µ .

Definition 4.1 We define

(N )1
µ := pr lim

p,q∈N
(Hp)

1
q,µ

This space have the following properties (for the proofs see [KSWY95]
and references therein).

Theorem 4.2 (N )1
µ is a nuclear space. The topology (N )1

µ is uniquely de-
fined by the topology on N : It does not depend on the choice of the family of
norms {|·|p}.
Theorem 4.3 There exists p′, q′ > 0 such that for all p ≥ p′, q ≥ q′ the
topological embedding (Hp)

1
q,µ ⊂ L2(µ) holds.

Corollary 4.4 (N )1
µ is continuously and densely embedded in L2(µ).

Theorem 4.5 Any test function ϕ in (N )1
µ has a uniquely defined extension

to N ′
C as an element of E1

min(N ′
C).

In this construction one unexpected moment was the following:

Theorem 4.6 For all measures µ ∈Ma(N ′) we have the topological identity

(N )1
µ = E1

min (N ′) .

Since this last theorem states that the space of test functions (N )1
µ is iso-

morphic to E1
min(N ′) for all measures µ ∈Ma(N ′), we will drop the subscript

µ. The test function space (N )1 is the same for all measures µ ∈Ma(N ′).
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4.2 Distributions

The space (N )−1
µ of distributions corresponding to the space of test func-

tions (N )1 can be viewed as a subspace of P ′µ(N ′), since P(N ′) ⊂ (N )1

topologically, i.e.,
(N )−1

µ ⊂ P ′µ(N ′)

Let us now introduce the Hilbert subspace (H−p)
−1
−q,µ of P ′µ(N ′) for which the

norm

‖Φ‖2−p,−q,µ :=
∞∑

n=0

2−qn
∣∣Φ(n)

∣∣2
−p

is finite. Here we used the canonical representation

Φ =
∞∑

n=0

Qµ
n

(
Φ(n)

)
∈ P ′µ(N ′)

from Theorem 3.8. The space (H−p)
−1
−q,µ is the dual space of (Hp)

1
q,µ with

respect to L2(µ) (because of the biorthogonality of Pµ- and Qµ-systems).
By the general duality theory

(N )−1
µ =

⋃
p,q∈N

(H−p)
−1
−q,µ

is the dual space of (N )1 with respect to L2(µ). So, we have the topological
nuclear triple

(N )1 ⊂ L2(µ) ⊂ (N )−1
µ .

The action of

Φ =
∞∑

n=0

Qµ
n

(
Φ(n)

)
∈ (N )−1

µ

on a test function

ϕ =
∞∑

n=0

〈
P µ

n , ϕ
(n)
〉
∈ (N )1

is given by

〈〈Φ, ϕ〉〉µ =
∞∑

n=0

n!
〈
Φ(n), ϕ(n)

〉
.
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Example 4.7 (Generalized Radon-Nikodym derivative) We want to
define a generalized function ρµ (z, ·) ∈ (N )−1

µ , z ∈ N ′
C with the following

property

〈〈ρµ (z, ·) , ϕ〉〉µ =

∫
N ′
ϕ (x− z) dµ (x) , ϕ ∈ (N )1 .

That means we have to establish the continuity of ρµ (z, ·). Let z ∈ H−p,C. If
p′ ≥ p is sufficiently large and ε > 0 is small enough, there exists q ∈ N and
C > 0 such that∣∣∣∣∫

N ′
ϕ (x− z) dµ (x)

∣∣∣∣ ≤ C ‖ϕ‖p′,q,µ

∫
N ′

exp
(
ε |x− z|−p′

)
dµ (x)

≤ C ‖ϕ‖p′,q,µ exp
(
ε |z|−p′

)∫
N ′

exp
(
ε |x|−p′

)
dµ (x) .

If ε is chosen sufficiently small the last integral exists. Thus we have in fact
ρµ (z, ·) ∈ (N )−1

µ . It is clear that whenever the Radon-Nikodym derivative
dµ(x+ξ)

dµ(x)
exists (e.g., ξ ∈ N in case µ is N -quasi-invariant) it coincides with

ρµ (z, ·) defined above. We will show that in (N )−1
µ we have the canonical

expansion

ρµ (z, ·) =
∞∑

n=0

(−1)n

n!
Qµ

n

(
z⊗n
)
.

Since both sides are in (N )−1
µ it is sufficient to compare their action on a

total set from (N )1. For ϕ(n) ∈ N b⊗n
C we have〈〈

ρµ (z, ·) ,
〈
P µ

n , ϕ
(n)
〉〉〉

µ

=

∫
N ′

〈
P µ

n (x− z) , ϕ(n)
〉
dµ (x)

=
n∑

k=0

(
n

k

)
(−1)n−k

∫
N ′

〈
P µ

k (x) ⊗̂z⊗(n−k), ϕ(n)
〉
dµ (x)

= (−1)n 〈z⊗n, ϕ(n)
〉

=

〈〈
∞∑

k=0

1

k!
(−1)k Qµ

k

(
z⊗k
)
,
〈
P µ

n , ϕ
(n)
〉〉〉

µ

,

where we have used (3.6), (3.7) and the biorthogonality of Pµ- and Qµ-
systems. In other words, we have proven that ρµ (−z, ·) is the generating
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function of the Qµ-system

ρµ (−z, ·) =
∞∑

n=0

1

n!
Qµ

n

(
z⊗n
)
.

4.3 Integral transformations

4.3.1 Normalized Laplace transform Sµ

We first introduce the Laplace transform of a function ϕ ∈ L2(µ). The global
assumption µ ∈Ma(N ′) guarantees the existence of p′µ ∈ N, εµ > 0 such that∫

N ′
exp

(
−εµ |x|−pµ

)
dµ (x) <∞

by Lemma 2.3. Thus exp(〈·, θ〉) ∈ L2(µ) if 2 |θ|p′µ < εµ, θ ∈ Hp′µ,C. Then by

Cauchy-Schwarz inequality the Laplace transform defined by

Lµϕ (θ) :=

∫
N ′
ϕ (x) exp 〈x, θ〉 dµ (x)

is well defined for ϕ ∈ L2(µ), θ ∈ Hp′µ,C. Now we are interested to extend
this integral transform from L2(µ) to the space of distributions (N )−1

µ .
Since our construction of test functions and distributions spaces is closely

related to Pµ- and Qµ-systems it is useful to introduce the so called Sµ-
transform

Sµϕ (θ) :=
Lµϕ (θ)

lµ (θ)
=

∫
N ′
ϕ (x) eµ (θ;x) dµ (x) .

The µ-exponential eµ (θ; ·) is not a test function in (N )1, see [KSWY95,
Example 6], so the definition of the Sµ-transform of a distribution Φ ∈ (N )−1

µ

must be more careful. Every such Φ is of finite order, i.e., ∃p, q ∈ N such
that Φ ∈ (H−p)

−1
−q,µ and eµ (θ; ·) is in the corresponding dual space (Hp)

1
q,µ if

θ ∈ Hp,C is such that 2q |θ|2p < 1. Then we can define a consistent extension
of Sµ-transform.

SµΦ (θ) := 〈〈Φ, eµ (θ, ·)〉〉µ
if θ is chosen in the above way. The biorthogonality of Pµ- and Qµ-system
implies

SµΦ (θ) =
∞∑

n=0

〈
Φ(n), θ⊗n

〉
,

moreover SµΦ ∈ Hol0(NC), see [KSWY95, Theorem 35].
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4.3.2 Convolution Cµ

We define the convolution of a function ϕ ∈ (N )1 with the measure µ by

Cµϕ (y) :=

∫
N ′
ϕ (x+ y) dµ (x) , y ∈ N ′.

For any ϕ ∈ (N )1, z ∈ N ′
C, the convolution has the representation

Cµϕ (z) = 〈〈ρµ (−z, ·) , ϕ〉〉µ .

If ϕ ∈ (N )1 has the canonical Pµ-decomposition

ϕ =
∞∑

n=0

〈
P µ

n , ϕ
(n)
〉
,

then

Cµϕ (z) =
∞∑

n=0

〈
z⊗n, ϕ(n)

〉
.

In Gaussian analysis Cµ- and Sµ-transform coincide. It is a typical non-
Gaussian effect that these two transformations differ from each other.

4.4 Characterization theorems

Now we will characterize the spaces of test and generalized functions by the
integral transforms introduced in the previous section.

We will start to characterize the space (N )1 in terms of the convolution
Cµ.

Theorem 4.8 The convolution Cµ is a topological isomorphism from (N )1

on E1
min(N ′

C).

Remark. Since we have identified (N )1 and E1
min(N ′) by Theorem 4.6, the

above assertion can be restated as follows. We have

Cµ : E1
min(N ′)→ E1

min(N ′
C),

as a topological isomorphism.
The next Theorem characterizes distributions from (N )−1

µ in terms of
Sµ-transform.
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Theorem 4.9 The Sµ-transform is a topological isomorphism from (N )−1
µ

on Hol0(NC).

Detailed proofs of the above theorems can be founded in [KSWY95, Theo-
rems 33, 35].
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5 Generalized Appell Systems

5.1 Description of the Pµ,α-system

Remember that the µ-exponential is the generating function of the Pµ-
system, i.e., if θ ∈ U0 ⊂ NC and z ∈ N ′

C, then

eµ (θ, z) :=
exp 〈z, θ〉
lµ (θ)

=
∞∑

n=0

1

n!

〈
P µ

n (z) , θ⊗n
〉
, P µ

n (z) ∈ N ′b⊗n
C .

In view to generalize the Appell system we consider α ∈ Hol0(NC,NC)
an invertible function such that α(0) = 0; moreover we have the following
decomposition

α (θ) =
∞∑

n=1

1

n!

〈
α(n) (0) , θ⊗n

〉
, θ ∈ Uα ⊂ NC (5.1)

where α(n) (0) ∈ N ′b⊗n
C ⊗ NC since α is vector valued. Analogously for the

inverse function α−1 =: gα, we have

gα (θ) =
∞∑

n=1

1

n!

〈
g(n)

α (0) , θ⊗n
〉
, θ ∈ Vα ⊂ NC, (5.2)

where g
(n)
α (0) ∈ N ′b⊗n

C ⊗NC. Now we introduce a new normalized exponential
using the function α, i.e.,

eα
µ(θ; z) := eµ(α(θ); z) =

exp〈z, α(θ)〉
lµ(α(θ))

, θ ∈ U ′α ⊂ Uα, z ∈ N ′
C.

Using the same procedure as in Section 3 there exist P µ,α
n (z) ∈ N ′b⊗n

C called
generalized Appell polynomial or α-polynomial such that

eα
µ(θ; z) =

∞∑
n=0

1

n!
〈P µ,α

n (z), θ⊗n〉, θ ∈ U ′α , z ∈ N ′
C, (5.3)

which for fixed z ∈ N ′
C converges uniformly on some neighborhood of zero

on NC. Hence we have constructed the Pµ,α-system

Pµ,α =
{〈
P µ,α

n (·) , ϕ(n)
α

〉
|ϕ(n)

α ∈ N
b⊗n

C , n ∈ N
}
.
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In this case the related moments kernels of the measure µ are determined by

lαµ (θ) := lµ (α (θ)) =
∞∑

n=0

1

n!

〈
Mµ,α

n , θ⊗n
〉
, θ ∈ NC, M

µ,α
n ∈ N ′b⊗n.

Let us collect some properties of the polynomials P µ,α
n (z).

Proposition 5.1 For z, w ∈ N ′, n ∈ N the following holds

(Pα1) P µ,α
n (z) =

n∑
m=1

1

m!
〈P µ

m (z) , Am
n 〉 , (5.4)

where Am
n are related to the kernels of α and are given in the proof, see (5.12)

below;

(Pα2) z⊗n =
n∑

k=0

k∑
m=0

(
n

k

)
1

m!
〈P µ,α

m (z), Bm
k 〉 ⊗̂M

µ
n−k, (5.5)

where Bm
k are related with the kernels of gα and are given in the proof, see

(5.13) below;

(Pα3) P µ,α
n (z + w) =

∑
k+l+m=n

n!

k!l!m!
P µ,α

k (z) ⊗̂P µ,α
l (w) ⊗̂Mµ,α

m . (5.6)

(Pα4) P µ,α
n (z + w) =

n∑
k=0

(
n

k

)
P µ,α

k (z) ⊗̂P δ0,α
n−k (w) . (5.7)

(Pα5) Further, we observe

Eµ(〈P µ,α
m (·), ϕ(m)

α 〉) = 0 for m 6= 0, ϕ(m)
α ∈ N b⊗m

C . (5.8)

(Pα6) For all p′ > p such that the embedding Hp′ ↪→ Hp is of Hilbert-Schmidt
class and for all ε > 0 there exist σε > 0 such that

|P µ,α
n (z)|−p′ ≤ 2n!σ−n

ε exp (ε|z|−p) , z ∈ H−p′,C, n ∈ N0, (5.9)

where σε is chosen in such a way that |α (θ)| ≤ ε and |lµ (α (θ))| ≥ 1/2 for
|θ|p = σε.
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Proof. (Pα1) Analogously with (3.3) we have

eα
µ (θ; z) :=

exp 〈z, α (θ)〉
lµ (α (θ))

=
∞∑

m=0

1

m!

〈
P µ

m (z) , α (θ)⊗m〉 . (5.10)

Using the representation from (5.1) we compute α (θ)⊗m :

α (θ)⊗m =
∞∑
l=1

1

l!

〈
α(l) (0) , θ⊗l

〉
⊗ · · · ⊗

∞∑
l=1

1

l!

〈
α(l) (0) , θ⊗l

〉
=

∞∑
l1,...,lm=1

1

l1! · · · lm!

〈
α(l1) (0)⊗ · · · ⊗ α(lm) (0) , θ⊗(l1+...+lm)

〉
=

∞∑
n=1

1

n!

〈
Am

n , θ
⊗n
〉
, (5.11)

where

Am
n =


∑

l1+...+lm=n

n!

l1!· · ·lm!
α(l1) (0)⊗ · · · ⊗ α(lm) (0) for n ≥ m

0 for n < m

. (5.12)

Now we introduce (5.11) in (5.10) to obtain

eα
µ (θ; z) =

∞∑
m=0

1

m!

〈
P µ

m (z) ,
∞∑

n=1

1

n!

〈
Am

n , θ
⊗n
〉〉

=
∞∑

n=1

1

n!

〈
n∑

m=0

1

m!
〈P µ

m (z) , Am
n 〉 , θ⊗n

〉
.

By definition

eα
µ (θ; z) =

∞∑
n=0

1

n!

〈
P µ,α

n (z) , θ⊗n
〉
,

so we conclude that

P µ,α
n (z) =

n∑
m=1

1

m!
〈P µ

m (z) , Am
n 〉 .
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(Pα2) Since θ = α(gα (θ)) we have

eµ (θ, z) =
∞∑

n=0

1

n!

〈
P µ,α

n (z) , gα (θ)⊗n〉 .
Having in mind (5.2) we first compute gα (θ)⊗n:

gα (θ)⊗n =
∞∑
l=1

1

l!

〈
g(l)

α (0) , θ⊗l
〉
⊗ · · · ⊗

∞∑
l=1

1

l!

〈
g(l)

α (0) , θ⊗l
〉

=
∞∑

l1,...,ln=1

1

l1!· · ·ln!

〈
g(l1)

α (0)⊗ · · · ⊗ g(ln)
α (0) , θ⊗(l1+...+ln)

〉
=

∞∑
m=1

1

m!

〈
Bn

m, θ
⊗m
〉
,

where

Bn
m =


∑

l1+...+ln=m

m!

l1!· · ·ln!
g(l1)

α (0)⊗ · · · ⊗ g(ln)
α (0) for m ≥ n

0 for m < n

. (5.13)

Hence

eµ (θ, z) =
∞∑

n=0

1

n!

〈
P µ,α

n (z) ,
∞∑

m=1

1

m!

〈
Bn

m, θ
⊗m
〉〉

=
∞∑

m=1

1

m!

〈
m∑

n=0

1

n!
〈P µ,α

n (z) , Bn
m〉 , θ⊗m

〉
.

On the other hand

eµ (θ, z) =
∞∑

n=0

1

n!

〈
P µ

n (z) , θ⊗n
〉
,

so we conclude that

P µ
m (z) =

m∑
n=1

1

n!
〈P µ,α

n (z) , Bn
m〉 . (5.14)

The result follows using property (P2) of the polynomials P µ
n (z).
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(Pα3) Let us start from the equation of the generating functions

eα
µ (θ, z + w) = eα

µ (θ, z) eα
µ (θ, w) lαµ (θ) .

This implies

∞∑
n=0

1

n!

〈
P µ,α

n (z + w) , θ⊗n
〉

=
∞∑

k,l,m=0

1

k!l!m!

〈
P µ,α

k (z) ⊗̂P µ,α
l (w) ⊗̂Mµ,α

m , θ⊗(k+l+m)
〉
,

from this (Pα3) follows immediately.
(Pα4) We note that

eα
µ (θ; z + w) = eα

µ (θ; z) exp 〈w, α (θ)〉 , θ ∈ U0 ⊂ NC.

Now, since lδ0 (θ) = 1, we have the following decomposition

exp 〈w, α (θ)〉 =
∞∑

n=0

1

n!

〈
P δ0,α

n (w) , θ⊗n
〉
, (5.15)

where for α ≡ id, P δ0,α
n (w) = w⊗n. The result follows as done in (Pα3).

(Pα5) To see this we use, θ ∈ NC,

∞∑
n=0

1

n!
Eµ

(〈
P µ,α

m (·) , θ⊗n
〉)

= Eµ

(
eα

µ (θ; ·)
)

=
Eµ (exp 〈·, α (θ)〉)

lµ (α (θ))
= 1.

Then the polarization identity and a comparison of coefficients give the result.
(Pα6) Using the definition of P µ,α

n and Cauchy’s inequality for Taylor series
we have ∣∣〈P µ,α

n (z) , θ⊗n
〉∣∣ = n!

∣∣∣ ̂dneα
µ (0; z) (θ)

∣∣∣
−p

≤ n!
1

σn
ε

sup
|θ|p=σε

exp
(
|α (θ)|p |z|−p

)
|lµ (α (θ))|

|θ|np

≤ 2n!σ−n
ε exp

(
ε |z|−p

)
|θ|np .

The result follows by polarization and kernel theorem. �

Let us give a concrete example which furnish good arguments to use the
Pµ,α-system.
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Example 5.2 (Poisson noise) Let us consider the classical (real) Schwartz
triple

S (R) ⊂ L2 (R) ⊂ S ′ (R) .

The Poisson white noise measure π is defined as a probability measure
on Cσ(S ′(R)) with Laplace transform

lπ (θ) = exp

[∫
R

(exp θ (t)− 1) dt

]
= exp [〈exp θ (·)− 1, 1〉] , θ ∈ SC (R) ,

see e.g., [GV68]. It is not hard to see that lπ is a holomorphic function on
SC(R), so assumption 1 is satisfied. But to check Assumption 2, we need
additional considerations.

First of all we remark that for any ξ ∈ S(R), ξ 6= 0 the measure π and
π(·+ξ) are orthogonal (see [GGV75] for a detailed analysis). It means that π
is not S(R)-quasi-invariant and the note after Assumption 2 is not applicable
now.

Let some ϕ ∈ P(S ′(R)), ϕ = 0 π-a.s. be given. We need to show that
then ϕ ≡ 0. To this end we will introduce a system of orthogonal polynomials
in the space L2(S ′(R), π) which can be constructed in the following way. The
mapping

θ (·) 7→ α (θ) (·) = log (1 + θ (·)) ∈ SC (R) , θ ∈ SC (R)

is holomorphic on a neighborhood U ⊂ SC(R), 0 ∈ U . Then

eα
π (θ;x) =

exp 〈x, α (θ)〉
lπ (α (θ))

= exp [〈x, α (θ)〉 − 〈θ, 1〉] , θ ∈ U , x ∈ S ′ (R)

is a holomorphic function on U for any x ∈ S ′(R). The Taylor decomposition
and the kernel theorem give

eα
π (θ;x) =

∞∑
n=0

1

n!

〈
Cn (x) , θ⊗n

〉
,

where Cn : S ′(R)→S ′(R)
b⊗n are polynomial mappings. For ϕ(n) ∈ SC(R)

b⊗n,
n ∈ N0, we define Charlier polynomials

x 7→ Cn

(
ϕ(n);x

)
:=
〈
Cn (x) , ϕ(n)

〉
∈ C, x ∈S ′ (R) .
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Due to [Ito88], [IK88] we have the following orthogonality property:

∀ϕ(n) ∈ SC (R)
b⊗n , ∀ψ(m) ∈ SC (R)

b⊗m∫
Cn

(
ϕ(n)

)
Cm

(
ψ(m)

)
dπ = δnmn!

〈
ϕ(n), ψ(n)

〉
.

Now the rest is simple. Any continuous polynomial ϕ has a uniquely defined
decomposition

ϕ (x) =
N∑

n=0

〈
Cn (x) , ϕ(n)

〉
, x ∈ S ′ (R) ,

where ϕ(n) ∈ SC(R)
b⊗n. If ϕ = 0 π-a.e., then

‖ϕ‖2L2(π) =
N∑

n=0

n!
〈
ϕ(n), ϕ(n)

〉
= 0.

Hence ϕ(n) = 0, n = 0, . . ., N , i.e., ϕ ≡ 0. So Assumption 2 is satisfied.

Lemma 5.3 For any ϕ ∈ P(N ′) there exists a unique representation

ϕ (x) =
N∑

n=0

〈
P µ,α

n (x) , ϕ(n)
α

〉
, ϕ(n)

α ∈ N
b⊗n

C (5.16)

and vice versa, any functional of the form (5.16) is a smooth polynomial.

Proof. The representation from Definition 2.4 and equation (5.16) can be
transformed into one another using (5.4) and (5.5). �

5.2 Description of the Qµ,α-system

5.2.1 Using Sµ-transform

By assumption we know that α is invertible with inverse given by gα and
α (θ) ∈ Vα ⊂ NC, ∀θ ∈ Uα. For given Φ

(n)
α ∈ N ′b⊗n

C we define a generalized

function Qµ,α
n (Φ

(n)
α ) via the Sµ-transform

Sµ

(
Qµ,α

n

(
Φ(n)

α

))
(θ) :=

〈
Φ(n)

α , gα (θ)⊗n〉 , θ ∈ Vα. (5.17)
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5.2.2 Using differential operators

Using the kernels g
(n)
α (0) of gα, see (5.2), we define a differential operator (of

infinite order) from P(N ′) to P(N ′)⊗NC as follows

Gα =
∞∑

n=0

1

n!

〈
g(n)

α (0) ,5⊗n
〉
,

such that, if ϕ ∈ P(N ′) and ξ ∈ N ′
C we have

Gξ
α (ϕ) (x) := 〈ξ,Gα(ϕ) (x)〉 =

∞∑
n=0

1

n!

〈
ξ,
〈
g(n)

α (0) ,5⊗nϕ (x)
〉〉
, x ∈ N ′,

i.e., Gξ
α : P(N ′)→ P(N ′) and formally Gα := gα (5).

Let we state the following useful lemma.

Lemma 5.4 For all ξ ∈ N ′
C, x ∈ N ′ and θ ∈ NC we have

〈ξ, gα (5)〉 (exp 〈x, θ〉) = 〈ξ, gα (θ)〉 exp 〈x, θ〉 .

Proof. Using the representation given in (5.2) we have

〈ξ, gα (5)〉 =
∞∑

n=0

1

n!

〈
g

(n)
α,ξ (0) ,∇⊗n

〉
, g

(n)
α,ξ (0) =

〈
g(n)

α (0) , ξ
〉
∈ N ′b⊗n

C .

For simplicity we put g
(n)
α,ξ (0) ≡ Ψ(n). At first we apply the operator to some

monomial. For given θ ∈ NC, m ≥ n〈
Ψ(n),∇⊗n

〉
〈x, θ〉m =

〈
Ψ(n),∇⊗n

〉 〈
x⊗m, θ⊗m

〉
= m (m− 1) · · · (m− n+ 1)

〈
Ψ(n)⊗̂x⊗(m−n), θ⊗m

〉
= m (m− 1) · · · (m− n+ 1) 〈x, θ〉m−n 〈Ψ(n), θ⊗n

〉
,

where we used (3.10) in the second equality. Now expand the given function,
exp 〈x, θ〉, in the Taylor series and applying the above result we get〈

Ψ(n),∇⊗n
〉
exp 〈x, θ〉

=
〈
Ψ(n),∇⊗n

〉 ∞∑
m=0

〈x, θ〉m

m!
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=
∞∑

m=n

m (m− 1) · · · (m− n+ 1)

m!

〈
Ψ(n)⊗̂x⊗(m−n), θ⊗m

〉
=

〈
Ψ(n), θ⊗n

〉 ∞∑
m=n

1

(m− n)!
〈x, θ〉m−n

=
〈
Ψ(n), θ⊗n

〉
exp 〈x, θ〉 .

Therefore

〈ξ, gα (5)〉 (exp 〈x, θ〉) =
∞∑

n=0

1

n!

〈
Ψ(n),∇⊗n

〉
exp 〈x, θ〉

=
∞∑

n=0

1

n!

〈
Ψ(n), θ⊗n

〉
exp 〈x, θ〉

= 〈ξ, gα (θ)〉 (exp 〈x, θ〉) .

�

Theorem 5.5 Under the above conditions the Qµ,α
n (ξ⊗n) are given by

Qµ,α
n

(
ξ⊗n
)
(·) = (〈ξ, gα (5)〉∗n 1) (·) . (5.18)

Proof. Applying the Sµ-transform to the r.h.s of (5.18) we have

Sµ (〈ξ, gα (5)〉∗n 1) (θ) = 〈〈〈ξ, gα (5)〉∗n 1, eµ (θ, ·)〉〉µ
= 〈〈1, 〈ξ, gα (5)〉n eµ (θ, ·)〉〉µ

=
1

lµ (θ)

∫
N ′
〈ξ, gα (5)〉n exp 〈x, θ〉 dµ (x)

=
〈ξ, gα (θ)〉n

lµ (θ)

∫
N ′

exp 〈x, θ〉 dµ (x)

= 〈ξ, gα (θ)〉n . (5.19)

On the other hand the Sµ-transform of the l.h.s. (5.18), by (5.17), is the
same as (5.19) which prove the result. �

Example 5.6 As an illustration of Gα we use again the Poisson measure π
(see Example 5.2) and α (θ) (·) = log (1 + θ (·)), θ ∈ S(R). For this choice
we have

gα (θ) (·) = exp θ (·)− 1 =
∞∑

n=1

θn (·)
n!

.
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On the other hand, from (5.2) we have

gα (θ) (·) =
∞∑

n=1

1

n!

〈
g(n)

α (0) , θ⊗n
〉
(·) ,

so we conclude that

g(n)
α (0) = δ (t1 − t) · · · δ (tn − t) .

We introduce the notation of functional derivative (see [IK88]),

∇δt (θ) =
δ

δθ (t)
, θ ∈ S (R) , t ∈R.

With this, we easily see that for ∇h = 〈∇, h〉 we have

(exp (∇h) f) (·) = f (·+ h) , f ∈ P (S ′ (R)) , h ∈ S (R) .

Hence

(gα (∇δt) (θ)) (f (·)) =

(
exp

(
δ

δθ (t)

)
− 1

)
f (·) = f (·+ δt)− f (·)

and if ξ ∈ SC(R) we have

〈gα (∇δt) , ξ〉 f (·) =

∫
R

[f (·+ δt)− f (·)] ξ (t) dt.

Therefore if f ∈ P(S ′(R)) then

Gα : f (·) 7−→ f (·+ δt)− f (·) .

This mapping can be considered as a ”gradient” operator on the Poisson
space (S ′(R),B(S ′(R)), π).

Definition 5.7 We define the Qµ,α-system in P ′µ(N ′) by

Qµ,α =
{
Qµ,α

n

(
Φ(n)

α

)
|Φ(n)

α ∈ N ′b⊗n
C , n ∈ N0

}
,

and the pair (Pµ,α,Qµ,α) will be called the generalized Appell system
Aµ,α generated by the measure µ and given mapping α ∈ Hol0(NC,NC).

31



Now we are going to discuss the central property of the generalized Appell
system Aµ,α.

Theorem 5.8 (Biorthogonality of Qµ,α and Pµ,α w.r.t. µ)〈〈
Qµ,α

n

(
Φ(n)

α

)
, P µ,α

m

(
ϕ(m)

α

)〉〉
µ

= δnmn!
〈
Φ(n)

α , ϕ(n)
α

〉
, (5.20)

for Φ
(n)
α ∈ N ′b⊗n

C and ϕ
(m)
α ∈ N b⊗m

C .

Proof. By definition of Sµ we have

Sµ

(
Qµ,α

n

(
Φ(n)

α

))
(θ) :=

〈〈
Qµ,α

n

(
Φ(n)

α

)
, eµ(θ, ·)

〉〉
µ

if we substitute θ 7→ α(η), then we obtain

Sµ

(
Qµ,α

n

(
Φ(n)

α

))
(α (η)) =

〈〈
Qµ,α

n

(
Φ(n)

α

)
, eµ (α (η) , ·)

〉〉
µ

=
∞∑

m=0

1

m!

〈〈
Qµ,α

n

(
Φ(n)

α

)
,
〈
P µ,α

m (·) , η⊗m
〉〉〉

µ
.

Substituting of θ by α(η) in (5.17) give us

Sµ

(
Qµ,α

n

(
Φ(n)

α

))
(α(η)) =

〈
Φ(n)

α , η⊗n
〉
.

Then a comparison of coefficients and the polarization identity give the de-
sired result. �

Now we characterize the space P ′µ(N ′).

Theorem 5.9 For all Φ ∈ P ′µ(N ′) there exists a unique sequence {Φ(n)
α |n ∈

N0}, Φ
(n)
α ∈ N ′b⊗n

C such that

Φ =
∞∑

n=0

Qµ,α
n

(
Φ(n)

α

)
≡

∞∑
n=0

〈
Qµ,α

n ,Φ(n)
α

〉
(5.21)

and vice versa, every series of the form (5.21) generates a generalized func-
tion in P ′µ(N ′).
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Proof. For Φ ∈ P ′µ(N ′) we can uniquely define Φ
(n)
α ∈ N ′b⊗n

C by

〈
Φ(n)

α , ϕ(n)
α

〉
:=

1

n!

〈〈
Φ,
〈
P µ,α

n , ϕ(n)
α

〉〉〉
µ
, ϕ(n)

α ∈ N
b⊗n

C ,

which is well defined since 〈P µ,α
n , ϕ

(n)
α 〉 ∈ P(N ′). The continuity of ϕ

(n)
α 7→

〈Φ(n)
α , ϕ

(n)
α 〉 follows from the continuity of ϕ 7→ 〈〈Φ, ϕ〉〉µ, ϕ ∈ P(N ′). This

implies that

ϕ 7−→
∞∑

n=0

n!
〈
Φ(n)

α , ϕ(n)
α

〉
is continuous on P(N ′). This defines a generalized function in P ′µ(N ′), which
we denote by

∞∑
n=0

Qµ,α
n

(
Φ(n)

α

)
.

In view of Theorem 5.8 it is easy to see that

Φ =
∞∑

n=0

Qµ,α
n

(
Φ(n)

α

)
.

To see the converse consider a series of the form (5.21) and ϕ ∈ P(N ′).

Then there exists ϕ
(n)
α ∈ N b⊗n

C , n ∈ N and N ∈ N such that we have the
representation

ϕ =
N∑

n=0

P µ,α
n

(
ϕ(n)

α

)
.

So we have 〈〈
∞∑

n=0

Qµ,α
n

(
Φ(n)

α

)
, ϕ

〉〉
µ

=
N∑

n=0

n!
〈
Φ(n)

α , ϕ(n)
α

〉
,

because of Theorem 5.8. The continuity of

ϕ 7−→

〈〈
∞∑

n=0

Qµ,α
n

(
Φ(n)

α

)
, ϕ

〉〉
µ

follows because ϕ
(n)
α 7→ 〈Φ(n)

α , ϕ
(n)
α 〉 is continuous for all n ∈ N. �
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6 Test functions on a linear space with mea-

sure

6.1 Test functions spaces

We will construct the test function space (N )1
µ,α using Pµ,α-system and study

some properties. On the space P(N ′) we can define a system of norms using
the representation from (5.16)

ϕ (·) =
N∑

n=0

〈
P µ,α

n (·) , ϕ(n)
α

〉
,

with ϕ
(n)
α ∈ Hb⊗n

p,C for each p > 0 (n ∈ N). Thus we may define for any p, q ∈ N
a Hilbert norm on P(N ′) by

‖ϕ‖2p,q,µ,α =
N∑

n=0

(n!)2 2nq
∣∣ϕ(n)

α

∣∣2
p
<∞

The completion of P(N ′) w.r.t. ‖·‖2p,q,µ,α is called (Hp)
1
q,µ,α .

Definition 6.1 We define

(N )1
µ,α :=pr lim

p,q∈N
(Hp)

1
q,µ,α

Theorem 6.2 (N )1
µ,α is a nuclear space. The topology in (N )1

µ,α is uniquely
defined by the topology on N . It does not depend on the choice of the family
of norms {|·|p}.

Proof. Nuclearity of (N )1
µ,α follows essentially from that of N . For fixed

p, q choose p′ such that the embedding

ip′,p : Hp′ ↪→ Hp

is Hilbert-Schmidt and consider the embedding

Ip′,q′,p,q,α : (Hp′)
1
q′,µ,α ↪→ (Hp)

1
q,µ,α .
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Then Ip′,q′,p,q,α is induced by

Ip′,q′,p,q,α (ϕ) =
∞∑

n=0

〈
P µ,α

n , i⊗n
p′,pϕ

(n)
α

〉
for ϕ =

∞∑
n=0

〈
P µ,α

n , ϕ(n)
α

〉
∈ (Hp′)

1
q′,µ,α.

Its Hilbert-Schmidt norm, for a given orthonormal basis of (Hp′)
1
q′,µ,α , can

be estimate by

‖Ip′,q′,p,q,α‖2HS =
∞∑

n=0

2n(q−q′) ‖ip′,p‖2n
HS

which is finite for a suitably chosen q′.
To prove the independence of the family of norms, let us assume that we

are given two different systems of Hilbert norms |·|p and |·|′k, such that they

induce the same topology onN . For fixed k and l we have to estimate ‖·‖′k,l,µ,α

by ‖·‖p,q,µ,α for some p, q (and vice versa which is completely analogous). But

for all f ∈ N we have |f |′k ≤ C |f |p for some constant C and some p, since

|·|′k has to be continuous with respect to the projective limit topology on N .
That means that the injection i from Hp into the completion Kk of N with
respect to |·|′k is a mapping bounded by C. We denote by i also its linear
extension from Hp,C into Kk,C. It follows that i⊗n is bounded by Cn from

H⊗n
p,C into K⊗n

k,C. Now we choose q such that 2
q−l
2 ≥ C. Then

‖·‖′k,l,µ,α =
∞∑

n=0

(n!)2 2nl |·|′2k

≤
∞∑

n=0

(n!)2 2nlC2n |·|2p

≤ ‖·‖p,q,µ,α

which is exactly what we need. �

Lemma 6.3 There exist p, C,K > 0 such that for all n ∈ N0∫
|P µ,α

n (z)|2−p dµ (z) ≤ 4 (n!)2CnK. (6.1)

Proof. We can use the estimate (5.9) and Lemma 2.3 to conclude the result.
�
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Theorem 6.4 There exists p′, q′ > 0 such that for all p ≥ p′, q ≥ q′ the
topological embedding (Hp)

1
q,µ,α ⊂ L2(µ) holds.

Proof. Elements of the space (N )1
µ,α are defined as series convergent in the

given topology. Now we need the convergence of the series in L2(µ). Choose
q′ such that C > 2q′ (C from estimate (6.1)). Let us take an arbitrary

ϕ =
∞∑

n=0

〈
P µ,α

n , ϕ(n)
α

〉
∈ P (N ′) .

For p > p′ (p′ from the Lemma 6.3) and q > q′ the following estimates hold

‖ϕ‖L2(µ) ≤
∞∑

n=0

∥∥〈P µ,α
n , ϕ(n)

α

〉∥∥
L2(µ)

≤
∞∑

n=0

∣∣ϕ(n)
α

∣∣
p

∥∥∥|P µ,α
n |−p

∥∥∥
L2(µ)

≤ 2K1/2

∞∑
n=0

n!2nq/2
∣∣ϕ(n)

α

∣∣
p

(
C2−q

)n/2

≤ 2K1/2

(
∞∑

n=0

(
C2−q

)n)1/2( ∞∑
n=0

(n!)2 2nq
∣∣ϕ(n)

α

∣∣2
p

)1/2

= 2K1/2
(
1− C2−q

)−1/2 ‖ϕ‖p,q,µ,α .

Taking the closure the inequality extends to the whole space (Hp)
1
q,µ,α . �

Corollary 6.5 (N )1
µ,α is continuously and densely embedded in L2(µ).

6.2 Description of test functions

Proposition 6.6 Any test function ϕ in (N )1
µ,α has a uniquely defined ex-

tension to N ′
C as an element of E1

min(N ′
C).

Proof. Any element ϕ in (N )1
µ,α is defined as a series of the following type

ϕ =
∞∑

n=0

〈
P µ,α

n , ϕ(n)
α

〉
, ϕ(n)

α ∈ N
b⊗n

C ,
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such that

‖ϕ‖2p,q,µ,α =
∞∑

n=0

(n!)2 2nq
∣∣ϕ(n)

α

∣∣2
p
<∞

for each p, q ∈ N. So we need to show the convergence of the series

∞∑
n=0

〈
P µ,α

n (z) , ϕ(n)
α

〉
, z ∈ H−p,C

to an entire function in z. Let ε > 0 and σε > 0 as in (Pα6) of Proposition
5.1. We use (5.9) and estimate as follows

∞∑
n=0

∣∣〈P µ,α
n (z) , ϕ(n)

α

〉∣∣
≤

∞∑
n=0

|P µ,α
n (z)|−p

∣∣ϕ(n)
α

∣∣
p

≤ 2
∞∑

n=0

n!
∣∣ϕ(n)

α

∣∣
p
σ−n

ε

≤ 2 exp
(
ε |z|−p′

)( ∞∑
n=0

(n!)2 2nq
∣∣ϕ(n)

α

∣∣2
p

)1/2( ∞∑
n=0

2−nqσ−2n
ε

)1/2

≤ 2 ‖ϕ‖p,q,µ,α

(
1− 2−qσ−2

ε

)−1/2
exp

(
ε |z|−p′

)
,

if 2q > σ−2
ε and p′ is such that Hp ↪→ Hp′ is Hilbert-Schmidt. That means

the series
∞∑

n=0

〈
P µ,α

n (z) , ϕ(n)
α

〉
converges uniformly and absolutely in any neighborhood of zero of any space
H−p,C. Since each term 〈P µ,α

n (z) , ϕ
(n)
α 〉 is entire in z the uniform convergence

implies that

z 7−→
∞∑

n=0

〈
P µ,α

n (z) , ϕ(n)
α

〉
is entire on each H−p,C and hence on N ′

C. This complete the proof. �
The following corollary gives an explicit estimate on the growth of test

functions and is a consequence of the above Proposition.
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Corollary 6.7 For all p > p′ such that the embedding Hp ↪→ Hp′ is of the
Hilbert-Schmidt class and for all ε > 0 there exists σε (σε from Proposition
5.1), such that for p ∈ N we obtain the following bound

|ϕ (z)| ≤ C ‖ϕ‖p,q,µ,α exp
(
ε |z|−p′

)
, ϕ ∈ (N )1

µ,α , z ∈ H−p,C ,

where 2q > σ−2
ε and

C = 2
(
1− 2−qσ−2

ε

)−1/2
.

Remark 6.8 Proposition 6.6 states

(N )1
µ,α ⊆ E

1
min (N ′)

as sets, where
E1

min (N ′) =
{
ϕ|N ′ |ϕ ∈ E1

min (N ′
C)
}
.

Now we are going to show that the converse also holds.

Theorem 6.9 For all functions α ∈ Hol0(NC,NC), as in Subsection 5.1,
and for all measure µ ∈Ma(N ′), we have the topological identity

(N )1
µ,α = E1

min (N ′) .

Proof. Let ϕ(z) ∈ E1
min(N ′) be given such that

ϕ(z) =
∞∑

n=0

〈
z⊗n, ψ(n)

〉
,

with

|||ϕ|||2p,q,1 =
∞∑

n=0

(n!)2 2nq
∣∣ψ(n)

∣∣2
p
<∞

for each p, q ∈ N. So we have∣∣ψ(n)
∣∣
p
≤ (n!)−1 2−nq/2 |||ϕ|||p,q,1 .

On the other hand, we can use (5.5) to evaluate ϕ(z) as

ϕ(z) =
∞∑

n=0

〈
z⊗n, ψ(n)

〉
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=
∞∑

n=0

〈
n∑

k=0

k∑
m=0

(
n

k

)
1

m!
〈P µ,α

m (z) , Bm
k 〉 ⊗̂M

µ
n−k, ψ

(n)

〉

=
∞∑

n=0

n∑
k=0

k∑
m=0

(
n

k

)
1

m!

〈
〈P µ,α

m (z) , Bm
k 〉 ,

(
Mµ

n−k, ψ
(n)
)
Hb⊗(n−k)

〉
=

∞∑
n=0

n∑
k=0

k∑
m=0

(
n

k

)
1

m!

〈
P µ,α

m (z) ,
〈
Bm

k ,
(
Mµ

n−k, ψ
(n)
)
Hb⊗(n−k)

〉〉
=

∞∑
m=0

∞∑
n=0

n∑
k=0

(
n+m

k +m

)
1

m!

〈
P µ,α

m (z) ,
〈
Bm

k+m,
(
Mµ

n−k, ψ
(n+m)

)
Hb⊗(n−k)

〉〉
=

∞∑
m=0

〈
P µ,α

m (z) ,
∞∑

n=0

n∑
k=0

(
n+m

k +m

)
1

m!

〈
Bm

k+m,
(
Mµ

n−k, ψ
(n+m)

)
Hb⊗(n−k)

〉〉
,

such that, if

ϕ(z) =
∞∑

m=0

〈
P µ,α

m (z) , ϕ(m)
α

〉
,

then we conclude that

ϕ(m)
α =

∞∑
n=0

n∑
k=0

(
n+m

k +m

)
1

m!

〈
Bm

k+m,
(
Mµ

n−k, ψ
(n+m)

)
Hb⊗(n−k)

〉
.

Now for p ∈ N we need estimate |ϕ(n)
α |p by |||·|||p,q,1 since the nuclear topology

given by the norms |||·|||p,q,1, is equivalent to the projective topology induced

by the norms np,l,k (see [KSWY95]). Now we estimate ϕ
(m)
α as follows∣∣ϕ(m)

α

∣∣
p
≤

∞∑
n=0

n∑
k=0

(
n+m

k +m

)
1

m!

∣∣Bm
k+m

∣∣
H

b⊗(k+m)
−p ⊗Hb⊗m

p

∣∣(Mµ
n−k, ψ

(n+m)
)
Hb⊗(n−k)

∣∣
p

≤
∞∑

n=0

n∑
k=0

(
n+m

k +m

)
1

m!

∣∣Bm
k+m

∣∣
H

b⊗(k+m)
−p ⊗Hb⊗m

p

∣∣Mµ
n−k

∣∣
−p

∣∣ψ(n+m)
∣∣
p
.

Let us, at first, estimate the norm∣∣Bm
k+m

∣∣
−p,p

:=
∣∣Bm

k+m

∣∣
H

b⊗(k+m)
−p ⊗Hb⊗m

p
.

To do this we choose p > pµ such that
∥∥ip,pµ

∥∥
HS

is finite and define

Dα,ε := sup
|θ|p=ε

|gα (θ)|p and ε̃ :=
ε

e
∥∥ip,pµ

∥∥
HS

.
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So, with this

|Bn
m|−p,p ≤

∑
l1,...,ln=m

m!

l1!· · ·ln!

∣∣g(l1)
α (0)

∣∣
−p,p
· · ·
∣∣g(ln)

α (0)
∣∣
−p,p

≤
∑

l1,...,ln=m

m!l1!· · ·ln!

l1!· · ·ln!
Dn

α,εε̃
−m

≤ m!Dn
α,ε2

mε̃−m,

that means ∣∣Bm
k+m

∣∣
−p,p
≤ (k +m)!Dm

α,ε2
k+mε̃−(k+m).

Now let q ∈ N such that 2q/2 > Kp (Kp := eC
∥∥ip,pµ

∥∥
HS

as in (2.2)) and such
that 2/(ε̃Kp) < 1, then we obtain∣∣ϕ(m)

α

∣∣
p

≤
∞∑

n=0

n∑
k=0

(
n+m

k +m

)
1

m!
(m+ k)!Dm

α,ε

2k+m

ε̃k+m
(n− k)! (Kp)

n−k 2−(n+m)q/2

(n+m)!
|||ϕ|||p,q,1

≤ |||ϕ|||p,q,1

2−mq/2

m!
Dm

α,ε

∞∑
n=0

(
2−q/2Kp

)n n∑
k=0

(
2

ε̃Kp

)k

≤ |||ϕ|||p,q,1

2−mq/22m

m!ε̃m
Dm

α,ε

(
1− 2−q/2Kp

)−1 ε̃Kp

ε̃Kp − 2

≡ Lp,q,α,ε̃
2−mq/22m

m!ε̃m
Dm

α,ε |||ϕ|||p,q,1 .

For q′ < q such that 22ε̃−22(q′−q)Dα,ε < 1 this follows the following estimate

‖ϕ‖2p,q′,µ,α ≤
∞∑

m=0

(m!)2 2mq′
∣∣ϕ(m)

∣∣2
p

≤ |||ϕ|||2p,q,1 L
2
p,q,α,ε̃

∞∑
m=0

(
22ε̃−22(q′−q)Dα,ε

)m

<∞.

This complete the proof. �

Since we now have proved that the space of test functions (N )1
µ,α is

isomorphic to E1
min(N ′), for all measures µ ∈Ma(N ′) and for all holomorphic

invertible function α ∈ Hol0(NC,NC), such that α (0) = 0, we will now drop
the subscript µ, α. The test function space (N )1 is the same for all measures
and functions α in the above conditions.
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Corollary 6.10 (N )1 is an algebra under pointwise multiplication.

Corollary 6.11 (N )1 admits ‘scaling’, i.e., for λ ∈ C the scaling operator
σλ : (N )1 → (N )1 defined by σλϕ (x) := ϕ (λx), ϕ ∈ (N )1, x ∈ N ′ is
well-defined.

Corollary 6.12 For all z ∈ N ′
C the space (N )1 is invariant under the shift

operator τz : ϕ 7→ ϕ (·+ z).
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7 Distributions

In this section we will introduce and study the space (N )−1
µ,α of distributions

corresponding to the space of test functions (N )1 (≡ (N )1
µ,α). The goal is to

prove that, for a fixed measure µ and for all function α, as in the subsection
5.1, the space (N )−1

µ,α = (N )−1
µ , see Theorem 7.3 below.

Since P(N ′) ⊂ (N )1 the space (N )−1
µ,α can be viewed as a subspace of

P ′µ(N ′), i.e.,

(N )−1
µ,α ⊂ P

′
µ (N ′) .

Let us now introduce the Hilbert subspace (H−p)
−1
−q,µ,α of P ′µ(N ′) for which

the norm

‖Φ‖2−p,−q,µ,α :=
∞∑

n=0

2−qn
∣∣Φ(n)

α

∣∣2
−p

is finite. Here we used the canonical representation

Φ =
∞∑

n=0

Qµ,α
n

(
Φ(n)

α

)
∈ P ′µ (N ′)

from Theorem 5.9. The space (H−p)
−1
−q,µ,α is the dual space of (Hp)

1
q,µ,α with

respect to L2(µ) (because of the biorthogonality of Pµ,α- and Qµ,α-systems).
By general duality theory

(N )−1
µ,α =

⋃
p,q∈N

(H−p)
−1
−q,µ,α

is the dual space of (N )1 with respect to L2(µ). As noted in Section 2
there exists a natural topology on co-nuclear spaces (which coincide with the
inductive limit topology). We will consider (N )−1

µ,α as a topological vector
space with this topology. So we have the nuclear triple

(N )1 ⊂ L2 (µ) ⊂ (N )−1
µ,α .

The action of a distribution

Φ =
∞∑

n=0

Qµ,α
n (Φ(n)

α ) ∈ (N )−1
µ,α

on a test function

ϕ =
∞∑

n=0

〈P µ,α
n , ϕ(n)

α 〉 ∈ (N )1
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is given by

〈〈Φ, ϕ〉〉µ =
∞∑

n=0

n!
〈
Φ(n)

α , ϕ(n)
α

〉
.

For a more detailed characterization of the singularity of distributions
in (N )−1

µ,α we will introduce some subspaces in this distribution space. For
β ∈ [0, 1] we define

(H−p)
−β
−q,µ,α :=

{
Φ ∈ P ′µ (N ′) |

∞∑
n=0

(n!)1−β 2−nq
∣∣Φ(n)

α

∣∣2
−p
<∞

for Φ =
∞∑

n=0

Qµ,α
n

(
Φ(n)

α

)}

and
(N )−β

µ,α =
⋃

p,q∈N

(H−p)
−β
−q,µ,α .

It is clear that the singularity increases with increasing β :

(N )−0
µ,α ⊂ (N )−β1

µ,α ⊂ (N )−β2

µ,α ⊂ (N )−1
µ,α

if β1 ≤ β2. We will also consider (N )−β
µ,α as equipped with the natural topo-

logy.

Example 7.1 (Generalized Radon-Nikodym derivative) We want to
define a generalized function ρα

µ (z, ·) ∈ (N )−1
µ,α, z ∈ N ′

C with the following
property 〈〈

ρα
µ (z, ·) , ϕ

〉〉
µ

=

∫
N ′
ϕ (x− z) dµ (x) , ϕ ∈ (N )1 .

That means we have to establish the continuity of ρα
µ (z, ·). Let z ∈ H−p,C.

If p ≥ p′ is sufficiently large and ε > 0 small enough, Corollary 6.7 applies,
i.e., ∃q ∈ N and C > 0 such that∣∣∣∣∫
N ′
ϕ (x− z) dµ (x)

∣∣∣∣ ≤ C ‖ϕ‖p,q,µ,α

∫
N ′

exp
(
ε |x− z|−p′

)
dµ (x)

≤ C ‖ϕ‖p,q,µ,α exp
(
ε |z|−p′

)∫
N ′

exp
(
ε |x|−p′

)
dµ (x) .

43



If ε is chosen sufficiently small the last integral exists (Lemma 2.3-3). Thus
we have in fact ρα

µ (z, ·) ∈ (N )−1
µ,α. It is clear that whenever the Radon-

Nikodym derivative dµ(x+ξ)
dµ(x)

exists (e.g., ξ ∈ N in case µ is N -quasi-invariant)

it coincides with ρα
µ(ξ, ·) defined above. We will show that in (N )−1

µ,α we have
the canonical expansion

ρα
µ (z, ·) =

∞∑
n=0

1

n!
(−1)n 〈Qµ,α

n (·) , P δ0,α
n (−z)

〉
where P δ0,α

n (−z) is defined in (5.15). It is easy to see that the r.h.s. de-
fines an element in (N )−1

µ,α. Since both sides are in (N )−1
µ,α it is sufficient to

compare their action on a total set from (N )1. For ϕ
(n)
α ∈ N b⊗n

C we have〈〈
ρα

µ (z, ·) ,
〈
P µ,α

n (·) , ϕ(n)
α

〉〉〉
µ

=

〈〈
∞∑

k=0

1

k!
(−1)k

〈
Qµ,α

k (·) , P δ0,α
k (−z)

〉
,
〈
P µ,α

n (·) , ϕ(n)
α

〉〉〉
µ

=
〈
P δ0,α

n (−z) , ϕ(n)
α

〉
,

where we have used the biorthogonality property of the Qµ,α- and Pµ,α- sys-
tems. On the other hand〈〈

ρα
µ (z, ·) ,

〈
P µ,α

n (·) , ϕ(n)
α

〉〉〉
µ

=

∫
N ′

〈
P µ,α

n (x− z) , ϕ(n)
α

〉
dµ (x)

=
n∑

k=0

(
n

k

)∫
N ′

〈
P µ,α

k (x) ⊗̂P δ0,,α
n−k (−z) , ϕ(n)

α

〉
dµ (x)

=
n∑

k=0

(
n

k

)
Eµ

(〈
P µ,α

k (·) ⊗̂P δ0,,α
n−k (−z) , ϕ(n)

α

〉)
=

〈
P δ0,α

n (−z) , ϕ(n)
α

〉
,

where we made use of the relation (5.8). This had to be shown. In other
words, we have proven that ρα

µ (z, ·) is the generating function of the Qµ,α-
system.

ρα
µ (−z, ·) =

∞∑
n=0

1

n!

〈
Qµ,α

n (·) , P δ0,α
n (z)

〉
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Example 7.2 (Delta function) For z ∈ N ′
C we define a distribution by the

following Qµ,α-decomposition:

δz =
∞∑

n=0

1

n!
Qµ,α

n (P µ,α
n (z)) .

If p ∈ N is large enough and ε > 0 sufficiently small there exists σε > 0
according to (5.9) such that

‖δz‖2−p,−q,µ,α =
∞∑

n=0

(n!)−2 2−nq |P µ,α
n (z)|2−p

≤ 4 exp
(
2ε |z|−p

) ∞∑
n=0

σ−2n
ε 2−nq, z ∈ H−p,C,

which is finite for sufficiently large q ∈ N. Thus δz ∈ (N )−1
µ,α.

For

ϕ =
∞∑

n=0

〈
P µ,α

n , ϕ(n)
α

〉
∈ (N )1

the action of δz is given by

〈〈δz, ϕ〉〉µ =
∞∑

n=0

〈
P µ,α

n (z) , ϕ(n)
α

〉
= ϕ (z)

because of the biorthogonality property, see Theorem 5.8 pag. 32. This means
that δz (in particular for z real) plays the role of a “δ-function” (evaluation
map) in the calculus we discuss.

Theorem 7.3 For a fixed measure µ and for all function α, as in subsection
5.1, we have

(N )−1
µ,α = (N )−1

µ ,

i.e., the space of distributions is the same for all functions α in the above
conditions.

Proof. Let Φ ∈ (N )−1
µ,α be given, then by Theorem 5.9 there exists gene-

ralized kernels Φ
(n)
α ∈ N ′b⊗n

C such that Φ has the following representation

Φ =
∞∑

n=0

〈
Qµ,α

n ,Φ(n)
α

〉
.
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Now we use the definition of Qµ,α
n given in (5.17) to obtain

SµΦ (θ) =
∞∑

n=0

〈
Φ(n)

α , gα (θ)⊗n〉
= SµΦ̂ (gα (θ)) , θ ∈ NC, (7.1)

where

Φ̂ =
∞∑

n=0

〈
Qµ

n,Φ
(n)
α

〉
∈ (N )−1

µ .

Hence by characterization Theorem 4.9 SµΦ̂ ∈ Hol0(NC). But from (7.1) we
see that

SµΦ =
(
SµΦ̂

)
◦ gα ∈ Hol0 (NC) ,

since this is the composition of two holomorphic functions (see [Din81]), again
by the characterization Theorem 4.9 we conclude that Φ ∈ (N )−1

µ . Hence
(N )−1

µ,α ⊆ (N )−1
µ .

Conversely, let Ψ ∈ (N )−1
µ be given, i.e.,

Ψ =
∞∑

n=0

〈
Qµ

n,Ψ
(n)
〉
, Ψ(n) ∈ N ′b⊗n

C .

We want to prove that Ψ ∈ (N )−1
µ,α. Due to (5.17) and the definition of (N )−1

µ

it is sufficient to show that

SµΨ (θ) =
∞∑

n=0

〈
Ψ̂(n)

α , gα (θ)⊗n
〉
, θ ∈ NC,

where Ψ̂
(n)
α satisfy, for p, q ∈ N

∞∑
n=0

2−nq
∣∣∣Ψ̂(n)

α

∣∣∣2
−p
<∞.

On the other hand, for a given θ ∈ NC

SµΨ (θ) =
∞∑

n=0

〈
Ψ(n), θ⊗n

〉
=: G (θ)
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and, consequently G ∈ Hol0(NC). But we can write

G (θ) = G (α ◦ gα (θ)) = Ĝ(gα (θ)),

where Ĝ = G ◦ α , with G ◦ α ∈ Hol0(NC). Therefore

Ĝ(gα (θ)) =
∞∑

n=0

〈
Ĝ(n)

α , gα (θ)⊗n
〉
,

where the coefficients Ĝ
(n)
α verify

∞∑
n=0

2−nq
∣∣∣Ĝ(n)

α

∣∣∣2
−p
<∞.

Therefore with Ψ̂
(n)
α = Ĝ

(n)
α follows the result, i.e., Ψ ∈ (N )−1

µ,α. �
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8 The Wick product

Here we give the natural generalization of the Wick multiplication in the
present setting.

Definition 8.1 Let Φ,Ψ ∈ (N )−1
µ . Then we define the Wick product Φ�Ψ

by
Sµ (Φ �Ψ) = SµΦ · SµΨ .

This is well defined because Hol0(NC) is an algebra and thus by char-
acterization theorem there exists an element in (N )−1

µ Φ � Ψ such that
Sµ(Φ �Ψ) = SµΦ · SµΨ.

From this it follows

Qµ,α
n

(
Φ(n)

α

)
�Qµ,α

m

(
Ψ(m)

α

)
= Qµ,α

n+m

(
Φ(n)

α ⊗̂Ψ(m)
α

)
,

Φ
(n)
α ∈ N ′b⊗n

C and Ψ
(m)
α ∈ N ′b⊗m

C . So in terms of Qµ,α-decomposition

Φ =
∞∑

n=0

Qµ,α
n

(
Φ(n)

α

)
and Ψ =

∞∑
m=0

Qµ,α
m

(
Ψ(m)

α

)
the Wick product is given by

Φ �Ψ =
∞∑

n=0

Qµ,α
n

(
Ξ(n)

α

)
,

where

Ξ(n)
α =

n∑
k=0

Φ(k)
α ⊗̂Ψ(n−k)

α .

This allows for a concrete norm estimate.

Proposition 8.2 The Wick product is continuous on (N )−1
µ . In particular

the following estimate holds for Φ ∈ (H−p1)
−1
−q1,µ,α , Ψ ∈ (H−p2)

−1
−q2,µ,α and

p = max(p1, p2), q = q1 + q2 + 1

‖Φ �Ψ‖−p,−q,µ,α ≤ ‖Φ‖−p1,−q1,µ,α ‖Ψ‖−p2,−q2,µ,α .
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Proof. We can estimate as follows

‖Φ �Ψ‖2−p,−q,µ,α =
∞∑

n=0

2−nq
∣∣Ξ(n)

α

∣∣2
−p

=
∞∑

n=0

2−nq

(
n∑

k=0

∣∣Φ(k)
α

∣∣
−p

∣∣Ψ(n−k)
α

∣∣
−p

)2

≤
∞∑

n=0

2−nq (n+ 1)
n∑

k=0

∣∣Φ(k)
α

∣∣2
−p

∣∣Ψ(n−k)
α

∣∣2
−p

≤
∞∑

n=0

n∑
k=0

2−nq1
∣∣Φ(k)

α

∣∣2
−p

2−nq2
∣∣Ψ(n−k)

α

∣∣2
−p

≤

(
∞∑

n=0

2−nq1
∣∣Φ(n)

α

∣∣2
−p

)(
∞∑

n=0

2−nq2
∣∣Ψ(n)

α

∣∣2
−p

)
= ‖Φ‖2−p1,−q1,µ,α ‖Ψ‖

2
−p2,−q2,µ,α .

�
Similar to the Gaussian case the special properties of the space (N )−1

µ

allow the definition of Wick analytic functions under very general assum-
ptions. This has proven to be of some relevance to solve equations e.g., of
the type Φ �X = Ψ for X ∈ (N )−1

µ . See [KLS96] for the Gaussian case.

Proposition 8.3 For any n ∈ N and any α as in Subsection 5.1 we have
Qµ,α

n = (Qµ,α
1 )�n.

Proof. Let Φ(1) ∈ N ′
C be given. Thus, if θ ∈ NC, follows

Sµ

[(
Qµ,α

1

(
Φ(1)

))�n]
(θ) =

〈
Φ(1), gα (θ)

〉n
=

〈(
Φ(1)

)b⊗n
, (gα (θ))⊗n

〉
= Sµ

[
Qµ,α

n

((
Φ(1)

)b⊗n
)]

(θ) .

�

Theorem 8.4 Let F : C→ C be analytic in a neighborhood of the point
z0 = E (Φ) , Φ ∈ (N )−1

µ . Then F � (Φ) defined by Sµ (F � (Φ)) = F (SµΦ)
exists in (N )−1

µ .
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Proof. By Theorems 7.3 and 4.9 we have SµΦ ∈ Hol0(NC). Then F (SµΦ) ∈
Hol0(NC) since the composition of two analytic functions is also analytic.
Again by the above mentioned theorems we find that F � (Φ) exists in (N )−1

µ .
�

Remark 8.5 If F (z) have the following representation

F (z) =
∞∑

n=0

an (z − z0)
n ,

then the Wick series
∞∑

n=0

an (Φ− z0)
�n

(where Ψ�n = Ψ � · · · �Ψ n-times) converges in (N )−1
µ and

F � (Φ) =
∞∑

n=0

an (Φ− z0)
�n

holds.

Example 8.6 The above mentioned equation Φ � X = Ψ can be solved if
Eµ (Φ) = SµΦ (0) 6= 0. That implies (SµΦ)−1 ∈ Hol0(NC). Thus

Φ�(−1) = S−1
µ ((SµΦ)−1) ∈ (N )−1

µ .

Then X = Φ�(−1)�Ψ is the solution in (N )−1
µ . For more instructive examples

we refer the reader to Section 5 of [KLS96].
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distributions en dimension quelconque á l’analyse sur les espaces
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