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Abstract—Minimally invasive surgery (MIS) involves a multidi-
mensional series of tasks requiring a synthesis between visual in-
formation and the kinematics and dynamics of the surgical tools.
Analysis of these sources of information is a key step in defining ob-
jective criteria for characterizing surgical performance. The Blue
DRAGON is a new system for acquiring the kinematics and the dy-
namics of two endoscopic tools synchronized with the endoscopic
view of the surgical scene. Modeling the process of MIS using a fi-
nite state model [Markov model (MM)] reveals the internal struc-
ture of the surgical task and is utilized as one of the key steps in
objectively assessing surgical performance. The experimental pro-
tocol includes tying an intracorporeal knot in a MIS setup per-
formed on an animal model (pig) by 30 surgeons at different levels
of training including expert surgeons. An objective learning curve
was defined based on measuring quantitative statistical distance
(similarity) between MM of experts and MM of residents at dif-
ferent levels of training. The objective learning curve was similar
to that of the subjective performance analysis. The MM proved to
be a powerful and compact mathematical model for decomposing
a complex task such as laparoscopic suturing. Systems like surgical
robots or virtual reality simulators in which the kinematics and the
dynamics of the surgical tool are inherently measured may benefit
from incorporation of the proposed methodology.

Index Terms—Dynamics, haptics, human machine interface,
kinematics, manipulation, Markov model, minimally invasive,
robotics, simulation, soft tissue, surgery, surgical skill assessment,
surgical tool, vector quantization.

I. INTRODUCTION

E
VALUATION of procedural skills in surgery can be per-

formed utilizing three different modalities: during actual

open or minimally invasive clinical procedures; in physical

or virtual reality simulators with or without haptic feedback;

and during interaction with surgical robotic systems (Fig. 1).

Manuscript received December 20, 2004; revised June 11, 2005. This work
was supported in part by a major grant from US Surgical, a division of Tyco,
Inc. to the University of Washington, Center for Videoendoscopic Surgery and
inpart by a gift from Washington Research Foundation Capital. Asterisk indi-

cates corresponding author.

*J. Rosen is with the Department of Electrical Engineering, Univer-
sity of Washington, Box 352500, Seattle WA 98195-2500 USA (e-mail:
rosen@u.washington.edu; URL: Biorobotics Lab: http://brl.ee.washington.edu;
Center of Videoendoscopic Surgery: http://depts.washington.edu/cves/).

J. D. Brown is with the Department of Bioengineering, University of Wash-
ington, Seattle WA 98195-2500 USA (e-mail: jdbrown@u.washington.edu).

L. Chang and M. Sinanan are with the Department of Surgery, University of
Washington, Seattle WA 98195-2500 USA (e-mail: lchang@u.washington.edu;
mssurg@u.washington.edu).

B. Hannaford is with the Department of Electrical Engineering, University of
Washington, Seattle WA 98195-2500 USA (e-mail: blake@u.washington.edu).

Digital Object Identifier 10.1109/TBME.2005.869771

During open or minimally invasive surgical (MIS) procedures,

the surgeon interacts with the patient’s tissue either directly

with his/her hands or through the mediation of tools. Surgical

robotic enables the surgeon to operate in a teleoperation mode

with or without force feedback using a master/slave system

configuration. In this mode of operation, visualization is ob-

tained from either an external camera or an endoscopic camera.

Incorporating force feedback allows the surgeon to feel through

the master console the forces being applied on the tissue by

the surgical robot, the slave, as he/she interacts with it from

the master console. The surgical tools, the robot–slave, and the

anatomical structures are replaced with virtual counterparts

for training in a simulated virtual environment. The surgeon

interacts with specially designed input devices, haptic devices

when force feedback is incorporated, that emulate surgical

tools, or with the master console of the robotic system itself,

and performs surgical procedures in virtual reality.

One element that all of these modalities have in common is

the human-machine interface in which visual, kinematic, dy-

namic, and haptic information is shared. This interface, rich with

multidimensional data, is a valuable source of objective infor-

mation that can be used to objectively assess technical surgical

and medical skill within the general framework of surgical and

medical ability. Algorithms that are developed for objective as-

sessment of skill are independent of the modality being used,

and therefore, the same algorithms can be incorporated into any

of these technologies.

As the medical profession is faced with demands for greater

accountability and patient safety, there is a critical need for

the development of consistent and reliable methods for objec-

tive evaluation of clinician performance during procedures. The

methodology for assessing surgical skill as a subset of surgical

ability [1], [2], is gradually shifting from subjective scoring

by an expert which may be a variably biased opinion using

vague criteria, toward a more objective, quantitative analysis.

This shift is enabled by using instrumented tools [3]–[6], mea-

surements of the surgeon’s arm kinematics [7], gaze patterns

[8], physical simulators [9], a variety of virtual reality simu-

lators with and without haptics [1], [10], and robotic systems

[11]. Regardless of the modality being used or the clinical pro-

cedure being studied, task deconstruction or decomposition is

an essential component of a rigorous objective skills-assess-

ment methodology. A broader understanding of procedures is

achieved by exposing and analyzing the internal hierarchy of

tasks while providing objective means for quantifying training

and skills acquisition.
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Fig. 1. Modalities for performing surgery.

Task decomposition is associated with defining the prime

elements of the process. In surgery, a procedure is methodolog-

ically divided into steps, stages, or phases with well-defined

intermediate goals. Additional hierarchical decomposition is

based upon identifying tasks or subtasks [12] composed of

sequence of and actions or states [3]–[6]. In addition, other

measurable parameters such as workspace [13] completion

time, tool position, and forces and torques were studied in-

dividually [3]–[6]. Selecting low-level elements of the task

decomposition allows one to associate these elements with

quantifiable and measurable parameters. The definition of these

states, along with measurable, quantitative data, are the foun-

dation for modeling and examining surgical tasks as a process.

Markov Modeling (MM) and its subset, Hidden Markov Mod-

eling (HMM), were extensively developed in the area of speech

recognition [14] and further used in a broad spectrum of other

fields, e.g., gesture recognition and facial expressions [15], [16]

DNA and protein modeling [17], surgical tools in MIS setup

[4], [18], and teleoperation [19]–[23].

The current study is different from our earlier work [3]–[6]

in terms of: 1) the size of the subject pool—30 subjects as op-

posed to 10; 2) the spectrum of skill levels—full spectrum in-

cluding 6 different training levels (each year of the 5 years of

residency training and an expert level) as opposed to a discrete

spectrum; 3) the experimental system and the data stream—the

Blue DRAGON monitoring 26 channels including position/ori-

entation, forces/torque, and contact signals from two surgical

tools as opposed to 7 force/torque measurements acquired by

a single tool; 4) the nature of the surgical task—specific fun-

damental task such as suturing as opposed to steps of a MIS

procedure; 5) Type of model—30 state Markov model (MM)

representing two tools working collaboratively as opposed to 3

and 15 state Hidden Markov Models (HMM) representing one

tool; 6) Complementary analysis—comparison with a subjec-

tive expert evaluation as well as tool path and completion time.

The specific aim of the current study was to develop a system

for acquiring data in a real MIS setup using an animal model

and a methodology for decomposing two-handed surgical tasks

using MMs based on the kinematics and the dynamics of the

surgical tools. Measuring the statistical similarity between the

models representing subjects at different levels of their surgical

training enables an objective assessment of surgical skill.

II. TOOLS AND METHODS

A novel system named the Blue DRAGON was designed, con-

structed, and used for acquiring the kinematics (position and ori-

entation) and the dynamics (force and torque) of two endoscopic

tools during MIS procedures in real-time. The data were acquired

during a surgical task performed by 30 subjects at different levels

of surgical training followed by objective and subjective surgical

skill analysis based on task decomposition. The novel objective

methodology was based upon a multistate MM whereas the sub-

jective methodology utilized a standard scoring system for ana-

lyzing the videotapes of the surgical scene recorded during the

experiment. The following subsections describe the system and

the methodologies that were used in the current study.

A. Tools—The Blue DRAGON System

The Blue DRAGON is a system for acquiring the kinematics

and the dynamics of two endoscopic tools along with the endo-

scopic view of the surgical scene while performing a MIS proce-

dure (Fig. 2). The system includes two four-bar passive mech-

anisms attached to endoscopic tools [5]. The endoscopic tool

in MIS is inserted into the body through a port located, for ex-

ample, in the abdominal wall. The tool is rotated around a pivot

point within the port that is inaccessible to sensors measuring

the tool’s rotation. The four bar mechanism is one of several

mechanisms that allows mapping of the tool’s rotation around

the port’s pivot point. This mapping is enabled by aligning the
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Fig. 2. The Blue DRAGON system (a) the system integrated into a MIS
operating room (b) graphical user interface.

remote rotational center with the pivot point of the endoscopic

tool located inside the port. The tool’s positions and orienta-

tions, with respect to the port, are then tracked by sensors that

are incorporated into the mechanism’s joints. This setup makes

the mechanism totally transparent to the moments that are gen-

erated intentionally by using the tools. The two mechanisms

are equipped with three classes of sensors: 1) position sensors

(potentiometers—Midori America Corp.) are incorporated into

four of the mechanism’s joints for measuring the position, orien-

tation, and translation of the two instrumented endoscopic tools

attached to them. In addition, two linear potentiometers (Penny

& Giles Controls Ltd.) that are attached to the tools’ handles

are used for measuring the endoscopic handle and tool tip an-

gles; 2) three-axis force/torque (F/T) sensors with holes drilled

at their center (ATI-Mini sensor) are inserted and clamped to the

proximal end of the endoscopic tools’ shafts. In addition, double

beam force sensors (Futak) were inserted into the tools’ handles

for measuring the grasping forces at the hand/tool interface; 3)

contact sensors, based on RC circuit, provided binary indication

of any tool-tip/tissue contact.

Data measured by the Blue DRAGON sensors are acquired

using two 12-bit USB A/D cards (National Instruments) sam-

pling the 26 channels (4 rotations, 1 translation, 1 tissue contact,

and 7 channels of forces and torques from each instrument in-

cluding grasper) at 30 Hz. Preliminary tests acquiring data at a

sampling rate of 1 KHz indicated that 95% of the signals’ accu-

mulated energy is in a bandwidth 0–5 Hz. In addition, a graph-

ical user interface (GUI) [Fig. 2(b)] displayed information mea-

sured by the Blue DRAGONs in real-time while incorporating

the endoscopic view of the surgical scene acquired by the endo-

scope’s video camera. On the top right side of the GUI, a vir-

tual representation of the two endoscopic tools are shown along

with vectors representing the instantaneous velocities. On the

bottom left, a three-dimensional representation of the forces and

torque vectors is presented. Surrounding the endoscopic image

are bars representing the grasping/spreading forces applied on

the handle and transmitted to the tool tip via the tool’s internal

mechanism, along with virtual binary LEDs indicating contact

between the tool tips and the tissues.

B. Experimental Protocol

The experimental protocol included 30 surgeons at different

levels of expertise from surgeons in training to surgical attend-

ings skilled in laparoscopic surgery. There were five subjects in

each group representing the five years of surgical training (5

R1, R2, R3, R4, R5—where the numeral denotes year of training)

and five expert surgeons. For the purpose of this study an expert

surgeon (E) was defined as a board certified surgeon who has

performed at least 800 proceedures and practices medicine as an

attending physician. Each subject was given instruction on how

to perform an intracorporeal knot through a standard multimedia

presentation. The multimedia presentation included a written de-

scription of the task along with a video clip of the surgical scene

and audio explanation of the task. None of the subjects, included

inthisstudy,hadanypriorexperienceperformingsurgerywiththe

Blue DRAGON. Each surgeon was given a 5-min unsupervised

time segment to familiarize herself/himself with the system prior

to theexperiment.Subjectswere thengivenamaximumof15min

to complete this task in a swine model. This complex, integrative

task includes many of the elements of advanced MIS techniques.

An expert surgeon reviewed all the videotapes recorded during

the experiment and verified that all the subjects followed the steps

specified in the instruction.

In addition to the surgical task, all the subjects (30 surgeons)

performed 15 predefined tool/tissue and tool/needle-suture in-

teractions during a time interval of 1 min each. The kinematics

(the position/orientation of the tools in space with respect to

the port) and the dynamics (forces and torque F/T applied by

the surgeons on the tools) of the left and right endoscopic tools

along with the visual view of the surgical scene were acquired

by a passive mechanism that is part of the Blue DRAGON.

The aim of this experimental segment was to study the F/T and

velocity signatures associated with each interaction that were

further used as the model observations associated with each

state of the model. All animal procedures were performed in

an AALAC-accredited surgical research facility under an ap-

proved protocol from the institutional animal care committee of

the University of Washington.

C. Objective Analysis—MIS Task Decomposition and Markov

Model

1) Surgery as a Language—The Analogy and the State Def-

initions: The objective methodology for assessing skill while

performing a procedure is inspired by the analogy between

the human spoken language and surgery. Further analysis of

this concept indicates that these two domains share similar
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TABLE I
THE ANALOGY BETWEEN THE HUMAN SPOKEN LANGUAGE AND SURGERY AS

MANIFESTED ITSELF IN A SIMILAR TAXONOMY AND SUB STRUCTURES ALONG

WITH THE CORRESPONDING ELEMENT OF THE FINITE STATE MARKOV MODEL

taxonomy and internal etymological structure that allows a

mathematical description of the process by using quantitative

models. Such models can be further used to objectively assess

skill level by revealing the internal structure and dynamics of

the process. This analogy is enhanced by the fact that in both

the human language and in surgery, an idea can be expressed

and a procedure can be performed in several different ways

while retaining the same cognitive meaning or outcome. This

fact suggests that a stochastic approach might describe the

surgical or medical examination processes incorporating the

inherent variability better then a deterministic approach.

Table I summarizes the analogy between the two entities,

human language and surgery, along with the corresponding

modeling elements in a hierarchal fashion. The critical step in

creating such an analogy is to identify the prime elements. In

the human language, the prime element is the “word” which is

analogous to a “tool/tissue interaction” in surgery. This prime

element is modeled by a “state” in the model. As in a spoken

language, words can have different “pronunciations” by various

people and yet preserve their meaning. In surgery, various

“force/torque magnitudes” can be applied on the tissues and

still be classified under the same tool/tissue interaction category.

These various force/torque magnitudes are simulated by the

“observations” in the model. In a similar fashion to the human

language in which a sequence of words comprise a sentence,

and sentences create a “chapter,” a sequence of tool/tissue inter-

actions form a step of an operation in which an intermediate and

specific outcome can be completed. Each step of the operation is

represented by a single model. “Multiple models” can be further

described as a multistep “surgical operation” that is analogous

to a “story.” One may note that the substructures like “sentence”

and a “paragraph” were omitted in the current analogy; however,

identifying the corresponding elements in surgical procedure

may increase the resolution of the model.

Analyzing the degrees of freedom (DOFs) of a tool in MIS

indicates that due to the introduction of the port through which

the surgeon inserts tools into the body cavity, two DOF of the

tool are restricted. The six DOF of a typical open surgical tool is

reduced to only four DOF in a minimally invasive setup (Fig. 3).

These four DOF include rotation along the three orthogonal axes

(x, y, z) and translation along the long axis of the tool’s shaft

(z). A fifth DOF is defined as the tool-tip jaws angle, which is

mechanically linked to the tool’s handle, when a grasper or a

scissor is used. Additional one or two DOFs can be obtained by

adding a wrist joint to the MIS tool. The wrist joint has been in-

corporated into commercially available surgical robots in order

to enhance the dexterity of the tool within the body cavity.

Fig. 3. Definition of the five DOFs (marked by arrows) of a typical MIS
endoscopic tool. Note that two DOF were separated into two distinct actions
(Open/Close handle and Pull/Push), and the other two were lumped into one
action (Rotate) for representing the tool tip tissue interactions (omitted in the
illustration). The terminology associated with the various DOF corresponds
with the model state definitions (Table II).

Surgeons, while performing MIS procedures, utilize various

combinations of the tools’ DOF while manipulating them during

the interaction with the tissues or other items in the surgical

scene (needle, suture, staple etc.) in order to achieve the desired

outcome. Quantitative analysis of the tool’s position and orien-

tation during surgical procedures revealed 15 different combi-

nations of the tool’s five DOF which will be further referred to

and modeled as states (Table II). The 15 states can be grouped

into three types, based on the number of movements or DOF uti-

lized simultaneously. The fundamental maneuvers are defined

as Type I. The “idle” state was defined as moving the tool in

space (body cavity) without touching any internal organ, tissue,

or any other item in the scene. The forces and torques developed

in this state represent the interaction with the port and the ab-

dominal wall, in addition to the gravitational and inertial forces.

In the “grasping” and “spreading” states, compression and ten-

sion were applied on the tissue through the tool tip by closing

and opening the grasper’s handle, respectively. In the “pushing”

state, the tissue was compressed by moving the tool along the Z

axis. “Sweeping” consisted of placing the tool in one position

while rotating it around the X and/or Y axes or in any combi-

nation of these two axes (port frame). The rest of the tool/tissue

interactions, Types II and III, were combinations of the funda-

mental ones defined as Type I. The only one exception was state

15 that was observed only in tasks involving suturing when the

surgeon grasps the needle and rotates it around the shaft’s long

axis to insert it into the tissue. Such a rotation was never ob-

served whenever direct tissue interaction was involved.

2) Vector Quantization (VQ): Each one of the 15 states was

associated with a unique set of forces, torques, and angular and

linear velocities, as indicated in Table II. Following the lan-

guage analogy, in the same way that a word correlates to a state

that may be pronounced differently and still retains the same

meaning, the tool might be in a specific state while infinite com-

binations of forces, torques, and angular and linear velocities

may be used. A significant data reduction was achieved by using

a clustering analysis in a search for a discrete number of high
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TABLE II
DEFINITIONS OF THE 15 STATES BASED ON SPHERICAL COORDINATE SYSTEM WITH AN ORIGIN AT THE PORT. EACH STATE IS CHARACTERIZED BY A UNIQUE SET

OF ANGULAR/LINEAR VELOCITIES, FORCES AND TORQUES AND ASSOCIATED WITH A SPECIFIC TOOL/TISSUE OR TOOL/OBJECT INTERACTION. A NON-ZERO

THRESHOLD VALUE IS DEFINED FOR EACH PARAMETER BY ". THE STATES’ DEFINITIONS ARE INDEPENDENT FROM THE TOOL TIP BEING USED, e.g., THE STATE

DEFINED AS CLOSING HANDLE MIGHT BE ASSOCIATED WITH GRASPING OR CUTTING IF A GRASPER OR SCISSORS ARE BEING USED, RESPECTIVELY

concentration cluster centers in the database for each one of the

15 states. As part of this process, the continuous 13-dimensional

(13-D) vectors were transformed into one-dimensional vectors

of 150 symbols (10 symbols for each state that was determined

by the error distortion criterion).

The data reduction was performed in three phases. During

the first phase a subset of the database was created by ap-

pending all the 13-D vectors associated with each state

measured by the left and the right tools and performed by all

the subjects (see Section II-B for details). The 13-D subset

of the database ( , , , , , , , , , ,

, , ) was transformed into a nine-dimensional vector

by calculating

the magnitude of the angular velocity, forces, and torques

in the XY plane ( , ,

). This process canceled out differences

between surgeons due to variations in position relative to the

animal and allowed the use of the same clusters for the left and

the right tools. Note the tenth dimension was omitted. This

variable used to differentiate the Idle state (State 1) in which

the tool tip is not in contact with the tissue or other elements in

the scene out of all the other states (States 2–15).

The subscripts , , are use to associate the angular and

linear velocities , forces , and torques with the

stationary coordinate system and an origin located at the sur-

gical port. The combined axes x-y, x-z, and y-z define planes

parallel to the coronal, sagittal, and transverse planes, respec-

tively. The Z axis is pointing toward the anterior side of the ab-

dominal wall. The subscript is used to associate the angular ve-

locities and the forces with the tool’s grasping handle.

The binary variable indicates whether the tool is in contact

with the tissue or any other element in the surgical scene.

As part of the second phase, a K-means vector quantization

algorithm [24] was used to identify 10 cluster centers associated

with each state. Given patterns contained

in the pattern space , the process of clustering can be formally

stated as seeking the regions such that every

data vector falls into one of these regions

and no is associated in two regions, i.e.,

(1)

The K-means algorithm is based on minimization of the sum

of squared distances from all points in a cluster domain to the

cluster center [47]

(2)

where was the cluster domain for cluster centers at the

iteration, and was a point in the cluster domain.

The cluster regions represented by the cluster centers ,

defined typical signatures or codewordd (pronunciations in the

human language realm) associated with a specific state (e.g.,

CL, OP, PS, etc.—Table II). The number of clusters identified

in each type of state was based upon the squared error distortion

criterion (3). As the number of clusters increased, the distortion

decreased exponentially. Following this behavior, the number of

clusters was constantly increased until the squared error distor-

tion gradient as a function of decreased below a threshold of

1% that results in at least 10 cluster centers for 14 out of the

15 states. Selecting the most frequent 10 clusters for each state

would guarantee that the squared error distortion gradient is 1%

or smaller

(3)
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Fig. 4. FSD. (a) Fully connected FSD for decomposing MIS. The tool/tissue and tool/object interactions of the left and the right endoscopic tools are represented
by the 15 fully connected submodels. Circles represent states whereas lines represent transitions between states. (b) State submodel representing the 10 discrete
observation associated with it.

In the third phase, the 10 cluster centers for each state

(Table II) forming a codebook of 150 discrete symbols were

then used to encode the entire database of the actual surgical

tasks, converting the continuous multidimensional data into a

1-D vector of finite symbols. This step of the data analysis was

essential for using the discrete version of MM.

3) Markov Model (MM): The final step of the data analysis

was to develop a model that represented the process of per-

forming MIS along with the methodology for objectively eval-

uating surgical skill. The MM was found to be a very compact

statistical method to summarize a relatively complex task, such

as a step or a task of a MIS procedure. Moreover, skill level was

incorporated into the MM by developing different MMs based

on data acquired for different levels of expertise starting from

first year residents up to expert surgeons.

The modeling approach underling the methodology for de-

composing and statistically representing a surgical task is based

on a fully connected, symmetric 30 state MM where the left and

the right tools are represented by 15 states each (Fig. 4).

In view of this model, any MIS task may be described as a

series of states. In each state, the surgeon is applying a specific

force/torque/velocity signature, out of 10 signatures that are as-

sociated with that state, on the tissue or on any other item in the

surgical scene by using the tool. The surgeon may stay within

the same state for a specific time duration using different sig-

natures associated with that state then perform a transition to

another state. The surgeon may utilize any of the 15 states by

using the left and the right tools independently. However, the

states representing tool/tissue or tool/object interactions of the

left and right tools are mathematically and functionally linked.
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The MM is defined by the compact notation in (4). Each

Markov submodel representing the left and the right tool is de-

fined by and (4). The submodel is defined by: a) The

number of states— whereas individual states are denoted as

, and the state at time as ; b) The

number of distinct (discrete) observation symbols— whereas

individual symbols are denoted as ; c)

The state transition probability distribution matrix indicating the

probability of the transition from state at time to state

at time — , where

, ; Note that is a nonsym-

metric matrix since the probability of performing

a transition from state to state using each one of the tools

is different from the probability of performing a transition from

state to state . d) The observation symbol probability distri-

bution matrix indicating the probability of using the symbol

while staying at state at time — , where for

state , ;

e) The initial state distribution vector indicating the probability

of starting the process with state at time where

.

The two submodels are linked to each other by the left-right

interstate transition probability matrix (cooperation matrix) in-

dicating the probability for staying in states with the left tools

with the right tool at time — , where

, . Note that is

a nonsymmetric matrix since it representing the com-

bination of using two states simultaneously by the left and the

right tools

(4)

An element in the matrix is calculated as the ratio between

the number of times a specific transition between state to state

took place and the total number of

state transitions which is also equal to the number of data

points minus one. There are N numbers of potential transitions

between two state and, therefore, the order of is . The

sum of each line in the matrix is equal to one. An element

in the matrix is calculated as the ratio between the number

of times a specific observation was used while in state ,

and the total number of visits of state ,

which is also equal to the number of times any observation

was used while visiting that state. There are N number states and

M number of potential observations in each state and, therefore,

the order of is . The sum of each row in the matrix

is equal to one. An element in the matrix is calculated as

the ratio between the number of times the left-hand side model

is in state as well as the right-hand side of the model is in

state , and the total number of state

combinations observed which is also equal to the number of

data points. The sum of all elements of the matrix is equal

to one.

The MM is presented graphically in Fig. 4 as a fully con-

nected finite state diagram (FSD). The tool/tissue and tool/ob-

ject interactions of the left and right endoscopic tools are each

represented by the 15 fully connected submodels [Fig. 4(a)].

Circles represent states whereas lines represent transitions be-

tween states. Each line, that does not cross the center-line rep-

resents a probability value defined in the state transition proba-

bility distribution matrix . Each line that crosses the

center-line represents a probability for a specific combination

of the left and the right tools is defined by the interstate transi-

tion probability distribution matrix, or the cooperation matrix,

. Each tool (left and right) can be only in one out

of the 15 states. However, there are potentially 225 (15 15)

different combinations in which the left tool is in state and

the right tool is in state . For that reason the dimensions of the

[C] matrix is 15 15. Note that since the probability of per-

forming a transition from state to state by each one of the

tools is different from the probability of performing a transition

from state to state , these two probabilities should be rep-

resented by two parallel lines connecting state to state and

representing the two potential transitions. For simplifying the

graphical representation of only one line is plotted

between state to state . Each state out of the 15 states of the left

and the right tool is associated with the 10 force/torque/velocity

signatures or discrete observations . Each line,

that connects the state with a specific observation, represents a

probability value defined in the observation symbol probability

distribution matrix . The substructure appeared in

Fig. 4(b) that is associated with each state was omitted for sim-

plifying the state diagram Fig. 4(a).

The probability of observing the state transition sequence

and the associated observation sequence

, given the two Markov submodels ((4))

and interstate transition probability matrix, is defined by (5)

(5)

Since probabilities by definition have numerical values in

the range of 0 to 1, for a relatively short time duration, the

probability calculated by (5) converges exponentially to zero,

therefore exceeding the precision range of essentially any ma-

chine. Hence, by using a logarithmic transformation, the re-

sulting values of (5) in the range of [0 1] are mapped by (6)

into

(6)
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Due to the nature of the process associated with surgery in

which the procedure, by definition, always starts at the idle state

(state 1), the initial state distribution vector is defined as follows:

(7)

Once the MMs were defined for specific subjects with spe-

cific skill levels, it became possible to calculate the statistical

distance factors between them. These statistical distance factors

are considered to be an objective criterion for evaluating skill

level if, for example, the statistical distance factor between

a trainee (indicated by index ) and an expert (indicated

by index ) is being calculated. This distance indicates the

similarity between the performance of any two subjects under

study. Given two MMs (Expert)

and (Trainee) the asymmetric sta-

tistical distances between them are defined as

and . The natural expression of the symmetric

statistical distance version is defined by (8), shown at the

bottom of the page.

Setting an expert level as the reference level of performance,

the symmetric statistical distance of a model representing a

given subject from a given expert is normalized with

respect to the average distance between the models representing

all the experts associated with the expert group —(9).

The normalized distance represents how far (statisti-

cally) is the performance of a subject, given his or her model,

from the performance of the average expert

(9)

For the purpose of calculating the normalized learning curve,

the 20 distances between all the expert subjects was first calcu-

lated —(for five subjects in the expert group—

— )using(8).Thedenominatorof (9)was thencal-

culated. Once the reference level of expertise wasdetermined, the

statistical distances between each one of the 25 subjects, grouped

into five levels of training (R1, R2, R3, R4, R5), and each one of

the experts was calculated (5 distances for each individual, 25

distances for each group of skill level and 125 distances for the

entire database) using (8). The average statistical distance and its

variance define the learning curve of a particular task.

4) Complimentary Objective Indexes: In addition to the

MMs and the statistical similarity analysis, two other objec-

tive indices of performance were measured and calculated,

including task completion time and the overall path length

of the left and the right tool tips—(10).

(10)

where and are the distances between two consecutive tool

tip positions , and , as a function

of time of the left and the right tools, respectively

D. Subjective Analysis—Scoring

The subjective performance analysis was based on an off-line

unbiased expert surgeon review (blinded to the subject and

training level of each individual) of digital videos recorded

during the experiment. The review utilized a scoring system

of 4 equally weighted criteria: (a) overall performance; (b)

economy of movement; (c) tissue handling; and (d) number of

errors including dropped needles, dropped sutures, lose suture

loops, breaking sutures, needle injury to adjacent tissue, and

inability to puncture bowel with needle. Criteria (a), (b), and

(c) included 5 levels. The final scores were normalized to the

averaged experts scoring.

III. RESULTS

A. Force and Torque Position and Orientation

Typical raw data of forces and torques (F/T) and tool tip posi-

tions were plotted using 3-D graphs. The graphs show the kine-

matics and dynamics of the left and right endoscopic tools as

measured by the Blue DRAGON while performing MIS intra-

corporeal knot by junior trainee [R1—Fig. 5(a), (c)] and expert

surgeon [E—Fig. 5(b), (d)]. The F/T vectors can be depicted as

arrows with origins located at the port, changing their lengths and

orientations as a function of time as a result of the F/T applied

by the surgeon’s hand on the tool. In a similar fashion, the traces

of the tool tips with respect to the ports were plotted in Fig. 5(c),

(d) as their positions changed during the surgical procedure.

The forces along the Z axis (in/out of the port) were higher

compared to the forces in the XY plane. On the other hand,

torques developed by rotating the tool around the Z axis were

extremely low compared to the torques generated while rotating

the tool about the X and Y axes while sweeping the tissue or

performing lateral retraction.

The results depicted in Fig. 5 indicate that higher forces were

applied and larger workspaces were used by a trainee compared

to an expert while performing the task under study. Moreover,

these raw data plots demonstrate the complexity of the surgical

task and the multidimensional data associated with it. This com-

plexity can be resolved in part by decomposing the surgical task

into its primary elements enabling profound understanding of

the MIS task.

B. Cluster Centers and Markov Models

A cluster analysis using the K-means algorithm was per-

formed to define typical cluster centers in the database. These

were further used as code-words in the MM analysis. A total

of 150 cluster centers were identified, ten clusters centers

for each type of tool/tissue/object interaction as defined in

(8)
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Fig. 5. Kinematics and dynamic data from left and the right endoscopic tools
measured by the Blue DRAGON while performing MIS suturing and knot tying
by a trainee surgeon (a),(c) and an expert surgeon (b),(d)–(a),(b) forces; (c),(d)
tool tip position. The ellipsoids contain 95% of the data points.

Table II. Fig. 6 depicts the 10 cluster centers associated with

each one of the 15 states identified in the data. For example,

Fig. 6 (13) represents 10 cluster centers associated with the

state defined by Grasping-Pushing-Sweeping (Table II—State

no. 13). Grasping-Pushing-Sweeping is a superposition of

three actions. The surgeon grasps a tissue or an object that is

identified by the positive grasping force acting on the

tool’s jaws and the negative angular velocity of the handle

indicating that the handle is being closed. At the same time the

grasped tissue or object is pushed into the port indicated by

positive value of the force acting along the long shaft of

the tool and negative linear velocity representing the fact

the tool is moved into the port. Simultaneously, sweeping the

tissue to the side manifested by the force and the torque in the

XY plane that are generated due to the deflection

of the abdominal wall, the lateral force applied on the tool by

the tissue or object being swept along with the lateral angular

velocity indicating the rotation of the tool around the

pivot point inside the port.

Both static, quasistatic and dynamic tool/tissue or tool/ object

interactions are represented by the various cluster centers. Even

in static conditions, the forces and torques provide a unique and

un-ambivalent signature that can be associated with each one

of the 15 states. Detailed optimization analysis of the cluster

centers was summarized in [25]

C. Objective and Subjective Indexes of Performance

Given the encoded data, 30 MM (one for each subject) were

calculated defining the probabilities for performing certain tool

transitions ( matrix), the probability of combining two states

( matrix), and the probability of using the various signa-

tures in each state ( matrix)—Fig. 7. The highest probability

values in the matrix usually appeared along the diagonal.

These results indicate that a transition associated with staying

at the same state is more likely to occur rather than a transition

to any one of the other 15 potential states. In MIS suturing, the

default transition between any state is to the grasping state (state

number 2) as indicated by the high probability values along the

second column of the matrix. Probability of using one out

of the 150 cluster centers defined in Fig. 7 is graphically rep-

resented by the matrix. Each line of the matrix is as-

sociated with one of the 10 states. The clusters were ranked

according to the mechanical power. The left and the right tool

used different distribution of the clusters. Whereas with the left

tool the most frequent clusters that were used are related to

mid-range power with the right tool the cluster usage is more

evenly distributed among the different power levels. The coop-

eration matrix indicates that the most frequently used state

with both the left and the right tools are idle (state 1), grasping

(state 2), grasping pulling and sweeping (state 12), and grasping

rotating (state 15) with the left tool. Once one of the tools uti-

lizes one of these states, the probability of using any of the states

by the other tool is equally distributed between the states which

are indicated by the bright horizontal stripes in the graphical

representation of the matrix.

The Idle state (state 1), in which no tool/tissue (or other ele-

ment) interaction is performed, was mainly used by both expert

and novice surgeons, to move from one operative state to the

another. However, the expert surgeons used the idle state only

as a transition state while the novices spent a significant amount

of time in this state planning the next tool/tissue or tool/object

interaction. In the case of surgical suturing and knot tying, the

grasping state (state 2) dominated the transition phases since the

grasping state maintained the operative state in which both the

suture and the needle were held by the two surgical tools.
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Fig. 6. Cluster centers definition—ten signatures of forces torques linear and angular velocities associated with the 15 types of states (tool/tissue or tool/object
interaction) defined by Table I. In these graphs each one of the 10 polar lines represent one cluster. The clusters were normalized to a range of [�1 1] using
the following min/max values: ! = 0:593 [r=s], ! = 2:310 [r=s], V = 0:059 [m=s], ! = 0:532 [r=s], F = 5:069 [N], F = 152:536 [N],
F = 33:669 [N], T = 9:792 [Nm], and T = 0:017 [Nm]. The numbers correspond to the 15 states as defined by Table I.

Fig. 7. A typical MM where the matrices [AAA], [BBB], [CCC], are represented as color-coded probabilistic maps.
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Fig. 8. Objective and subjective assessment indexes of minimally invasive suturing learning cure. The objective performance indexes are based on: (a) MM
normalized statistical distance, (b) normalized completion time, and (c) normalized path length of the two tool tips. The average task completion time of the expert
group is 98 sec and the total path length of the two tools is 3.832 m. The subjective performance index is based on visual scoring by an expert surgeon normalized
with respect to experts’ performance (d).

Fig. 8(a)–(c) represents the normalized MM-based statistical

distance as a function of the training level, the normalized com-

pletion time, and the normalized path length of the two tool tips,

respectively. The subjective normalized scoring is depicted in

Fig. 8(d). The data demonstrate that substantial suturing skills

are acquired during the first year of the residency training. The

learning curves do not indicate any significant improvement

during the second and the third years of training. The rapid im-

provement of the first year is followed by a lower gradient of the

learning curve as the trainees progress toward the expert level.

However, the MM based statistical distance [Fig. 8(a)] along

with the completion time criteria [Fig. 8(b)] show yet another

gradient in the learning curve that occurs during the fourth year

of the residency training followed by slow conversion to ex-

pert performance. Similar trends in the learning curve are also

demonstrated by the subjective assessment [Fig. 8(d)]. One of

the subjects in the R2 group outperformed his peers in his own

group and some subjects in more advanced groups (R3, R4).

Although statistically insignificant, the performance slightly al-

tered the overall trend of the learning curves as defined by the

different criteria.

A correlation analysis was performed between the means of

the objective normalized MM based statistical distance and the

subjective normalized scoring (Fig. 9). The value of the corre-

lation factor was found to be 0.86 indicating a significant

correlation between the MM objective evaluation

and the subjective skill evaluation method. This result suggests

that 86% of the objective MM skill evaluation variance is at-

tributed to linear covariance of the subjective skill evaluation

while 14% of the of the objective MM skill evaluation variance

is unexplained by the subjective skill evaluation.

Detailed analysis of the MM shows that major differences

between surgeons at different skill levels were: 1) the types

of tool/tissue/object interactions being used; 2) the transitions

between tool/tissue/object interactions being applied by each

hand; 3) time spent while performing each tool/tissue/object in-

teraction; 4) the overall completion time; 5) the various F/T/ve-

locity magnitudes being applied by the subjects through the en-

doscopic tools; 6) two-handed collaboration. Moreover, high ef-

ficiency of surgical performance was demonstrated by the ex-

pert surgeons and expressed by shorter tool tip displacements,

shorter periods of time spent in the “idle” state, and sufficient

application of F/T on the tissue to safely accomplish the task.

IV. DISCUSSION

Minimally invasive surgery, regardless of the modality being

used, is a complex task that requires synthesis between visual

and kinesthetic information. Analyzing MIS in terms of these

two sources of information is a key step toward developing

objective criteria for training surgeons and evaluating their

performance in different modalities including real surgery,
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Fig. 9. Linear correlation between the normalized mean performance
obtained by a subjective video analysis and objective analysis using MMs and
the statistical distance between models of trainees (R1–R5) and experts (E).
The notations R1, R2, R3, R4, and R5 represent the various residence groups
where the number denotes year of training and E indicate expert surgeons.
The values in the brackets represent the normalized mean scores using the
subjective and the objective methodologies, respectively.

master/slave robotic systems or virtual reality simulators with

haptic technology.

Followingtwostepsofdata reductionthatwerecollectedbythe

BlueDRAGONwerefurtherusedtodevelopmodelsrepresenting

MIS as a process. In any data reduction there is always a

compromise between decreasing the input dimensionality and

retaining sufficient information to characterize and model the

process under study. Utilizing the VQ algorithm the 13-D stream

of acquired data was quantized into 150 symbols with nine

dimensions each.

The data quantization included two substeps. In the first steps

the cluster centers were identified. As part of the second step the

entire database was encoded based on the cluster centers defined

in the first step. Every data point needs to meet two criteria in

order to be associated with one of the 150 cluster centers defined

in the first step. The first criterion is to have the minimal geomet-

rical distance to one of the cluster centers. Once the data point

was associated with a specific cluster center it is by definition as-

sociated with a specific state out the 15 defined. Based on expert

knowledge of surgery, Table II defines the 15 states and unique

sets of individual vector components. The second criterion is

that given the candidate state and the data vector, the direction

of each component in the vector must match the one defined by

the table for the selected state. It was indicated during the data

processing that these two criteria were always met suggesting

that the data quantization process is very robust in its nature.

Following the encoding process a two-dimensional input (one

dimension for each tool) was utilized to form a 30 state fully

connected MM. The coded data with their close association to

the measured data, as well as the MM using these codes as its

observations distributed among its states, retain sufficient multi

model information in a compact mathematical formulation for

modeling the process of surgery at different levels.

MIS is recognized both qualitatively and quantitatively as

a multidimensional process. As such, studying one parameter,

e.g., completion time, tool-tip paths, or force/torque magnitudes

reveals only one aspect of the process. Only a model that truly

describes MIS as a process is capable of exposing the internal

process and provide a wide spectrum of information about it. At

the high level, a tremendous amount of information is encapsu-

lated into a single objective indicator of surgical skill level and

expressed as the statistical distance between the surgical per-

formance of a particular subject under study from the surgical

performance of an expert. As part of an alternative approach a

combined score could be calculated by studying each parameter

individually (e.g., force, torque, velocity, tool path, completion

time, etc.), assigning a weight to each one of these parameters,

which is a subjective process by itself, and combining them into

a single score. The assumption underlying this approach is that

a collection of aspects associated with surgery may be used to

assess the overall process. However, this alternative approach

ignores the internal process that is more likely to be revealed by

a model such as the MM. In addition, as opposed to analyzing

individual parameters, studying the low levels of the model pro-

vides profound insight into the process of MIS in a way that

allows one to offer constructive feedback for a trainee regarding

various performance aspects such as the appropriate application

of F/T, economy of motion, and two-handed manipulation.

TheappropriateapplicationofF/Tonthetissuehasasignificant

impact on the surgical performance efficiency and outcome of

surgery. Previous results indicated that the F/T magnitudes are

task dependent [3]–[6]. Experts applied high F/T magnitudes

on the tissues during tissue dissection as opposed to low F/T

magnitudes applied on the tissues by trainees that were trying

to avoid irreversible damage. An inverse relationship regarding

the F/T magnitudes was observed during tissue manipulation

in which high F/T magnitudes applied on the tissue by trainees

exposed them to acute damage. It is important to point out

that these differences were observed in particular states (e.g

all the states including grasping for tissue manipulation and

all the state that involved spreading for tissue dissection). Due

to the inherent variance in the data even multidimensional

analysis of variance failed to identify this phenomena once

the F/T magnitudes are removed from the context of the multi

state model. Given the nature of surgical task, the MM [B]

Matrix, encompassing information regarding the frequency in

which the F/T magnitudes were applied, may be used to assess

whether the appropriate magnitudes F/T were applied for each

particular state. For obvious reasons, tissue damage is correlated

with surgical outcome, and linked to the magnitudes and the

directions in which F/T were applied on the tissues. As such,

tissue damage boundaries may be incorporated into the [B]

matrix for each particular state. Given the surgical task, this

additional information may refine the constructive feedback to

the trainee and the objective assessment of the performance.

The economy of motion and the two-hand collaboration may

be further assessed by retrieving the information encapsulated
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into the [A] and [C] matrices. The amount of information

incorporated into these two data structures is well beyond the

information provided by a single indicator such as tool-tip

path length, or completion time for the purpose of formulating

constructive feedback to the trainee. Given a surgical task,

utilizing the appropriate sets of states and state transitions are

skill dependent. This information is encompassed in the [A]

matrix indicating that the states that were in use and the state

transitions that were performed. Moreover, the ability to refine

the time domain analysis using the multi state MM indicated, as

was observed in previous studies, that the “idle” state is utilized

as a transition state by expert surgeons whereas a significant

amount of time is spent in that state by trainees [3]–[6]. In

addition, coordinated movements of the two tools is yet another

indication of high skill level of MIS. At a lower skill level

the dominant hand is more active than the nondominant hand

as opposed to a high skill level in which the two tools are

utilized equally. The collaborated [C] matrix encapsulates this

information and quantifies the level of collaboration between

the tools.

In conclusion, the MM provides insight into the process of

performing MIS. This information can be translated into con-

structive feedback to the trainee as indicated by the model’s

three matrices [A], [B], and [C]. Moreover, the capability of

running the model in real time and its inherent memory allows a

senior surgeon supervising the surgery or an artificial intelligent

expert system incorporated into a surgical robot or a simulator

to provide immediate constructive feedback during the process

as previously described.

A useful analogy of the proposed methodology for decom-

posing the surgical task is the human spoken language. Based

on this analogy, the basic states—tool/tissue interactions are

equivalent to “words” of the MIS “language” and the 15 states

form the MIS “dictionary” or set of all available words. In the

same way that a single word can be pronounced differently by

various people, the same tool/tissue or tool/object interaction

can be performed differently by different surgeons. Differences

in F/T magnitudes account for this different “pronunciation,”

yet different pronunciations of a “word” have the same meaning,

or outcome, as in the realm of surgery. The cluster analysis

was used to identify the typical F/T and velocities associated

with each one of the tool/tissue and tool/object interactions

in the surgery “dictionary,” or using the language analogy, to

characterize different pronunciations of a “word.” Utilizing the

“dictionary” of surgery, the MM was then used to define the

process of each task or step of the surgical procedure, or in

other words, “dictating chapters” of the surgical “story.” This

analogy is reinforced by an important finding in the field of

Phonology suggesting that all human languages use a limited

repertoire of about 40 to 50 sounds defined as phones [26], e.g.,

the DARPA phonetic alphabet, ARPAbet, used in American

English or the International Phonetic Alphabet. The proposed

methodology retains its power by decomposing the surgical

task to its fundamental elements—tool/tissue and tool/object

interactions. These elements are inherent in MIS no matter

which modality is being used.

One may note that although the notations and the model

architecture of the proposed MM and the HMM approach are

similar, there are several fundamental differences between them.

Strictly speaking, the proposed MM is a white box model in

which each state has a physical meaning describing a particular

interaction between the tools and tissue or other objects in the

surgical scene like sutures and needles. However, the HMM is a

blackboxmodel inwhich thestatesareabstractandarenot related

to a specific physical interaction. Moreover, in the proposed

white box model, each state has a unique set of observations

that characterize only the specific state. By definition, once

the discrete observation is matched with a vector quantization

code-word the state is also defined. States in the HMM share the

same observations, however different observation distributions

differentiate between them. The topology of the proposed MM

suggests a hybridapproachbetween the two previously described

models. It adds to the classic MM another layer of complexity

by introducing the observation elements for each state. The

model also provides insight into the process by linking the

states to physical and meaningful interactions. This unique

quality adds to the classic notation the introduction of the

cooperation matrix [C]. This matrix is not present in either

the MM or the HMM. The [C] matrix was introduced as a

way to link between the models representing the left- and

right-hand tools since surgery is a two-handed task.

Quantifying the advantages and the disadvantages of each

modeling approach (MM or HMM) is still a subject for active

research. Whereas the strength of the MM is expressed by

providing physical meaning to the process being modeled,

development of HMM holds the promise for more compact

model topologywhichavoidsanyexpertknowledge incorporated

into the model. Regardless of the type of the model, defining

the scope of the model and its fundamental elements, the

state and the observation are subjects of extensive research.

In the current study the entire surgical task is modeled by a

fully connected model topology were each tool/tissue/object

interaction is modeled as a state. In a different approach, using

a state of the art methodology in speech recognition in which

each phenomenon is represented by a model with abstract states,

each tool/object interaction is modeled by entire model using

more generalized definitions for these interactions, e.g., place

position, insert remove [27], [28]. This approach may require

an additional model with a predetermined overall structure that

will represent the overall process.

The scope of the proposed model is limited to objectively

assess technical factors of surgical ability. Cognitive factors per

se cannot be assessed by the model unless a specific action is

taken as a result of a decision making process. In any case, the

model is incapable of tracing the process back to its cognitive

origin. In addition, the underlying assumption made by using

a model is that there is a standard technique with insignificant

variations by which expert surgeons perform a surgical task. Any

significant variation of the surgical performance, regardless of

the surgical outcome, is penalized by the model and associated

with low scores. If such a surgical performance variation from the

standard surgical technique is associated with a better outcome

for the patient the model is incapable of detecting it.

Decomposing MIS and analyzing it using MM is one

approach for developing objective criteria for surgical per-

formance. The availability of validated objective measures of
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surgical performance and competency is considered critical for

training surgeons and evaluating their performance. Systems

like surgical robots or virtual reality simulators that inherently

measure the kinematics and the dynamics of the surgical tools

may benefit from inclusion of the proposed methodology. Using

this information in real time during the course of learning as

feedback to the trainee surgeons or as an artificial intelligent

background layer, may increase performance efficiency in MIS

and improve patient safety and outcome.
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