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1. Introduction and summary. Let {F.(x)} be a sequence of distribution
functions depending on a parameter n, and converging to a limiting distribution
®(z) as n increases. Then a generalized expansion of Cornish-Fisher type is an
asymptotic relation between the quantiles of F, and ®. The original Cornish-
Fisher formulae [3], [5] provided leading terms of these expansions in the case of
normal ®, expressing a normal deviate in terms of the corresponding quantile of
F, and its cumulants (the “normalizing’’ expansion) and, conversely, the quantiles
of F, in terms of its cumulants and the corresponding quantiles of ® (the “in-
verse”’ expansion). The value of both these asymptotic formulae has been well
illustrated by their use in approximating the quantiles of complicated distri-
butions (Johnson and Welch [9], Fisher [4], Goldberg and Levine [6]), and for
obtaining random quantiles for distribution sampling applications (Teichroew
[13], Bol’shev [2]). For a survey of the literature on Cornish-Fisher expansions,
and some discussion of their validity, see Wallace ([14], Section 4).

In Sections 2, 3 of the present paper, formal expansions are obtained which
generalize the Cornish-Fisher relations to arbitrary analytic ®. Essentially, these
expansions provide algorithms for transforming an asymptotic expansion of F,
in terms of the “standard” distribution ® into asymptotic relations between the
quantiles of these distributions. The “standardizing” expansion of the quantile
u of ® in terms of the corresponding quantile z of F,, is expressed (Section 2) in
terms of a sequence of functions defined by a differential recurrence operator. A
similar differential operator appears in the generalized ‘“inverse” expansion for
z in terms of u (Section 3), which arises from the application of Lagrange’s
inversion formula to the equation of quantiles. An asymptotic expansion for
quantiles of the Wilks likelihood ratio criterion is given as an example.

Formal expansions in terms of the cumulants of F,, and & are obtained in
Section 4 by developing F, about & as a Charlier differential series and collecting
terms of like degree in the resulting exponential series. For known cumulants
and for normal ® these formal expressions reduce, as shown in Section 5, to a
general form of the Cornish-Fisher expansions, in which the polynomial terms are
represented as sums of products of Hermite polynomials. This representation is
shown in Section 6 to account for some properties of the Cornish-Fisher poly-
nomials.

2. The general standardizing expansion. If 2 and u are correéponding quantiles
of F, and & respectively, then

(1) Fu(z) = ®(u)
and it is required to solve this equation for  in terms of z.
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The density function ¢(u) of the distribution ® will be assumed to be arbitrarily
differentiable. Then writing

(2) Z,(z) = Fu(z) — ®(z),

it follows from (1) that

(3) Z.(z) = [1(¢)dt.
If the equation

(4) = [2o(t)dt

is regarded as defining a function % (¢) with (0) = z, then u(¢) may be de-
veloped in a formal Taylor series about ¢ = 0.
Differentiation of (4) yields

(5) du/dy = [¢(w)] ™.

Now writing

(6) Dy = d/du, Y(u) = —¢'(u)/d(u) = D, log (1/¢(u));

it is found by induction that

(7 du/dS" = c(u)[¢(w)]™,

where the ¢, are defined recursively by

(8)  a) =1, cu(u) = (1(w) + Du)e(u), (r=12---).
Since 4 = z when { = 0, the Taylor series is seen to be

(9) w(§) =z + 2e(@)(5/6(2))/r);

and applying this result to (3), the general standardizing expansion is obtained
in the form

(10) u=x+ 27 e(2)(Zalx) /6(x))/rl.

In many applications F,(z) is known to have an asymptotic expansion of the
form

(11) Fr(z)

®(z) + ¢(x)n"pi(z) + n7pa(z) + ---]
= &(z) + ¢(x)za(x),
say, where the p.(z) may be polynomials in z. In terms of z,(z), (10) becomes
(12) u =2z + D rac(z)(2(2))/r),
which erxpresses the quantile u directly as a series in terms of 2 whose rth term
® gél?en)ishe limiting distribution, ®(z), is the unit normal distribution,
(13) ¥(@) = D.log ((2m)'¢™") = 1,
and ¢,(z) is an (r — 1)th degree polynomial in x:
(14) a(z) =1, @) ==z, al) = 22"+ 1, al@) = 62° + Tz, ---
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In this case, (12) is essentially the Cornish-Fisher normalizing expansion, which
will be considered in more detail in Sections 5, 6.

For other applications, however, the appropriate limiting function ® may be
the distribution of x* with » degrees of freedom. Then

(15) Y(e) =3 — (I — )7,
and ¢,(z) is an (r — 1)th degree polynomial in z~".

3. The general inverse expansion. The solution of (1) for z in terms of u
could be obtained from (10) or (12) by inverting the series, which suggests the
application of Lagrange’s inversion formula. This formula provides under certain
conditions (see [15], p. 133) that, if v and § are analytic functions and

(16) w = v+ y(w),
then
(17) 0(w) = 0(v) + 2D, () (v(v))7]/r! .

Cornish and Fisher ([3], p. 316) in effect used the early terms of the Lagrange
formula when inverting their normalizing expansion. Riordan [11] applied (17)
with 8(w) = w to derive general relations between the polynomials occurring
in the two expansions.

Although the solution can be established by inverting the series (10) or (12),
it appears more instructive to apply the Lagrange formula directly to equation
(1), rewritten in the form

(18) () = ®(u) — Z.(x).
If new variables v and w are defined by

(19) v = ®(u), w = ®(x),

then equivalently

(20) w=1v— Z, (& (w))

where ' denotes the inverse function of ®. Since (20) is of the form (16), this
functional equation can be solved for ®'(w) = z by taking 6 = &' in (17):

(21) @7(w) = @7(v) + 2T (—1)"(r) DS HIZa (27 (0))]/6(271(0))},
or, on reverting to the original variables:
(22) e =u— 27 ()7 (= 6w Du) " (Za(u))/p(w)].
In cases where Z, is a multiple of ¢ as in (11), (22) takes the form
(23) ¢ =u— 27 Du(z(u))/r!,
where D) denotes the identity operator and

(24) Dw = (¥(w) — Du)(2¢(u) — D) -+ ((r — 1)¥(u) — Du),
(r=2,3,+).
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As in the case of the standardizing expansion the rth term in the general in-
verse expansion (23) is seen to be O(n™").

ExampLE 1. For normal &, y(u) = wu, and if 2, is expressed in terms of
cumulants, (23) becomes the Cornish-Fisher inverse expansion as shown in the
following sections.

ExamrLi 2. The Wilks likelthood ratio criterion. Let X, Ybe p X m (m > p)
and p X q matrices respectively with the joint probability density function

(25)  (2r) 7O B[O oxp {1 tr BTUXX 4+ (Y — w)(Y — w)]}

where X is a p X p positive definite matrix. Then the likelihood ratio criterion
for testing the hypothesis u = O is

(26) A = det (XX')/det (XX’ + YY').
Let
(27) n=m-—3p—qg+1).

Then —n log A is asymptotically distributed as x* with » = pq degrees of
freedom, and Rao ([10], see also [1] Theorem 8.6.2) has developed the distribu-
tion function in an asymptotic expansion of the form (11) to order n™* Let x
and u be corresponding quantiles for —n log A and x,”. Schatzoff [12] has tabu-
lated exact values of the correction factor z/u for ¢ = 4, 6, 8, 10 and p such that
pq < 70. Applying the first three terms of (23) to Rao’s expansion with ¢ given
by (15), it is found that

z/u~1+n"2y(u+ (v + 2)( + 2)I7
+n7 2y’ + (0 + 6)u' + (v + 4)(v + 6)u
+0+2)0+4)E+ 6 +2)0+ 40+ 6)]

(28) o 3 . .
— v+ =20+ G+2)—6u+ (vr—2)»+ 2)
e+ 2)7T7Y
+ 0(n™),
where
(29) 7. = pg(48)7(p" + ¢ — 5),

ve = 3v" + pg(1920)7'[3p* + 3¢* + 10p°¢" — 50(p° + ¢F) + 159]

At the upper 5% and 1% levels, formula (28) gives results agreeing with
those of Schatzoff to within 0.1% for n ranging fromn = 4 forp = 3, ¢ = 4
ton = 10 for p = 7, ¢ = 10. Presumably, similar accuracy would apply for
q odd.

ExampLe 3. Hotelling’s generalized Ty, Similarly, Ito’s expansion of Hotell-
ing’s generalized Ty statistic in terms of x* quantiles ([8] equation (3.33)) may
be obtained directly from his expansion of the cumulative distribution function
([8] equation (4.3)), by applying the first three terms of (23) with ¢ defined by
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(15). This expansion includes the case of the F-ratio, which is asymptotic to
x* when the number of degrees of freedom in the denominator is large.

4. Expansion in terms of cumulants. If the cumulants of F, and ® are {«}
and {v,}, respectively, then ([14], Section 3) F, may be formally expanded about
& in the Charlier differential series

(30) Fu(z) = exp [2_ra M(—Ds)"/rl]e(x),
where
(31) A = kr — Yr.

In developing the exponential series of (30), it is convenient to denote by =
a partition of the positive integer m into [ positive integers:

(32) T = [slplx D) skpk]) m = Zgﬂpisi, Il = Z’E=1Pi)

and let a(x) denote the elementary partition function:

(33) a(r) = m!{(s )™ -+ (D™l -+ pe D7

Then defining

(34) Ae = a(m)N oo o N /ml

terms of like degree in the exponential series may be collected:

(35) Fa(z) = ®(2) — ¢(2) 2xM{[6(2)] 7 (—=D2)""'9(2)},

where the summation is extended over all partitions = of all positive integers.
The functions

(36) Ym(z) = [$(2)]7(=Dx)" "¢ (2)
satisfy the recurrence relation
(37) n(z) = (Y(z) — Da)ma(x),

where, (see also (6)),

(38) wa(z) =1, $(z) = ¥(z) = —¢'(2)/¢(z) = D, log (1/¢(2)).
From (11) and (35) a series in terms of cumulants is obtained:

(39) wm(2) = = 2ehatn(2)

and a similar expression may be sought for (z.(z))"/r!
For (non-empty) partitions =1, - - - , m, of positive integers m, , - - - , m, having
as their union the partition 7 of the integer m,

(40) T = [s -, s, o= [, -, 8],
p: = Z;=lﬁii; (j:l’...’r);
we define the partition function

(41) p("rl y " 777') = I;=l (pn.'ﬂ‘z'.pir),
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where (,,1,%,,,) denotes the multinomial coefficient. Then using the definition
(33) of a(1r), it is found that

(42) (2a(2))7/1] = (=1)" 22\ (),

where

(43) zl/f(r) = (7‘!)—12n+~--+1rf-=7r10(7l'1, Tty Wr)xl/ﬂu e ‘I’mf7 (zl’r(l) = ‘I/M)-

The summation is extended over all distinct arrangements of =’s having union

m;1i.e. if the #;’s are identical in groups of sizes o1, + -+ , oz then p(my, « -+ , 7)) ¥m,
* Ym, 0CCUIS (o,.,05) times. It follows also that

(44) ¥ = 2yt 40T, T W e Y

where

(45) q(my, -+, m) =p(m, ~--,m) /o1l -+ or!,

and the summation in (44) is extended over all distinet combinations of s
with union .
Substituting (42) in (12), the standardizing expansion takes the form

(46) U=+ 22 (=) e ()" (2),
and similarly the ¢nverse expansion (23) becomes
(47) T =u = 2N\ 20 (1) Doyt ().

These expansions relate the quantiles % and z in terms of cumulant differences
and functions derived by application of differential operators of the typery = D,
where ¢ is determined by the frequency function of the limiting distribution.

9. The Cornish-Fisher expansions. In the case of Cornish-Fisher expansions,
®(x) is the unit normal distribution and

(48) N=kx—1 N=x(E#2), &) =z,
¥e(z) = helz) = H(=D,) ", (r=1,2,---),

where h, is Hermite’s (r — 1)th polynomial. The Cornish-Fisher normalizing
expansion may be obtained from (46):

(49) =2+ 2. \N.(2),
where the polynomials N, are defined by:
(50) N, = 2 (—1)¢h”,

and the polynomials ¢, are to be derived from equatlons (8) and (13) Similarly
(47) becomes the Cornish-Fisher nverse expansion:

(51) T =u+ D \Po(u),
where the polynomials P, are given by:
(52) Pr= 2 (=)' Dk,

Dy = (u —D)(2u — D) --- ((r — )u — D).
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The Cornish-Fisher assumption that
(53) AN o= O(n—%)7 A = O(n—l)y A= O(n_r/2+1)7 (7' = 3', 47 ot )7

leads to a classification of the A, into successive “adjustments”: if A, = O(n™ /%)
then A\, (and hence N, and P,) belongs to the Mth adjustment. The Cornish-
Fisher polynomials, whose numeric coefficients were determined in the case of
leading terms in the formulae [3], [5], are seen to involve sums of products of
Hermite polynomials. Indeed, all components, including the Hermite poly-
nomials, in the general forms of the Cornish-Fisher polynomials can be derived
from ¢; = & = 1 by application of differential operators of the type nx =+ D.

6. Properties of Cornish-Fisher polynomials, In the case 7 = [s"] it is easily
shown from (44) that

(54) hism = Za(m) (hew)™ -+ (hue)™

where the summation is extended over all partitions = = [, ---, &"*] of m
into r parts. In particular,

(55) Ry = (h)" bl = (3)(he)" ha .

Next consider ki) , where 7, s denotes the partition obtained by adjoining the
singleton [s] to the arbitrary partition 7. From (43) it is seen that a given arrange-
ment (m, - - -, m,) is effectively given the multiplicity p(m, - - - , 7,) in the sum
defining k.. But (41) shows that p(m, - -, 7,) is the number of ways of con-
structing this arrangement if each set of s/s is considered as being composed
of p; distinet individuals. Hence,

(56) B = hh"Y A (P D meetmme D(T1, o, )
[hm1+s me ° h'm + + hml e hMr—lhmr+l]7

where the term hsh."" corresponds to the sum over all partitions of =, s con-
taining s as a singleton and the second term corresponds to all other partitions.
The well known relations for Hermite polynomials:

(57) (z — Da)he = hoya,

(58) hsya = Thepr — Shs,

may now be generalized for the k" by means of (56):

(59) (rz — D)k = h{Y — b0, (W = 0),
(60) hiy = ahdy — mh,”

for all partitions 7 of m.

By inspection of the expressions obtained by Cornish and Fisher for the leading
adjustments in their expansions the polynomials may be observed to satisfy
the following identities:

(61) =N = P = ha,
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for [s] a singleton, while for all partitions = of m:

(62) Nz1 = —D,N,;

(63) Ne2 = zN,1 — mN, = —2""D,(z"N,);
(64) P..=0;

(65) Pro= —(m — 1)P,.

These identities follow from the expressions (50) and (52) of N and P in
terms of symmetric sums of products of Hermite polynomials.

To prove (62), equation (59) and the defining relation (8) of the ¢, may be
used; clearly

DN, = 2.(—=1)[—¢:(rz — D)h:" + he(rz + D.)es]
(66) = Z(—1)[—ch¥) + b + crpahe®)
= —N-,r,l .

Equation (63) is a trivial consequence of (60) and (62), while (64) follows
immediately from (59) and (52). Lastly, in virtue of (59) and (60):

(67) Prp = Z(—1)[—Den(zhe'”) + Dy(zhe"") + (1 — m)Dyh."],
which implies (65).

The identities (62) and (64) reflect the fact that changes in the location param-
eter of z affect \; only. Equivalent identities apply to symmetric sums associated
with A, in the general expansions (46) and (47), but the identities (63) and
(65) for elements involving w, 2 arise from properties of Hermite polynomials
and hold only in asymptotic expansions about normal ®. In practice, terms in-
volving M and A can be excluded by relating quantiles of w to quantiles of
z = (2’ — ) /e, for which \; = A\, = 0, and treating z as an intermediate variate,
whose quantiles are linearly related to the quantiles of z'.

Since the Hermite polynomial %, is an odd or even function according as (s — 1)
is odd or even, the parities of the polynomials 4,”, P, and N,, where = is a
partition of m, are those of the integers (m — r), (m — 1) and (m — 1), respec-
tively. The order of the adjustment to which A, belongs is clearly of the same
parity as m. Hence, the polynomials P, , N, in odd order adjustments are even,
whereas those in even order adjustments are odd.

These results are illustrated in the Table, which presents polynomials for the
first three adjustments of the normalizing and inverse expansions. The first four
adjustments listed by Cornish and Fisher ([3] pp. 316-317) and the first six
adjustments of the inverse expansion listed by Fisher and Cornish [5] have been
checked against the expressions presented in Section 5. Using these formulations,
the first twelve normalizing and inverse adjustments have been tabulated [7]
by means of a computer program, which used algorithms for generating the
partitions (40) and partition functions (45) and for polynomial operations,
including the application of the operator naz & D, arising in (8), (52) and
(57).
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