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GENERALIZED BAYES ESTIMATORS IN
MULTIVARIATE PROBLEMS

By JAMES O. BERGER! AND C. SRINIVASAN

Purdue University

Several problems involving multivariate generalized Bayes estimators
are investigated. First, a characterization of admissible estimators as gen-
eralized Bayes estimators is developed for certain multivariate exponential
families and quadratic loss. The problem of verifying whether or not an
estimator is generalized Bayes is also considered.

Next, an important class of estimators for a multivariate normal mean
is considered. (The class includes many minimax, empirical Bayes, and
ridge regression estimators of current interest.) Necessary conditions are
developed for an estimator in this class to be “‘nearly’’ generalized Bayes,
in the sense that if it were properly smoothed, it would be generalized
Bayes. An application to adaptive ridge regression is given.

The paper concludes with the development of an asymptotic approxi-
mation to generalized Bayes estimators for general losses and location
vector densities. Using this approximation, weakened versions of the
above results are obtained for general losses and densities.

1. Introduction. Let X = (X, X,, --., X,)* be a random vector from a p-
dimensional density f(x, §) with respect to some o-finite Borel measure p on R”.
It is desired to estimate § € R” by an estimator §(X) = (6,(X), - - -, 6,(X))!, under
a nonnegative loss L(6 — #). If G is a nonnegative o-finite Borel measure on
R?, the generalized Bayes estimator 9%(x), with respect to G, is defined as the
vector ¢ = (¢, - - -, ¢,)' which minimizes

(1.1) § L(c — 0)f(x, 6)G(d6) .

(Only situations where (1.1) has a unique minimum will be considered.)

Section 2 deals with the important situation where f is from an exponential
family with natural parameter ¢, and where L is a quadratic loss. Results of
Sacks (1963) and Brown (1971) are generalized to show that, under certain con-
ditions, an admissible estimator of § must be generalized Bayes. Easily verifi-
able necessary and sufficient conditions for an estimator to be generalized Bayes
are also developed. These provide a fairly quick check on the potential admis-
sibility of a proposed estimator. These conditions generalize certain results of
Strawderman and Cohen (1971) (which dealt with the normal distribution for
spherically symmetric estimators).

Inadmissibility due to a lack of being generalized Bayes is, unfortunately, not
necessarily a compelling criticism of an estimator. For example, when f is a
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normal density and L a quadratic loss, it is well known that the positive part
Stein estimator

(1.2) 0(x) = (1 = (p — )/ IxP)*x

(where “+” stands for the positive part and |x| denotes the Euclidean norm of x)
is inadmissible because it cannot be generalized Bayes. Nevertheless, significantly
better estimators appear unlikely to exist (Efron and Morris (1973)), so the
simplicity of (1.2) makes it attractive. In a sense, the difficulty with (1.2) is
simply a lack of smoothness. It would be useful to distinguish between estima-
tors which are simply not quite smooth enough, and between those which in a
more fundamental way are not generalized Bayes.

This problem assumes major importance due to the recent large literature on
estimation in location vector problems (particularly the normal). Many alter-
natives to the usual best invariant estimator d(x) = x 4 ¢° (where ¢’ is chosen
to minimize § L(c® + 6)f(8) df) have been proposed. Typically, these estimators
are of the form

(1.3) 0(x) = x + ¢ — h(x*Cx)Bx + 6(x)|x|h(x*Cx),

where B and C are (p X p) matrices, C being positive definite, 4 is a positive
real valued function, and 6(x) is some (p X 1) vector whose norm goes to zero
as |x| — co. For example, the minimax estimators in Hudson (1974), Bock
(1975), and Berger (1976 d); the empirical Bayes estimators in Efron and Morris
(1973), Rolph (1976); Rao (1977) and elsewhere; the adaptive ridge regression
estimators in Lawless and Wang (1976), Thisted (1976), and Casella (1977); and
the tail minimax estimators in Berger (1976 a), can all be shown to be of the form
(1.3) with A(y) = 1/y. A significant question one can ask about such estimators
is: how must B and C be related in order for the estimator to be generalized
Bayes? This considers not the smoothness of the estimator, but instead the
“directional” orientation of the estimator. Estimators which cannot be smoothed
to make them generalized Bayes usually suffer from some such orientation prob-
lem. With this motivation, we define an estimator d(x) = x + ¢* + y(x) to be
directionally consistent (&) if there exists a generalized Bayes estimator 9%, with
G ¢ & (some appropriate class of generalized priors), such that

(1.4) 0%(x) = 3(x) + o(N)r(x)] »

where 6(x) has the same meaning as in (1.3). In other words, the estimator ¢ is
directionally consistent if it can be smoothed by the addition of an error term
(of smaller order than the correction y(x) which d makes to the usual estimator
(x + ¢°) to make it generalized Bayes. An estimator 4 is directionally inconsistent
(%) if there does not exist a generalized Bayes estimator 0 (with G € &) such
that (1.4) holds.

In Section 3 it is shown for the normal-quadratic loss problem, that an
estimator of the form (1.3) (with % decreasing as a polynomial or faster) is
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directionally inconsistent (for an appropriate ¢”) unless B = kZC for some con-
stant k. (¥ is the covariance matrix of the normal distribution.) Estimators
violating this condition are thus inadmissible in a manner more serious than
mere lack of smoothness.

In Section 4, similar results will be obtained for nonquadratic losses and for
general location vector densities, although in a weakened version. The weaken-
ing is due to the fact that only appropriately smooth generalized priors can be
handled, and also to the lack of a characterization of admissible estimators as
generalized Bayes. The results in Section 4 will depend on an approximation
for generalized Bayes estimators which is developed along the lines of the heu-
ristic argument in Brown (1974). This approximation is of independent interest,
as it appears to be a necessary component of investigations into admissibility of
generalized Bayes estimators. (See Brown (1974).) It.should be noted that Sec-
tions 3 and 4 can be read independently of Section 2.

In the remainder of the paper, the following notation will be used. If r(x):
R? — R' is an appropriately differentiable function, let

. 0 » 0*
ro(x) = r(x), red(xy = .- r(x), etc.
() = 5 1) () = 5 )
Also let Vr(x) = (r(x), - .-, r'”(x))* denote the gradient of r. Finally, let E,

stand for expectation with respect to X. If the argument of the expectation is
a vector or matrix, the expectation is to be taken componentwise.

2. Exponential families and quadratic loss. Assume f{x, ¢) is from the expo-
nential family of probability distributions with respect to y, i.e., X has density
f(x, ) = p(0) exp(§'x) with respect to px. Let © = {§: | exp(8'x)u(dx) < oo}
denote the convex natural parameter space, S denote the support of ¢, K denote
the convex hull of S, 94 denote the boundary of a convex set 4, int 4 denote the
interior of a convex set 4, and 4 denote the closure of a set 4. Also, if G is a
o-finite Borel measure on R?, let

G(x) = | exp(y*x)G(dy)
denote the p-dimensional Laplace transform of G. It is well known that G(x) is
infinitely differentiable on the interior of the convex set T(G) = {x: G(x) < oo},
and that the partial derivatives can be taken inside the integral sign.

It will be assumed that L is the quardatic loss L(6 — 0) = (6 — 6)!Q(6 — 6),
O being positive definite. A straightforward calculation then verifies that if §
is generalized Bayes with respect to a g-finite measure G’, and x ¢ T(G) where
G(d6) = B(0)G'(df), then
(2.1) o(x) = =) = Vlog G(x)

for almost all x (“almost all x” is, of course, with respect to p).
The following theorem gives the major necessary condition for admissibility
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of an estimator . The theorem is analogous to results in Sacks (1963) (which
dealt with p = 1) and to results in Brown (1971) (which considered the normal
density). See also Farrell (1966). The proof is very similar to the proof in

Brown (1971).

THEOREM 2.1. Let d(x) be an admissible estimator. Then there exists a o-finite
measure G, (with support in ©) such that if x ¢ int K then G,(x) < oo, and for almost
all xeint K

(2.2) 3(x) = Vlog Gy(x) .
Proor. If § is admissible, it follows from Farrell (1968) (see also Stein (1955))

that there exists a sequence of finite measures G,” with compact support such
that G,/(I') = 1 for some compact I' C 0, and such that

(2.3)  §Se{L(0"(x) — ) — L(3(x) — 0)}5() exp(ﬁ‘x)}ut(dx)Gn'(dﬂ) -0,

where §* is the Bayes estimator with respect to G,’. Defining G,(df) = 8(6)G,'(df),
it follows from the fact that G,’ has compact support that 7(G,) = R?. Hence
by (2.1), for almost all x

VG,(x)
2.4 0m(x) = M1,

@4 ) =5
Using (2.3) and (2.4), a calculation as in James and Stein (1960) and Brown
(1971) shows that

(2.5) § 197(x) — 0, (x)px(dx) -0 .
Since G,/(I') = 1, it follows for some K, > 0 and K,, that
G (x) = | B(6) exp(6'X)G,'(df) > K, exp(—K,|X]) .

Hence (2.4) and (2.5) imply that there exists a subsequence n’ such that except
for x € N (where pu(N) = 0),

,Y,@:(E),,

(2.6) o

— §(x) .

Define M = {x e S: d(x) is finite}. Clearly p#(M°) = 0, and hence int K is
contained in the convex hull of (M — N). It thus follows that a sequence {p,}
of closed convex polyhedra with vertices in (M — N) can be chosen, such that
Ug-, pw D int K. Furthermore, since 4,, = {vertices of p,} is finite, there exist
constants b, < oo such that |d(x)| < b, for x ¢ 4,,. From (2.6) it can be con-

cluded that if x ¢ 4,,, then
VG ¢4 < oo
Gn’(x)

Theorem 2.2.1 of Brown (1971) (a continuity theorem for Laplace transforms)
can thus be applied, and together with a standard diagonal argument shows that
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there exists a subsequence n” of n’ and a measure G,(df) (with support in ©)
such that for all x ¢ int K, G,(x) < oo and

VG () _, VGi(x)

Gu(¥)  Gof)
Together with (2.6), this completes the proof. []

The following corollaries are immediate.

COROLLARY 2.2, [n the situation of Theorem 2.1 if G(30) = 0 or O is closed,
then for almost all x e int K, 6(x) is generalized Bayes with respect to the measure

9i(db) = G(db)/B(0)-

CoroLLARY 2.3. If p(0K) = O and O is closed, then every admissible estimator
is generalized Bayes and is given by (2.1) for some measure G. In particular, when
K = © = Re, the result holds.

COROLLARY 2.4. Assume X has density f(x, ) = P(0) exp(0*L-1x) with respect
to p, where I is a known positive definite matrix. If 6(x) is an admissible estimator
of 8, then for almost all x ¢ int K

(a) d(x) = X Vlog G(x) for some o-ﬁnz:te‘ measure G with support in
Ox(0* = {0: § exp(*L'x)p(dx) < oo}).
(b)  8(x) = x + E£Vlogg(x), where g(x) = exp(—x'L£x/2)G(x).

ProoF. Part (a) follows immediately from Theorem 2.1 and the observation
that the natural parameter is £-0. (G(d0) will be G,(d(£-'0)).) Part (b) is an
easy calculation from (a). [J

In applications, the above corollary is very convenient to work with, espe-
cially when f is normal with mean # and covariance matrix L. In verifying
whether or not a given estimator is admissible, there are two necessary condi-
tions implied by Corollary 2.4,

ConpITION 1. There exists an infinitely differentiable function # such that
for almost all x ¢ int K, d(x) = IVh(x).

CoNDITION 2. exp(h(x)) is a Laplace transform of some measure G on ©*.

The verification of Condition 2 is a well-known mathematical problem. (See
Widder (1946).) When f is normal, more explicit means of verification are given
in Hirschmann and Widder (1955). (See also Strawderman and Cohen (1971).)
Condition 2 can loosely be interpreted as requiring that the estimator ¢ be
smooth enough. It is Condition 1 which demands a proper “orientation” of the
estimator as discussed in Section 1. Note that Condition 1 is easily verified
when p = 1 or § is spherically symmetric, as d(x) can then be simply integrated
to obtain 4. The verification of Condition 1 turns out to be relatively simple
also when § is convex, as the following development shows.
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Assume x, ¢ S, and let A4, = {x: [x — x°] < 1/n}. Define (if it exists)

2.7) FHR0) = lim, oL, a(x)u(dx) .
m(A,) "
If Condition 1 is satisfied, then for x’¢ (int K) n S,
(2.8) 5¥(x%) = lim, _., "(31")' {1, ZVA(x)(dx) = LVA(x)
#(A,

by the continuity of V4. Clearly o* is equivalent to 4, so it suffices to consider
whether or not ¢* satisfies Condition 1. The following well-known calculus
lemma is needed.

LeMMA 2.5. A continuously differentiable vector field F(x) = (Fy(x), - - -, F (X))’
defined on an open convex subset of R? is a gradient field (i.e., F(x) = Vh(x) for
some h) if and only if the Jacobian matrix J(F) of F is symmetric. (J(F) has (i, j)
element F9(x).)

The following theorem is an immediate consequence of (2.7), (2.8), and
Lemma 2.5.

THEOREM 2.6. If § is convex, then Condition 1 is satisfied if and only if (£7%0%*)
is continuously differentiable in int S and has a symmetric Jacobian matrix.

Theorem 2.6 gives an easily verifiable necessary condition for an estimator o
to be admissible. Providing ¢ (or 0*) satisfies the conditions in Theorem 2.6,
one can construct 4(x) by simply integrating (£-6%) along any path from a fixed
point x’ ¢ int § to x.

The following corollary gives an example of the use of Theorem 2.6.

COROLLARY 2.7. Assume f is normal with mean 6 and known covariance matrix
X. Consider estimators of the form

d(x) = x — A(x*'Cx)Bx,

where C is positive definite and B is nonsingular. Assume (w.l.0.g.) that § equals
0%, For 0 to be admissible, h must be continuously differentiable. If in addition
k'(y) (the derivative of h) is nonzero for some y, > 0, then a necessary condition for
6 to be admissible is that B = kXC for some constant k.

Proor. By Theorem 2.6 it is only necessary to determine if J(E—lc?) is sym-
metric. A calculation shows that

J(E710) = £ — A(x'Cx)E1B — 2k'(x'Cx)L-1B(xx!)C .

Let I' = {x: x!Cx = y)}. Clearly for xeI', £7'B(xx*)C is not constant, and
k(x*Cx) # 0. Hence for J to be symmetric, it must be true that £-'B is sym-
metric and [£7'B(xx*)C] is symmetric. %7'B is symmetric only if B = k¥4 for
some symmetric matrix 4. Then [A(xx*)C] is symmetric for all xeI' only if
A=2C. []
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3. Directional inconsistency. In this section it will be assumed that f is a
normal density with mean # and known covariance matrix X, and that L is a
quadratic loss as in Section 2. In this situation, as mentioned in Section 1, esti-
mators of the form

(3.1) 0(x) = x — A(X*'Cx)Bx + &(x)|x|A(x*Cx)

(where B, C, &, and &(x) are as in (1.3)) have come under considerable scrutiny
as competitors to the usual best invariant estimator d°(x) = x. The results of
Section 2 can be used to show whether or not such estimators are generalized
Bayes (and hence potentially admissible), provided the (x) term is known ex-
plicitly. Section 2 is not useful, however, in determining directional consistency
(i.e., approximability by a generalized Bayes estimator as defined in Section 1).
The following theorem gives conditions under which an estimator of the form
(3.1) is directionally inconsistent (&), where

Z,={G: g*(x) = | f(x, 6)G(df) < oo} .
(All admissible estimators are generalized Bayes with respect to some G ¢ &,
(Brown (1971)), so this is the natural class of G to consider.)
THEOREM 3.1. Assume '
(3.2) 0(x) = x — h(x*Cx)Bx + 6 (x)|x|A(x!Cx) ,

where C is positive definite, B is any (p X p) matrix, and h satisfies the following
condition: there exist K >0, 0 < p < 1, and 0 < © < 1, such thar h(z) < h(y)
for any positive numbers y and z satisfying y = K and z > (1 + p)y, and h(y) is
continuous and positive for y = K. Then 0 is directionally inconsistent (&) unless
B = kXC for some constant k.

(Remark: The condition on % essentially says that /(z) must be decreasing at
least as fast as z7* for some a > 0.)

ProoF. Note that the condition on B is always satisfied for p = 1. Hence
assume that p > 2. By definition, d(x) = x 4 d(x) is directionally consistent
(¥,) only if there exists a s-finite measure G such that

(33) 0%x) = X + 7(x) + o) -

It is easy to check that for G ¢ &, ¢ can be written

(3.4) 0%(x) = x + LV log g*(x) .
Combining (3.2), (3.3) and (3.4), gives the necessary condition
(3.5) —Vlog g*(x) = A(x*Cx)L~'Bx + o(x)|x|h(x*Cx) .

Consider the transformed problem induced by the transformation ¥ = CiX
(where (C#)'Ct = C). Defining r(y) = —log g*(Cty), it is easy to check that
(3.5) becomes

(3.6) Vr(y) = B(y)UCHETBCHy + o)y [A(1¥I) -
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It will be shown that a necessary condition for the equation

(3.7) Vr(y) = k(171 A4y + o (D)IyIA(yI)

to have a solution, is 4 = kI for some constant k. This will imply for (3.6) that
(C#H)'LBC-t = kI,

or that B = kI C as was desired.

Consider (3.7) when p = 2. Both sides of the equation will be integrated
along the rectangular paths from the point (c, ¢) to the point a(c, c¢), where
a = [(1 + p)/(1 — p)]*and ¢ > K. Letting P, be the path consisting of the line
segments L, = {(s¢,¢): 1 < s < a} and L, = {(ac, s¢): 1 < s < a}, calculation
using (3.7) gives

$r [VEO)Y - dy = $o {B(¥1) Ay + 6(0)IyIR(¥Y - dy
= §5 A5 + 1))
(3.8) X {A(sc, €)' + o([sc, c]'[s* + 1]k} - (¢, 0) ds
+ A 4 a*]e?)
X {A(ac, sc)t + o([ac, sc])[s* + a*]ic} - (0, ¢) ds,
where “.” is the usual dot product. Define
(3.9) R, = (¢ sh([s* + 1]c%) ds, R, = V¢ sh([s* + &’]cH) ds,
T, = {§A([s* + 1]cH) ds, and T, = a \§A([s* + aF]c?) ds .
Note that
Lok 2 A4+ —p) gy,
FEEL T @1 (4l — o) + 1

Hence, by the assumption on # it is clear that

inf,

(3.10) R, < R, and T, < arT, .

Note also that for 1 < s < a both 4([sc, ¢]) and 6([c, sc]*) have norms which
are o(c™) (i.e., go to zero faster than ¢~*as ¢ — oo0). Using (3.9), equation (3.8)
can thus be rewritten

(3'11) SPI [Vr(y)]‘ ' dy = c2(A11R1 + AT, + Ay T, + Azsz) + o(c_l)c2T1 >

where A4, is the (i, j) element of 4.

Consider next the path P, from (c, ¢) to a(c, ¢), consisting of the line segments
Ly={(c,sc): 1 <s<a}and L, = {(sc,ac): 1 < s < a}. As above it can be
shown that

(3.12) . [VA)] - dy = (AyRy 4+ AT, + Ay Ty + AnR,) + 0(c)eT, .

Since P, and P, have the same endpoints, the expressions in (3.11) and (3.12)
must be equal. It follows that

(3.13) (Ay — Ap)(R, — Ry) = (Ay — Ap)Ty — T,) + o(e™)T, .
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The above analysis can also be conducted on paths between (¢, —c) and
a(c, —c). The conclusion of such an analysis is that

(3.14) (Ay — Ap)(R, — R,) = (A, — Ap)(Ty — T,) + o(e™ DT .
Adding (3.13) and (3.14) gives
(3.15) (Ay — AR)R, — R) = o(c™HYT, .
Clearly R, > T, so (3.10) implies that
(R, —R)= (1 —)R, > (I — o)T,.

Thus (3.15) can be satisfied as ¢ -— oo only if 4,, = A,,.
To complete the argument, consider transformations z = I'y, where I' is an
orthogonal (2 X 2) matrix. Equation (3.7) becomes

Vr(z) = h(|2))T ATz + 6(z)|z|h(|2)?) .
The identical argument now shows that I"'AI™ must also have equal diagonal
elements. It is easy to check that if '4I'* has equal diagonal elements for all
orthogonal I', then 4 must be a multiple of the identity. This completes the

proof for p = 2.
The generalization to p > 2 follows from consideration of (3.7) in the subspace

Q,={xeRr:x, =0 for k#1i or k =+ j}.
For (3.7) to be satisfied when y e Q,,, it must in particular be true that

r (), r9(») = kP ([AyLs [40]) + sy -

Noting that
Ay AN (Vs
Ak Ly = (5 ) ()
’ A Al Ny,

it follows from the two-dimensional result that 4,, = 4;, and 4,, = 4,, =0
(i #+ j). Hence 4 must be a multiple of the identity and the proof is complete. []

Note that directional inconsistency (for simplicity = will be suppressed) of
an estimator, d, essentially occurs when Condition 1 of Section 2 is violated
even for “smooth” versions of the estimator. Although Condition 1 can be easily
checked for a specific estimator 4 by verifying the symmetry of the Jacobian of
d, directional consistency cannot be handled in this manner, since there is no
control over the derivatives of the “smoothing” error term o(x)|y(x)|. Indeed
it is easy to construct estimators with nonsymmetric Jacobians, such that when
an error term 6 (x)|y(x)| is added to the estimator, Condition 1 becomes satisfied.
Thus it was necessary to resort to the more difficult integration argument of
Theorem 3.1 to prove directional inconsistency.

As a simple application of Theorem 3.1, consider adaptive ridge regression
estimators of the form

o(x) = (7' + A)(x*Cx))" ' E'x .
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(In terms of the usual regression model, x is the least squares estimator, while
I = o¥(T*T)7%, T being the design matrix and ¢? the variance of the independent
normal errors.) It is easy to check that d is of the form (3.2) with B = ¥4 and
h(x*Cx) = 1/(x*Cx). This # satisfies the condition of Theorem 3.1 (take K = 1,
p = .5, and = = % for example). Thus if 4 = kC (i.e., B = £A4 + k¥C) for
some constant k, then d is directionally inconsistent. Two commonly considered
choices of 4 and Care (i) 4 = pl, C = I, and (ii) 4 = (p/o*)], C = £*. (These
are discussed in Lawless and Wang (1976) and elsewhere.) Clearly the first
choice satisfies 4 = kC, while the second choice does not. Hence the second
choice is directionally inconsistent. (It will be shown in Section 4 that the first
choice is actually directionally consistent.)

Unfortunately, the problem of trying to find an estimator uniformly better
than a directionally inconsistent estimator seems to be very difficult. Itappears
that estimators of entirely different functional forms need to be considered.
For example, the directionally consistent ridge estimator, given above, is not
uniformly better (in terms of expected loss) than the directionally inconsistent
one. Indeed the latter estimator is by no means a “bad” estimator (even though
directionally inconsistent) in that in many situations it seems to perform con-
siderably better than the usual estimator 9°(x) = x. It is just that there may
well be something considerably better still.

4. Results for general loss and location density. The results of Sections 2
and 3 were solely for quadratic loss. It is obviously desirable to obtain some
type of extension to other loss functions. In particular, the criticism of direc-
tional inconsistency of an estimator becomes more valid if it can be shown to
hold for a variety of losses. Unfortunately, general characterizations of admis-
sible estimators as generalized Bayes estimators seem very difficult to obtain for
nonquadratic losses. Because of this and certain technical problems, only
weakened versions of the results of Sections 2 and 3 will be given.

It will first be necessary to develop an approximate formula for a generalized
Bayes estimator. Aside from its use in this paper, the approximation should
play an important role in future investigations of admissibility of generalized
Bayes estimators. (See Brown (1974).)

Let Q be a subset of R?, and let d(x) be a real valued function on R” such that

(i) dx) >0=x¢Q, and

(ii) forall0 < K < o0, |0 — x| < K=d(0) > d(x) — K.
An approximation to a generalized Bayes estimator d%(x) will be established in
appropriate regions Q for large values of d(x). (For most applications it will
suffice to have Q = R* — I' (I" a compact set) and d(x) = |x| — p, where p =
sup,.r |x|.) The region Q will be said to be d-unbounded if sup,. g d(x) = co.
For notational convenience, the following modification of “0” notation will be
adopted for any functions 7 and % (possibly vector valued):

r(x) s o(k(x)) if limp_ g SUPGgesr [F(X/IA(X)] = O
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Needed assumptions on f, L, and G will now be given. These assumptions
are not the most general possible, but should cover a wide variety of cases of
interest, and despite their length are quite easy to verify.

AssuMPTION A (Conitions on the generalized prior G).

1. G isabsolutely continuous with respect to Lebesgue measure on R?. (G will
henceforth denote the density of the prior with respect to Lebesgue measure.)
2. 0ZG(H) £ B < oo,
3. There exists a d-unbounded region Q such that if ¢ € Q, then the following
conditions hold:
(a) G(g) > 0.
(b) G has continuous second order partial derivatives at 6.
(¢) [VG(O)| = 5(G(0)). :
(d) There exists a positive increasing function w*: R' — R! for which the
following hold:
(i) [d — w*(d)] is increasing in d and positive for some d.
(ii) There exists ¢ > 0 such that [w(0)]"* = 6(|]VG(6)|*/G(0)), where
w(0) = w*(d(9)). '
(iii) If d(0) — w(d) = 0, then for 1 < i,j < p,

SUP(e.ip-aiswion |G 7(€)] = B(VG(0)) -
AssuMPTION B (Conditions on fand L).

1. f(x, 6) is a location density with respect to Lebesgue measure on R?. Thus
assume f is of the form f{x, §) = f(x — 8).

2. L has all third order partial derivatives.

3. For any D, < oo, there exist finite D, and D, such that if |y| < D,, then
L*(x 4+ yy £ D, + D,L*(x), where L* denotes L or any partial derivative of L
through the third order.

4, Foralll <i,j,k < p,

E[IXILS2(X))] < oo, EJILSPP(X)] < oo, and
EJ| X[ 2fL(X) + [LO(X)] < oo,
where ¢ is from assumption A3(d)(ii).
5. h(c) = § L(c + 0)f(0) df has a unique minimum at ¢ = c°.
6.
(a) The (p X p) matrix M with elements m;; = E[L"”(X + ¢°)X,] is non-
singular.
(b) The (p X p) matrix & with elements/,; = E[L"?(X 4 c")]is positive
definite.

7. L(x) £ D, < oo for all x ¢ R (i.e., L is bounded), or
7. lim,_ inf, 5. L(X) = A(c®) 4 ¢*, for some &* > 0.
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DIsCUSSION OF ASSUMPTIONS. In Assumption A the key restriction is 3(c). This
places an allowable rate of decrease on G. If G goes to zero too quickly (as
does G(0) = exp{-—|8|%}) this condition will be violated, and indeed the approxi-
mation that will be developed is invalid. Such rapidly decreasing G are proper
priors, however, and the resulting Bayes estimates are known to be admissible.

In condition A3(d) it usually suffices to choose w(d) = cd (for some 0 < ¢ < 1),
although choices such as w(d) = d* (for some 0 < @ < 1) may sometimes be
necessary. Condition 3 (d)(iii) somewhat surprisingly restricts G from being too
flat. For example, G(#) = 1 4 exp{—|0|*} violates this condition. When p = 3,
however, the results of Brown (1974) indicate that estimators arising from such
G are inadmissible and can be improved upon by using G going to zero at an
allowable rate.

Assumption Bl is made to keep the theory relatively simple. (See Brown
(1974) for discussion of other cases.) Note that many scale parameter problems
can be transformed into this setting by the usual log transform.

Assumptions B2, B3, and B4 are technical assumptions which could undoubt-
edly be weakened. Note that one should choose ¢ as small as possible, in order
to minimize the number of moments needed in B4.

Assumptions B7 or B7’ should cover virtually all cases of interest. Note that
any loss which is increasing and unbounded in all directions (such as a strictly
convex loss) satisfies B7’.

Assumption BS essentially says that the best invariant estimator of ¢ must be
unique. (The best invariant estimator is thus 6°%(x) = x 4 ¢°.) When #A(c) has a
nonunique minimum, the problem of approximating a generalized Bayes esti-
mator becomes considerably more complex. If L is strictly convex, it is easy
to check that A(c) has a unique minimum. The following lemmas give other
useful conditions for this to be true.

LemMma 4.1, If L(0) and f(0) are symmetric functions in each coordinate 8, with
L(0) increasing in |0,| and f(9) decreasing in |0,| (1 < i < p), then k(c) has a unique
minimum at ¢ = 0.

Proor. Straightforward. []

LEMMA 4.2. If L(0) = L*(6*Q0) and f(0) = [*(6'L£7'0) where Q and ¥ are (p X p)
positive definite matrices, L* is an increasing function, and f* is a decreasing func-
tion, then h(c) has a unique minimum at ¢ = 0,

Proor. Performing the linear change of variables, in the integral for A(c),
which simultaneously diagonalizes Q and X, gives the desired result by Lemma
4.1. []

Assumption BS5 also implies the following result.
Lemma 4.3. If Assumptions Bl through BS hold, then

(a) E[VL(X + ] =0, and
(b) & is positive semidefinite.
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Proor. It is easy to check that A(c) can be differentiated twice under the
integral sign. The lemma thus follows from the standard necessary conditions
for ¢® to be a unique minimum of A(c). []

Assumption B6 essentially ensures that it is desired to estimate the full loca-
tion vector. (See Brown (1966).) Two cases of considerable interest are given
in the following lemmas.

LeEMMA 4.4. If f is a p-variate normal density with known covariance matrix %,
then M = gz
PROOF. Given in Berger (1976a). []

LeMmMA 4.5.

(a) If L in Assumption B is of the form L(x) = L*(x'Qx), where Q is positive
definite and L* is strictly increasing, then M is nonsingular.

(b) If L(x) = x*Qx, then M = 2QX, where £ = E{[X — (E,X)|[X — (E,X)]"}
is the covariance matrix of X.

ProOOF. (a) Letting L’ denote the derivative of L*, M* can be written
Mt = E[X[VL(X + ]}

(4.1) = E{(X + O)[VL(X 4 ¢°)]} (by Lemma 4.3(a))

= 2E{L/([X 4 ¢TQ[X 4 P + )X + )]0
Note that for any z € R* — {0},

ZE{L'([X 4+ c°IQ[X + "X + WX + )}z
= E{L([X + ¢TQLX + INX 4 ]2)'} > 0

(since L’ > 0 and [X + ¢°] cannot be concentrated on the (p — 1)-dimensional

hyperplane perpendicular to z if f is a density with respect to Lebesgue measure
on R?). Hence

EL'([X + TOIX + )X + YX + %)}
is positive definite, and M is nonsingular.

(b) This part follows from (4.1) (since L'(+) = 1) and an easy calculation
which shows that ¢® = —(E,X). []

Assumption B6 (b) is only a slight strengthening of Lemma 4.3(b). It is tri-
vially satisfied by all strictly convex loss functions.

The desired approximation to ¢ is given in the following theorem. Note that
this is essentially the result developed heuristically in Brown (1974).

THEOREM 4.6. If Assumptions A and B are satisfied and x € Q, then
4.2) 0%(x) = ¢ + x + ZM[V log G(x)] + a(V log G(x)) .

The proof of this theorem will be given at the end of the section. The follow-
ing corollary gives several examples of application.
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CoROLLARY 4.7. (a) AssumeG(0) = af[b 4 (0:CO)*], wherea, b, and a are posi-
tive constants and C is a positive definite (p X p) matrix. Assume L(x) = (x*'Qx)*,
where 8 = 1 or 8 = 3.  Finally, assume f is a p-dimensional location density with
{2(a + B) + 3} finite moments. Then

39(x) = & + X — 22 MCx/(x*Cx) + 6(x)|x|*.

(Recall (x) denotes a vector whose norm goes to zero as |x| — co0.)
(b) If, in addition, f is a normal density, then

0%(x) = x — 2aXCx/(x*Cx) + o(x)|x|™*.
(¢) If 8 = 1 in part (a), then
0%(x) = —(EyX) + x — 2aXCx/(x'Cx) + o(x)|x|™*.

ProOF. Assumptions A and B must first be verified. For Assumption A,
choose Q = {0: (0] > 1}, d(6) = |0] — 1, w*(d) = d/3, and ¢ = 2a 4 3. Tt is
straightforward to check that Assumption A then holds for the given G.

The first four conditions of Assumption B are easy to check, as is B7. Con-
dition BS is satisfied because L is strictly convex, and condition B6 follows from

Lemma 4.5(a).
A calculation gives

[V Iog G(x)] = —2a(x*Cx)*Cx/[[b 4 (x*Cx)"]
= —2aCx[(x*Cx) + o(x)|x|~*.

Clearly d(x) — oo is equivalent to |x| = oo, sO the result follows from Theorem
4.6.

(b) This follows from part (a), Lemma 4.4, and the easily verified fact that
¢ =0.

(c) This follows from part (a) and Lemma 4.5(b), noting that ¢® = —(E,X). []

Note that the above corollary implies, for normal densities, that estimators of
the form (1.3) with A(y) = y~* and B = k¥C (for some k > 0) are directionally
consistent. This complements the necessity of the condition B = kX C established

in Section 3.
From Theorem 4.6 follows the following generalization of Theorem 3.1.

THEOREM 4.8. Assume Assumption B holds for all q > O (see B4). Then an
estimator
0(x) = ¢ + x — A(x*Cx)Bx + 6(x)|x|h(x'Cx) ,
with h, B, and C as in Theorem 3.1, is directionally inconsistent (<) unless B =
k. *MC for some constant k. (Here <, is the class of all G satisfying Assumption
A withQ = R* — I', I' a compact set.)

Proor. The argument starts with (4.2), and proceeds exactly as does the proof
of Theorem 3.1, with X! replaced by M1 []

Except for the unfortunate limitation to &, the above theorem says that the
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directional inconsistency results hold for wide ranges of losses and densities.
This, hopefully, alleviates the concern that directional inconsistency might be
highly dependent on the loss used. Note, in particular, that if f is a normal
density, then since .o# —'M = I (Lemma 4.4), directional inconsistency (%) of
an estimator for quadratic loss implies directional inconsistency () of the
estimator for all losses satisfying Assumption B. This lends considerable addi-
tional force to the criticism of directional inconsistency.

Before proceeding with the proof of Theorem 4.6, a final example is in order
to demonstrate the scope of Theorem 4.6 (and to justify the apparent complexity
of the Q, d notation). Often, only partial prior information is available. Typi-
cally, for example, G may be a function only of §,. The following corollary
considers such a situation.

COROLLARY 4.9. Assume G(0) = a/(b + 0,?), a >0 and b > 0, L(x) = x'Qx,
and f is a p-dimensional location density with seven finite moments. Then
8%(x) = —(E,X) + x — 25(x,7%, 0, - -+, 0) + 6(x;)[x |,
where 0(x,) is a vector whose norm goes to zero as |x,| — oo.

ProOF. Choosing Q = R», d(x) = |x,|, and w*(d) = d/3, the verification of
Assumptions A and B and use of Theorem 4.6 is straightforward. []

The proof of Theorem 4.6 concludes the section.

Proor oF THEOREM 4.6. It is desired to find y%(x) = d%x) — x — ¢ which
minimizes
(4.3) I=(L(y(x)+ x — 0+ ") f(x — 0)G(9) do .

PArRT 1. Assume y(x) = 6(1). (It will be shown in Part 2 that y%(x) = 6(1).)
By Assumption A3(d), d(x) can be chosen large enough so that d(x) — w(x) > 0.
Defining V = {#: |[# — x| < w(x)}, it then follows from property (ii) of 4 that
d(0) > d(x) — w(x) > 0 for e V. Hence V' C L, and it follows that G(¢) can

be expanded in a Taylor expansion about x (up to third order terms) for fc V.
Line (4.3) can then be written

I=L+L+L+ 1,
I, = G(x) §, L(y(x) + x — 0 + ")f(x — 0)do,
(4.4) I = Y7, GYx){, (0; — x,)L(y(x) + x — 0 + ")f(x — 6)db,
I, =4 3 25§y (0 — X)(0; = X)L(G(X) + X — 0 + <)
X flx — 0)G»9(x*)df ,
I, = $pe L(y(x) + x — 0 + ) f(x — 0)G(6) do,
where x* is a point on the line segment between x and 4.

A simple Chebyshev argument using Assumptions B3, B4, A2, and A3(e)(ii)
shows that

(4.5) I, = K[w(x)[7* = 6(|VG(x)]’/G(x)) .
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All future integrals over ¥ are handled similarly and will simply be replaced
by the appropriate 4 term with no further comment.

In I, 1,, and I, L(y(x) + x — 6 + ¢°) will be expanded in Taylor expansions
about (x — @ + ¢% up to fourth, third, and second order terms respectively.
The integrals I*, 1!, and /! resulting from the L(x — @ + ¢°) term of the Taylor
expansions are all independent of y(x). The dominant term is

L' =G(x)§, L(x — 0 4+ ) f(x — 0)d0
=GX){{ L(x — 0 4+ ") f(x — 0)do — §,c L(x — 0 + ¢°)f(x — 6)db}
= G(x){h(c”) + a(1)}.
Using Assumptions A3(c) and A3(d)(iii), it is easy to see that [ + I}! =
o(G(x)). Thus
(4.6) L4 17+ 1 = GEOh(e) + o%(1))
where “*” indicates the term is independent of y(x).

Using the assumptions and Lemma 4.3, the second, third, and fourth terms
of the expansion of I, are

12 = G(x) T2 70§ L9(x — 0 + )f(x — 0)dO — §,.[ 1d0)
(4.7) = G(x) DL 7:H0 — 6(VG(x))} = o([r(x)[VG(x)) »

I = 360! (x)Lr(x)(1 4 o(1)) ,

L = o(jr(x)*G(x)) -
Similarly, the remaining terms of /, are

I} = T2 GO() B 7,(0) § LOGx — 0 + (6, — x)f(x — 6) do
(4.8) = —[VG)I'M7(x) + o([r(x)IVG(x)) ,

L = 6(|r(x)[VG(x)) -
Again using Assumption A3(d)(iii), the remaining term of [, is
(4.9) I = o(|r(x)[VG(x)) -

Combining (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9) gives
(4.10)  I=G){h() + 0*(D) + $GH)AX)L7(x) — [VO()M7(x)
+ 0(G)r(x)P) + o(lr(x)[VG(x)) + o([VG(X)[*/G(x)) -
It is easy to check (using Assumption B6 and Lemma 4.3) that ¢(r), defined by
() = 1G(X) 7 (%)L r(x) — [VG(x) M r(x) ,

is minimized at
P(x) = 2 MV log G(¥)]

attaining the minimum value
#(r°) = —[VG()I'M* L "M[VG(x)]/(2G(x)) <O .
(Note by Assumption A3(c) that y°(x) = (1) as was assumed in the above
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derivation.) Since the first term on the right-hand side of (4.10) is independent
of 7(x), it follows that the y which minimizes / (among those y which are 6(1))
is of the form

7(x) = £ 'M[V log G(x)] 4 o(V log G(x)) .

PART 2. 7%(x) must be 6(1). To see this, note that if y%(x) minimizes I, it

must be true that

= § L(y%x) + x — 0 + ") f(x — 0)G(0)db
(4.11) < S L(GP%x) + x — 0 + O f(x — 0)G(0) do

= G(x){A(c®) + o(1)}.

If y%(x) is not 6(1), then there exists an ¢ > 0 and a sequence of points {x’} in
Q such that

(4.12) d(x*) — oo and [7°(xH)| > e > 0.
Due to the continuity of 2 and Assumption BS, there exists a ¢ > 0 such that
(4.13) h(c) > h(c®) + 7 if |c—¢)>e.

Define « = min {z/[4A(c") + 37], e*/[12h(c’) + ¢*]}, where ¢* is from Assump-
tion B7’. (Choose e* = 1 if B7’ does not apply.) Note that a Taylor expansion
of G verifies that for any fixed positive integer n,

inf,.,_p<m G(O) = G(x)(1 + 6(1)).
Hence for each n, there exists an x*» ¢ {x*} such that
(4.14) inf,. i _g<m G(O) > G(x*™)1 — a).
Clearly {x“™} can be chosen so that d(x*™) — co. Also, it is obvious that
(4.15) if {|y%(x%)|} is unbounded, then {x*™} can be chosen
so that [p%(x*™)| > 3n.
Defining y* = y9(x*™), it follows from (4.14) that
I(n) = § L(y 4 x*™ — 6 4 ) f(x*™ — 0)G(6) db
(4.16) 2 [infiyuim—gi<cm GO)] Saiom—gcn LG™ + X — 0 + )
X f(xi» — 0)do
Z G )1 — @) §ipen L™ + 6 + )f(0) 46 .
Case 1. L isbounded (Assumption B7). Then for large enough n, say n > N,
(4.17) S50 L™ + 0 4 )f(0)d0 < D, iy, f(0)d0 < 7/4.
This, together with (4.12), (4.13), and (4.16) shows that for n > N,
I(n) > G(x*)(1 — a){§ L(y" 4 0 + ¢)f(0) 0 — §p5u[ 146}
> G(xm)(1 — </[4h(c) + 3e]{H(<) + = — 7/4)
= G(x*){h(c) + 7/2},
which contradicts (4.11). Hence y%(x) must be 6(1).
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CASE 2.

lim,,_, inf;, 550 L(0) = A(c®) + e* (Assumption B7").

n—00

If {]y*|} is bounded, the argument goes exactly as in Case 1, with Assumptions
B3 and B4 being used to verify the analogue of (4.17). If {|y*|} is unbounded,
then (4.15) can be assumed to hold. Choose n large enough, say n > N > ¢°,
so that

(4.18) inf ;. 550 LG) > h(c®) + ¢*/2.
Since [y®| > 3n, it follows for || < nthat [y* + @ + ¢°| > n. Hence forn > N,
Soren LG 4 0 4 )f(0) d0 > (A(e") + €%/2) § 910 (0) 40 -

Choosing n large enough and using (4.16) will again result in a contradiction of
(4.11). Hence in all cases y%(x) must be 6(1) and the proof is complete. []
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