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Abstract

In this work, we investigate the outage performance
of beamforming schemes in wireless systems equipped
with multiple transmit and receive antennas. In par-
ticular, we analyze the outage performance of unit
rank beamforming in the presence of finite rate channel
feedback at the transmitter. Further, we present finite
size beamformer codebook constructions which result in
near-optimal outage performance for unit rank beam-
forming. The constructions obtained for the unit rank
beamforming scheme are then extended to higher rank
beamforming schemes with quantized channel informa-
tion. We show that significant performance improve-
ments as well as reduction in decoding complexity can
result from a small number of feedback bits.

1 Introduction

There is an increasing demand for higher data rates
on wireless communication links to support various
kinds of evolving applications. Space time coding, us-
ing multiple antennas at the transmitter with one or
more antennas at the receiver, has gained wide atten-
tion to meet the challenge of increasing the data rates.
Telatar’s work in [1] provided insights into fundamen-
tal limits on communication using multiple transmit-
ter - multiple receiver links while Tarokh et al. [2] did
some of the early work in designing space time codes.

In the analysis of space time code design criteria,
it is assumed that the channel state information at
the receiver (CSIR) is perfect while the channel state
information at the transmitter (CSIT) is limited to
only channel statistics (actual channel realization is
unknown to the transmitter). CSIR requires training
symbols for channel estimation while CSIT requires
resources in the form of feedback from the receiver to
the transmitter. It has been observed that significant
performance gains, at much lower complexity at times,
can be achieved in the presence of CSIT. Telatar [1]
analyzed perfect CSIT while Narula et al. [3] analyzed
optimal schemes with imperfect CSIT, with multiple
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transmit and a single receive antenna. Power con-
trol algorithms, which minimize probability of out-
age or maximize mutual information, were designed
in [4,5]. The performance of beamforming with dif-
ferent kinds of structure on feedback information, like
channel phases or channel amplitude, was analyzed in
[6,7].

In practice, the capacity of the feedback channel is
limited to a few bytes and hence it is important to an-
alyze the performance of transmission schemes with
constraints on the feedback channel capacity. Fun-
damental limits on the outage performance of beam-
forming schemes with finite rate feedback for single
receive antenna systems were derived in [8] and good
constructions of beamformers are provided in [8,9].

In this work, we analyze the outage performance
of beamforming schemes with multiple receive an-
tennas, while the multiple transmit antenna receiver
is equipped with finite rate feedback channel from
the receiver. In particular, we analyze two different
transmission schemes for such a system. First, we
present a unit rank beamforming scheme which ap-
proaches transmission along the dominant eigenvec-
tor of the channel as the number of feedback bits is
increased. For this case, we present a lower bound
on outage probability whose proof is based on the
geometrical structure inherent in the problem. Sec-
ond, we present extensions to higher rank beamform-
ing schemes with finite feedback which mimic spatial
water-filling scheme proposed by Telatar [1].

The rest of the paper is organized as follows. The
system model is introduced in Section 2. In Section 3,
we first analyze the performance of unit rank beam-
forming with quantized feedback with multiple trans-
mit and receive antennas, and then present construc-
tions for finite size beamformer codebooks. We study
extensions of codebook constructions to higher rank
beamforming schemes in Section 4 while we conclude
in Section 5.



2 System Model

Consider a system with ¢ transmit antennas and
r receive antennas. Let the r x n matrix H denote
the channel between the transmit and receive antenna
arrays. It is assumed that the channel fade statistics
are quasi-static, i.e., the channel realization stays fixed
for the duration of a frame denoted by . Let h; ;, the
i, jth element of H, denote the channel coefficient from
the jth transmit antenna to the ith receive antenna for
each ¢ and j. The amplitude of h; ; is assumed to be
Rayleigh distributed with variance 1 while the phase
of h; ; is uniformly distributed between 0 and 27 for
each 4, j. Further, the elements of H are i.i.d. Let X
denote the n xI code matrix transmitted from transmit
array while Y denotes the r x [ matrix received at the
receive array when X is transmitted. Let n, a r x [
matrix, denote the additive noise at the receiver which
is assumed to be circular symmetric complex Gaussian
with zero mean and variance 1 per complex dimension.
With this notation, we can write the samples of the
received signal Y as

Y=HX+n. (1)

We assume that the channel realization is known per-
fectly to the receiver. We also assume that a feedback
channel exists from the receiver to the transmitter,
with a capacity of B bits per frame which is error-free.
Further, suppose that the target rate of transmission
is R bits/sec/Hz for every frame and the transmitter
is constrained in power to P. We assume short term
power constraint thus precluding power control mech-
anism for this analysis [10].

The transmission strategy that will be used at the
transmitter is fixed to be beamforming, while the per-
formance metric is outage probability.

3 Unit Rank Beamforming
3.1 Performance analysis

We will first analyze the performance of unit rank
beamforming in the presence of quantized feedback
at the transmitter. Under unit rank beamforming,
the transmitter uses a single direction to transmit
all the available power, resulting in scalar encoding
and hence, scalar decoding at the receiver. With unit
rank beamforming, the transmitted codeword X can
be written as X = zC, z € C, C € C', where z is
the information bearing scalar while C' is the beam-
forming vector. Now, corresponding to B feedback
bits, we have a beamformer codebook C comprising of
N = 2B vectors given by {Cy,Cs,..,Cn}. It can be
shown [11] that the following quantizer minimizes the
outage probability for unit rank beamforming.

Lemma 1 For any beamformer codebook C =
{C1,C4,..,Cn}, the outage probability for unit rank
beamforming is minimized by choosing for each chan-
nel realization H, the vector C; € C which minimizes
[(H, C;)||2, where (u,v) = uv' and ||.||2 is the s norm
on Ct.

Using such a quantizer, and exploiting the geometry
associated with the unit rank beamforming methodol-
ogy, we arrive at a lower bound on the outage probabil-
ity for unit rank beamforming in the case of multiple
transmit and receive antennas [11]. The outage lower
bound assumes the following form for the case of ¢
transmit antennas and 2 receive antennas. The proof
methodology used can be extended to any number of
receive antennas.

Theorem 1 Consider a wireless communication sys-
tem with t transmit antennas and 2 receive antennas
operating with a finite size beamformer codebook of size
N = 2B where B is the number of feedback bits avail-
able for each channel realization. Assuming o quasi-
static flat fading channel with Rayleigh fading statis-
tics between each pair of transmit element and receive
element, the outage probability of such a system oper-
ating at SNR P and transmission rate R is bounded
below as
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We will now discuss the construction of beamformer
codebooks whose performance approaches the perfor-
mance predicted by the above theorem.

3.2 Unit rank beamformer construction

In this section, we heuristically argue that the
beamformer codebook construction criterion for unit
rank beamforming with multiple transmit and receive
antennas should be similar to design criterion for good
beamformer codebooks with multiple transmitter and
a single receive antenna presented in [8]. Our argu-
ments are further justified by our subspace packing



based constructions, first proposed for a MISO sys-
tem [8], which result in excellent performance even in
MIMO systems with unit rank beamforming.

Given a beamformer codebook C = Ci,Cs,..Cy
and a channel realization H, the quantization rule
(from Lemma 1) picks the vector C; which maximizes
the matrix-vector product of the channel with the ele-
ments of C. This quantization rule bears resemblance
with the well known Rayleigh quotient in matrix the-
ory [12]. In particular, if V; is a column vector with
unit norm, then ||HV;||2 is maximized (and equals the
maximum eigenvalue of H) when V; is given by the
principal eigenvector of HH. In our case, the quan-
tization rule is essentially performing the equivalent
maximization over the constrained set of the finite
sized beamformer codebook. As a result, the quantiza-
tion rule picks the best approximation of the principal
eigenvector of H'H in the beamformer codebook. Fur-
ther, as N (number of vectors in C) gets very large, a
degenerate beamformer codebook spans all the avail-
able directions equally well and the quantization rule
does in fact result in the principal eigenvector.

It can be shown that if (the column vector) V,, is
the principal eigenvector of HH, then

arg max [(V,], C;)| = arg max ||(H, Ci)[|>. (5)

Hence, for the sake of beamformer construction and
the quantization rule, the channel is effectively re-
duced a vector channel characterized by its principal
eigenvector. For vector channels, we have shown [8]
that good beamformer codebooks result from the solu-
tion to the subspace packings problem. Following the
above arguments, the beamformer design criterion for
the MISO channel should also extend to the MIMO
channel when employing unit rank beamforming. In
particular the beamformer design criterion is given by
the following proposition [8].

Proposition 1 (Design criterion) The design cri-
terion for a good beamformer codebook C comprising
of N beamforming vectors for t transmit antennas is
given by

min - max  [(C;, Cj)l. (6)
ceC x .. x C v<iBin
N

The above design criterion suggests that the design

of good beamformer codebooks for MIMO systems de-
pends only on the number of transmit antennas and is
independent of the number of receive antennas. How-
ever, note that the actual performance of the resulting
beamformer codebooks depends both on the number

of the transmit and receive antennas. For instance,
the diversity gain obtained with sufficient number of
beamforming vectors will be ¢ x r which depends both
on the number of receive and transmit antennas.

We have also shown that under certain condi-
tions [8], the above design criterion is equivalent to
the design criterion of unitary space time constella-
tions for non-coherent constellations. Hence, all the
constructions available for unitary constellation design
can also be used for the beamformer design problem
with the quantization metric given by Lemma 1.

Figure 1 shows the performance of the quantized
unit rank beamformers with four transmit anten-
nas and two receive antennas transmitting at R =
4bits/sec/Hz. The performances of space-time coding
scheme which does not use any channel state informa-
tion as well as the spatial water-filling solution which
requires complete channels state information are also
given for comparison. With 6 bits of feedback infor-
mation, we see a gain of about 0.8 dB for the unit
rank beamforming scheme over the space time cod-
ing scheme at an outage performance of 1072. The
gains increase further as the number of feedback bits
is increased. The performance gains are in addition
to significant reduction in complexity for the beam-
forming scheme over the space time coding as already
explained. The performance of dominant eigenvector
beamforming which is the limit of the unit rank beam-
forming as the number of beamforming vectors gets
large is also given in Figure 1.

In the next section, we will investigate spatial
water-filling schemes (essentially higher rank beam-
forming schemes) when finite rate feedback is available
at the transmitter.

4 Generalized Beamforming with Fi-
nite Rate Feedback

Let us suppose that the transmitter is equipped
with ¢ transmit antennas while the receiver is equipped
with two receive antennas. Let H correspond to a sam-
ple channel realization. Further, we assume the exis-
tence of a feedback channel with B bits. We adopt
a decoupled approach to the quantization problem
where the quantizers used for the eigenvectors and the
eigenvalues are independent from each other. Such a
separation imposes certain structure on the quantizer
design, which can reduce the complexity of implemen-
tation of the quantizer in practice. Let V; and V5
correspond to the eigenvectors of HTH, while \; and
Ao are the corresponding eigenvalues with A\; > As.
Let P, and P, denote the power levels determined by
the water-filling algorithm [1] for a total power of P.

First of all, we argue that it is beneficial to quantize



Four transmit antennas, Two receive antennas, R=2 bits/sec/Hz
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Figure 1: Comparison of performance of space time
codes with various unit rank beamforming schemes for
4 transmit and 2 receive antenna systems transmitting
at R=2 bits/sec/Hz.

the power levels P; and P, instead of the eigenval-
ues. Indeed, the water-filling algorithm requires the
absolute values of the eigenvalues and hence partial
information such as the ratio of the eigenvalues, for
example, will not suffice. On the other hand, consider
the situation where the water-filling algorithm is per-
formed at the receiver and only the power levels are
quantized. In this case, it suffices to quantize the ratio
of the power levels % since the total power available
(Py + P, = P) is known at the transmitter. Further
savings in feedback bits can be obtained by noting that
P, > P, so that p = % always lies between 0 and 1.

The quantizer for the power distribution vector is
given in Table 1. Note that we set P» = pP;, where
0 < p<1, with P > 0.5P, where 2 bits are used to
describe p. We essentially exploit the knowledge that
the eigenvalue corresponding to the principal eigen-
vector will get at least half of the available power for
transmission. We then allocate the remaining half
of the transmission power based on the strength of
the second eigenvalue in comparison with the first
eigenvalue. We use a uniform quantizer for ratio of
the eigenvalues as well as the remaining transmission
power.

We will now discuss the quantization of the two
active eigenvectors of HTH. Consider a finite size
beamformer codebook C of size N constructed as dis-
cussed in the previous section. We can first apply the
quantization rule discussed in the last section to de-
termine the best approximation to the principal eigen-
vector among the available vectors in C. Note that the

Eigenvalue ratio | (P, P2) | p
0.753A <1 (%,%) }
0.5 < A—'; <0.75 (E’ §) 2
025<32<05 | (3,4) |
0< 42 <025 (1,0) | 0

Table 1: Quantizer used for the power allocation vec-
tor in the case of 4 transmit antennas and 2 receive
antennas.

specification of this vector at the transmitter requires
log, (V) feedback bits. However, we can gain substan-
tially in the specification of the second eigenvector by
noting the following useful property.

Note that the eigenvectors of HTH lie in C*. Fur-
ther, the eigenvectors are all mutually orthogonal.
Hence, the specification of the first eigenvector deter-
mines the subspace which contains the second active
eigenvector. In particular, the second eigenvector lies
in the ¢t — 1 dimensional subspace which is orthogonal
to the principal eigenvector. Hence, we can improve
the description of the second vector significantly by
constructing a second codebook in ¢ — 1 dimensions
instead of the original ¢ dimensional space.

However, it is not desirable to modify the composi-
tion of the codebook of the second eigenvector based
on the first eigenvector, since the orthogonal subspace
of the second vector depends on the principal eigenvec-
tor. We present an algorithm where both the beam-
former codebooks are independent of the actual chan-
nel realization.

4.1 Algorithm for eigenvector quantiza-
tion

Let C; be a beamformer codebook in C* comprising
of N = 2Pt vectors. Similarly, let Cy be a beamformer
codebook inCt~! comprising of N, = 252 vectors. Let
H be the channel realization, while V; and V; are the
active eigenvectors of HTH.

We first quantize V7 in C; using the quantization
rule given by Lemma 1. In particular, we pick C} € C;
(note that the superscript corresponds to the code-
book index) such that |[(H, C})||2 is the maximum for
all the vectors in C;. Without loss of generality, we
assume that C1 maximizes the inner product with H
among all the vectors in C;.

Now, consider the vectors in C2. We construct a
codebook C4 from Cy such that C} lies in C'. Hence,
C, is an embedding of C in C:~!. By construction,
C} is such that the first co-ordinate of all the vectors
is set to zero. Hence, the vectors in C} lie in the or-



thogonal subspace of the axis [1,0, .., 0] of C*. Further,
the embedding rule of C} into C» is that the first co-
ordinate of C} is dropped to obtain the corresponding
vector in Cy. Hence, if CZ = [0, ¢y, ¢2, ..¢;—1], then the
corresponding C'i2 in Cs is given by [c1, ¢2, -.Ct—1].

Now, we make use of the property that Cj is in
the orthogonal subspace of e; = [1,0,...0] in C'. In
particular, we rotate the vectors in C; such that C}
coincides with e;. Let A be a t X ¢t unitary matrix,
constructed in a predetermined fashion from C{ such
that A”C’l1 = e;. Now, we rotate the channel matrix
H by the same matrix A before we quantize the second
vector. Equivalently, we rotate the second vector V5
by the matrix A to give VJ = AtV,. Now, we quantize
Vy in the second beamformer codebook C22'. Suppose
C? is the vector in C3 which maximizes the inner
product with V. Then, the transmitter gets the label
k and the transmitter uses A(C%)T for transmission,
where the superscript T' stands for matrix transpose
operation. Note that A is a function of C] only and
since the transmitter has information about C} via
feedback channel, the matrix A can be reproduced at
the transmitter. Hence, both the resulting codebooks,
C; and C» are independent of the actual channel real-
ization.

The performance of the a rank two beamformer us-
ing 2 and 3 bit quantizers for the eigenvectors, is shown
in Figure 2. Note that the performance gains can be
improved further with higher number of feedback bits.

5 Conclusion

In this paper, we have presented performance anal-
ysis as well as constructions of finite size beamformer
codebooks with multiple transmit and receive antenna
systems. Starting with more regular and structured
case of unit rank beamforming schemes, we extended
our constructions to the more general case of higher
rank beamforming schemes which are known to be op-
timal for MIMO systems [1].
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