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Abstract: Three-dimensional spacetime with a negative cosmological constant has proven

to be a remarkably fertile ground for the study of gravity and higher spin fields. The theory

is topological and, since there are no propagating field degrees of freedom, the asymptotic

symmetries become all the more crucial. For pure (2+1) gravity they consist of two copies

of the Virasoro algebra. There exists a black hole which may be endowed with all the cor-

responding charges. The pure (2+1) gravity theory may be reformulated in terms of two

Chern-Simons connections for sl (2,R). This permits an immediate generalization which

may be interpreted as containing gravity and a finite number of higher spin fields. The

generalization is achieved by replacing sl (2,R) by sl (3,R) or, more generally, by sl (N,R).

The asymptotic symmetries are then two copies of the so-called WN algebra, which contains

the Virasoro algebra as a subalgebra. The question then arises as to whether there exists a

generalization of the standard pure gravity (2+1) black hole which would be endowed with

all the WN charges. Since the generalized Chern-Simons theory does not admit a direct

metric interpretation, one must define the black hole in Euclidean spacetime through its

thermal properties, and then continue to Lorentzian spacetime. The original pioneering

proposal of a black hole along this line for N = 3 turns out, as shown in this paper, to

actually belong to the so called “diagonal embedding” of sl (2,R) in sl (3,R), and it is

therefore endowed with charges of lower rather than higher spins. In contradistinction, we

exhibit herein the most general black hole which belongs to the “principal embedding”.

It is endowed with higher spin charges, and possesses two copies of W3 as its asymptotic

symmetries. The most general diagonal embedding black hole is studied in detail as well,
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in a way in which its lower spin charges are clearly displayed. The extension to N > 3 is

also discussed. A general formula for the entropy of a generalized black hole is obtained

in terms of the on-shell holonomies. The relationship between the asymptotic symmetries

and the chemical potentials is exhibited, and the equivalence of the different thermody-

namical ensembles is discussed. A self-contained account of the background necessary to

substantiate the claims made in the paper is included.
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“The field equations and the boundary conditions are inextricably connected

and the latter can in no way be considered less important than the former” [1].

1 Introduction

Three-dimensional spacetime has proven to be a remarkably fertile ground for the study

of gravity and higher spin fields. In spite of the fact that the gravitational field has

no propagating degrees of freedom its asymptotic structure is extraordinarily rich, much

more so than that of its (3+1) counterpart. In the (2+1) case the symmetry algebra

at space-like infinity of asymptotically anti-de Sitter spaces consists of two copies of the

infinite-dimensional Virasoro algebra [2]. On the other hand, in contradistinction, in (3+1)

dimensions the asymptotic algebra is only so (3, 2) [3, 4].

For a gauge theory, the asymptotic symmetries are of fundamental importance. They

are the physical symmetries of the theory. These are symmetries that alter the state of

the system when they act on it, and therefore have a non-trivial physical effect. They

are of the same form as ordinary (“proper”) gauge transformations, but differ from them

in that they do not became the identity at infinity, and have non-vanishing generators

(“global charges”) [5, 6]. The asymptotic symmetries are invariant under proper gauge

transformations, and they subsist after the physically irrelevant gauge freedom has been

eliminated, for example by means of gauge conditions.

A given solution of the equations of motion is in general not invariant under all the

asymptotic symmetries, rather, it is covariant under them, i.e. under the action of an

asymptotic symmetry, a solution is mapped onto another solution which is generically phys-

ically different from the original one.

When one formulates the theory in terms of an action principle, the boundary condi-

tions at infinity, which by construction are left invariant by the asymptotic symmetries,

must be given once and for all. They are not only obeyed by the solutions of the equations

of motion, but also hold “off-shell” because they are part of the definition of the function

space on which the action functional is defined. Inequivalent boundary conditions yield

physically distinct theories, even if the functional form of the action is the same.

The crucial role of the asymptotic symmetries becomes even more dramatic in the case

of a topological theory such as (2+1) gravity, because then there are no local bulk degrees
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of freedom, and the entire dynamical content is captured by holonomies and boundary

degrees of freedom.

In view of the above, it was natural to investigate the asymptotic symmetry algebra

in generalizations of (2+1) gravity which included the (2+1) analog of “higher spins”.1

These generalizations were constructed starting from the reformulation of the standard

(2+1) Einstein theory in terms of two Chern-Simons connections for sl (2,R) [7, 8], by

replacing sl (2,R) by a “higher spin algebra” that contained it [9–13]. This algebra can be

finite-dimensional (sl (N,R)) or infinite-dimensional (hs (λ)). It was concluded that the

asymptotic symmetry algebra is then enlarged from two copies of the Virasoro algebra to

two copies of the so-called W -algebras each of which has one Virasoro algebra embedded

in it [14–16]. The enlargement of the gauge algebra preserves the fundamental simplic-

ity inherent in the absence of propagating degrees of freedom, i.e., the theories remain

topological.

When the Chern-Simons gauge algebra is enlarged to a W -algebra, an interesting fea-

ture arises, which is that there are inequivalent non-trivial embeddings of the gravitational

subalgebra sl(2,R)⊕ sl(2,R) in the Chern-Simons gauge algebra.2 This phenomenon was

described in the context of Hamiltonian reduction, independently of anti-de Sitter grav-

ity [17–21]. Its relevance in the higher spin context was discussed in [22–27]. The inequiva-

lent embeddings lead to different theories at infinity with different asymptotic symmetries.

What selects the embedding are the asymptotic conditions.

The existence of inequivalent embeddings appears in the present context already in

the spin-three case, where the Chern-Simon gauge algebra is sl(3,R) ⊕ sl(3,R). For this

reason, we shall consider for definiteness this simplest case. We will indicate afterwards

how our analysis extends to theories containing also spins > 3.

For sl(3,R), there are just two inequivalent nontrivial embeddings of sl(2,R): (i) the

“principal embedding”, corresponding to the decomposition sl(3,R) = D1 ⊕ D2 under

the adjoint action of sl(2,R), where Ds is the sl(2,R) spin-s representation; and (ii) the

“diagonal embedding”, corresponding to the decomposition sl(3,R) = D1 ⊕ 2D 1
2
⊕ D0.

Only the principal embedding defines a higher-spin theory since the diagonal embedding

1We have written “higher spins” with quotation marks because the notion of “spin” needs to be made

precise. We are dealing with massless fields. In the familiar case of (3 + 1)-dimensional spacetime, “spin”

really means “helicity” and labels the representation of the little group SO(2) of rotations around the

spatial momentum vector. In 2 + 1 dimensions there is no little group, and hence the concept of helicity is

empty, so what is meant by spin here is different. It is the following. The fields fall into finite-dimensional

representations of sl(2,R), which is a subalgebra of the algebra out of which the Chern-Simons theory is

built. These representations are characterized by a quantum number s, the “sl(2,R)-spin”, which can be

an integer or a half-integer. There is another notion of spin associated with the conformal symmetry at

infinity, which is the conformal weight J . The two notions are related through J = s + 1, as we review in

appendix A.3. Unless otherwise specified when we use the term “spin” below, it will mean the conformal

weight J . With this understanding, we shall dispense with the quotation marks when referring to spin from

now on. As there are two copies of sl(2,R) and two copies of the Virasoro algebra, one can in fact introduce

a spin for each copy. Note that pure gravity, or gravity with “lower spin fields” have only representations

with s ≤ 1, i.e. J ≤ 2. Higher spins means s > 1 or J > 2.
2Two embeddings are inequivalent if the matrices representing the sl(2,R) algebra generators in each

embedding are not related by a similarity transformation.
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contains conformal spin smaller than or equal to 2. The asymptotic symmetry algebra

corresponding to the principal embedding is denoted as W3, while its diagonal embedding

counterpart is denoted as W
(2)
3 .

Another important aspect of the richness of (2+1) gravity is the existence of the (2+1)

black hole [28, 29]. In the form in which the solution is normally exhibited, either in the

metric formalism or in the Chern-Simons one, it contains only two charges, the mass and

the angular momentum, which are related to the Fourier zero modes L±0 of the two Virasoro

algebras. One may say that this is the black hole in the “rest frame”. One may obtain

from it the most general black hole endowed with all the charges by acting on the black

hole at rest with a generic element of the asymptotic symmetry algebra. This is just the

analog of setting, say, a (3+1) Kerr black hole in motion by applying to it a boost, and

thus endowing it with linear momentum in addition to mass and angular momentum. The

moving black hole is of course physically different from the one at rest, which illustrates

the fact that the action of the asymptotic symmetry algebra changes the physical state.

The question naturally arises as to whether there exists a generalized (2+1) black hole

which with is capable of carrying “hair” stemming from the new charges that are present in

the W -algebras in addition to the gravitational charges stemming for the Virasoro algebras.

A generalized sl(3,R)-black hole was first proposed in the pioneering work [22, 23] that

initiated the study of generalized (2+1) black holes. It was thought that the black hole in

refs. [22, 23] was associated with the principal embedding, that its asymptotic symmetry

algebra was W3, and that hence it was endowed with charges of spin 2 and 3. However this

interpretation leads to conflicting results when its entropy was evaluated [22, 23, 30–42, 68].

The entropy paradox is resolved when one realizes that, as shown in this paper, the black

hole in refs. [22, 23] is actually a special case of a W
(2)
3 black hole and it is therefore

endowed, in addition to the gravitational charge of spin 2, with lower spin charges 1 and

3/2 rather than with the higher spin 3 charge. The black hole in refs. [22, 23] turns out to

be a lower spin black hole in disguise because the chemical potentials were introduced in a

non canonical form in its derivation.

The issue of finding a higher spin black hole therefore remained an open one. It

is settled herein: we present the most general black hole associated with the principal

embedding. It possesses two copies of W3 as its asymptotic symmetry algebra, and is

endowed with charges of spin 2 and 3. In addition we present the most general black

hole associated with the diagonal embedding, of which the black hole in refs. [22, 23] is a

particular case.

The plan of the paper is the following: section 2 reviews the Chern-Simons formulation

of the pure gravity (2+1) black hole. It is discussed in particular how the black hole is

defined through its thermal properties, and without reference to a metric, which requires

to consider the Euclidean formulation as the more fundamental one. This point of view is

optional for the pure gravity (2+1) black hole, but it is mandatory for the generalizations

considered herein because then the metric does not appear naturally. A general formula for

the entropy of the black hole is obtained in terms of the on-shell holonomies. The formula

is first derived for sl(2,R) and then extended to sl(N,R). Next, section 3 presents the

principal embedding W3 black hole, emphasizing the boundary conditions that define it

– 3 –
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and showing that through them, the black hole is endowed with spin-2 and spin-3 charges.

Its thermodynamics is thoroughly studied. Section 4 is devoted to the corresponding

analysis for the diagonal embedding W
(2)
3 black hole. The quantum mechanical difficulties

of the field theory associated with the diagonal embedding [26, 27] are not an obstacle for

this semiclassical study, which we deem necessary for dealing thoroughly with the problem

at hand. Section 5 outlines how the analysis for N = 3 is extended to higher N . Finally

section 6 is devoted to concluding remarks. Two appendices are included. The first one

provides the necessary background to make the analysis of the paper self-contained, whereas

the second one discusses the relationship with previous analysis of generalized (2+1) black

holes. Some of the main properties of the pure gravity black hole and its generalizations

are compared and contrasted in table 1.

Although subjects such as holography and conjectured CFT dualities are not dealt

with in the present paper, it is hoped that the self-contained discussion presented herein

may be useful as a beacon for incursions into those territories.

2 Chern-Simons formulation of (2+1) pure gravity

2.1 Action and equations of motion

One may reformulate the standard gravitation theory in 2+1 spacetime dimensions as a

Chern-Simons theory by using, instead of the metric variables, two independent connections

A± for sl (2,R) [7, 8]. The correspondence between the connections and metric variables is

A± =

(
ωa ± ea

`

)
X±a , (2.1)

where ωa and ea are the spin connection and the dreibein of the metric theory. We will

realize the sl(2,R)-generators X+
a and X−a by the same 2 × 2 matrices. One convenient

choice for both X+
a and X−a is

L−1 =

(
0 0

1 0

)
; L0 =

(
−1

2 0

0 1
2

)
; L1 =

(
0 −1

0 0

)
, (2.2)

which obeys

[Li, Lj ] = (i− j)Li+j , i, j = −1, 0, 1 . (2.3)

More information on our conventions is given in appendix A.1.

The action for pure gravity in the Chern-Simons formulation, which differs from the

standard Hilbert action by a boundary term, is given by

I = ICS

[
A+
]
− ICS

[
A−
]
, (2.4)

where

ICS

[
A±
]

=
k2

4π

ˆ
tr

[
A± ∧ dA± +

2

3
A± ∧A± ∧A±

]
. (2.5)

Here, k2 is related to the cosmological constant Λ = − 1
`2

and the Newton constant G

through the relation k2 = k = `
4G .
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Pure gravity (2+1) black hole Generalized (2+1) black holes

Principal embedding Diagonal embedding

Formulation Metric Chern-Simons Only Chern-Simons Only Chern-Simons

Lorentzian field Spacetime metric Two connections Two connections Two connections

ds2L = gLµνdx
µdxν , A± = A±t dt A± = A±t dt A± = A±t dt

signature (−,+,+) +A±r dr +A±ϕ dϕ +A±r dr +A±ϕ dϕ +A±r dr +A±ϕ dϕ

for sl (2,R) for sl (3,R) for sl (3,R)

Euclidean field Spacetime metric One connection One connection One connection

ds2E = gEµνdx
µdxν A = Aτdτ A = Aτdτ A = Aτdτ

signature (+,+,+) +Ardr +Aϕdϕ +Ardr +Aϕdϕ +Ardr +Aϕdϕ

for sl (2,C) for sl (3,C) for sl (3,C)

Relation between

Euclidean and ds2E = ds2L A = A+ A = A+ A = A+

Lorentzian fields, −A† = A− −A† = A− −A† = A−

with τ = it

Topology of R2 × S1 R2 × S1 R2 × S1 R2 × S1

Euclidean (solid torus) (solid torus) (solid torus) (solid torus)

spacetime

Asymptotic

symmetries Two Virasoro Two Virasoro Two W3 Two W
(2)
3

of Lorentzian algebras algebras algebras algebras

field

Black hole charges

in the “rest frame” L±0 L±0 L±0 ,W
±
0 L̂±0 , ψ

±
0[+]

, ψ±
0[−]

,U±0
and their spin 2 spin 2 spins 2, 3 spins 2, 3

2
, 3

2
, 1

conformal spin

Black hole M = 1
`

(
L+

0 + L−0
)

M = 1
`

(
L+

0 + L−0
)

M = 1
`

(
L+

0 + L−0
)

M = 1
`

(
L̂+

0 + L̂−0
)

mass and inverse β = NLor (∞) β = `
4π

(
ξ+
0 + ξ−0

)
β = `

4π

(
ξ+
0 + ξ−0

)
β = `

4π

(
ξ̂+
0 + ξ̂−0

)
temperature

Chemical βµJLor
=Nϕ

Lor(∞) βµJLor
=− 1

4π

(
ξ+
0 −ξ

−
0

)
βµJLor

=− 1
4π

(
ξ+
0 −ξ

−
0

)
βµJLor

=− 1
4π

(
ξ̂+
0 −ξ̂

−
0

)
potentials in the βµW± = 1

2π
η±0 βµ

ψ±
[a]

= 1
2π
ϑ±

[a]0

“rest frame” βµU± = 1
2π
ν±0

Black hole
[

Θ
8πG

´
r+

√
gϕϕdϕ

]
on-shell

− k2
π

Im
[
tr
(´
r+
Aτdτ − k3

π
Im
[
tr
(´
r+
Aτdτ − k3

π
Im
[
tr
(´
r+
Aτdτ

entropy ×
´
r+
Aϕdϕ

)]
on-shell

×
´
r+
Aϕdϕ

)]
on-shell

×
´
r+
Aϕdϕ

)]
on-shell

Regularity No conical Trivial holonomy Trivial holonomy Trivial holonomy

condition on the singularity for contractible for contractible for contractible

Euclidean τ cycle τ cycle τ cycle

horizon Θon-shell =2π e

´
r+
Aτdτ

∣∣∣∣
on-shell

=−1 e

´
r+
Aτdτ

∣∣∣∣
on-shell

=1 e

´
r+
Aτdτ

∣∣∣∣
on-shell

=1

Table 1. Pure gravity black hole and its generalizations compared and contrasted.

The two copies of sl (2,R) take the role of the spacetime diffeomorphisms plus the local

rotations of the dreibein. It is quite interesting that actually the transformation freedom

of the Chern-Simons theory is larger than the one of the metric theory because, by bona
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fide SL (2,R)× SL (2,R) point dependent transformations one may map a non-degenerate

metric onto a degenerate one without causing any problem. This possibility is indeed of

great practical use, and we will employ it below.

The equations of motion state that the curvature vanishes,

F± = dA± +A± ∧A± = 0 . (2.6)

This is the statement in the Chern-Simons language that there are no propagating degrees

of freedom. In spite of this fact, and even without topological subtleties, the theory is

non-trivial because of the asymptotic structure. There are degrees of freedom at infinity,

the dynamics of which is governed by the asymptotic symmetry algebra. As it will be

discussed immediately below, only “proper” gauge transformations, i.e. those which become

the identity at spatial infinity are bona fide gauge transformations that do not change the

physical state. On the other hand, gauge transformations which approach at infinity an

element of the asymptotic symmetry algebra (improper gauge transformations) do change

the physical state.

One may rewrite the action (2.4), (2.5) in Hamiltonian form as

IHam = IHam

[
A+
]
− IHam

[
A−
]
, (2.7)

with

IHam

[
A±
]

= − k2

2π

ˆ
dtdx1dx2tr

(
A±1 Ȧ

±
2 −A

±
t G
±
)

+B±∞ , (2.8)

G± = F±12 = ∂1A
±
2 − ∂2A

±
1 +

[
A±1 , A

±
2

]
. (2.9)

Equations (2.7), (2.8), (2.9) show that A±1 and A±2 are canonically conjugate, and G± are

the generators of proper gauge transformations which, “on-shell” are constrained to vanish.

The boundary terms B±∞ must be added because one must allow for “slowly decreasing”

field variations at infinity in order for the full asymptotic symmetry algebra to be able to

act. The variation of B±∞ cancels the nonvanishing surface terms that one picks up through

integration by parts in the variational principle. The form of B±∞ will be given in the next

subsection.

2.2 Asymptotic symmetries

2.2.1 Boundary conditions and the most general permissible motion

The procedure for establishing the boundary conditions for an action principle is one of trial

and error. One starts with an action that, when extremized, gives the desired equations of

motion up to “surface terms” at spatial infinity. To analyze the surface terms at infinity,

one needs to impose boundary conditions. A necessary requirement for the boundary

conditions is that the “off-shell” fields admitted in the action principle should include all

“reasonable” solutions of the field equations. Now, in a gauge theory there are constraints

among the canonical variables (p, q), which are the generators of the local gauge symmetries

and Lagrange multipliers for them. The meaning of the Lagrange multipliers is that they

are the parameters per unit of time of a gauge transformation during the time evolution

– 6 –



J
H
E
P
0
5
(
2
0
1
4
)
0
3
1

of the system. Therefore, one first focuses on the solutions of the constraint equations,

and from them one guesses, with the criterion just given, their boundary conditions. Next

one obtains the boundary conditions for the Lagrange multipliers by demanding that the

boundary conditions for (p, q) should be preserved in time.

The Lagrange multipliers are then divided in two classes: if their value at large spatial

distances is such that the surface term at infinity picked after integration by parts in

the variation of the action vanishes, the corresponding gauge transformation is termed

“proper”, and it corresponds to a bona fide gauge transformation that does not change the

physical state. This normally happens when the Lagrange multipliers vanish at infinity.

On the other hand, when the Lagrange multipliers do not vanish at infinity, their value

corresponds to the parameter, per unit of time, of a “global symmetry transformation”

which is included in the evolution of the system, and which does change the physical

state. The coefficient of the asymptotic value of the Lagrange multiplier in the variation

of the Hamiltonian action is, by definition, the negative of the variation of the charge

that generates the asymptotic symmetry [5] (see also [6]). It should be emphasized that

the charges which are the generators of the asymptotic symmetries are what is called “a

function of state”, that is, they are defined in terms of the canonical variables on a t = const

surface, and they do not depend on how one continues the t = const surface into the future.

In our particular case, the evolution from the surface x0 = t to the surface x0 = t + δt is

given by an infinitesimal gauge transformation with gauge parameter Atδt. Therefore, at

any given time, the definition of the charges and their value is independent of At, it only

depends on the canonical variables Ar and Aϕ.

It has been shown [43] that, in the Chern-Simons formulation one can recast the (off-

shell) boundary conditions on a t = const surface, obtained in the metric formulation in [2],

in the form

A±ϕ (r, ϕ) −→
r→∞

L±1 −
2π

k
L± (r, ϕ)L∓1 , (2.10)

with

L± (r, ϕ) −→
r→∞

L± (ϕ) +O

(
1

r

)
, (2.11)

and

A±r −→r→∞ O

(
1

r

)
. (2.12)

At spatial infinity, the most general time evolution of the spatial parts of the con-

nections A±r , A
±
ϕ is an improper gauge transformation with gauge parameter per unit

of time equal to A±t . The most general A±t which preserves the boundary condi-

tions (2.10), (2.11), (2.12) is given by [44]

A±t −→r→∞ ±
(
ξ± (r, ϕ)

(
L±1 −

2π

k
L± (r, ϕ)L∓1

)
∓ ξ′± (r, ϕ)L0 +

1

2
ξ′′± (r, ϕ)L∓1

)
, (2.13)

where

ξ± (r, ϕ) −→
r→∞

ξ± (ϕ) +O

(
1

r

)
, (2.14)
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and the primes are derivatives with respect to ϕ. Under this asymptotic symmetry trans-

formation L± evolve as

L̇± = ±
(
ξ±L±′ + 2L±ξ′± −

k

4π
ξ′′′±

)
. (2.15)

The boundary conditions (2.10), (2.11), (2.12) hold on all slices t = const. As one

evolves in time, the functions A±t can be taken at will within the class (2.13), (2.14)

without spoiling the symmetry, i.e., the parameters ξ±(t, r, ϕ) can be arbitrary functions

of time provided (2.14) holds at each t.

Usually one takes ξ± to tend to unity in (2.14) [14, 15, 43, 45]. This particular choice of

the freedom at infinity has the useful property that the equations for the Virasoro generators

reduce at the boundary to the chiral equations L̇± = ±L±′, implying L± = L±(x±). With

that choice, one finds furthermore A±ϕ = ±A±t , i.e., A±∓ = 0. Even though the analysis

of the symmetries can be carried through with this convenient and permissible choice of

the Lagrange multipliers, it must be kept in mind, however, that this is only a particular

choice of the global transformation at infinity included in the evolution of the system. It

does not include the most general permissible motion.

2.2.2 Virasoro charges

The boundary terms B±∞ appearing in the action (2.8) are determined by the requirement

that the action should have well defined functional derivatives with respect to Ar and Aϕ
when the asymptotic charges L± (ϕ) are varied and At includes the most general asymptotic

symmetry [5]. This gives

B±∞ [ξ] = −
ˆ
Q±[ξ±]dt , (2.16)

where

Q±[ξ±] = ±
ˆ
r→∞

ξ± (ϕ)L± (ϕ) dϕ. (2.17)

If ξ± and L± are expanded in Fourier modes,

L± =
1

2π

∑
n

L±n einϕ, (2.18)

ξ± =
1

2π

∑
n

ξ±n e
inϕ, (2.19)

one finds, by expressing the asymptotic part of the commutator of two improper gauge

transformations in terms of the asymptotic parts of those two transformations, that the

L±n obey, in terms of the Poisson bracket, the Virasoro algebra with the classical central

charge c = 6k = 3`/2G,

i {Lm,Ln} = (m− n)Lm+n +
k

2
m3δm+n,0. (2.20)

These L±n ’s derived along Chern-Simons lines coincide with the Virasoro generators found

in the metric formulation [2] (see also formula (A.63) of appendix A.2 in this context).
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For each of the two Virasoro algebras, L0 and L±1 generate the subalgebra sl (2,R).

They are the “global” charges of the gauge group of the Chern-Simons theory, which

then re-emerge as asymptotic symmetries, as it is customary in gauge theories. However,

while in higher dimensions these original global charges are generically all the asymptotic

symmetries, in the present lower dimensional case the asymptotic symmetry algebra is

much larger since it contains the infinite-dimensional Virasoro algebra with all the higher

Ln modes. The generators Ln with |n| ≤ 1 transform in the s = 1 representation of sl (2,R).

They constitute the simplest example of a concept which will reappear later (section 3.2);

that of a “wedge subalgebra”, which is the subalgebra generated by the modes |n| ≤ s of

the asymptotic symmetry algebra.

With the choice ξ± = 1, the boundary term B+
∞ − B−∞ in the action reduces to the

negative of the integral over time of the sum L+
0 +L−0 of the zero modes L±0 of the Virasoro

generators.

Lastly, there is a simple but important conceptual point to be recalled here. It is

the following: although the L±n or equivalently L± (ϕ) are the generators of the symmetry

algebra, they do not all remain constant as one moves from one spacelike slice to the next.

What matters, and is true, is that the action is invariant under the complete asymptotic

algebra. The “extended Hamiltonian” is not invariant under the algebra, it is covariant

under it, because is a generic element of the algebra. The issue at hand has a simple analog

for a free relativistic particle. There, the canonical boost generator M i = xi
√
~p2 +m2

changes as one moves in time. One may define a modified boost generator M̃ i = M i− tpi,
which does not change in time but at the price of being explicitly time dependent. This

modified generator is the conserved charge that comes out of Noether theorem. For the

general case, the extended Hamiltonian is a linear combination H = Q [λ] = λaQa, of the

symmetry generators Qa satisfying [Qa, Qb] = C c
ab Qc. One may define Q̃ [ε] = εaQa which

will not change in time if εa obeys the differential equation ε̇c+C c
ab ε

aλb = 0. The modified

charge Q̃ depends explicitly on time and reduces at t = 0 to Qb if one imposes the initial

condition εa (t = 0) = δab , for a given b.

2.3 N = 2, spin 2, black hole in the Chern-Simons formulation

2.3.1 Euclidean approach

In order to discuss generalizations below, we will recall here the Chern-Simons formulation

of the (2+1) black hole thermodynamics for pure gravity [46]. In doing so, we will avoid

reference to the metric formulation, which is reviewed in appendix A.2 and in table 1. The

reason for this procedure is that no gauge invariant metric appears to be available in the

generalized case. In the absence of well-defined geometry, the usual way of defining a black

hole in terms of an event horizon out of which not even light can escape is not available.

The only possibility at hand, appears to be to define the black hole through its thermal

properties [22, 23, 47]. This requires to formulate the theory ab initio in Euclidean space.

The properties in Lorentzian spacetime are then encrypted in the Euclidean formulation,

and are only revealed after one passes to Lorentzian spacetime through the inverse of a

“Wick rotation”.
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In the Euclidean approach, the two independent sl (2,R) connections A± are merged

into a single complexified sl(2,C)-connection A [48, 49] according to the rules

A+ = A, (2.21)

A− = −A†. (2.22)

These rules are explained in appendix A.1. The merging (2.21) and (2.22) of the two

independent sl (2,R) connections is remarkably simple, one just takes A+ and allows it to

be complex. The other connection A− is then related to A according to (2.22) [46, 48–51].

It was shown in [46], starting from the metric formulation, that the topology of the

(2+1) black hole is that of the solid torus, as illustrated in figure 1 of appendix A.2. In

terms of “Schwarzschild-like” Euclidean coordinates (τ, r, ϕ), where τ = it is the Euclidean

time, both τ and ϕ are periodic, 0 ≤ ϕ < 2π, 0 ≤ τ < 1, and the τ circles are contractible to

a point, whereas the ϕ circles are not. One defines an (Euclidean) black hole as a solution

of the Chern-Simons field equations with this spacetime topology to which one may ascribe

a nonvanishing entropy.

As discussed in detail in appendix A.2, in order to define black holes through their

thermodynamical properties, and in particular to define their entropy, one needs an action

principle and therefore, one needs families of solutions rather than a single solution. This

situation is quite different from the standard one in Lorentzian spacetime with the metric,

where one can define say, a Schwarzschild black hole of any given mass by dealing only

with it.

The Euclidean action IE = iILor is (see appendix A.1)

IE [A] = −2Im [ICS [A]] , (2.23)

where ICS [A] is the standard Chern-Simons action given by (2.5). Its Hamiltonian

form reads

IHam
E [A] = Im

[
k2

π

ˆ
dτdrdϕ tr

(
ArȦϕ −AτG

)]
+BE , (2.24)

G = ∂rAϕ − ∂ϕAr + [Ar, Aϕ] , (2.25)

where BE stands for the boundary terms both at infinity (already discussed) and at the

horizon (to be discussed in subsection 2.3.5).

2.3.2 Rest frame

When investigating the thermodynamics of the four-dimensional Kerr black hole, one usu-

ally assumes that the only nonvanishing charges are the zeroth component P 0 of the 4-

momentum (“mass”) and the angular momentum Jϕ. That is, one goes to the rest frame

of the system. There is no more loss of generality in doing this than the one incurred if

one studies the thermodynamics of a gas in a box assuming that the box is at rest.
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The analog situation for the 2+1 black hole is the one in which the only surviving

Virasoro mode are the zero mode of each of the two Virasoro algebras.3 When studying

black hole thermodynamics we will assume that we are in that “rest frame”. Thus, the

only extensive parameters present will be the mass and the angular momentum.

We consider therefore gauge field configurations that behave asymptotically as

in (2.10), (2.11), (2.12) and (2.14) but with constant L± and ξ± at infinity, i.e,

A±ϕ (r, ϕ) −→
r→∞

L±1 −
2π

k
L± (r, ϕ)L∓1 , (2.26)

L± (r, ϕ) −→
r→∞

1

2π
L±0 +O

(
1

r

)
, (2.27)

A±r −→r→∞ O

(
1

r

)
, (2.28)

A±t −→r→∞ ±ξ± (r, ϕ)

(
L±1 −

2π

k
L± (r, ϕ)L∓1

)
, (2.29)

ξ± (r, ϕ) −→
r→∞

1

2π
ξ±0 +O

(
1

r

)
. (2.30)

According to the rules of appendix A.1, the Euclidean version of the asymptotic conditions

“in the rest frame” reads

Aϕ (r, ϕ) −→
r→∞

L1 −
2π

k
L (r, ϕ)L−1 , (2.31)

L (r, ϕ) −→
r→∞

1

2π
L0 +O

(
1

r

)
, (2.32)

Ar −→
r→∞

O

(
1

r

)
, (2.33)

Aτ −→
r→∞

−iξ (r, ϕ)

(
L1 −

2π

k
L (r, ϕ)L−1

)
, (2.34)

ξ (r, ϕ) −→
r→∞

1

2π
ξ0 +O

(
1

r

)
, (2.35)

where t = −iτ and where the complex parameters L0 and ξ0 are related to their Lorentzian

counterparts through the continuation rules L+
0 = L0, L−0 = L∗0, ξ+

0 = ξ0 and ξ−0 = ξ∗0 (see

appendix A.1.3). Here the ∗ denotes complex conjugation.

The relationship between the only surviving modes L±0 and the mass and angular

momentum is recalled in appendix A.2 (formulas A.64) and reads explicitly

(Rest mass) :=MLor =
1

`

(
L+

0 + L−0
)

=
MLor

8G
, (2.36)

(Angular momentum) := JLor = L+
0 − L

−
0 =

JLor

8G
. (2.37)

3The action of the Virasoro group on the Virasoro generators (“coadjoint orbits”) has been studied in

depth in references [52–58], where it has been shown that for a large class of coadjoint orbits - and in

particular for all orbits on which L0 is bounded from below except for one very special orbit — , one can

indeed always go to a frame (“rest frame”) where L(ϕ) is constant. We are grateful to Glenn Barnich for

useful information on this point.
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Similarly, one finds the relationship

N (∞) =
1

2π
N0 =

`

4π
(ξ0 + ξ∗0) , Nϕ (∞) =

1

2π
Nϕ

0 =
i

4π
(ξ0 − ξ∗0) , (2.38)

between the lapse, the shift and the zero modes ξ±0 at infinity.

2.3.3 General flat connection on a solid torus and black hole solution

The investigation of solutions of the Chern-Simons theory (flat connections on a solid torus

with the required asymptotic behaviour) is most simply described in the gauge

Ar = 0 , (2.39)

for all r. It is interesting that this permissible condition which is so convenient and harm-

less in the Chern-Simons approach cannot even be formulated in the metric approach,

because it would correspond to a degenerate metric with grr = 0. Once the gauge condi-

tion (2.39) is imposed, the fields Aϕ and Aτ do not depend on r and so take the asymptotic

form (2.31), (2.32), (2.33), (2.34) and (2.35) (with L and ξ constant) everywhere and not

just at infinity. Note that since Aτ is proportional to Aϕ one has

[Aτ , Aϕ] = 0 , (2.40)

and the equation Fτϕ = 0 is automatically fulfilled.

Explicitly, in terms of the mass and the angular momentum, the general flat connection

obeying the boundary conditions reads

Aϕ = L1 −
1

2k
(M`+ iJ )L−1, (2.41)

Aτ = −iξ
(
L1 −

1

2k
(M`+ iJ )L−1

)
, (2.42)

Ar = 0. (2.43)

The Lorentzian continuation is

A±ϕ = L±1 −
1

2k
(MLor`± JLor)L∓1, (2.44)

A±t = ±ξ±
(
L±1 −

1

2k
(MLor`± JLor)L∓1

)
, (2.45)

A±r = 0. (2.46)

The solution is a black hole provided MLor and JLor fulfill the inequality

|JLor| ≤ MLor`, (2.47)

that guarantees the existence of a horizon in the metric formulation. As we shall see, this

inequality (2.47) also guarantees on the Euclidean side that the entropy is real and positive

— a necessary condition for having a sensible thermodynamics. On the Lorentzian side,

one can set the coefficients ξ± equal to unity by a gauge transformation, but this cannot

be done on the Euclidean side where one finds that ξ is related to the Virasoro charge L
through the precise relation (2.53) below and is generically not equal to unity.

– 12 –



J
H
E
P
0
5
(
2
0
1
4
)
0
3
1

2.3.4 Boundary conditions at the horizon. Regularity

It follows from (2.42) that Aτ (r+) 6= 0 (the coefficient ξ does not vanish because of (2.38)

and (A.69)–(A.73)). Therefore, the integral of Aτ given by (2.42) over a circle in the r− τ
plane, centered at r+ does not vanish even if the radius of the circle tends to zero. Since

the circle is a contractible curve within the solid torus, this singularity in the connection

reflects the fact that the connection can be taken as given by (2.41)–(2.43) only in a patch

excluding the origin r+. To define the connection at r+ one must use another patch, for

example a disk centered at an origin different from r+ with its own polar coordinate system.

The regular form of the connection at r+, for which Aτ (r+) = 0, would then be obtained

from the singular form (2.41)–(2.43) by a “regularizing gauge transformation” which would

be singular at r+. The form of that gauge transformation implies the regularity condition

that Aτ must obey when it is written in the form (2.42).

To continue the analysis it is useful to diagonalize (2.42). One finds

Aτ = −2πiν (ξ,L)L0, (2.48)

where

ν (ξ,L) = ξ

√
2L
πk
. (2.49)

The regularizing gauge transformation that maps Aτ given by (2.48) to zero is then imple-

mented by a group element of the form

g = e2πiτνL0 , (2.50)

near r+. This transformation is permissible only if g is periodic in τ up to a sign, that is,

if g(τ + 1) = ±g(τ), or, in terms of ν,

ν (ξ,L) = n, (2.51)

where n is an integer. At r+ the regularizing gauge transformation is singular as expected

because the angle τ is not well defined there. Equation (2.51) is the regularity condition

on the connection.

When n is an odd integer, the group element g(τ) is antiperiodic, g(τ = 1) = −1.

The minus sign is allowed because the (identity component of the) gauge group of 2 + 1

Euclidean gravity is the proper, orthochronous Lorentz group SO+(3, 1), which is isomor-

phic to SL(2,C)/Z2 where Z2 = {+1,−1} is the center of SL(2,C) (see appendix A.1). So

−1 is to be identified with the identity. If one had used instead of the spinor representa-

tion (2.2) the vector representation in terms of the 4× 4 matrices of SO+(3, 1), one would

have obtained g(τ = 1) = +1 for all even and odd n’s. Note that the computation of the

entropy given below does not depend on the choice of representation.

One may show directly from (2.38) and (A.69)–(A.73), or — better — from the argu-

ment given in section 2.3.6 below, that (2.51) is equivalent to the regularity condition

Θreg = 2π,
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for the absence of a conical singularity in the metric formulation (eq. (A.58)) if and only if

n = 1, (2.52)

or equivalently

ξ =

√
πk

2L
. (2.53)

The regularity condition implies then for the holonomy Hτ :

Hτ = e
´
r+

Aτdτ
∣∣∣
on-shell

= eAτ (r+)
∣∣∣
on-shell

= −1 . (2.54)

We shall adopt the choice n = 1 and its analog for the generalized black holes with N > 2.

It is however interesting to note that from the Chern-Simons point of view the “sectors”

with n 6= 1 would appear to be as regular as the one with n = 1, but they would be

physically different. For example, as shown in eq. (2.64) below, for a given value of the

charges the entropy would be n times bigger (which would seem to exclude n < 0). We

shall not pursue that line of inquiry any further herein.

Finally, it should be stressed that, just as it happens in the metric formulation, the

regularity analysis is not peculiar to the choice of the horizon r+ as the origin of the polar

system of coordinates (τ, r). One could have chosen any point in the r − τ plane as the

origin and the analysis would still go through. In particular, the regularity condition would

still apply. The origin r+ is of great practical advantage in the evaluation of the entropy

given next because then the solution is static, the “pq̇” bulk term in the action drops out,

and the entropy becomes then expressible solely as a boundary term at the origin.

2.3.5 Entropy from contribution to the action at the horizon

The black hole entropy, as well as other thermodynamic functions such as the Helmholtz

and Gibbs free energies, are obtained by evaluating the appropriate Euclidean action on the

black hole solution (on-shell). Here the word “appropriate” means that the chosen action

must be such that if one demands that it be stationary with some boundary conditions at

infinity, then the equations of motion should hold everywhere. If one fixes at infinity the

asymptotic symmetry charges L (ϕ), which corresponds to the microcanonical ensemble,

then the value of the corresponding action is the entropy. If instead one fixes the asymptotic

gauge displacements ξ (ϕ), which contain the temperature and the chemical potentials, then

the value of the corresponding action on-shell is −βG, where G is the Gibbs free energy.

See also appendix (A.2.2) in this context.

To construct the desired action, it is simplest to start from the Hamiltonian form.

This is because the black hole solutions will be time independent since they describe a

thermodynamic system in equilibrium. In that case, the integrand in the first term on the

right hand side of (2.24) vanishes on-shell because Ȧϕ = 0, and the constraint G = 0 holds.

Furthermore, if one works in the microcanonical ensemble, there is no boundary term at

infinity to be included, i.e., B∞ = 0 because the charges are fixed at infinity. This would

seem to indicate that the entropy vanishes, but this is not so, because in the Euclidean case

there is an extra condition that must be fulfilled and is not present in the Lorentzian case,
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namely the demand of regularity at the “Euclidean horizon” r+, that was just discussed.

The action must be such as to imply this regularity requirement since, if it were violated,

the equations of motion would not hold at the origin. We now address this issue.

The Hamiltonian derivation of the (2+1) black hole entropy in the metric formulation

has been given in [59–61]. It yields the entropy as a “boundary term” at the horizon. We

provide here the corresponding derivation for the Chern-Simons formulation, which yields

again the entropy as a contribution to the action at the horizon.4

We start by analyzing the variation of the canonical action (2.24), (2.25). When the

equations of motion are fulfilled in the bulk it reads

δIHam = δBr+ +
k2

π
Im

[ˆ
r+

dτdϕtr [AτδAϕ]

]
. (2.55)

We are not including the boundary term at infinity because it can be dealt with separately

and was already considered above. In the microcanonical ensemble it is equal to zero

anyway.

We will assume that the dynamical fields and the Lagrange multipliers do not depend

on τ and ϕ near r+. This property holds for the black hole solutions and can in fact

be reached by a suitable gauge transformation. We will not assume however that the

gauge condition Ar = 0 has been imposed, so that the fields can depend on r. Even then

the equations of motion imply [Aτ , Aϕ] = 0, so that Aτ and Aϕ can be simultaneously

diagonalized on-shell. Eq. (2.55) then reduces to

δIHam = δBr+ +
k2

π
Im

[
tr

[(ˆ
r+

dτAτ

)
δ

(ˆ
r+

dϕAϕ

)]]
,

= δBr+ + 2k2Im [tr [Aτ (r+) δAϕ (r+)]] . (2.56)

This equation is geometrically quite interesting. It may be described as stating that the

holonomy in the τ cycle is conjugate to the holonomy in the ϕ cycle, in complete analogy

with what happens in the metric formulation, where the opening angle in the r − τ plane

is conjugate to the length of the ϕ circle.

We now introduce at the horizon a fixed connection Areg
τ that fulfills the regularity

condition established in the previous subsection. We want the variational principle δIHam =

0 to imply that Aτ (r+) coincides with Areg
τ (r+) up to conjugation by some group element g,

Aon-shell
τ (r+) = gAreg

τ (r+)g−1. (2.57)

Differently put, the eigenvalues µk of Aτ (r+) should coincide on-shell with those of Areg
τ (r+),

µon-shell
k = µreg

k . (2.58)

This requirement will be fulfilled if we choose the boundary term Br+ to be

Br+ = −k2

π
Im

[ˆ
r+

dτdϕ

[∑
k

µreg
k λk

]]
, (2.59)

4Work relating the black hole entropy to the Chern-Simons action may be found in [36, 62]. It follows

different lines.
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where the λk’s are the eigenvalues of Aϕ. Here, the µreg
k ’s are fixed but the λk’s are varied.

Indeed, using the fact that the equations in the bulk imply that Aϕ and Aτ commute,

one then finds that tr [Aτ (r+) δAϕ (r+)] =
∑

k µkδλk, so that the condition for the action

to be an extremum becomes δIHam ≡ 2kN Im
[∑

k

(
−µreg

k + µk
)
δλk
]

= 0 and leads to the

regularity condition (2.57) on-shell.

Therefore, in the microcanonical ensemble, the correct action reads

I = −k2

π
Im

[ˆ
r+

dτdϕ

[∑
k

µreg
k λk

]]
+
k2

π
Im

[ˆ
dτdrdϕtr

[
ArȦϕ −AτG

]]
. (2.60)

For stationary configurations the canonical action vanishes on-shell, and so equation (2.60)

with Aτ and Aϕ on-shell gives the entropy,

S = −k2

π
Im

[ˆ
r+

dτdϕtr [AτAϕ]

]
on-shell

,

= −2k2Im [tr [AτAϕ]]on-shell , (2.61)

which in terms of the Lorentzian gauge fields reads

S = k2

[
tr
[
A+
t A

+
ϕ

]
− tr

[
A−t A

−
ϕ

]]
on-shell

, (2.62)

so that, it manifestly acquires different independent contributions from each copy of the

gauge group.

Eq. (2.61) plays the role in the Chern-Simons formulation of the celebrated

S =
1

8πG
Θon-shell

ˆ
r+

√
gon-shell
ϕϕ dϕ =

1

4G
(Horizon Area) , (2.63)

in the metric formulation.

2.3.6 Entropy as a function of the charges

In order to know the thermodynamics of the system, it is necessary to express the entropy

in terms of the extensive quantities, which are the charges defined at infinity. To this end,

it is first necessary to determine Aτ (r+) from the regularity condition (2.51) and then

express all the quantities at r+ in terms of the charges at infinity through the solution of

the constraint G = 0, where G is given by (2.25) using the boundary conditions.

One obtains for the entropy

S = 2πn
√

2πk
(√
L+
√
L∗
)
. (2.64)

This expression is identical to the entropy obtained in the metric formulation if and only if

n = 1,

as it was anticipated in (2.52) above.
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Indeed, if one sets L = 1
4π (M`+ iJ ), and L∗ = 1

4π (M`− iJ ), the entropy in terms

of the Lorentzian charges M =MLor and iJ = JLor is given by

S (MLor,JLor) = π`

√
MLor

G

[
1 +

(
1−

J 2
Lor

M2
Lor`

2

) 1
2

] 1
2

, (2.65)

an expression which can be rewritten as

S =
1

4G
(2πr+) , (2.66)

with

r2
± = 4`2GMLor

(
1±

√
1−

J 2
Lor

M2
Lor`

2

)
. (2.67)

The inverse temperature β, and the chemical potential µJLor
can be obtained using (A.67)

and (A.68), which in terms of ξ± read

β =
`

2
(ξ+ + ξ−) , (2.68)

βµJLor
= −1

2
(ξ+ − ξ−) , (2.69)

where ξ± is defined through the Lorentzian continuation of (2.53), i.e. ξ± =
√

πk
2L± . This

justifies the terminology used from the outset of “temperature” and “chemical potential”

for the ξ’s. One may rewrite these expressions as

β =
2πr+`

2

r2
+ − r2

−
, (2.70)

βµJLor
=

r−
`r+

, (2.71)

to make manifest that they coincide with the ones coming from the metric formalism

(eqs. (A.72) and (A.73)).

This confirms that, as it should be the case, both equations Θ = 2π, and Nϕ (r+) = 0

of the metric formalism, are captured by demanding that the improved action should have

an extremum under variations of the complex L (r+).

We finally note that in order for the entropy to be real and positive, there is a bound

on the charges, namely L± ≥ 0, which is equivalent to (2.47). When the bound is saturated

(“extremal case”), the holonomy along the thermal circle is nontrivial, signaling a different

topology.

3 N = 3, W3, black hole. Spins 2 and 3

The preceding discussion of the pure gravity (2+1) black hole in terms of a Chern-Simons

connection for sl (2,C) in Euclidean spacetime suggests an immediate generalization.

One simply replaces sl (2,C) by sl (3,C) or, more generally by sl (N,C). The asymptotic

symmetry algebra is then complexified WN algebra, which contains the complexified
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Virasoro algebra as a subalgebra. In the Lorentzian continuation one has two copies of

the real WN algebra.

There was a pioneering proposal to define a higher spin black hole in this way [22, 23],

but as it is shown in detail in appendix B of this paper, the solution derived in [22, 23] actu-

ally belongs to the so called “diagonal embedding” of sl (2,R) in sl (3,R), with generators

having charges of lower spins (1, 3/2 and 2).

In contradistinction, we will exhibit in this section a black hole which belongs to the

other, “principal embedding”. It has charges of spin two and three, and possesses two real

copies of W3 as its asymptotic symmetry algebra.

3.1 Principal embedding — adapted generators

The Lorentzian action for the sl (3,R)⊕ sl (3,R) theory takes again the form (2.5), where

now k2 is replaced by k3 = k/4 = `/16G. The connections A± belong now to the algebra

sl (3,R) which we consider in the basis {Li,Wm},

[Li, Lj ] = (i− j)Li+j , (3.1)

[Li,Wm] = (2i−m)Wi+m , (3.2)

[Wm,Wn] = −1

3
(m− n)

(
2m2 + 2n2 −mn− 8

)
Lm+n. (3.3)

Here i, j = −1, 0, 1 and m,n = −2,−1, 0, 1, 2. The trace in the action is taken in the

defining representation of the algebra, which is formed by 3 × 3 matrices. An explicit

realization of the basis is given by

L−1 =

0 −
√

2 0

0 0 −
√

2

0 0 0

 ; L0 =

1 0 0

0 0 0

0 0 −1

 ; L1 =

 0 0 0√
2 0 0

0
√

2 0

 ,

W−2 =

0 0 4

0 0 0

0 0 0

 ; W−1 =

0 −
√

2 0

0 0
√

2

0 0 0

 ; W0 =
2

3

1 0 0

0 −2 0

0 0 1

 , (3.4)

W1 =

 0 0 0√
2 0 0

0 −
√

2 0

 ; W2 =

0 0 0

0 0 0

4 0 0

 .

These matrices obey

L†i = (−1)i L−i, (3.5)

W †m = (−1)mW−m. (3.6)

The basis elements Li generate the sl (2,R) subalgebra that is principally embedded.

The basis elements Wm generate the sl (2,R)-spin 2 representation, with Wm being a state

of spin −m along L0.

One may rewrite the action in Hamiltonian form exactly as before (2.8), (2.9).
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3.2 Asymptotic symmetries

The boundary conditions (2.10), (2.11), (2.12) on a t = const surface are generalized

to [14, 15]

A±ϕ (r, ϕ) −→
r→∞

L±1 −
2π

k
L± (r, ϕ)L∓1 −

π

2k
W± (r, ϕ)W∓2 , (3.7)

with

L± (r, ϕ) −→
r→∞

L± (ϕ) +O

(
1

r

)
, (3.8)

W± (r, ϕ) −→
r→∞

W± (ϕ) +O

(
1

r

)
, (3.9)

and

A±r −→r→∞ O

(
1

r

)
, (3.10)

where the fields L± (r, ϕ) and W± (r, ϕ) enter in (3.7) along the lowest (highest)-weight

generators of the principal embedding.

A direct computation [44] yields that the most general A±t which preserves the bound-

ary conditions (3.7)–(3.10) is given by

A±t −→r→∞±
[
ξ±L±1 + η±W±2 ∓ ξ′±L0 ∓ η′±W±1 +

1

2

(
ξ′′± −

4π

k
ξ±L± +

8π

k
W±η±

)
L∓1

−
(
π

2k
W±ξ± +

7π

6k
L±′η′± +

π

3k
η±L±′′ +

4π

3k
L±η′′± −

4π2

k2

(
L±
)2
η± −

1

24
η′′′′±

)
W∓2

+
1

2

(
η′′± −

8π

k
L±η±

)
W0 ∓

1

6

(
η′′′± −

8π

k
η±L±′ −

20π

k
L±η′±

)
W∓1

]
, (3.11)

where

ξ± (r, ϕ) −→
r→∞

ξ± (ϕ) +O

(
1

r

)
,

η± (r, ϕ) −→
r→∞

η± (ϕ) +O

(
1

r

)
. (3.12)

The generalization of equation (2.15) is

L̇± = ±ξ±L±′ ∓ 2η±W±′ ∓ 3W±η′± ± 2L±ξ′± ∓
k

4π
ξ′′′± , (3.13)

Ẇ± = ±ξ±W±′ ±
2

3
η±

(
L±′′′ − 16π

k

(
L±
)2′)± 3W±ξ′± ± 3

(
L±′′ − 64π

9k

(
L±
)2)

η′±

± 5η′′±L±′ ±
10

3
L±η′′′± ∓

k

12π
η

(5)
± . (3.14)

In the case where the gauge parameters are chosen as ξ± = 1, η± = 0, these equations

reduce to the familiar chiral equations L̇± = ±L±′ and Ẇ± = ±W±′.
The boundary terms (2.16) now become

B±∞ [ξ, η] = ∓
ˆ [

ξ± (ϕ)L± (ϕ)− η± (ϕ)W± (ϕ)
]
dϕdt . (3.15)
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Just as before, if L,W are expanded in Fourier modes according to

L± =
1

2π

∑
n

L±n einϕ, (3.16)

W± =
1

2π

∑
n

W±n einϕ, (3.17)

one finds that the Ln,Wn obey, in terms of the Poisson bracket, the W3 algebra with the

same classical central charge c = 6k = 3`/2G as in pure gravity [14, 15],

i {Lm,Ln} = (m− n)Lm+n +
k

2
m3δm+n,0 , (3.18)

i {Lm,Wn} = (2m− n)Wm+n , (3.19)

i {Wm,Wn} =
1

3
(m− n)

(
2m2 −mn+ 2n2

)
Lm+n +

16

3k
(m− n) Λm+n +

k

6
m5δm+n,0 ,

(3.20)

where

Λn =
∑
m

Ln−mLm . (3.21)

The bracket relation (3.19) implies that the Wn generators have conformal weight 3.

3.3 Black hole

To construct the higher spin black hole, which will be endowed with charges of conformal

weight two and three, one works in Euclidean spacetime keeping the topology as that of

a solid torus. One again defines the thermodynamics in the rest frame where the only

nonvanishing charges are now L0 and W0. The connection is complexified just as in the

pure gravity case, and the rules for connecting the Euclidean and Lorentzian schemes

remain the same. Note, however, that because W †2 = W−2, the correspondence between

W− and W is W− = −W∗. Similarly, one has η− = −η∗.
The Euclidean connection for the black hole must solve the zero curvature condition

and possess the W3-asymptotics just described. It is explicitly given by

Aϕ = L1 −
2π

k
LL−1 −

π

2k
WW−2 , (3.22)

Aτ = −iξ
(
L1 −

2π

k
LL−1 −

π

2k
WW−2

)
−iη

(
W2 −

4π

k
LW0 +

4π2

k2
L2W−2 +

4π

k
WL−1

)
, (3.23)

where L, W, ξ and η are all constant. Its Lorentzian continuation is [44]

A±ϕ = L±1 −
2π

k
L±L∓1 −

π

2k
W±W∓2 , (3.24)

A±t = ±
[
ξ±

(
L±1 −

2π

k
L±L∓1 −

π

2k
W±W∓2

)
+η±

(
W±2 +

4π

k
W±L∓1 +

4π2

k2

(
L±
)2
W∓2 −

4π

k
L±W0

)]
. (3.25)
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One sees a new feature, namely that Aτ is not proportional to Aϕ as in the pure

gravity case, but it acquires a new piece which multiplies the new parameter η, which is

now brought in together with the new charge W. Even in the presence of this new piece,

one still has

[Aτ , Aϕ] = 0 , (3.26)

so that the zero-curvature condition Fτϕ = 0 holds.5

The statement of regularity at the origin now reads6

Hτ = e
´
r+

Aτdτ
∣∣∣
on-shell

= eAτ (r+)
∣∣∣
on-shell

= 1 . (3.27)

One way to see that one must take the + sign in this expression is to consider the solution

with zero spin-3 parameters (W = 0, η = 0). The connection reduces then exactly to that

of the pure gravity black hole, but with generators L±1, L0 in the three-dimensional vector

representation of sl(2,R) for which (3.27) indeed holds.

We call the above solution a “higher spin black hole” not only because it possesses

nonvanishing higher spin charges when W is not equal to zero, but also because it is en-

dowed with well-defined temperature and entropy, as we shall discuss in the next section.

One could write metrics associated with the above connection that would have event hori-

zons. But these metrics are gauge-dependent. The corresponding causal concepts are not

invariant under the spin-3 gauge transformations. Studying the geometrical properties of

these metrics might lead therefore to misleading conclusions. For this reason, we shall not

even attempt constructing here a metric associated with the black hole connection.

The black hole solution described in this paper shares several features with the pro-

posal in [22, 23], that gave rise to all the subsequent study of higher spin black holes. In

particular, it has the same temporal component Aτ of the connection. However, it differs

from it in the angular component Aϕ. While (3.22) fulfills the boundary conditions, the

connection Aϕ of [22, 23] has extra terms that violate these boundary conditions. This is

a crucial difference because, as emphasized in the words of Fock quoted at the beginning

of this article, a theory is defined not only by the equations of motion but also by the

boundary conditions. A configuration that solves the equations of motion without obeying

the boundary conditions is not a solution of the theory.

In the search for black holes endowed with higher spin charges, it was argued in [22, 23]

that in order to introduce chemical potentials it was necessary to modify the boundary

conditions for both Aϕ and Aτ . However, it was indicated in [44] that this was not the case

and that one should rather keep the boundary conditions for Aϕ unchanged and introduce

the chemical potentials through a modification of Aτ only as in (3.23). Following the

latter, canonical, procedure one indeed obtains a black hole with higher spin charges, the

5The fact that Aϕ and Aτ play very different roles was emphasized in [62]. It was also stressed there

that the vanishing of the commutator of both connection components (eq. (3.26)) was the condition for

identifying the most general Aτ compatible with the form (3.22) of Aϕ. However, the authors maintained

that eqs. (3.22) applied to the black hole in refs. [22, 23], which is not the case as explained in detail in

appendix B.
6For a generic N the regularity condition is Hτ = (−1)N+1

1, where one employs the representation in

terms of smallest matrices (2× 2 for N = 2, 3× 3 for N = 3).
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thermodynamics of which will be discussed next. With the former procedure one obtains

a particular black hole with lower spin charges as shown in appendix B. The black hole of

refs. [22, 23] is not a W3 black hole, it is a W
(2)
3 black hole.

3.4 Thermodynamics

The previous discussion for the sl (2,C) case extends straightforwardly to sl (3,C). This

includes, in particular, the validity of the general formula7

S = −2k3Im
(

tr
[
Aon-shell
τ (r+)Aon-shell

ϕ (r+)
])
, (3.28)

for the entropy, where k3 = k/4 = `/16G. Given the form of the connection, one may

rewrite equivalently the entropy as

S = 4π

[
ξL − 3

2
ηW + ξ∗L∗ − 3

2
η∗W∗

]
on-shell

. (3.29)

The regularity condition (3.27) can be easily implemented by requiring that the eigen-

values of Aon-shell
τ (r+) be λτ = 0,±2iπ, and using them in the characteristic polynomial of

an sl (3,C) matrix

λ3
τ −

1

2
tr
[
Aτ (r+)2

]
λτ − det [Aτ (r+)] = 0. (3.30)

This yields

det
[
Aon-shell
τ (r+)

]
= 0 ; tr

[
Aon-shell
τ (r+)2

]
+ 8π2 = 0. (3.31)

For the black hole connection, these two conditions take the form

211π2L3η3 + 33k2Wξ3 − 2532πkη
(
3W2η2 − 3ηξLW + 2L2ξ2

)
= 0 , (3.32)

26

3k2
L2η2 +

2

πk
ξ (Lξ − 3ηW)− 1 = 0 . (3.33)

The solution to these equations is generically

ξ =

√
πk

2L
cos
(

2Φ
3

)
cos (Φ)

, (3.34)

η =

√
3k

8L
sin
(

Φ
3

)
cos (Φ)

, (3.35)

with

Φ = arcsin

(
3

8

√
3k

2πL3
W

)
. (3.36)

When these expressions are inserted in (3.29) one obtains for the entropy

S = 4π
√

2πkRe

(
√
L cos

[
1

3
arcsin

(
3

8

√
3k

2πL3
W

)])
. (3.37)

7For arbitrary N , k3 is replaced by kN = 6k/N
(
N2 − 1

)
= 3`/2GN

(
N2 − 1

)
.
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The Lorentzian continuation of the black hole entropy is then given by

S = 2π
√

2πk

(
√
L+ cos

[
1

3
arcsin

(
3

8

√
3k

2π (L+)3W
+

)]

+
√
L− cos

[
1

3
arcsin

(
3

8

√
3k

2π (L−)3W
−

)])
. (3.38)

The arcsine function is multivalued. The branch connected with the (2+1) pure gravity

black hole is the one such that the Lorentzian continuation of the “angle Φ”

Φ± = arcsin

(
3

8

√
3k

2π (L±)3W
±

)
, (3.39)

lies in the range −π/2 < Φ± ≤ π/2. The other branches are disconnected from the (2+1)

pure gravity black hole.

In order for the entropy to be real, a bound on the higher spin charges W± in terms

of L± = 1
4π (MLor`± JLor) should be obeyed,∣∣W±∣∣ ≤ 8

3

√
2π

3k

(
L±
)3/2

, (3.40)

(in addition to L± > 0). When at least one of the bounds is saturated, the configuration is

“extremal”, in the sense that the corresponding holonomy along the thermal circle becomes

nontrivial and the topology is different.

To determine the temperature and the chemical potentials in the microcanonical en-

semble, we use the relations

β =

(
∂S

∂MLor

)
JLor,W0±

, (3.41)

βµJLor
= −

(
∂S

∂JLor

)
MLor,W0±

, (3.42)

βµW± = −
(

∂S

∂W0±

)
MLor,JLor

, (3.43)

with MLor = 2π
` (L+ + L−) and JLor = 2π (L+ − L−) as above, and where W±0 = 2πW±

are the spin-3 charges.

Note that the charges come in pairs, with one charge for each chirality in each pair.

One can alternatively define charges that are even (sum) or odd (difference) under chirality.

The even charges might be thought of as electric while the odd ones as magnetic. On the

Euclidean side they correspond to the real and imaginary parts of the Euclidean charges,

the former being invariant under complex conjugation while the latter reversing sign.

One finds

β =
`

2
(ξ+ + ξ−) , (3.44)

βµJLor
= −1

2
(ξ+ − ξ−) , (3.45)

βµW± = η±, (3.46)
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where ξ±, η± are given in terms of the charges L± and W± by the same expres-

sions (3.34), (3.35) and (3.36) giving ξ and η in terms of L and W. This shows that

indeed, the parameters introduced in the temporal components of the connection have the

anticipated physical interpretation of being the temperature and chemical potentials.

4 N = 3, W
(2)
3 , black hole. Spins 1, 3/2, 2

While we dealt with up to now exclusively with the principal embedding of sl(2,R) in

sl(N,R), which has the property of yielding solutions carrying higher spin charges up to

spin N , it is also of interest to consider other embeddings. This is done in this section.

We consider explicitly again the case N = 3. In that case, the only other non-trivial

embedding is the so-called diagonal embedding leading to two real copies of the Bershadsky-

Polyakov algebra W
(2)
3 at infinity. In this section we exhibit the corresponding black hole

which besides the spin 2 charges is endowed only with lower spin charges, namely U (1)

and spin 3
2 charges. We will also discuss its thermodynamics. The quantum mechanical

difficulties of the field theory associated with the diagonal embedding, such as the presence

of negative norm states [26], are not an obstacle for this semiclassical study, which we deem

necessary for dealing thoroughly with the problem at hand.

A significant consequence, presented in appendix B, of the analysis of this section is

the following: the black hole in refs. [22, 23], which was claimed to be higher spin black

hole associated with the principal embedding is, rather a lower spin black hole associated

with the diagonal embedding. What was aimed to be a W3 black hole became instead a

W
(2)
3 black hole because of the non-canonical way in which the chemical potentials were

introduced. Once this is realized, the “entropy paradox” that created controversy in the

literature around the black hole in refs. [22, 23] is resolved.

4.1 Diagonal embedding — adapted generators

It will be convenient in this section to adopt a basis of sl(3,R) generators adapted to the

diagonal embedding. These are

L̂±1 = ±1

4
W±2 , L̂0 =

1

2
L0 , J0 =

1

2
W0 , (4.1)

G
[+]
±1/2 =

1

2
√

2
(±L±1 −W±1) , G

[−]
±1/2 =

1

2
√

2
(L±1 ±W±1) , (4.2)

and the sl (3,R) commutation relations read in this basis[
L̂i, L̂j

]
= (i− j) L̂i+j ,

[
L̂i, J0

]
= 0 ,[

L̂i, G
[a]
m

]
=

(
i

2
−m

)
G

[a]
i+m ,

[
J0, G

[a]
m

]
= aG[a]

m , (4.3)[
G[+]
m , G[−]

n

]
= L̂m+n −

3

2
(m− n) J0 ,

with i = −1, 0, 1, m = −1/2, 1/2, and a = −1, 1. The basis elements L̂i generate the

sl(2,R) subalgebra that is diagonally embedded. Note that the G
[a]
m ’s transform in two
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independent sl(2,R)-spin 1
2 representations, while J0 has sl(2,R)-spin s = 0. The corre-

sponding generators in the asymptotic conformal field theory have respective conformal

weights 3
2 and 1, and are all bosonic since their algebra involves only commutators.

With the above choice, the explicit realization of the generators is given by

L̂−1 =

0 0 −1

0 0 0

0 0 0

 ; L̂0 =

1
2 0 0

0 0 0

0 0 −1
2

 ; L̂1 =

0 0 0

0 0 0

1 0 0

 ,

J0 =
1

3

1 0 0

0 −2 0

0 0 1

 ; G
[+]
+1/2 =

0 0 0

0 0 0

0 1 0

 ; G
[+]
−1/2 =

0 1 0

0 0 0

0 0 0

 , (4.4)

G
[−]
+1/2 =

0 0 0

1 0 0

0 0 0

 ; G
[−]
−1/2 =

0 0 0

0 0 −1

0 0 0

 .

These matrices obey

L̂†i = (−1)i L̂−i , J†0 = J0 ,
(
G[a]
m

)†
= (−1)m+a

2 G
[−a]
−m , (4.5)

4.2 Asymptotic symmetries

Asymptotic conditions with two copies of W
(2)
3 symmetry have been previously discussed

in [23, 24]. They follow the lines of Hamiltonian reduction [63]. Here we improve At so as

to include the most general motion compatible with the given Aϕ.

The asymptotic form of the spatial connection can be chosen to have dynamical com-

ponents only along the lowest (highest)-weight generators, i.e. on a t = const surface,

A±ϕ −→r→∞ L̂±1−
8π

k

[(
L̂± (r, ϕ)− 6π

k

(
U± (r, ϕ)

)2)
L̂∓1 +

3

2
U± (r, ϕ) J0 + ψ±[a] (r, ϕ)G

[a]
∓1/2

]
,

(4.6)

with

L̂± (r, ϕ) −→
r→∞
L̂± (ϕ) +O

(
1

r

)
, (4.7)

U± (r, ϕ) −→
r→∞
U± (ϕ) +O

(
1

r

)
, (4.8)

ψ±[a] (r, ϕ) −→
r→∞

ψ±[a] (ϕ) +O

(
1

r

)
, (4.9)

and

A±r −→r→∞ O

(
1

r

)
. (4.10)

As it is standard in this asymptotic analysis context [45], we have redefined the Virasoro

generators by including the square of the U(1)-currents U±, as it is necessary for these

U(1)-currents to have conformal weight one with respect to these redefined generators.
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The most general A±t which preserves the asymptotic form of (4.6) is given by

A±t −→r→∞ ± ξ̂±L̂±1 ±
[
−8π

k
ξ̂±

(
L̂± − 6π

k

(
U±
)2)

+
4π

k
ϑ±[a]ψ

±
[a] +

1

2
ξ̂′′±

]
L̂∓1

±
(
ν± −

12π

k
ξ̂±U±

)
J0 + aϑ±[a]G

[−a]
±1/2 − ξ̂

′
±L̂0

∓
(

12π

k
ϑ±[−a]U

± +
8π

k
ξ̂±ψ

±
[a] − aϑ

±′
[−a]

)
G

[a]
∓1/2 , (4.11)

where

ξ̂± (r, ϕ) −→
r→∞

ξ̂± (ϕ) +O

(
1

r

)
, (4.12)

ν±± (r, ϕ) −→
r→∞

ν±± (ϕ) +O

(
1

r

)
, (4.13)

ϑ±[a] (r, ϕ) −→
r→∞

ϑ±[a] (ϕ) +O

(
1

r

)
. (4.14)

The field equations are then given by

˙̂L± = ±2ξ̂′±L̂± ± ξ̂±L̂±′ ∓
k

16π
ξ̂′′′± ∓ U±ν ′± ∓

3

2
ϑ±′[a]ψ

±
[a] ∓

1

2
ϑ±[a]ψ

±′
[a] ,

U̇± = ±ξ̂′±U± ± ξ̂±U±′ ± aϑ±[a]ψ
±
[a] ∓

k

12π
ν ′± , (4.15)

ψ̇±[a] = ±3

2
ξ̂′±ψ

±
[a] ± ξ̂±ψ

±′
[a] ∓ aν±ψ

±
[a] ∓ aϑ

±
[−a]

(
24π

k

(
U±
)2 − L̂± − 3

2
aU±′

)
± 3U±ϑ±′[−a] ∓

k

8π
aϑ±′′[−a] .

Note that if one takes the gauge parameters as ξ̂± = 1, ν± = 0 and ϑ±[a] = 0, the

equations reduce again to the chiral equations
˙̂L± = ±L̂±′, U̇± = ±U±′ and ψ̇±[a] = ±ψ±′[a].

The boundary terms (2.16) take the form

B±∞

[
ξ̂, ν, ϑ[a]

]
= ∓

ˆ [
ξ̂± (ϕ) L̂± (ϕ)− ν± (ϕ)U± (ϕ)− ϑ±[a] (ϕ)ψ±[a] (ϕ)

]
dϕdt . (4.16)

It is straightforward to verify that the global charges span two copies of the W
(2)
3

algebra. In terms of Fourier modes, X = 1
2π

∑
mXme

imϕ, this algebra explicitly reads

i
{
L̂m, L̂n

}
= (m− n) L̂m+n +

k

8
m3δm+n,0 ,

i
{
L̂m,Un

}
= −nUm+n ,

i {Um,Un} =
k

6
mδm+n,0 ,

i
{
L̂m, ψ[a]

n

}
=

(
1

2
m− n

)
ψ

[a]
m+n , (4.17){

Un, ψ[a]
m

}
= aψ

[a]
m+n ,{

ψ[+]
m , ψ[−]

n

}
= L̂m+n −

12

k
Λm+n +

3i

2
(m− n)Um+n +

k

4
m2δm+n,0 ,
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where

Λn :=
∑
m

Un−mUm . (4.18)

If the spinors ψ
[±]
p are assumed to fulfill antiperiodic (Neveu-Schwarz) boundary condi-

tions, then p has to be a half-integer. In this case, it is apparent that the wedge subalgebra

corresponds to sl (3,R) in the basis of eq. (4.3). It is worth pointing out that, in full

analogy with what occurs for the super Virasoro algebra with N = 2 [64], representations

of the W
(2)
3 algebra with spinors obeying periodic (Ramond), or antiperiodic boundary

conditions, are equivalent [65]. This is because the U (1) gauge transformations provide an

automorphism that can be used to “gauge away” the corresponding phase in the boundary

conditions for the spinors. Therefore, the generators of the algebra with periodic boundary

conditions can be expressed in terms of those with antiperiodic boundary conditions.

Note that, as observed earlier in [23], the central charge is given by c
4 , where c = 6k =

3`
2G is the standard one [2].

4.3 Black hole

The asymptotic conditions (4.6)–(4.14) include black hole solutions carrying, apart from

the mass and the angular momentum, independent U (1) and spinorial charges. These

solutions are characterized, for the black hole “at rest”, by constant coefficients L̂±, U±,

ψ±[a], ξ̂±, ν±, ϑ±[a], a situation that will be assumed from now on. The constants L̂±, U±

and ψ±[a] define the charges, while the constants ξ̂±, ν±, ϑ±[a] are the corresponding chemical

potentials. The black hole corresponds to the range of the parameters that yields a real

positive entropy.

The Euclidean continuation proceeds as before (see appendix A.1). Hence, since the

sl (3,R) generators fulfill the relations (4.5), the continuation rules imply now the corre-

spondence

L̂ = L̂+ , U = U+ , ψ[a] = ψ+
[a] , (4.19)

ξ = ξ+ , ν = ν+ , ϑ[a] = ϑ+
[a] , (4.20)

and

L̂∗ = L̂− , U∗ = −U− , ψ∗[a] = −aψ−[−a] , (4.21)

ξ∗ = ξ− , ν∗ = −ν− , ϑ∗[a] = −aϑ−[−a] . (4.22)

The Euclidean black hole then reads

Aϕ = L̂1 −
8π

k

[(
L̂ − 6π

k
U2

)
L̂−1 +

3

2
UJ0 + ψ[a]G

[a]
−1/2

]
, (4.23)

Aτ = −i
[
ξ̂

(
L̂1 −

8π

k

[(
L̂ − 6π

k
U2

)
L̂−1 +

3

2
UJ0 + ψ[a]G

[a]
−1/2

])
+νJ0 + ϑ[a]

(
aG

[−a]
1/2 −

12π

k
UG[−a]
−1/2 +

4π

k
ψ[a]L̂−1

)]
, (4.24)
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with

aϑ[a]ψ[a] = 0 ; ϑ[−a]

(
24π

k
U2 − L̂

)
+ νψ[a] = 0. (4.25)

The fields L̂, U , ψ[a], and the chemical potentials ξ̂, ν, ϑ[a] are complex constants. The

algebraic constraints (4.25) are a new feature of the diagonal embedding, which does not

appear in the principal embedding. They are necessary to guarantee F±tϕ = 0. The con-

straints (4.25) will turn out to be important when discussing black holes below.

4.4 Thermodynamics

The black hole entropy can be readily obtained from the general expression in eq. (2.61),

which for this case reduces to

S = 8πRe

[
ξ̂L̂ − 1

2
νU − 3

4
ϑ[a]ψ[a]

]
on-shell

, (4.26)

The chemical potentials are related to the charges through: (i) the regularity conditions

that the holonomy along the thermal circle is trivial (3.31), i.e.,

det [Aτ ] = 0 ; tr
[
(Aτ )2

]
+ 8π2 = 0, (4.27)

and, (ii) the constraints (4.25) are welcome features since the two regularity conditions by

themselves form an undetermined system of equations for the four chemical potentials.

When fully developed, the conditions (4.27) read

0 =−
(
U3 − k

8π

(
UL̂+ ψ[−]ψ[+]

))
ξ̂3 +

k

8π

((
U2 − k

12π
L̂
)
ν +

3

2
Uϑ[a]ψ[a]

)
ξ̂2

− k2

192π2

(
Uν2 − 72π

k

(
U2 +

k

24π
L̂
)
ϑ[−]ϑ[+]

)
ξ̂ +

1

4

(
k

12π
ν

)3

(4.28)

− k2

64π2

(
Uν +

1

2
ϑ[a]ψ[a]

)
ϑ[−]ϑ[+] ,

and

L̂ξ̂2 −
(
Uν +

3

2
ϑ[a]ψ[a]

)
ξ̂ − 3Uϑ[−]ϑ[+] +

k

24π
ν2 − 1

2
πk = 0 , (4.29)

respectively. Together with the equations (4.25), they form a nonlinear system which admit

various branches of solutions.

We will focus hereafter on the generic case, for which the charges as well as the chemical

potentials are not fine tuned. In this case, it is useful to parametrize the chemical potentials

according to

ξ̂ =

√
πk

2L̂

(
cos
(

2Φ
3

)
cos (Φ)

+ U
√

24π

kL̂
sin
(

Φ
3

)
cos (Φ)

)
, (4.30)

ν = −2
√

3π

(
1− 24π

k

U2

L̂

)
sin
(

Φ
3

)
cos (Φ)

, (4.31)

ϑ[a] = −2
√

3π

(
ψ[−a]

L̂

)
sin
(

Φ
3

)
cos (Φ)

, (4.32)
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so that the field equations (4.25) and the conditions (4.28), (4.29) are solved provided

Φ = arcsin

24

√
6π3

k3L̂3

(
U3 − k

8π

(
UL̂+ ψ[−]ψ[+]

)) . (4.33)

By virtue of (4.30)–(4.33), the entropy (4.26) can be manifestly expressed in terms of

the global charges as

S = 4π
√

2πkRe

√L̂ cos

1

3
arcsin

24

√
6π3

k3L̂3

(
U3 − k

8π

(
UL̂+ ψ[−]ψ[+]

)). (4.34)

In terms of the Lorentzian charges the entropy then reads

S = 2π
√

2πkL̂+ cos

(
Φ+

3

)
+ 2π

√
2πkL̂− cos

(
Φ−
3

)
, (4.35)

with

Φ± := arcsin

24

√√√√ 6π3

k3
(
L̂±
)3

((
U±
)3 − k

8π

(
U±L̂± + ψ±[+]ψ

±
[−]

)) , (4.36)

where the “angular variables” Φ± range as −3π
2 < Φ± <

3π
2 . Note that the branch that is

connected with the pure gravity black hole corresponds to −π
2 < Φ± <

π
2 .

The black hole entropy (4.35) is well-defined provided the global charges of the black

hole fulfill L̂± ≥ 0, as well as sin2(Φ±) ≤ 1, i.e.,∣∣∣∣(U±)3 − k

8π

(
U±L̂± + ψ±[+]ψ

±
[−]

)∣∣∣∣ ≤ 1

24
√

6

(
kL̂±

π

) 3
2

. (4.37)

When some of these bounds are saturated, the solution becomes extremal and the corre-

sponding holonomy along the thermal circle becomes nontrivial corresponding to a change

in the topology. Beyond the bounds, the solution is not a black hole since one cannot

associate with it a real positive entropy.

Note that the charges also come in electric-magnetic pairs, just as in the principal

embedding.

To determine the temperature and the chemical potentials in the microcanonical en-

semble, we use the relations

β =

(
∂S

∂MLor

)
JLor,U±0 ,ψ

±
[a]0

, (4.38)

βµJLor
= −

(
∂S

∂JLor

)
MLor,U±0 ,ψ

±
[a]0

, (4.39)

βµU± = −
(
∂S

∂U±0

)
MLor,JLor,ψ

±
[a]0

, (4.40)

βµψ±
[a]

= −

(
∂S

∂ψ±[a]0

)
MLor,JLor,U±0 ,ψ

±
[−a]0

, (4.41)
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with MLor = 2π
` (L+ + L−) and JLor = 2π (L+ − L−) as above, and where ψ±[a]0 = 2πψ±[a]

and U±0 = 2πU± are charges with spin 3/2 and 1 respectively.

One finds

β =
`

2

(
ξ̂+ + ξ̂−

)
, (4.42)

βµJLor
= −1

2

(
ξ̂+ − ξ̂−

)
, (4.43)

βµU± = ν±, (4.44)

βµψ±
[a]

= ϑ±[a], (4.45)

where ξ̂±, ν± and ϑ±[a] are given in terms of the charges L̂±,U±, and ψ±[a] by the same

expressions (4.30)–(4.33) giving ξ̂±, ν± and ϑ±[a] in terms of L̂±,U±, and ψ±[a]. This shows

that indeed, the parameters introduced in the temporal components of the connection have

the anticipated physical interpretation of being the temperature and chemical potentials.

5 Extension to higher N

We have considered in sections 3 and 4 above sl(3,R) black holes. The extension from

N = 3 to a generic N is straightforward and will only be sketched here. In the principal

embedding of sl(2,R) into sl(N,R), the algebra sl(N,R) decomposes as ⊕N−1
s=1 Ds, where

Ds is the irreducible sl(2,R)-spin s representation.

The Euclidean-Lorentzian continuation for generic N is discussed in appendix (A.1.4).

The boundary conditions that ensure that the principal embedding is enforced gener-

alize (3.22) and take the form [14, 15],

Aϕ = L1 −
2π

k
LL−1 −

π

2k

N−1∑
s=2

W(s)W
(s)
−s , (5.1)

or, on the Lorentzian side,

A±ϕ = L±1 −
2π

k
L±L∓1 −

π

2k

N−1∑
s=2

W(s)±W
(s)
∓s . (5.2)

Here, the W
(s)
j (j = −s,−s+ 1, · · · , s− 1, s) are the 2s+ 1 generators of the sl(2,R)-spin

s representation Ds, so that W
(s)
−s is the lowest weight state of Ds. The functions L, W(s)

(complex) and L±, W(s)± (real) depend on ϕ (and t) and (5.1) and (5.2) give only the

leading asymptotic form in the general case. However, for the black hole in the rest frame,

L, W(s) and L±, W(s)± are constant and the expressions (5.1) and (5.2) are exact. If

the angular components of the connection do not fulfill these asymptotic conditions (or

equivalent conditions written in a different gauge, see appendix B), it will be a different

embedding with a different spin content that will be selected. In particular, these boundary

conditions are not fulfilled by the chemical potential terms in the connection given in the

work [66] for sl(4,R), which therefore does not describe a principal embedding black hole
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but rather, a black hole endowed with lower spin charges. The corresponding embedding

and asymptotic symmetries are discussed in [67].

As shown in [14, 15], the boundary conditions (5.2) are preserved by asymptotic sym-

metries that form a nonlinear WN -algebra. The most general (“improper”) gauge trans-

formation that preserves the boundary conditions is characterized at infinity by N − 1

arbitrary functions ξ, η(s) multiplying the highest weight generators L1 and W
(s)
s (plus

terms that are determined by them).

In particular, the temporal component of the connection must define an asymptotic

symmetry. In the black hole case, where L and W(s) are constant, the functions ξ and η(s)

entering Aτ are also constant. They are, as above, the temperature and chemical potentials

conjugate to the charges L and W(s).

The thermodynamical analysis proceeds then as above. The entropy is determined

by (A.52), and the chemical potentials are determined by the regularity condition (A.51)

generalized to an arbitrary N . The analysis is direct, although somewhat intricate. It will

not be tackled herein.

6 Concluding remarks

In this article we have investigated the generalized black holes appearing in extensions

of three-dimensional anti-de Sitter gravity which include higher and lower spins. In the

absence of available gauge invariant causality concepts, our approach has been to develop

the analysis entirely from the Euclidean formulation, a black hole solution being one that

has thermal properties. This point of view was first expressed in the present context in [22].

We have systematically adhered to it throughout without using any further input. We have

for instance refrained from giving a metric associated to the black hole solutions. Such

metrics exist but have gauge-dependent geometrical properties and so may be misleading.

We have also based the derivation of the entropy entirely on the action, and showed that it

can be expressed as a “boundary term at the horizon” along the lines developed in [59–61].

Our approach also provides throughout a definite control of the boundary conditions

along the lines of [44]. We have analyzed thoroughly both, higher spin and also lower

spin black holes. The higher spin black hole solution given here is the first black hole

with the required asymptotics for higher-spin charges. In contrast, the black hole solutions

given earlier in the literature do not have the required asymptotics and instead, possess

only lower-spin charges. The existence of a black hole with W3 asymptotics indicates

that, contrary to some opinions previously expressed in the literature, there is no need to

break the asymptotic behaviour of the connection when discussing the thermodynamics of

solutions carrying higher spin charges.
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A Background

A.1 Chern-Simons formulation of gravitation theory in three spacetime di-

mensions

A.1.1 Lorentzian formulation

As shown in [7, 8], the standard theory of gravitation with a negative cosmological constant

in 2+1 spacetime dimensions can be reformulated as a Chern-Simons theory by using

instead of the metric variables, one so(2, 2)-connection. This is because so(2, 2) is the

isometry algebra of anti-de Sitter space. The so(2, 2)-connection may be written as

A = ωaJa + eaPa, (A.1)

where ωa is the spin connection and ea the dreibein. Here, the Ja’s and Pa’s are the

generators of so(2, 2),

[Ja, Jb] = ηcdεabcJd, [Ja, Pb] = ηcdεabcPd, [Pa, Pb] = ηcdεabcJd, a, b, c, d = 0, 1, 2 , (A.2)

ηab = diag(−1, 1, 1) and εabc is the Levi-Civita symbol with ε120 = 1. The Ja’s generate

the local so(2, 1) subalgebra acting in the tangent spaces, which is extended to so(2, 2) by

the generators Pa.

Now, so(2, 2) is the direct sum of two copies of so(2, 1) ' sl(2,R). A basis where this

property is manifest is given by

Y ±a =
1

2
(Ja ± Pa) , (A.3)

which fulfill independently the sl(2,R)-algebra. The 4 × 4 matrices Y ±a commute with

each other,

[Y +
a , Y

−
b ] = 0. (A.4)

For each sl (2,R), we shall use from now on the fundamental (defining) representation of

the algebra, which is formed by 2×2 matrices. Furthermore, we will realize Y +
a and Y −a as

Y +
a =

(
X+
a 0

0 0

)
, Y −a =

(
0 0

0 X−a

)
, (A.5)

where X±a are 2× 2 sl(2,R)-matrices. The connection can thus be rewritten as

A = A+ ⊕A−, (A.6)
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where

A± =

(
ωa ± ea

`

)
X±a , (A.7)

are two independent connections A± for sl (2,R). The Ja’s and Pa’s are then realized by

the 4× 4 matrices

Ja =

(
X+
a 0

0 X−a

)
, Pa =

(
X+
a 0

0 −X−a

)
. (A.8)

We shall take the same basis for each sl (2,R), X+
a = X−a . One choice for both X+

a

and X−a is given by

T0 = − iσ2

2
=

(
0 −1

2
1
2 0

)
; T1 =

σ3

2
=

(
1
2 0

0 −1
2

)
; T2 =

σ1

2
=

(
0 1

2
1
2 0

)
, (A.9)

where σa’s are the Pauli matrices, and correspondingly,

Ja =

(
Ta 0

0 Ta

)
, Pa =

(
Ta 0

0 −Ta

)
. (A.10)

These generators Ta’s obey

[Ta, Tb] = ηcdεabcTd. (A.11)

Another choice of basis in the Lie algebra sl(2,R) is

L−1 =

(
0 0

1 0

)
; L0 =

(
−1

2 0

0 1
2

)
; L1 =

(
0 −1

0 0

)
, (A.12)

which obeys

[Li, Lj ] = (i− j)Li+j , i, j = −1, 0, 1 . (A.13)

The two bases are related by

Li = TaΛ
a
i , (A.14)

with

(Λai) =

1 0 1

0 −1 0

1 0 −1

 . (A.15)

We shall carry out the study of the Euclidean-Lorentzian continuation in the Ta-basis be-

cause the analysis is then expressed in terms of standard familiar geometrical objects (spin

connection and dreibein) whose behaviour under the continuation is simple and well con-

trolled, whereas the Li-basis is well adapted to the formulation of the asymptotic conditions.

A.1.2 Euclidean formulation

Euclidean three-dimensional gravity also admits a Chern-Simons formulation [8, 48, 49].

When the cosmological constant is negative, the role played by anti-de Sitter space in

the Lorentzian case is now played by the hyperbolic space H3, or three-dimensional

Lobachevsky space. The isometry algebra of H3 is so(3, 1). The identity component of the
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isometry group is obtained by exponentiation and is the proper, orthochronous Lorentz

group SO+(3, 1). This group is isomorphic to SL(2,C)/Z2, where Z2 = {+12×2,−12×2} is

the center of SL(2,C). The full isometry group is the orthochronous Lorentz group O+(3, 1)

obtained by adding the spatial reflection P = diag(1,−13×3). Only the identity compo-

nent SO+(3, 1) will be relevant here as we will be considering only gauge transformations

connected with the identity.

The Chern-Simons connection of Euclidean three-dimensional gravity with a negative

cosmological constant is thus a so(3, 1)-connection,

A′ = ωaJ̃a + eaP̃a, (A.16)

where ωa is the Euclidean spin connection and ea the Euclidean dreibein (a = 1, 2, 3). The

J̃a and P̃a generate so(3, 1),

[J̃a, J̃b] = δcdεabcJ̃d , [J̃a, P̃b] = δcdεabcP̃d , [P̃a, P̃b] = −δcdεabcJ̃d , a, b, c, d = 1, 2, 3 . (A.17)

Here, εabc is the Levi-Civita symbol with ε123 = 1 The J̃a generate the local so(3) subalgebra

acting on the tangent spaces and is extended to so(3, 1) by the generators P̃a.

Now, the real Lie algebra so(3, 1), which is six-dimensional, is isomorphic to sl(2,C)

viewed as a real algebra, which is also six-dimensional. This is the infinitesimal version of

the group isomorphism recalled above. One way to exhibit this isomorphism is to use the

set {Ĵa, P̂ a = iĴa} as basis of sl(2,C), where {Ĵa} is a basis of su(2) ' so(3),[
Ĵa, Ĵb

]
= δcdεabcĴd , a, b, c, d = 1, 2, 3 . (A.18)

The Ĵa, P̂ a fulfill the commutation relations (A.17) of the J̃a, P̃a. The matrices Ĵa are

antihermitian,
(
Ĵa

)†
= −Ĵa. Another basis of sl(2,C) that exhibits the isomorphism is

{Ĵa, P̂ ′a = −iĴa} since these generators fulfill the same commutation relations.

In order to compare the Lorentzian and Euclidean formulations, it is convenient to

realize the generators J̃a and P̃a in terms of block-diagonal, 4 × 4 matrices, since the Ja
and Pa of the Lorentzian theory have been brought to that form above. This can be

achieved by a complex linear transformation. We take

J̃a =

(
Ĵa 0

0 Ĵa

)
, P̃a =

(
iĴa 0

0 −iĴa

)
. (A.19)

This choice puts the two bases {Ĵa, P̂ a = iĴa}, {Ĵa, P̂ ′a = −iĴa} on an equal footing and

is such that the matrices J̃a and P̃a remain linearly independent over the complex numbers.

The matrices J̃a and P̃a, as well as any real linear combination of them, are of the form(
C 0

0 −C†

)
, (A.20)

with C ∈ sl(2,C). The map C 7→ −C† is an (antilinear) automorphism of the Lie algebra,

i.e., it preserves the commutator.
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One can rewrite the connection (A.16) as

A′ =

(
A 0

0 −A†

)
, (A.21)

with

A =

(
ωa +

i

`
ea
)
Ĵa. (A.22)

For the analysis that follows, it is convenient to choose the Ĵa’s as

Ĵ1 = − iσ3

2
=

(
−i
2 0

0 i
2

)
; Ĵ2 = − iσ1

2
=

(
0 −i

2
−i
2 0

)
; Ĵ3 = − iσ2

2
=

(
0 −1

2
1
2 0

)
. (A.23)

A.1.3 Euclidean-Lorentzian continuation for N = 2 (pure gravity)

Rules in the metric formulation. In order to spell out the Euclidean-Lorentzian con-

tinuation rules in the Chern-Simons formulation, we first write them in the metric formu-

lation. To do that, we consider first the explicit case of the 2+1 black hole under study in

this paper and then write the rules in the general case.

In “Schwarzschild coordinates” the Lorentzian metric for the standard 2+1 black

hole [28, 29] reads

ds2
Lor = −N2

Lorf
2
Lordt

2 + f−2
Lordr

2 + r2
(
dϕ+Nϕ

Lordt
)2
, (A.24)

with

f2
Lor =

(
r2 − r2

+

) (
r2 − r2

−
)

`2r2
,

NLor = NLor (∞) ,

Nϕ
Lor = Nϕ

Lor (∞)− r+r−
`r2

NLor (∞) , (A.25)

where

MLor =
r2

+ + r2
−

`2
, JLor =

2r+r−
`

. (A.26)

One usually sets NLor (∞) = 1 and Nϕ
Lor (∞) = 0 by a rescaling of t and a transfor-

mation of ϕ to ϕ′ = ϕ + Nϕ
Lor (∞) t. However it will be important for conceptual, and

practical purposes to keep NLor (∞) and Nϕ
Lor (∞) as adjustable parameters. Although

this is a matter of choice in the Lorentzian formulation, it is not so in the Euclidean one,

where regularity conditions at the horizon appear.

The Euclidean continuation for the metric (A.24) is obtained by setting

f2
Lor = f2

E , NLor = NE , Nϕ
Lor = iNϕ

E , (A.27)

MLor = ME , JLor = iJE , (A.28)

and demanding that the Euclidean parameters be real. These formulas may be obtained

by setting t = −iτ in the line element and taking τ to be real. More generally, for a generic

field configuration in Hamiltonian form,

πijLor = −iπijE , g
Lor
ij = gE

ij , NLor = NE, N
i
Lor = iN i

E, (A.29)
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and the Euclidean action is defined by

iILor = IE. (A.30)

When we deal with the Euclidean continuation below, we will drop the subscript “E”

whenever no confusion may arise.

Rules in the Chern-Simons formulation. From the metric continuation rules, one

derives the relationship between the Euclidean and Lorentzian dreibeins and spin connec-

tions. It is

e1E = e1L, e2E = e2L, e3E = −ie0L, ω1E = iω1L, ω2E = iω2L, ω3E = ω0L. (A.31)

The continuation rules e1E = e1L, e2E = e2L, e3E = −ie0L for the dreibein are rather

direct. The ones from the connection follow then from dea + ωabe
b = 0 and the definition

of ωa in terms of ωbc, i.e. ωa = 1
2ε
abcωbc.

From the continuation rules for the dreibein and the spin connection, one derives

A+1 = −iA1, A+2 = −iA2, A+0 = A3, (A.32)

and

A−1 = −i(A1)∗, A−2 = −i(A2)∗, A−0 = (A3)∗, (A.33)

where the ∗ denotes the complex conjugate. The previous formulas are summarized in the

simple relations

A+ = A, (A.34)

A− = −A†, (A.35)

where

A = AaĴa, A+ = A+aTa, A− = A−aTa. (A.36)

The relationship between Ĵa and Ta is the following,

T1 = iĴ1, T2 = iĴ2, T0 = Ĵ3. (A.37)

The Euclidean-Lorentzian continuation rule is remarkable. The two independent

sl (2,R) connections are merged into a single complex connection. The merging could

not be simpler, one simply takes A+ and allows it to be complex. The other connection

A− then follows according to (A.35). The prescription takes care automatically of the

change in the algebra when going from (A.11) to (A.18), that is, it replaces ηab by δab.

Reals forms of sl(2,C) ⊕ sl(2,C) and conjugations. One may view the analytic

continuation as the passage from one real form of sl(2,C) ⊕ sl(2,C) to another. Indeed,

the 6-dimensional real Lie algebras sl(2,R)⊕ sl(2,R),

sl(2,R)⊕ sl(2,R) =

{(
E 0

0 F

)
: E,F ∈ sl(2,R)

}
, (A.38)
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and sl(2,C),

sl(2,C) =

{(
C 0

0 −C†

)
: C ∈ sl(2,C)

}
, (A.39)

are two distinct real forms of the 6-dimensional complex Lie algebra sl(2,C)⊕ sl(2,C). By

this it is meant that if one complexifies these algebras (consider linear combinations with

complex coefficients of Lie algebra elements), one gets the full sl(2,C)⊕ sl(2,C).

Let (
M 0

0 N

)
, (A.40)

be an arbitrary element of sl(2,C)⊕ sl(2,C). One defines:

τ

((
M 0

0 N

))
=

(
M∗ 0

0 N∗

)
, σ

((
M 0

0 N

))
=

(
−N † 0

0 −M †

)
. (A.41)

The conjugations τ and σ (antilinear involutions that preserve the Lie algebra structure)

commute and fix the real Lie subalgebras sl(2,R)⊕ sl(2,R) and sl(2,C), respectively, i.e.,

x ∈ sl(2,C)⊕ sl(2,C) belongs to sl(2,R)⊕ sl(2,R) if and only if τ(x) = x, while x belongs

to sl(2,C) if and only if σ(x) = x.

One goes from sl(2,R)⊕sl(2,R) to sl(2,C) by decomposing any element A ∈ sl(2,R)⊕
sl(2,R) as A = A0 + A1 where σ(A0) = A0 and σ(A1) = −A1. The corresponding

sl(2,C)-element is A0 + iA1. Conversely, one can decompose any element B ∈ sl(2,C) as

B = B0 + B1 with τ(B0) = B0 and τ(B1) = −B1. The corresponding sl(2,R) ⊕ sl(2,R)-

element is B0 − iB1.

Euclidean-Lorentzian continuation of the asymptotic boundary conditions. In

order to apply the Euclidean-Lorentzian continuation rules to the connection (2.26),

A±ϕ (r, ϕ) = L±1 −
2π

k
L± (r, ϕ)L∓1, (A.42)

it is convenient to decompose the Virasoro generators L± into its even and odd parts under

the exchange of the two sl(2,R)-factors,

L± = A± B. (A.43)

The corresponding complex connection is then

Aϕ (r, ϕ) = L1 −
2π

k
L (r, ϕ)L−1, (A.44)

with

L = A+ iB. (A.45)

One thus says that the complex Virasoro generator L is related to its Lorentzian coun-

terparts L± through the continuation rules L+ = L, L− = L∗, with the understanding

that the imaginary part iB of L is continued to B, something that one sometimes writes

as BE = −iBLor. With these continuation rules, Aϕ becomes A+
ϕ while −A†ϕ becomes A−ϕ .
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For the temporal component (2.29),

A±t = ±ξ± (r, ϕ)

(
L±1 −

2π

k
L± (r, ϕ)L∓1

)
, (A.46)

one first continues t into t = −iτ to get

A±τ = ∓iξ± (r, ϕ)

(
L±1 −

2π

k
L± (r, ϕ)L∓1

)
. (A.47)

Setting ξ± = a± b, one then complexifies as above and gets

Aτ = −iξ (r, ϕ)

(
L1 −

2π

k
L (r, ϕ)L−1

)
, (A.48)

with ξ = a+ ib. The rule bE = −ibLor yields A+
τ from Aτ and A−τ from −A†τ .

A.1.4 Euclidean-Lorentzian continuation for generic N

We derived the continuation rule by translating into the Chern-Simons language the known

rules for the metric formulation and using a special basis for the gauge algebra. However,

the answer makes no reference to: (i) the metric, (ii) the need to identify the dreibein and

the spin connection from among the connection components, (iii) the basis in the gauge

algebra and (iv) the gauge algebra itself!. The rules (A.34) and (A.35) (“continue A+ to

complex values and take A− = −A†”) will be taken as the definition of the Euclidean-

Lorentzian continuation for the generalized case where sl(2,R) is replaced by sl(N,R) and

sl(2,C) is replaced by sl(N,C).

The Lorentzian action is of the form

ILor = ICS

[
A+
]
− ICS

[
A−
]
. (A.49)

It is immediate to verify that if one inserts in (A.49) the definitions (A.34) and (A.35),

one finds

iILor = IE = −2Im [ICS [A]] . (A.50)

For a generic N the regularity condition is

Hτ = (−1)N+1
1, (A.51)

where one employs the representation in terms of smallest matrices (2× 2 for N = 2, 3× 3

for N = 3).

The entropy is given by

S = −2kN Im
(

tr
[
Aon-shell
τ (r+)Aon-shell

ϕ (r+)
])

, (A.52)

with kN = 6k/N
(
N2 − 1

)
= 3`/2GN

(
N2 − 1

)
.
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Figure 1. Topology of the Euclidean black hole in three-dimensional spacetime. The sequence

of images illustrates how R2 × S1 is identical to a solid torus. The “Euclidean horizon” r+ is the

origin of a system of polar coordinates r, τ in R2. The Euclidean time τ is the polar angle. On the

other hand, the S1 is parametrized by the angle ϕ. The points (τ, r, ϕ) and (τ + 1, r, ϕ+ 2π) are

identified. In the metric formulation, which is available only in the pure gravity case, the opening

angle of an “off-shell” conical singularity at r+ is conjugate to the area of S1 at r+ because the

variation of the action with respect to the area gives Θ. On-shell one has Θ = 2π, and there is no

conical singularity. In the Chern-Simons formulation, which is available for the pure gravity black

hole and also for its generalizations, the holonomy of the contractible τ cycle is conjugate to that of

the non-contractible ϕ cycle, in the sense that the variation of the action with respect to Aϕ (r+)

gives Aτ (r+). On-shell the holonomy of the τ cycle is trivial and the solution is regular.

A.2 Thermodynamics of the pure gravity 2+1 black hole in the metric for-

mulation

A.2.1 Geometry of the 2+1 Euclidean black hole

The geometry of the Euclidean 2+1 black hole was investigated in [46]. It was shown there

that the topology induced by the metric on the three dimensional Euclidean space is that

of a solid torus, or equivalently R2 × S1, as illustrated in figure 1.

The coordinate τ is an angle in the R2 factor, and ϕ is an angle in the S1. The periods

of τ and ϕ may be fixed once and for all to any nominal value, the physical restriction

of interest below will be formulated in terms of N and Nϕ. This is why we have allowed

from the onset for the appearance of N (∞) and Nϕ (∞) in (A.24). In this way, when

dealing with the action integral further below one can vary the fields without having to

worry about the variation of the range of integration. In order to make easy contact with
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the standard conventions, we will take

0 < τ ≤ 1, (A.53)

0 < ϕ ≤ 2π. (A.54)

Note that with this conventions τ is dimensionless and the “Killing lapse” N has dimensions

of length. If in our formulas we replace τ by N(∞)−1τ we obtain those of ref. [46].

A.2.2 Euclidean action and entropy

The black hole entropy, as well as other thermodynamic functions such as the Helmholtz

and Gibbs free energies, are obtained by evaluating the appropriate Euclidean action on

the black hole solution. Here the word “appropriate” means that the chosen action must be

such that if one demands that it be stationary with some boundary conditions at infinity,

then the equations of motion should hold everywhere. If one fixes at infinity the mass

and the angular momentum, which corresponds to the microcanonical ensemble, then the

value of the corresponding action is the entropy. If instead one fixes N (∞) and the angular

momentum J , then the value of the corresponding action is −βF , where F is the Helmholtz

free energy F = M− TS, with the inverse temperature β = N (∞). If one fixes N (∞)

and Nϕ (∞), then the value of the corresponding action is −βG, where G is the Gibbs free

energy G =M− TS − µJJ , and µJ = −β−1Nϕ (∞).

To construct the desired action we start with the canonical form of the Lorentzian

action

Ican =

ˆ
d3x

(
πij ġij −NH−N iHi

)
. (A.55)

After performing the Euclidean continuation with the prescriptions (A.29) given above,

the Euclidean action (A.30), expressed in term of the Euclidean variables, takes exactly

the same form, with the only change that in the Hamiltonian generator H the term that is

quadratic in the momenta πij reverses its sign with respect to the Lorentzian case. Next,

we use a polar system of coordinates in the R2 plane with r being the radial coordinate

and τ being the polar angle, and we call ϕ the coordinate that runs along the S1. We will

call r+ the value of r at the origin of the polar coordinate system in R2. If one performs

the variation of the action (A.55), one obtains three terms: (i) a volume integral over

r, t and ϕ, which vanishes when the equations of motion hold for r+ < r < ∞, (ii) a

boundary term at r+ which is an integral over the S1 at that point, and (iii) a boundary

term which is an integral over S1 at infinity. The boundary term at infinity will be dealt

with afterwards because its form needs to be adjusted according to which variables are

fixed at infinity, that is, as explained above, it depends on the thermodynamic ensemble

that is chosen. On the other hand, in dealing with the boundary term at r+ one only has

to demand that the equations of motion should hold at r+ since no variable is fixed there

as a boundary condition. Since the equations of motion already hold for r greater than

r+, the requirement on the boundary term at r+ is that it should vanish when the fields

are regular at that point, otherwise there would be a source at the origin. If the boundary

term does not vanish, the action must be amended by adding to it a term whose variation
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cancels the boundary term coming from the variation of the canonical action. As discussed

in [59, 60], the boundary term at the origin takes the form

δIcan (r+) = −
ˆ
r+

dϕ

[
1

8πG
Θ (ϕ) δ

√
gϕϕ + 2N i (ϕ) δπ ri

]
. (A.56)

If one demands that the variation with respect to π ri (r+, φ) should vanish, one obtains

the condition

N i (r+, ϕ) = 0. (A.57)

As it will be discussed below, this condition can always be imposed, and it fixes the chemical

potential to its correct value. However, the situation with respect to Θ (ϕ) is different. The

precise form of Θ (ϕ) in terms of N and gij will be written down below (A.71), but it is of

not needed here. What is key is that unless, in addition to (A.57) one has

Θ (ϕ)on-shell = 2π, (A.58)

there is a singularity at the origin and therefore the equations of motion are not satisfied at

that point. However, extremization of Ican with respect to gϕϕ at r+ yields Θ (ϕ)|on-shell =

0. This means that the canonical action needs to be modified so that, extremization of

the corrected action with respect to gϕϕ should yield Θ (ϕ)on-shell = 2π. One must add

therefore to the action the term
1

4G

ˆ
r+

√
gϕϕdϕ. (A.59)

The correct action then reads

I =
1

8πG
Θon-shell

ˆ
r+

√
gϕϕdϕ+ Ican +B∞,

=
1

4G

ˆ
r+

√
gϕϕdϕ+ Ican +B∞. (A.60)

Extremization of this action under variation of gϕϕ (r+) gives the equations of motion

for r+ ≤ r < ∞ . We will also see below that, just as N i (r+) = 0 fixes the chemical

potential, Θ (ϕ)on-shell = 2π, fixes the inverse temperature β. An important comment in

this context, one may interpret the case Θ = 0 as corresponding to the “closed cone”, that

is as an infinitely long throat that becomes narrower and narrower as far as one approaches

the origin. Topologically, this means that the origin r+ is excised from the manifold and

therefore the topology is no longer R2 × S1 but rather
[
R2 − {r+}

]
× S1. In this case, no

improvement of the canonical action at the origin is needed. This happens for the extreme

black hole [59].

It should be emphasized that the only amendment of the action at the origin is the

addition of (A.59) which ensures that the equations of motion hold there, independently

of what one chooses to fix at infinity. This is a reflection of a profound fact: in thermody-

namics, the entropy - and its integrating factor in the first law, the temperature- are quite

distinct from the charges and the chemical potentials, and thus enter in a very different

footing in its construction through the action.
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Now, for any solution that is time independent, and so are the black holes, the value

Ican evaluated on the solution (“on-shell”) is zero, because ġij = 0, and the constraint

equations H = 0,Hi = 0. This is the reason why it is so convenient to use the canonical

action in this context. Therefore, one has

I =
1

4G
A+B∞, (on-shell). (A.61)

The value of the boundary term at infinity depends on the choice of the ensemble. For

the microcanonical ensemble B∞ = 0. One therefore finds that the entropy is given by

S =
1

4G
A. (A.62)

If one works in the microcanonical ensemble, one needs to express, through the solutions

of the constraint equations, the horizon “area”, A = 2πr+ in terms of the mass and the

angular momentum which are defined at infinity. Similarly for the other ensembles. One

cannot focus only on the horizon, or only on infinity, one needs both to construct the

thermodynamics in whatever ensemble one chooses to work in.

For the 2+1 black hole, the asymptotic symmetries have been studied in [2, 29]. It

is found that when “asymptotically Anti-de Sitter” boundary conditions are given for gij
and πij , the improving boundary term takes the form

δB∞Lor = − 1

2π
(t2 − t1)

∑
n

[
1

`
NnLorδ

(
L+
n + L−n

)
−Nϕ

nLorδ
(
L+
n − L−n

)]
, (A.63)

where the L±n are build out of the gij and πij , and where at infinity, the “Killing lapse”

N tends to a function of ϕ whose Fourier components are Nn, and similarly for Nϕ.

Furthermore, it is shown that, in terms of the Poisson bracket, the L±n are two independent

copies of the Virasoro algebra. The expression (A.63) for the boundary term shows that

the most general permissible motion, is obtained when for large r both N and Nϕ tend

to arbitrary functions of ϕ. This motion is not a gauge transformation, but it is a global

symmetry transformation at infinity.

In the “rest frame” of the black hole, the only surviving mode of L± is the zero

mode. Now, N (∞) = 1
2πN0 corresponds to making a displacement in “proper Killing

time” of magnitude N (∞) (t2 − t1). The corresponding generator then deserves to be

called the negative of the mass, and similarly Nϕ (∞) = 1
2πN

ϕ
0 is a spatial rotation of

magnitude Nϕ (∞) (t2 − t1), and the corresponding generator deserves to be called the

angular momentum. Indeed one finds for the black hole metric (A.24)

(Rest mass) :=MLor =
1

`

(
L+

0 + L−0
)

=
MLor

8G
,

(Angular momentum) := JLor = L+
0 − L

−
0 =

JLor

8G
. (A.64)

A.2.3 Thermodynamics

When studying black hole thermodynamics we will assume that we are in that “rest frame”.

As indicated in the main text, there is no more loss of generality in doing this than the
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one incurred in if one studies the thermodynamics of a gas in a box assuming that the box

is at rest. Thus, the only extensive parameters present will be the mass and the angular

momentum. To construct the thermodynamics one may work in any ensemble. If one

chooses to work in the microcanonical ensemble, then one fixes at infinity those extensive

parameters. If they are fixed, the variation (A.63) vanishes, and so thus its Euclidean

continuation. The surface term B∞ in (A.61) then vanishes, and as already stated, the

Euclidean action on-shell is equal to the entropy given by S = 1
4A. All the thermodynamics

is captured once one expresses the area A in terms of the mass and the angular momentum.

From (A.24) it follows that

r+ = `

√
MLor

2

[
1 +

(
1−

J2
Lor

M2
Lor`

2

) 1
2

] 1
2

= 2`
√
GMLor

[
1 +

(
1−

J 2
Lor

M2
Lor`

2

) 1
2

] 1
2

, (A.65)

and therefore

S = π`

√
MLor

G

[
1 +

(
1−

J 2
Lor

M2
Lor`

2

) 1
2

] 1
2

. (A.66)

From the entropy (A.66), one may evaluate the inverse temperature β and the chemical

potential for the angular momentum µJLor

β =

(
∂S

∂MLor

)
JLor

, (A.67)

βµJLor
= −

(
∂S

∂JLor

)
MLor

. (A.68)

On the other hand, we have from the Euclidean version of (A.63)

β = N (∞) , (A.69)

βµJ = −Nϕ (∞) . (A.70)

Now, one can determine directly the value of N (∞) and Nϕ (∞) from the line ele-

ment (A.24), (A.25), (A.26) through equations (A.57) and (A.58). One needs to bring in

the expression for Θ, which has not been given yet. It reads [59],

Θ =
1

2
N (∞)

(
f2
)′

(r+) . (A.71)

Both calculations must agree, since they come from the same action principle. They do,

and either way one obtains

β =
2πr+`

2

r2
+ − r2

−
, (A.72)

µJLor
=

r−
`r+

. (A.73)

We have done this analysis in detail because it shows blatantly that one must allow for

the most general permissible Lagrange multipliers even if one works in the microcanonical
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ensemble. The boundary conditions for both, the canonical variables and the Lagrange

multipliers are part of the definition of the theory, and are given once and for all. The

ensemble one works in is a matter of choice, and the form of the action must be chosen in

tune with the ensemble, but the asymptotic symmetries remain the same for all ensembles.

For example, if one wants to work in the grand canonical ensemble, one must choose the

boundary term B∞ in (A.61) so that the action has an extremum when β and µJ are fixed

at infinity, instead ofM and J . So, the variation of the canonical action must be cancelled

by the variation of B∞. In that case one must take

BLor
∞ = (t2 − t1)

[
−NLor (∞)MLor +Nϕ

Lor (∞)JLor

]
. (A.74)

When one performs the Euclidean continuation (A.74) becomes

B∞ = −βM+ βµJJ , (A.75)

which is precisely what is needed to replace the entropy S by the Gibbs free energy G, as

it should be the case for the grand canonical ensemble. One may then go through the same

steps as before to derive the thermodynamics.

A.3 Conformal weight and sl (2,R) spin

For completeness, we recall here a few concepts related to our use of the terminology

“higher spin”.

A.3.1 Conformal weight

A field φ(z) is defined to have conformal weight or conformal dimension J if under coordi-

nate transformation z → z′(z), the field φ transforms as:

φ′(z′) =

(
dz

dz′

)J
φ(z). (A.76)

The metric gzz has conformal weight 2 since g′zzdz
′dz′ = gzzdzdz. A tensor of rank 3 has

conformal weight 3.

For infinitesimal transformations z → z′ = z + ε(z), this implies

δφ = −εdφ
dz

+ Jφ
dε

dz
, (A.77)

or, in terms of Fourier modes and Poisson brackets (and given that the Ln’s generate the

transformations),

i{Lm, φn} = (m(J − 1)− n)φm+n. (A.78)

For the Lm’s themselves, one has this law with J = 2 but the bracket is modified in

this case by the central charge. For the Wm’s, one has J = 3,

i{Lm,Wn} = (2m− n)Wm+n, (A.79)

and so the Wm’s have conformal weight 3.
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A.3.2 Relation with sl(2,R)-spin

The generators {L−1, L0, L1} span sl(2,R). By the above relations, the generators

{W−2,W−1,W0,W1,W2} form a representation of sl(2,R). The finite dimensional irre-

ducible representations of sl(2,R) are characterized by their “spin” (like for the compact

version su(2)). The dimension D of a representation is related to its spin k by D = 2k+ 1.

The {W−2,W−1,W0,W1,W2} transform in the spin-2 representation. There is a shift by

one between the sl(2,R)-spin and the conformal weight,

J = k + 1. (A.80)

This can be understood from the fact that the gauge field Aaµ carries a vector index µ in

addition to the internal index a. This index carries its own spin 1.

B Relationship with previous results

B.1 Permissible gauge transformations

The subject of generalized black holes in higher-spin three-dimensional gravity was started

in [22, 23]. However, the black hole connections discussed by these authors — which we

shall term “GK black holes” or “GK connections” after the initials of the author’s last

names — have angular components A±ϕ which fulfill neither the boundary conditions (3.7)

of W3 gravity nor the boundary conditions (4.6) of W
(2)
3 gravity. Since a theory is defined

by equations of motion and boundary conditions, and since the GK connections satisfy

the equations of motion but not the boundary conditions, one might just take the point of

view that these are simply not solutions of the theory. Rejecting the connections of [22, 23]

on the grounds that they do not fulfill the boundary conditions (3.7) or (4.6) might be a

bit excessive, however, as one might with the same strict attitude reject the Schwarzschild

solution written in polar coordinates on the grounds that it does not fulfill the asymp-

totically flat boundary conditions written in cartesian coordinates. So one might ask the

question: can the GK connections be made to fulfill the boundary conditions (3.7) or (4.6)

by a permissible change of gauge?

The issue is a bit subtle because any singularity-free flat connection on the solid torus

with given holonomies is related to any other one with the same holonomies (up to con-

jugation) by a gauge transformation. What makes a gauge transformation permissible in

this context?. The criterion for admissibility is that the gauge transformation should not

interfere with the asymptotic algebra. In order for this to happen, the gauge transformation

should be independent of the asymptotic charges. This is because then the gauge transfor-

mations commute with the variation of the charges and, under it, the image of the variation

is the variation of the image. This admissibility criterion certainly holds for the analogy

with the Schwarzschild metric mentioned above, because the passage from cartesian to

spherical coordinates is independent of the mass.
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B.2 The GK black hole is a W
(2)
3 black hole

We now pass to show that the GK connection can be brought asymptotically to the W
(2)
3

form (4.6)–(4.14) by a permissible gauge transformation, and so it should be thought of as

a black hole belonging to the diagonal embedding family investigated in section 4.

The gauge transformation is constructed directly by demanding

AGK = g−1Adiag-embg + g−1dg, (B.1)

for each of the two copies A±. Here, Adiag-emb is given by our eqs. (4.6)–(4.14), and AGK

is given in [22].

One finds

g = eλ, (B.2)

with

λ±=±1

2
log (4µ±)

(
L0 ∓

2µ± +
√
µ±

2µ± (1−4µ±)
[W∓1 ∓ (∂±µ±)L∓1] +

µ′±
4µ± (1− 4µ±)

W∓2

)
. (B.3)

The gauge transformation (B.1)–(B.3) depends only on the parameters µ± appearing in

the GK connection, and it is independent of the charges, and it is thus permissible.8

The relationship between the W
(2)
3 charges and the “charges” appearing in the GK

solution is given by

U± = ±2

3
µ±L̃± ∓

k

16π

[
µ−1
± − µ−1

± (∂±µ±)2 +
4

3
∂2
±µ±

]
, (B.4)

L̂± = L̃± ± 3µ±W̃± −
2

3
µ2
±

(
∂2
±L̃± −

16π

k

(
L̃±
)2
)

+
5

3
L̃± (∂±µ±)2 − 5

6

(
∂±L̃±

) (
∂±µ

2
±
)

− 10

3
µ±L̃±∂2

±µ± +
k

24π

[(
∂2
±µ±

)2 − 2 (∂±µ±)
(
∂3
±µ±

)
+ 2µ±

(
∂4
±µ±

)
+

9

4
µ−2
± µ′2± −

3

2
µ−1
±
(
∂2
∓µ± + 2∂2

±µ± − 3∂−∂+µ±
)]

, (B.5)

and

ψ+
[a] =

a

3

√
2µ+

[
L̂+ − 24π

k

(
U+
)2

+
3k

32π
µ−2

+ µ′+ (`µ̇+ − 2a)− k`

16π
µ−1

+ µ̇′+

]
, (B.6)

ψ−[a] = −1

3

√
2µ−

[
L̂− − 24π

k

(
U−
)2 − 3k

32π
µ−2
− µ′− (`µ̇− − 2a) +

k`

16π
µ−1
− µ̇′−

]
. (B.7)

Note that one can produce the eight independent charges of W
(2)
3 out of the four

L̃±, W̃± because the right hand side of (B.5) contains one first time derivative and sec-

ond time derivative of L̃± for each copy the algebra thus providing the right number of

independent initial data.

8When (B.2) and (B.3) are inserted in the right-hand side of (B.1) one finds that the AGK appearing

in (B.1) differs from the one given in eqs. (3.2) and (3.3) of ref [22] by there = 2
(
ξ̂+ + ξ̂−

)−1
tthere

`
,

ϕhere = −
(
ϕthere +

ξ̂+−ξ̂−
ξ̂++ξ̂−

tthere

`

)
, and µhere

− = −µthere
− . The multipliers ξ̂± are taken to be independent of

t and ϕ.
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The GK Lagrange multipliers correspond to the particular case,

ν± := ∓3

2

(
ξ̂+ + ξ̂−

)
µ−1
± , ϑ+

[a] :=
ξ̂+ + ξ̂−√

2µ+
, ϑ−[a] := −aξ̂+ + ξ̂−√

2µ−
. (B.8)

It follows from this analysis that the GK black hole solution, for which µ±, L̃± and

W̃± are assumed to be constants, corresponds to a particular case of the one described

in section 4, whose Euclidean version is given by eqs. (4.23), (4.24) and (4.25). This

means that the GK black holes do not carry fundamental higher spin charges, but instead,

according to (4.16), that they are endowed with spin-2, spin-3
2 , and U (1) spin-1 charges

given by

L̂± = L̃± ± 3µ±W̃± +
32π

3k
µ2
±

(
L̃±
)2

,

ψ+
[a] = a

√
2µ+

(
L̃+ + µ+W̃+ − k

32πµ2
+

)
,

ψ−[a] = −
√

2µ−

(
L̃− − µ−W̃− −

k

32πµ2
−

)
, (B.9)

U± = ±2

3
µ±L̃± ∓

k

16πµ±
,

respectively.

B.3 Entropy paradox resolved

The following paradox has appeared in the literature in connection with the entropy of the

GK black hole: depending on the method of evaluation, two different results for it have been

proposed. The paradox already appears in the simplest case of a static GK black hole for

which the Euclidean charges L̃ and W̃ are real. In that case, the two conflicting proposals,

each of which have been endorsed by a number of authors [22, 23, 30–42, 68] read:

SGK
1 = 4π

√
2πkL̃

√
1− 3

4C

(
1− 3

2C

)−1

(correct), (B.10)

and

SGK
2 = 4π

√
2πkL̃

√
1− 3

4C
(incorrect), (B.11)

where C is defined through

W̃ =

√
32π

k
L̃3
C − 1

C3/2
. (B.12)

We shall now elucidate how the paradox arose, and establish that, as anticipated above,

the first proposal (B.10) is correct, while the second one (B.11) is incorrect.

The key fact, that has been established in the present article is that the GK black hole

is a W
(2)
3 black hole. Its entropy in terms of the W

(2)
3 charges of spin 2, 3/2 and 1 has been

exhibited in eq. (4.34). That entropy yields (B.10) after the following steps: (i) Take for

µ± in (B.9) the value

µ+ = µ− =
3

4

√
kC

2πL̃
1

2C − 3
, (B.13)
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which follows from the regularity conditions for the W
(2)
3 -case and the relationship (B.8)

between the chemical potentials, and actually agrees with ref. [22] itself. (ii) Express the

W
(2)
3 charges in terms of L̃ and C through (B.9).

How did SGK
2 arise then? It was obtained through integration of the first law of

thermodynamics starting from the expression of the inverse temperature and the chemical

potentials obtained from the regularity condition, assuming that L̃ and W̃ were funda-

mental charges. But, -when expressed in terms of L̃ and W̃ and upon use of (B.8) - the

expression for Aτ , which is what is involved in the regularity condition, is the same for the

W3 and W
(2)
3 black holes. Therefore, what was being calculated was in effect the entropy

of the W3 black hole discussed in section 3,9 which is indeed given by (B.11), rather than

that of the GK black hole which is a particular case of a W
(2)
3 black hole. The trap was

that a calculation solely based in Aτ could not put in evidence the fact, that can only be

revealed by Aϕ, that L̃ and W̃ were not fundamental spin 2 and spin 3 charges but were

“composite charges” made out from charges of spin 2, 3/2 and 1.

B.4 Further comments

The following comments are in order:

(i) If one performs the direct analysis of the asymptotic symmetries of the GK con-

nections, without implementing the gauge transformation (B.2), (B.3) that brings

them into the diagonal embedding boundary conditions (4.6)–(4.10), one finds, as

one should, that these asymptotic symmetries form a W
(2)
3 -algebra in each ± sector.

The calculation is somewhat cumbersome and, for the sake of brevity it will not be

reported here.

(ii) If one tries to match the asymptotic conditions in [22] with the ones appropriate to the

principal embedding, direct calculation shows that the group elements g± necessary

to achieve the transformation depend on the charges. As explained above, this is not

allowed. Note that, a fortiori, the gauge transformation whose existence is argued

in [62] would necessarily have this same impediment.

(iii) The solutions considered in [25] can also be mapped on another particular case of

our general form (4.23) by means of a permissible gauge transformation.

(iv) Some of the preceding issues were dwelled upon in the work [40]. It was asserted there

that the GK asymptotic conditions could be viewed as possessing both W
(2)
3 and W3

symmetries. According to the analysis herein they possess only W
(2)
3 . One could

perhaps imagine that composite W3 charges might be constructed out of the W
(2)
3

generators by, for example, combining two spins 3/2 to form a spin 3. Whether a

construction of such sort could be realized through a gauge transformation depending

on the charges, or by a some other mechanism, remains at present pure speculation.

9In the present discussion we have expressed SGK
1 and SGK

2 in terms of the variable C that was employed

in the original literature on the subject. In order to compare with equation (3.37), one must use (B.12),

and “remove the tildes”.
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