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Abstract

It would often be useful in computer simulations to use an implicit description of solvation effects, 
instead of explicitly representing the individual solvent molecules. Continuum dielectric models 
often work well in describing the thermodynamic aspects of aqueous solvation, and can be very 
efficient compared to the explicit treatment of the solvent. Here we review a particular class of 
“fast” implicit solvent models, generalized Born (GB) models, which are widely used for 
molecular dynamics simulations of proteins and nucleic acids. These approaches model hydration 
effects and provide solvent-dependent forces with efficiencies comparable to molecular mechanics 
calculations on the solute alone; as such, they can be incorporated into molecular dynamics or 
other conformational searching strategies in a straightforward manner. The foundations of the GB 
model are reviewed, followed by examples of newer, emerging models and examples of important 
applications. We discuss their strengths and weaknesses, both for fidelity to the underlying 
continuum model and for the ability to replace explicit consideration of solvent molecules in 
macromolecular simulations.
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1. INTRODUCTION

Biochemical processes often depend strongly on their environment, often consisting of water 
plus mobile ions, whose main thermodynamic impact is to stabilize charges or polar groups, 
and to screen charge–charge interactions. Computer simulations, based on molecular 
dynamics or Monte Carlo sampling techniques, can represent these and other solvation 
effects by including explicit water molecules and ions as a part of the simulation setup(88). 
This approach is generally straightforward, but can be both expensive and inconvenient for 
studies where the behavior of the biomolecular system (the ”solute”) is of primary interest. 
The basic idea of implicit solvation is to integrate out explicit solvent degrees of freedom, 
incorporating their thermodynamic effects into a solvation free energy ΔGsolv. This leads to 
a simulation setup where the only explicit degrees of freedom are the coordinates of the 
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solute, and where the effects of the solvent environment adjust instantaneously as the solute 
configuration changes.

By its very nature, implicit solvent models only describe a thermodynamic equilibrium state; 
sampling of the equilibrium states can be greatly enhanced, but at the expense of 
disregarding the kinetics. Of greater concern is a seemingly inevitable loss of accuracy and 
generality of “fast” implicit solvation: the complex ways in which collections of water 
molecules interact with biomolecules are greatly simplified to achieve computational 
efficiency, to the detriment of physical realism. Furthermore, explicit solvent simulations can 
be very general: it is relatively straightforward to explore changes in temperature and 
pressure, to incorporate heterogeneous environments (such as lipid bilayers), to deal with 
multivalent ions, or mixtures of monovalent and divalent ions, and so on. In contrast, the 
implicit solvent models discussed here are mostly specific to a fairly homogeneous water/ion 
environment in a narrow temperature range. Given these limitations, it may be useful to sum 
up reasons that implicit solvent models are still of wide interest:

1. There is no need for the lengthy equilibration of water that is typically necessary 
in explicit water simulations; implicit solvent models correspond to 
instantaneous solvent dielectric response.

2. Continuum simulations generally give improved sampling, due to the absence of 
viscosity associated with the explicit water environment; hence, the 
macromolecule can more quickly explore the available conformational space.

3. There are no artifacts of periodic boundary conditions; the continuum model 
corresponds to solvation in an infinite volume of solvent.

4. New (and simpler) ways to estimate free energies become feasible; since solvent 
degrees of freedom are taken into account implicitly, estimating free energies of 
solvated structures is much more straightforward than with explicit water models 
(106, 57).

5. Implicit models provide a high degree of algorithm flexibility. For instance, a 
Monte-Carlo move involving a solvent exposed side-chain would require non-
trivial re-arrangement of the nearby water molecules if they were treated 
explicitly. With an implicit solvent model this complication does not arise. 
Similar considerations (discussed below) arise when protonation changes are 
sampled in constant pH simulations.

6. Last but not least: implicit solvation approach is very useful at guiding physical 
reasoning(125).

In this review, we focus our discussion on the generalized Born implicit solvent model, 
whose computational speed is roughly comparable to that of molecular mechanics (force 
field) calculations for biomolecules in the absence of solvent, and which provides both 
solvation energies and the solvent contribution to forces on the solute atoms. The forces 
enable molecular dynamics simulations, and the speed make possible the sorts of extensive 
explorations of conformational space that are needed for computational design, docking 
calculations and free energy estimates. We build upon earlier reviews,(9, 8, 123, 82, 88) but 
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will try to cover some of the most recent developments while also keeping this account 
reasonably self-contained.

2. POLAR SOLVATION: THE GENERALIZED BORN MODEL

One of the conceptually simplest models treats the solute as a low-dielectric region, 
embedded in a continuous medium characterized by a macroscopic dielectric constant ϵout, 
applying macroscopic concepts at a level of atomic detail.(99, 10) There are many reasons to 
be suspicious of this model, not least of which is the difficulty of assigning a single 
dielectric constant to the structurally diverse interior of a protein or other macromolecule.
(98) Still, this represents a well-specified physical model, whose properties can be 
systematically explored, and whose defects might be ameliorated through empirical 
parameterization or adjustment. Early explorations, before the development of digital 
computers, treated the solute molecule as a sphere; this still provides useful insights, and we 
begin there.

2.1. Electrostatic interactions in spherical geometries

The Born equation(12) describes the transfer free energy of a single spherical ion (with a 
single charge at its center) from the gas phase to a (water) environment characterized by a 
continuum dielectric ϵout:

ΔGsolv Ri = − 1 −
1

ϵout

q
2

2A
(1)

where A is the ion radius, q is its charge, and Gaussian units are used; a derivation is given 
below at Eq. 10. The complex effects of water-ion and water-water interactions across 
multiple water shells surrounding the ion, and including both the entropic and enthalpic 
contributions, are distilled into the functional dependence of ΔGsolv on the key parameters of 
the model: in this case the solvent dielectric and the ion charge and size.

The Born formula(12) Eq. 1 is the simplest of several models(54, 55, 112) that share the 
same underling physics – they are exact solutions of the Poisson equation of continuum 
electrostatics for a spherical solute. These ”spherical cow” models still serve to illustrate 
some of the key features of electrostatic interactions in biomolecules. The ”Tanford-
Kirkwood” model, for example, was used for many years to rationalize the pH behavior of 
proteins.(112, 113, 39)

Some simple and interesting limits arise when ϵout becomes very large.(56) In particular, one 
can show that for an arbitrary charge distribution inside a spherical solute, Fig. 1 left, the 
exact solution of the Poisson equation (in the limit ϵout → ∞) gives the solvation free 
energy of the following simple form(38, 101):

ΔGsolv = −
1
2

1
ϵin

−
1

ϵout
∑
i, j

qiq j

ri j
2 + RiR j

(2)
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Ri = A − ri
2/A (3)

This result is very similar to the generalized Born idea introduced in the next section; note 
that the double summation in Eq. 2 includes ”self-energy” terms where i = j, (representing 
stabilization of charges via polarization of the external medium) as well as cross-terms that 
represent charge-charge interactions screened by the surrounding high dielectric solvent.

2.2. Treating molecules as collections of atoms

Spherical models are appealing due to their simplicity and clear physical foundation, but 
have obvious limitations for realistic molecules, which have multiple charge centers and are 
non-spherical. Attempts to generalize Eq. 1 to the multi-atom case are at least seventy years 
old(42), and began to be applied in earnest to biomolecular problems about three decades 
ago.(107, 9) If we imagine a “molecule” consisting of charges q1 … qN embedded in 
spheres of radii, a1 … aN, and if the separation rij between any two spheres is sufficiently 
large in comparison to the radii, then the solvation free energy can be given by a sum of 
individual Born terms, and pairwise Coulombic terms:

ΔGsolv ≃ ∑
i

N

−
qi

2

2ai

1 −
1

ϵout
+

1
2 ∑

i

N

∑
j ≠ i

N qiq j

ri j

1
ϵout

− 1 (4)

where the factor (1/ϵout −1) appears in the pairwise terms because the Coulombic 
interactions are re-scaled by the change of dielectric constant upon going from vacuum to 
solvent. Of course, in real molecules the atomic spheres are not necessarily far from each 
other, so one needs to go a step further.

The project of generalized Born theory can be thought of as an effort to find a relatively 
simple analytical formula, resembling Eq. 4, which for realistic molecular geometries will 
capture as much as possible, the physics of the Poisson equation. The linearity of the 
Poisson equation (or the linearized Poisson–Boltzmann equation) assures that ΔGsolv will 
indeed be quadratic in the source charges, and so it is natural to generalize Eq. 4 to

ΔGsolv ≃ 1 −
1

ϵout

1
2 ∑

i j

qiq j

f i j
GB

(5)

where fGB is some reasonably simple function. Here the self (i = j) fGB terms can be thought 
of as “effective Born radii,” whereas for the off-diagonal terms, it becomes an effective 
interaction distance. Befittingly, the collective name for the resulting models is “the 

generalized Born” (GB). A particularly successful version of the GB kernel f
i j
GB in Eq. 5 was 

proposed in 1990(107):
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f i j
GB

ri j = ri j
2 + RiR jexp −ri j

2 /4RiR j

1/2
, (6)

Here the Ri are the effective Born radii of the atoms, which generally depend not only on ai, 
the ”intrinsic” radius of atom i, but on on the radii and relative positions of all other atoms. 
Qualitatively, the effective Born radius of an atom corresponds to its degree of shielding 
from solvent by the surrounding atoms. In what follows, we call the GB model based on 
equations 5 and 6 the canonical GB model.

While historically the GB model was not conceived as a direct approximation to the Poisson 
model, and alternative interpretations exist(17), a number of arguments(88) can be made to 
support this viewpoint, including the very similar structure of the canonical GB and that of 
Eq. 2 – exact solution of the Poisson problem for a sphere. One can further argue(89) that 

the exp −r
i j
2 /4R

i
R

j
 factor in Eq. 6 attempts to account, in some average sense, for the “non-

sphericity” of realistic molecules, by attenuating charge-charge interactions along the ”long” 
dimension of the molecule. The view of the GB as an approximation to the Poisson model 
has been instrumental in the development of the GB for macromolecular applications, and 
continues to help reasoning in developing new GB-like theories.

2.3. The Coulomb field approximation

In the classical electrostatics of a linearly polarizable media (49) the work required to 
assemble a charge distribution can be formulated either in terms of a product of the charge 

distribution with the electric potential, or in terms of the scalar product of the electric field E 
and the electric displacement D:

G =
1
2∫Ω

ρ(x)ψ(x)dx =
1

8π∫Ω
E ⋅ Ddx (7)

We now introduce the essential approximation used in most early forms of generalized Born 
theory: that the electric displacement is Coulombic in form, and remains so even as the 
exterior dielectric is altered from 1 to ϵout in the solvation process. In other words, the 
displacement due to the charge of atom i (which is here presumed to lie on the origin) is,

Di ≈
qir

r
3 . (8)

This is called the Coulomb field approximation (CFA). It is exact for a charge at the center 
of a sphere, but substantial deviations arise in more complex geometries. The work of 
placing assembling a charge at the origin within a “molecule” whose interior dielectric 
constant is ϵin, surrounded by a medium of dielectric constant ϵout and in which no other 
charges have yet been placed is then,
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Gi =
1

8π∫ (D/ϵ) ⋅ Ddx ≈
1

8π∫in

qi

r
4
ϵin

dx +
1

8π∫out

qi

r
4
ϵout

dx . (9)

The electrostatic component of the solvation free energy is found by taking the difference as 
the exterior dielectric is changed from 1.0 to ϵout,

ΔGsolv, i =
1

8π

1
ϵout

− 1 ∫
ex

qi

r4
dx (10)

where the contribution due to the interior region has canceled in the subtraction. Comparing 
Eq. 10 to Eqs. 4 or 5, we conclude that the effective Born radius should be,

Ri
−1 =

1
4π∫ex

qi

r4
dx (11)

It is convenient to re-write this in terms of integration over the interior region, excluding a 
radius ai around the origin,

Ri
−1 = ai

−1 −
1

4π∫in, r > a
i

1
r4

dx . (12)

Note that in the case of a monatomic ion, where the molecular boundary is simply the sphere 
of radius ai, this equation becomes Ri = ai and the Born formula is recovered exactly. 
However, in general, the CFA overestimates the effective Born radii, this problem is partially 
alleviated by some of the approximations used to compute them, as discussed below.

With these approximations, the original two-dielectric Poisson equation, which implies the 
need for a (numerical) solution of a three-dimensional partial differential equation, has been 
replaced by the much simpler task of estimating the three-dimensional integral over a 
molecular volume in Eq. 12. In the next section, we survey some of the approaches used to 
do this, which often involve further approximations.

2.4. Estimating effective Born radii

2.4.1. The notion of ”perfect radii”.—In principle, Ri could be chosen so that if one 
were to solve the Poisson equation for a charge qi at the position of atom i, and no other 
charges, and a dielectric boundary determined by the molecular shape, then the self energy 
of charge i in its reaction field would be equal to − (q2/2Ri)(1 − 1/ϵout). This self energy 
could be computed by solving the Poisson equation numerically, and the resulting values of 
Ri have been called “perfect” radii; these are known to give a reasonably good 
approximation to Poisson theory when used in conjunction with Eqs. 5 and 6 (85). 
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Obviously, this procedure would have no practical advantage over a direct calculations 
ΔGsolv using numerical a solution of the Poisson equation, but comparisons to ”perfect” radii 
are useful in testing more approximate (and more rapid) models. In some applications, e.g. 
coarse-grained DNA models(94, 95), the perfect radii are computed once and then kept 
constant throughout the simulation.

2.4.2. Volume integration via quadrature.—Perhaps the most straightforward 
approach to Eq. 12 is to make use of quadrature schemes, often loosely adapted from 
quantum chemistry calculations. For example, GBSW (“simple switching”) model(44, 7) 
uses a spherical quadrature model to sample the atomic density surrounding each atom to 
determine its contribution to the effective Born radius. A switching function is used to blur 
the sharp boundary between high and low-dielectric regions, which fills in many of the small 
voids shown as red regions in Fig. 1. (A correction to the Coulomb field approximation, 
discussed below, is also applied.) The use of quadratures results in a method that is not fully 
rotationally invariant, but the errors can be small, and a version optimized for GPUs 
provides performance on par with the non-quadrature models, depending on system size.(7)

The GBMV (“molecular volume”) models work harder to evaluate Eq. 12 over the true 
molecular volume, generally trading speed for accuracy.(62) The use of an analytical 
molecular volume (AMV) model,(35) with some heuristics to speed up table lookups, allows 
Born radii to be obtained that are quite close to the “exact” radii.

The Gaussian generalized Born model (GGB) (37, 36) mimics GBSW in abandoning the 
model of a sharp division between high- and low-dielectric regions, and estimates the 
integrals needed to obtain Born radii by adopting a Gaussian shape model. This approach 
has the advantage of providing analytical derivatives without the need for numerical grids.

2.4.3. Volume integrations over collections of overlapping spheres.—A 
separate path to Eq. 12 treats molecules as collections of overlapping spheres with sharp 
boundaries, as illustrated in Fig. 1. If the molecule consisted of a set of non-overlapping 
spheres of radius aj at positions, rij relative to atom i, then Eq. 12 could be written as a sum 
of integrals over spherical volumes, which can be computed analytically (96):

Ri
−1 = ai

−1 − ∑
j

a j

2 ri j
2 − a j

2 −
1

4ri j

log
ri j − a j

ri j + a j

. (13)

An analytical expression is also available for the case of atom j overlapping with the central 
atom, i, provided j does not overlap any other atom j′ (96). Although in practice, the atoms j 
do overlap on another to some extent, these overlaps can be neglected to a first 
approximation, and empirical corrections can be introduced to compensate for neglect of 
overlap. This is referred to as the pairwise descreening approximation (40). Hawkins et al. 
(40, 41) have introduced such a scheme based on re-scaling the van der Waals radii by 
factors Sj. The expression for the generalized Born radii takes the form,
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Ri
−1 = ai

−1 − ∑
j

H ri j, S ja j , (14)

where H is a rather complex expression which, apart from rescaling, is essentially Eq. 13 if i 
and j do not overlap, and having different functional forms in overlapping cases (41). In the 
AGBNP model of Gallicchio and Levy, (28) the scaling factors Sij are not independent 
constants, but are computed on the fly from a Gaussian-based decomposition of the 
molecular volume into atomic contributions.

A serious problem with representing molecular volume as a set of overlapping atomic 
spheres is the neglect of interstitial spaces between the atomic spheres in the interior of the 
molecule, red spaces in Fig.1. In the approximation these crevices are treated as if they 
belonged to the solvent space, that is filled with high dielectric, which is unphysical for 
many types of calculations(87); the corresponding effective radii are underestimated. (The 
use of the CFA leads to a certain cancellation of errors in this case since the CFA tends to 
overestimate the effective radii.) For biopolymers, this neglect of interstitial space leads to 
appreciable underestimation of the effective radii, compared to the “perfect” radii introduced 
above.(85)

Efforts to correct this deficiency while preserving computational efficiency of the pairwise 
approximation have led to a series of GB flavors. In one of them, GBOBC (now available in 
many modeling packages), an empirical correction is introduced(83, 84) that modifies the 
pairwise integration method to reduce the effect of interstitial high dielectrics. However, by 
design, GBOBC approach compensates for missing interstitial volume only on average, in a 
geometry-independent manner. To further improve the GB accuracy, an additional correction 
to the pair-wise procedure was introduced(74) that brings in elements of molecular volume, 
in a pair-wise sense: an additional term is added to Eq. 14 that re-introduces the molecular 
volume between each pair of atoms missed by the original approximation. The integral over 
this neck-shaped region can be approximated by a simple analytical function with a 
negligible additional computational expense relative to GBOBC. It took a significant re-
parametrization effort to make the original “GB-neck” model a success for both proteins(81) 
and the DNA(80) – all of these models are now available in Amber.

2.5. Beyond the Coulomb field approximation

As mentioned above, the Coulomb field approximation can lead to significant errors in the 
effective Born radii. In fact, even for a perfectly spherical solute the CFA is exact only for a 
charge located in the center of the sphere, while for a charge near the boundary it 
overestimates(9) the effective radius by a factor of 2. Consequently, CFA overestimates 
effective radii for realistic molecular geometries as well(62). This problem has been well-
known for quite some time, and varioius empirical corrections to the CFA have been 
proposed(62, 61, 44). These typically take the form of a simple linear or a rational 
combination of correction terms such as
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αN =
1

4π
(N − 3)∫

ex

dV

r − ri
N

1
N − 3

(15)

where N ≥4. Specifically, Lee et al. were the first to propose an alternative to the CFA along 
these lines, namely an expression involving α4 and α5(62), and later an even more accurate 
expression based on α4 and α7 respectively(61). These corrections are utilized in the GBSW 
and GBMV models discussed above.

2.5.1. Expressions based on exact spherical limits.—The canonical GB model 
becomes exact for a perfect sphere in the conductor limit ϵout →, assuming exact effective 
Born radii. However, the effective radii computed via the CFA, and via other, more complex 
integral forms mentioned above, are not exact even for a sphere, leading to hard-to-control 
inaccuracies for realistic shapes.

An alternative expression to compute the effective, ”R6”, was proposed by Svrcek-
Seiler(108) and independently by Grycuk(38):

Ri
−1 =

3
4π∫ex

dV

r − ri
6

1/3

= ai
−3 −

3
4π∫r > a

i

solute

r

−6

dV

1/3

(16)

where in the first expression the integral (ex) is taken over the region outside the molecule, 
and in the second integral, the origin is moved to the center of atom i. The above expression 
in an integral equivalent of Eq. 3, that is it gives the effective Born radii that are exact for 
any charge location within a perfect spherical solute in the conductor limit.

The potential advantage of Eq. 16 over the CFA and its extensions for practical 
computational became clear when it was shown(75) that the corresponding “R6” radii can be 
very close to the perfect radii for realistic biomolecular shapes, resulting in solvation 
energies in close agreement with perfect radii. It was also demonstrated(101) that the use of 
ϵout → limit in computing the effective Born radii results in more accurate estimates of 
ΔGsolv via canonical GB, at least for single globular molecules. Implementations of the R6 
GB model in which Eq. 16 is integrated analytically over the van der Waals (VDW) volume 
of the solute are available(124, 58). Performing the integral analytically over the molecular 
volume, which has traditionally been the target for GB models intended for use in MD 
simulations, proved difficult, and a number of approximations had to be made to produce a 
fully analytical expression(2); pilot implementations in MD produced mixed results. 
Compared to the CFA, the R6 model is apparently less forgiving to approximations to the 
molecular volume, and there is no fortuitous cancellation of error (see above) that helps the 
CFA.
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Surface-based R6 formulations have also been developed, in which the effective Born radii 
are calculated via:

Ri
−3 = −

1
4π∮∂V

r − ri

r − ri
6 ⋅ dS (17)

where ∂V represents the molecular surface of the molecule, dS is the infinitesimal surface 
element vector, ri is the position of atom i, and r represents the position of the infinitesimal 
surface element. [This follows the lead of earlier work to turn volume integrals into surface 
ones. (32)] A version of the model, GBNSR6(1, 27) (“Numerical Surface R6 GB”), is 
available in Amber. It has been tested in calculation of small molecule hydration energies(1) 
and in protein ligand binding(45), where its accuracy is noteworthy(47).

2.6. Alternative forms for charge-charge interactions

The canonical form of the GB kernel, f
i j
GB in Eq. 6, is not the only one proposed and tested. 

For example, values of the empirical factor other than 4 in exp −r
i j
2 /4R

i
R

j
 have been been 

considered(51, 38, 69, 37, 61), in the range from 1 to 8. That the canonical value of 4 
remains the most widely used indicates that it is close to a “general purpose” optimum, and 
that further accuracy improvements may require a different functional from of the GB 
equation.

A substantially different form of the GB kernel f
i j
GB was recently proposed(59), based on a 

carefully examined connection between the GB and conductor-like polarizable continuum 
models(117):

f i j = ri j + 1 +
1.028ri j

16 RiR j

−16

(18)

Noticeable improvements over the canonical GB in both accuracy and speed were 
reported(59), however the testing was so far limited to either the perfect or R6 effective Born 
radii.

GB-like models also exist that go beyond the canonical GB Green function itself, that is Eq. 
5. One such model is ALPB(101, 100):

ΔGel = −
1
2

1
ϵin

−
1

ϵout

1
1 + βα

∑
i j

qiq j

1

f
GB

+
αβ

A
, (19)

where β= ϵin/ϵout, α= 0.571412, and A is the electrostatic size of the molecule, which is 
essentially the overall size of the structure. In practice, the value of A can be estimated 
analytically(100). Moreover, it was shown that keeping the value of A constant in MD 
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simulation is acceptable(100). In the limit 
ϵin

ϵout
0 the canonical GB and ALPB coincide, 

but outside of this limit the latter model shows a closer agreement with the Poisson theory. 
For the case of aqueous solvation the model provides a small but consistent improvement 
over the canonical GB.

Going beyond the spherical shape as the basis for derivation of “beyond GB” models led to a 
model that accounted for the existence of two “modes” in the solution of the Poisson 
equation for non-spherical shapes: longitudinal and transverse(86). The former more or less 
corresponds to the canonical GB, while the letter is very different; the over-all Green 
function interpolates between the two modes based on the values of the local gradients of the 
effective Born radii. Compared to the canonical GB, the new model resulted in significantly 
fewer gross errors in pairwise charge-charge interactions, with the numerical Poisson 
solution taken as reference. However, the testing was so far limited to R6 effective Born 
radii estimated numerically.

GB-like theories can also explicitly incorporate effects that go even beyond the linear-
response Poisson theory. For example, an extension of Born model was proposed(77) that 
explicitly accounts for charge hydration asymmetry (CHA) – strong dependence of the 
hydration free energy on the sign of the solute charge:

ΔG ≃ − 1 −
1
ϵ

q
2

2 R + Rs

1 −  sgn [q]
δ

R + Rw

. (20)

Here, ϵ is the dielectric constant of water, Rw is the radius of water molecule, q and R are 
the ion charge and ionic radius, respectively, Rs = 0.52 Å is a constant shift to the dielectric 
boundary (77), and δ is the symmetry breaking parameter(78). The “charge-asymmetric 
Born equation”, Eq. 20, contains no fitting parameters, yet describes experimental ion 
hydration energies to within 5% of experiment(77). The CHA effects can be introduced into 
the effective Born radii by analogy with Eq. 20, leading to a charge-asymmetric GB-like 
model CHA-GB(76), implemented in AmberTools. The introduction of CHA into the GB 
has improved its ability to predict hydration free energies of small molecules and amino-
acids simultaneously, including the charged ones.

2.7. Effects of ionic screening

Mobile ions in the solvent can be very effective at screening charge-charge interactions, 
augmenting the dielectric effect itself. The linearized (or Debye-Huckel) model can be 
solved analytically for a sphere, (54, 112) and an extension made to general shapes in a way 
that done for the salt-free case discussed above. This leads to the simple ansatz:

1 −
1
ε

1 −
exp −κ f GB

ε
(21)

Onufriev and Case Page 11

Annu Rev Biophys. Author manuscript; available in PMC 2019 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where κ is the Debye-Huckel inverse screening length.

Both the canonical GB (and the PB for that matter) utilize a mean-field description of ions, 
which does not account for ion-ion correlations or discreteness of ions near the charged 
solute surface. While in the case of monovalent ions the correlation effects are small and can 
often be neglected, the correlations between multivalent ions can introduce significant 
corrections to ion distributions and electrostatic potentials around solutes. Recently, a GB-
like model was constructed(116) to handle ions explicitly. Modifications to the canonical 
model were required, including modifications to account for multiple interacting solutes – 
disconnected dielectric boundary around the solute-ion or ion-ion pairs. For a duplex DNA 
example, the monovalent (Na+) and trivalent (CoHex3+) counterion distributions produced 
by the model are in close agreement with all-atom explicit water molecular dynamics 
simulations used as reference.

2.8. Adopting GB for membrane environments

A specific challenge arises if one wants to use the GB to describe the effects of essentially 
heterogeneous dielectric environment of biological membranes and water/membrane 
interface. Several empirical modifications(103, 119, 115, 24) to the canonical GB have been 
proposed that so far utilize the same general idea: keep the main GB formalism intact, and 
use the effective Born radii to account for the presence of additional dielectric boundaries. 
For example, the Heterogeneous Dielectric generalized Born (HDGB) flavor is an extension 
of the GBMV approach, where the original expression for the effective Born radii now 
includes an explicit dependence on ϵin and ϵout via an analytical formula for Ri: Ri = Ri(ϵin, 
ϵout). The model(115) partitions the membrane “slab” into several regions of constant 
dielectric, Fig. 2, approximating a realistic scenario in which the dielectric properties of the 
membrane ϵ(z) vary continuously across the bi-layer.

A recent extension of HDGB model, HDGBvdW(21), provides more accurate description of 
the non-polar components of the free energy of solvation. Compared to the original HDGB, 
the extension improves free energy estimates in the hydrophobic interior of the membrane, 
where non-polar interactions are significant.

2.9. Speeding it up for large systems

Although the GB equations are more complex than simple molecular-mechanics force fields, 
they often perform well in parallel CPU architectures, and adaptations to GPUs are available 
in several popular packages.(22, 33, 7) However, until recently, available GB 
implementations were poorly suited to handle very large structures, because traditional 
implementations scale as O(N2) with the number of solute atoms N. A certain amount of 
speed-up, up to a factor of three or so for a 25,000 atom system, can be achieved by using 
a ”soft” cut-off in the calculation of the effective Born radii(82), but the Ewald-based 
procedures that addresses the O(N2) problem for explicit solvent simulations can not be 
readily adapted to the non-periodic geometries used in implicit solvent models. On the other 
hand, cut-offs applied to charge-charge interaction can lead to artifacts, especially for highly 
charged systems(46).
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To overcome the problem, a method of hierarchical charge partitioning (HCP) was 
proposed(6, 3,4), which bears some similarity with the fast multipole approach, but is better 
suited for biomolecular simulations. Specifically, HCP is a multi-scale, yet fully atomistic, 
approach to perform MD simulations based on the generalized Born model, mainly intended 
for very large structures. HCP employs a charge coarse-graining scheme that takes 
advantage of the natural hierarchical partitioning of large biomolecules into smaller 
structural components, e.g. amino-acids, chains, etc. The charge coarse-graining is 
performed via a rigorous mathematical procedure, and no re-parametrization of the original 
atomistic force-field is needed. Molecular Dynamics simulations based on HCP (GB-
HCPO(46), available in Amber), scale as NlogN with the number of atoms in the solute, 
which means that conformations of very large (millions of atoms) fully atomistic systems 
can be sampled efficiently, without cut-offs.

3. APPROACHES TO NON-POLAR SOLVATION

The electrostatic component of solvation, including stabilization of polar and charged 
groups, and the screeening of charge-charge interactions, are generally the most influential 
terms for biomolecules in (salt)-water. The electrostatic component corresponds to the free 
energy of discharging the solute, i.e. of setting all its charges to zero. What remains is a very 
non-polar object (something like an alkane) that has the same shape as the original solute. 
This remaining (hypothetical) object has a non-zero solvation free energy, which is generally 
smaller than the electrostatic component in absolute terms, but which can have a significant 
influence on conformational equilibria.

These interactions have proved to be hard to model in a simple fashion, primarily because 
one must consider two competing effects: there is an (unfavorable) free energy change 
required to create an empty cavity in the solute to accommodate the solute; this is partially 
offset by a (favorable) dispersion interaction between the solute (once it is inserted into the 
cavity) and the surrounding solvent molecules. The simplest, and still most widely used, 
approach is to assume that the non-polar contribution is proportional to the solvent-exposed 
surface area, even though non-polar contributions are known to depend upon the solute size 
and shape in a more complex fashion.(65, 14, 30, 31, 60, 48) To the extent that they “work”, 
simple surface area terms may capture changes in solvation over narrow ranges of 
conformations, and experience suggests that the relatively smooth changes associated with 
solvent accessible surface areas can avoid pitfalls that arise with more complex models.(111)

Even within this model, one has the additional challenge of estimating surface areas in an 
efficient fashion. The Amber programs use the Linear Combination of Pairwise Overlaps 
(LCPO) model,(122) which uses parameters characteristic of common combinations of 
neighboring atoms to a molecule surface area. Gallicchio and Levy have adapted a earlier 
model based on a superposition of Gaussian functions representing atomic volumes (34) to 
compute a surface area estimate (and its derivatives) in an efficient manner.(28) In this 
AGBNP model, they also base the solute-solvent dispersion estimates on already-computed 
Born radii.
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4. APPLICATION EXAMPLES

Implicit solvent models have been in use in biomolecular simulations for a long time, and it 
is not feasible to attempt any fair overview of applications. Instead, we list here a few 
examples, chosen from those we are familiar with, to illustrate a range of applications where 
particular aspects of implicit solvation are key to eh application.

4.1. The MM-GBSA approach to free energies

The free energy of solvation estimates provided by implicit solvent models include both 
enthalpy and entropy contributions, and this opens up a novel end-point approach to free 
energy calculations(105) where the free energy of a given state (”A”) is written as

G(A) = EMM (A) − TScon f ig(A) + ΔGsolv (22)

Here EMM is the molecular mechanics estimate of the average energy of the solute in the 
absence of the solvent, Sconfig is a configurational entropy arising from the solute degrees of 
freedom and ΔGsolv gives the free energy contributions from the solvent. The average energy 
and ΔGsolv values are generally computed over the configurations sampled by an MD 
trajectory, since no single configuration can represent thermal motion in a given basin. The 
configurational entropy of the solute can be estimated by normal mode or quasiharmonic 
analysis for fairly rigid molecules,(70, 52) and by a variety of approaches for floppier 
systems.(26) Free energy differences for conformational transitions (say between bound and 
free states in ligand–receptor interactions) are made simply by subtracting the free energy 
estimates of the two end states.

This approach (in its modern incarnation for biomolecules) was first applied to study the A 
to B helix transtion in DNA and RNA,(105), and was rather quickly extended to study ligand 
binding events.(57) It has since been widely applied, with varying levels of agreement with 
observed data.(29, 121) One obvious limitation lies in the inability of available implicit 
solvent models to capture subtle changes in ΔGsolv as a function of conformation. But 
obtaining good estimates of configurational entropies can be equally troubling, especially as 
the extent of disorder increases; in fact, the reason that this end point approach is nearly 
useless of explicit solvent models arises from the difficulty of extracting entropy estimates 
for the solvent in explicit MD simulations.

4.2. Second derivatives and normal modes

Many of the GB flavors discussed above are fully analytical, and higher-order derivatives 
can be computed by straightforward (if tedious) applications of the chain rule. This has been 
implemented for the original Hawkins-Cramer-Truhlar model(40) in the Amber suite of 
programs.(13) One can then compute normal modes (as with isolated molecules) but where 
solvent electrostatic effects are incorporated. This can be a very useful model, for example, 
in studying mechanical properties of biopolymers, such as the stretching and bending 
rigidity of DNA, with varying degrees of salt.(11) Normal mode analysis also provides 

Onufriev and Case Page 14

Annu Rev Biophys. Author manuscript; available in PMC 2019 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimates of configurational entropies, which are useful for end-point analyses like MM-
GBSA.

4.3. Large scale motions, very large structures.

One of the key advantages of the implicit solvation approach is that the effective viscosity of 
water can be set to a much lower value than that of real water, which can speeds-up 
conformational transitions significantly(5). The speed-up is particularly impressive for 
transitions that involve large parts of the biomolecule moving essentially unimpeded in the 
solvent, in which case 100-fold speed-up of conformational sampling compared to the 
explicit solvent is easily within reach(5), in addition to any algorithmic speed-ups that the 
GB can offer for the system in question. The first atomistic simulation of a long (150 base-
pairs) DNA fragment free in solution is an example that illustrates the point: only several 
nanoseconds of the simulation(92) had revealed significant, unexpected flexibility of the 
double-helix. Note that even setting up a traditional explicit solvent simulation box of the 
appropriate size would be quite cumbersome, as the contour length of the nucleosomal DNA 
is ~ 500 Å.

Atomistic simulation of large biomolecular systems, especially those with flexible parts, is 
another area where GB-based simulations can be useful. The nucleosome – a complex of 
eight histone proteins and 147 base-pairs of DNA wrapped around it – is a relevant example 
here. GB-based MD simulations(67,23) were utilized to study highly flexible N-terminal tail 
regions of the histone proteins, implicated in chromatin remodeling. Recently, partially 
assembled intermediate states of the nucleosome, unavailable from experiment, were 
constructed(93) through GB-based simulations followed by refinement in the explicit 
solvent.

Multi-million atom systems require special multi-scale treatment. One such GB-based model 
(GB-HCPO(46), described above) was used to refine the atomistic structure of a chromatin 
fiber fragment consisting of 40 nucleosomes, starting from a low-resolution Cryo-EM 
input(90), Fig. 3.

4.4. Protein folding

Protein folding at the atomic resolution – once called “the grand challenge of computational 
science” – is arguably one of the most illustrious success stories of the GB. While 
intermediate states resembling the native were observed in a pioneering simulation of the 
folding process in explicit solvent(18), it was not until later that a complete folding of a 
small protein from a fully unfolded state to the native was achieved in a GB-based MD 
simulation(102). Many other GB-based folding studies followed(15, 50, 64), including those 
aimed at protein design(68, 25). Recent comparisons of the Amber GB model to Rosetta 
scoring functions have shown GB results that match or exceed those from Rosetta in terms 
of protein loop modeling or folding landscape characterization.(91)

In a recent landmark study(79), folding simulations of 17 proteins, Fig. 4, were performed 
on a commodity PC within days(79). In implicit solvent, correct native states of small 
proteins can be easily identified as minimum energy snapshots(102, 5), in straightforward 
simulations starting from completely extended conformations – the task that is not nearly as 
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straightforward in explicit solvent. For example, a recent study(66) of folding-unfolding 
transitions of 12 of the fastest folding proteins required extremely long simulations on one-
of-a-kind specialized supercomputer, and the use of significantly elevated temperature to 
overcome kinetic traps. It is unclear for how many of the same proteins a truly de-novo (e.g. 
from a linear peptide) prediction of the native structure could have been made at 300K.

4.5. Biomolecules in the presence of biological membranes

Translocation of molecular structures through membranes may involve significant molecular 
movements and conformational changes; membranes are generally large structures. These 
qualities make membrane systems good candidates for implicit solvent simulations, such as 
simulation of whole membrane proteins(104, 115, 119, 114). Recent applications include 
predicting the hydrophobic length of membrane proteins(19), and protein structure 
refinement(20).

4.6. Acid-base and redox transitions

One application area that illustrates the potential power of implicit solvent models 
are ”constant pH” simulations. In an early (but still popular) approach,(73, 72, 109, 110) 
conventional MD simulations are interupted at intervals by Monte Carlo attempts to transfer 
protons between the solute and a hypothetical reservoir maintained at a given pH. An 
attempted move like this would almost always fail in an explicit solvent simulation, since 
waters arranged around a charged titration site (e.g. a protein side chain) would be in a high-
energy configuration for a site that suddenly neutralized, and vice-versa. In an implicit 
solvent model, on the other hand, the solvent model can instantaneously respond to a change 
in charge, and Monte Carlo move attempts can have reasonable acceptance rates. A similar 
use of this instantaneous response is active in models that treat the transition between 
charged and neutral sites in term of a continuous auxiliary variable.(63, 53, 120)

A key problem with the implicit solvent models is that results are often in poorer agreement 
with experiment than one would like. Such errors might arise from limitations of solute 
force fields, or from incomplete sampling, as well as from deficiencies in the solvent model 
itself. There have been quite a few Efforts to extend the constant pH idea to explicit solvent 
simulations (including approaches that use a hybrid explicit/implicit model), and this 
continues to be an active area of current research(43).

5. CONCLUSIONS

We have reviewed the over-all physical foundations and specific implementations of one of 
the most widely used “fast” implicit solvation model – the generalized Born (GB) 
approximation. Implementations are available in a variety of molecular modeling packages, 
and many thousands of applications have been reported.

The specific choice of GB “flavor” depends on one’s needs: a protein folding simulation 
may call for one flavor of the GB model(84, 79), while a study of a protein in a membrane 
environment will need quite another(71, 20). The model one may prefer for estimates of 
ligand binding energies(47), can be different from GB flavors one may recommend for 
simulations of the DNA(118, 16, 80). Yet a different approach is needed if the molecular 
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charge distribution is described by (polarizable) multipoles, rather than by fixed point 
charges.(97) Some recent updates in parameters have led to significant improvements in the 
quality of GB models applied to proteins and their complexes with nucleic acids,(81, 80). 
This diversity of approaches reflects a lack of generality: no single implicit model works 
well everywhere. This is hardly surprising, given the complexity of solvent effects that one is 
trying to fold into a simple and fast model. Furthermore, some of the success of GB models 
certainly arises from fortuitous cancellation of errors, and from parameterization schemes 
that hide defects in the solvation model or in the underlying solute force field. In spite of 
these limitations, we have described a number of advantages of such schemes, and have 
documented some of the recent and novel ideas that continue to drive research in this area. 
We expect that there will be continue to be an important place for implicit solvent models in 
biomolecular simulation for some time to come.
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Figure 1. 
Left: A spherical solute of radius A. Two point charges qi and qj are placed at distances ri 

and rj respectively from the sphere center. Right: Representation of a molecule as a set of 
overlapping spheres. The integral needed in Eq. 12 can be approximately written as a sum 
over all of the spheres except for the white one.
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Figure 2. 
A schematic of an idealized, multi-dielectric membrane environment mimicked by some of 
the GB models.
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Figure 3. 
Atomistic simulation(46) of a Cryo-EM consistent model of 30-nm chromatin fiber reveals 
important details consistent with experiment: the linker DNA fills the core region, the H3 
histone tails interact with the linker DNA.
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Figure 4. 
GB-based molecular dynamics simulations (GB-neck2(81), Amber) of a number of proteins 
starting from completely unfolded states sample conformations (blue) that are close to the 
experimental native structures (red). Lowest RMSD distance to the experimental native 
structure, in Å, is indicated under each protein. Adapted from Ref.(79), courtesy of Carlos 
Simmerling.
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