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Abstract

Generalized Born (GB) models provide a computationally efficient means of representing the
electrostatic effects of solvent and are widely used, especially in molecular dynamics (MD). A class
of particularly fast GB models is based on integration over an interior volume approximated as a
pairwise union of atom spheres—effectively, the interior is defined by a van der Waals rather than
Lee-Richards molecular surface. The approximation is computationally efficient, but if uncorrected,
allows for high dielectric (water) regions smaller than a water molecule between atoms, leading to
decreased accuracy. Here, an earlier pairwise GB model is extended by a simple analytic correction
term that largely alleviates the problem by correctly describing the solvent-excluded volume of each
pair of atoms. The correction term introduces a free energy barrier to the separation of non-bonded
atoms. This free energy barrier is seen in explicit solvent and Lee-Richards molecular surface implicit
solvent calculations, but has been absent from earlier pairwise GB models. When used in MD, the
correction term yields protein hydrogen bond length distributions and polypeptide conformational
ensembles that are in better agreement with explicit solvent results than earlier pairwise models. The
robustness and simplicity of the correction preserves the efficiency of the pairwise GB models while
making them a better approximation to reality.

1 Introduction

The effects of aqueous solvent are critical to the structure and function of biological
macromolecules. Commonly, solvent is represented explicitly, by models of multiple water
molecules, or implicitly, by a high dielectric region and additional apolar solvation terms.
Although explicit solvent is a more physically rigorous representation, implicit solvent models
have the advantage of dramatically reducing the degrees of freedom that must be sampled by
eliminating those associated with the solvent. Additionally, implicit solvent models are often
more computationally efficient than their explicit counterparts.
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The solvation effects can be described by ΔGsolv: the free energy of transferring a given
configuration of a molecule from vacuum to solvent. To facilitate calculation of ΔGsolv, it is
typically decomposed into polar and nonpolar components: ΔGsolv = ΔGpol + ΔGnonpol. Here,
ΔGnonpol is the free energy of introducing the solute molecule into solvent while electrostatic
interactions between the solute and solvent are turned off, and ΔGpol is the free energy change
in the system resulting from turning these electrostatic interactions back on. In this work, the
focus is on methods for calculating ΔGpol.

Assuming that the solvent can be faithfully represented by a continuum dielectric region, the
Poisson-Boltzmann (PB) equation is the most physically correct method of determining
ΔGpol, and has been widely used over the past decade.1–7 Application of PB to molecular
geometries requires numerical solution of second order partial differential equations, which is
fairly computationally intensive and does not easily yield forces, although recent advances in
PB methodology have improved the situation somewhat.1, 8–10 Alternatively, generalized Born
(GB) models have become popular as a computationally efficient approximation to numerical
solutions of the PB equation,6, 11–23 especially for use in dynamics.24–34

GB models evaluate polar solvation free energy as a sum of pairwise interaction terms between
atomic charges. When the solute dielectric is 1 and the solvent dielectric is much greater than
that of the solute,35 the interactions can be accurately described by an analytical function first
proposed by Still et al.,12 that interpolates between the Coulombic limit at long distances and
the Born or Onsager limits at small distances,

(1)

where ri j is the distance between atoms i and j, qi and q j are partial charges and εw is the
dielectric constant of the solvent. The key parameters in this GB function are the effective radii
of the interacting atoms, Ri and Rj, which represent each atom’s degree of burial within the
solute. More specifically, the effective radius of an atom is defined as the radius of a
corresponding spherical ion having the same ΔGpol as the self energy of this atom in the
molecule. The self energy is the polar solvation free energy for the molecule with partial
charges set to zero for all atoms except the atom of interest. The effective radius of an atom is
larger than the intrinsic radius of its atom sphere because of the descreening effects of
surrounding atoms, reducing the extent to which the atom charge is screened by solvent. A
computationally inefficient, but theoretically interesting method for determining effective radii
is to derive them from self energies calculated using well-converged numerical PB solutions.
When these “perfect” effective radii are used, GB results are in close agreement with PB results,
36 which serve as a natural point of reference for assessing the accuracy of GB, since current
GB models are an approximation to the more fundamental formalism of the PB equation.
Although this form of GB is impractical for application, it suggests that in aqueous solution
the GB function introduced by Still et al. has so far been a minor source of error compared
with the error introduced by non-perfect methods for estimating effective radii. Consequently,
considerable effort has been spent on improving the way effective Born radii are computed.

In practice, effective radii for each atom are generally calculated by integration of an
approximate electric field density due to the atom of interest over some definition of the
molecule’s volume,5, 13, 14, 21, 32, 37, 38 although formulations based on surface integrals have
also been proposed.19, 23 Here, we focus on volume-based GB models which have traditionally
used a Coulomb field integral,
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(2)

where the origin is centered on atom i and Ωi represents the volume inside the molecule but
outside atom i. The effective radius is then calculated according to

(3)

where ρi is the intrinsic radius of atom i. Within the Coulomb field approximation (CFA)
embodied by the integral in equation 2, it is assumed that the electric field generated by an
atomic point charge is unaffected by the non-homogenous dielectric environment created by
the solute, so that the field has the form described by Coulomb’s law. The CFA is exact for a
point charge at the center of a spherical solute, but it over estimates effective radii for molecular
geometries21 as well as for spherical regions when the charge is off center.39 Some of the
success of early GB models on small molecules may be attributed to fortuitous cancellation of
errors in effective radius calculations between the over estimates of a CFA based integrand
and the under estimates of a van der Waals (VDW) based region of integration.32 Improved
approximations based on empirical corrections to the CFA21, 38, 40 or theoretical derivations
originating with the Kirkwood formula39, 41 have significantly better agreement with effective
radii calculated from PB self energies.

The integration in equation 2 can be performed numerically12, 19, 21, 38, 40 or by an analytical
pairwise approximation.13–15, 32, 33, 37 GB methods based on analytically approximated
integrals are easily extended to calculate solvation forces and are generally faster than their
numerically integrated counterparts,42 so they have traditionally found greater application in
dynamics.

Most pairwise approximations estimate the integral over a region formed by the union of atom
spheres, which is equivalent to a VDW surface dielectric boundary. In calculating the effective
radius for atom i, the contribution of every other atom j ≠ i to the integral is determined as a
function of ρj and the distance between atoms i and j. Summation of these terms yields an
overestimate of the total integral, due to overlap between descreening atoms. To correct for
these overlaps, a multiplicative scaling factor, Sx, is introduced to reduce the intrinsic radius
of each descreening atom.

In contrast, PB calculations generally use a Lee-Richards molecular surface dielectric
boundary, defined by rolling a solvent sphere over the surface of the molecule.43 Although
there is no uniquely correct definition of the dielectric boundary, a van der Waals surface
creates regions of interstitial high dielectrics that are smaller than a water molecule, while the
molecular surface has the conceptually attractive advantage of excluding high dielectric from
regions into which a water molecule is too large to fit. Differences between the molecular and
VDW surface definitions are minimal for small molecules, where all atoms are well solvated,
but become more substantial for macromolecules, where inclusion of interstitial high
dielectrics in VDW-based models leads to overestimation of the solvation of interior atoms,
relative to molecular surface results.44 This may partially explain why early GB models that
had good results for small molecules were less effective when applied to macromolecules.26,
32, 37 Additionally, implicit solvent models that allow interstitial high dielectrics produce
incorrect potentials of mean force between non-bonded atoms.44 However, it may not be
practical to use the Lee-Richards molecular surface directly in a GB model as it is fairly
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computationally intensive and can produce unstable or infinite forces for some molecular
configurations.1, 9

Attempts to reduce or eliminate the problems of interstitial high dielectrics in GB models have
followed two paths. One approach, embodied by the GBMV2 model developed by Lee et al.,
38 has been to use numerical integration with adaptations for calculating forces in combination
with an analytic surface definition that closely approximates the properties of a molecular
surface. A CFA correction term is also employed in the integration. This GB model yields
stable dynamics while providing excellent agreement with PB Lee-Richards molecular surface
results. However, both the analytic surface definition and the numerical integration are
relatively slow, such that the fastest PB models approach the performance of GBMV2.42

Furthermore, the reliance on numerical integration introduces artifacts, such as a lack of
rotational invariance.

A different method (OBC GB), developed by Onufriev, Bashford and Case,32 sought to extend
the pairwise integration method (HCT GB) of Hawkins, Cramer, and Truhlar13, 14 to reduce
the effect of interstitial high dielectrics. Based on the observation that effective radii for buried
atoms are larger than for surface atoms, but still much smaller than PB-derived “perfect”
effective radii, this method modifies the radius calculation in equation 3 by rescaling the
integral from equation 2 according to

(4)

where ρ̃i = ρi − 0.09Å and α, β and γ are tunable parameters. When these parameters are set
such that most radii are scaled up, the rescaled radii substantially improve agreement with PB
solvation free energies, and the computational expense of the rescaling function is minimal so
the efficiency of the Hawkins et al. model is retained. In addition, effective radii calculated
with equation 4 are smoothly capped at about 30Å, avoiding problems with numerical
instability and negative radii that can be encountered when using equation 3. However, by
design, the rescaling function only affects atoms that are sufficiently buried that the interstitial
high dielectrics can be accounted for only in an averaged, geometry-independent manner.
Uncompensated interstitial high dielectrics between more highly solvated surface atoms still
affect solvation energies and potentials of mean force.

In this paper, we attempt to combine the best aspects of both of these efforts in development
of a GB model that adds a geometrically-based molecular volume correction term accounting
for interstitial high dielectrics to the pairwise approximated integration method. Since the
correction term is, itself, a computationally efficient pairwise approximation, the performance
and numerical benefits of analytical GB models are retained.

The shortcomings of the CFA are now well known, but rigorously derived non-CFA pairwise
approximated GB models have only recently been described41 and their stability and
performance have not yet been extensively tested on biomolecules, so the model described
here extends the Coulomb field-based HCT GB model.

2 Theory

An ideal volume correction term for a GB model based on VDW volume and the CFA would
yield the integral of r−4 over the region inside the Lee-Richards molecular surface and outside
the van der Waals surface. This region is designated the correction region.
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(5)

Since the HCT GB integration scheme calculates the value of the integral within the van der
Waals surface, adding this correction term would yield an integral over the region within the
molecular surface. In the general case, the correction region cannot be analytically defined.
However, in the simple case of two closely spaced or overlapping atoms, the correction region
forms an analytically definable “neck” region between the two atoms, as seen in figure 1. The
general case of the correction region can be approximated by a union of these neck regions
calculated pairwise between atoms. In the simplest form of this approximation, developed here,
the integral for each atom includes corrections for only the neck regions in which the atom is
directly involved. This simple form is a reasonably good approximation because the value of
the integrand (r−4) is much higher in the nearby neck regions with which the atom is directly
involved than in the distant portions of the correction region formed by interactions between
other pairs of atoms.

Figure 1 illustrates how the geometry of the neck region is defined by four parameters: the
radii of the two atoms, R1 and R2; the radius of the solvent molecule, Rw; and the distance
between the two atoms, d. Derivations of the expressions for the CFA integrals over the neck
region are given in Appendix I. Although the integrands in these expressions are fairly simple,
the limits of integration are sufficiently complex to make analytical solution of the integrals
impractical. The problem is simplified by considering that in the GB model, parameters R1,
R2 and Rw have a relatively small set of discrete values (a single value, in the case of Rw = 1.4
Å), and so d is the only parameter with continuous values. With this view in mind, the function
in four variables described by these integrals can be evaluated as a family of single variable
functions of d, with each function determined by a particular set of values for R1, R2 and Rw.
These functions of d can be plotted by solving the integrals numerically for a range of values
of d, producing curves as shown in figure 2.

Numerical solution of these integrals is far too computationally costly for application in a GB
model. Instead, they are replaced with an empirically determined analytic function shown in
equation 6

(6)

This function is parameterized by the position (d0) and value (m0) of the maximum, which are
determined by numeric optimization (maximization) of the integral of r−4 over the neck region
of figure 1. The values of d0 and m0 are dependent on R1, R2 and Rw, but since these variables
have a small set of discrete values, tabulating all possible values of d0 and m0 is quite feasible
(see Appendix II). As illustrated in figure 2, equation 6 is a very good approximation over the
range of atomic radii typically encountered in biomolecules.

Applications of GB solvation models to dynamics require calculation of derivatives with
respect to distance. Equation 6 is easily differentiated, yielding equation 7.

(7)
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Ideally, neck integrals would be calculated only between atoms that are close enough to define
a neck region (d < R1 + R2 + 2Rw): beyond this distance the neck integral and its first derivative
with respect to d should be zero. However, the analytic approximation used here approaches
zero asymptotically, and at d = R1 + R2 + 2Rw its value is on the order of 10−3. Truncating the
function at this point would create a discontinuity which could lead to unstable dynamics. A
variety of techniques could be employed to smooth this discontinuity; we have taken the
simplest approach of continuing to calculate the neck correction for d > R1 + R2 + 2Rw until
d is large enough that the value of the function is sufficiently small that the error of truncating
it is on the order of rounding error.

The neck correction described by the integrals in Appendix I and approximated by equation 6
is exact for a system of two atoms, but in the usual case of a molecule with more than two
atoms, a strict summation of neck integrals calculated pairwise between atoms will tend to over
estimate the integral over the correction region. Over estimation of the integral is due to overlap
of neck regions with atoms not participating in the neck, as well as overlap with other neck
regions, and must be corrected by scaling the contributions to the total integral.

The GBn model (“n” for neck) presented here takes a simple, two step approach to scaling.
First, each neck integral value calculated in equation 6 is multiplied by a scaling factor Sneck

(Sneck < 1). Second, effective radii are calculated using equation 4 which provides descreening
dependent scaling, as well as numerical stabilization for large effective radii. The descreening
dependent scaling of the second step helps to compensate for different molecular geometries,
as the effective radii of more deeply buried (more de-screened) atoms, which are involved in
more necks and thus have more overlaps, can be scaled down to a greater degree than less
buried atoms. It appeared likely that a more complex scaling procedure, such as one that
employed multiple atom-type dependent values of Sneck, would yield a somewhat more
accurate estimate of the molecular volume. However, our tests of such scaling procedures
yielded insufficient improvements to justify addition of more free parameters to the model
(results not shown); we believe this is because the quality of the current model is most severely
constrained by the limitations of the CFA, rather than the simple scaling process described
above.

The two step scaling involves four parameters which must be optimized, Sneck, α, β and γ. Since
the neck correction alone is expected to bring the integration volume closer to molecular
volume, the optimal parameters of equation 4 are different from those used by the OBC model.
The key difference between GBn and OBC GB can be best illustrated by a diatomic system
such as that in figure 1: the OBC model will produce correct effective radii for only one value
of atom-atom separation distance (hence its “geometry-independence”), while the GBn model
should calculate accurate radii for this simple system across the entire range of interatomic
distances.

Additionally, it is necessary to refit the intrinsic radius scaling factors, Sx. Although formally
the Sx scaling factors merely correct overlaps, in practice they have been used as free parameters
to optimize GB results for agreement with PB and experimental results.14, 26 As a result, the
sets of Sx values used in the HCT and OBC GB models not only correct for atomic overlaps,
but also correct for some of the effects of the CFA and interstitial high dielectrics (to the extent
that this is possible on an averaged, geometry independent basis). Since the GBn model already
accounts for interstitial high dielectrics with the neck term and has a different degree of CFA
error due to the altered region of integration, it would clearly be inappropriate to use Sx sets
that were fit for VDW regions of integration with the GBn model.
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3 Results and Discussion

The ultimate goal of an implicit solvent model is to accurately and efficiently approximate the
results of computationally expensive explicit solvent molecular simulations. While agreement
with explicit solvent provides a rigorous test of an implicit model, it is often difficult to identify
the source of discrepancies due to the dramatic differences between the explicit and implicit
solvent formalisms. Therefore the performance of GBn is compared to the earlier OBC GB32

model using multiple levels of less approximate solvation models as standards. Comparison
to PB is instructive in identifying the source of shortcomings of the current model, while
comparison to explicit solvent provides a more useful assessment of the ultimate quality of the
model. The OBC GB model is selected as a reference for comparison because it is among the
most recent and most accurate42 pair-wise GB models that do not have a molecular volume
correction beyond the “average” rescaling provided by equation 4.

Once the parameters have been optimized, the GBn model achieves approximately a 25%
improvement over OBC GB in accuracy of effective radii relative to PB results. The minimal
native-state bias and stable dynamics achieved by OBC GB are maintained in this model. A
major qualitative improvement of GBn is that it reproduces the free energy barrier to separation
of hydrogen bonds that is seen in molecular surface PB results but absent in non-molecular
surface implicit solvent models. Although quantitative improvement in agreement of GBn

solvation energies with PB solvation energies is fairly small, substantial improvements are
seen in agreement between GBn and TIP3P explicit solvent dynamics. Specifically, hydrogen
bond length distributions are significantly more similar, there is improved agreement with the
TIP3P φ/ψ potential and a dramatic improvement in the conformational ensemble of deca-
alanine. The results that have been summarized here are examined in detail in the following.

3.1 Parameterization

Parameters of the GBn model (Sneck, α, β, γ and the Sx parameters for atom types C, H, N and
O) were optimized using the Nelder-Mead simplex algorithm.45 The objective function that
was minimized measured agreement between PB and GB solvation free energies over a training
set consisting of structures from denaturation trajectories of apo myoglobin and protein L and
structures representing potentials of mean force (PMF) for two hydrogen bonds and a salt
bridge (see Methods for details of the objective function). The objective function has multiple
local minima, so 100 minimizations were performed starting from random initial points.
Optimized parameter values producing the best overall performance are given in table 1.
Treatment of the Sx values as free parameters to optimize GB performance beyond their formal
purpose of correcting overlap is made obvious by the values of SO and SH, which exceed 1.
This represents a continuation of previous practice, although it may at first appear to be a
divergence because previous sets of Sx values where all Sx < 1 may have been incorrectly
interpreted as merely correcting overlaps.

3.2 Comparison with PB effective Born radii and solvation energies

A common first test of a GB model is comparison of effective radii with “perfect” radii derived
from PB calculations. Agreement at this level is generally correlated with the overall quality
of a GB model. While use of perfect radii in the GB formalism has been shown to guarantee
a very good agreement between the GB and PB solvation free energies,36 small improvements
in agreement of the effective radii may or may not translate into significantly improved overall
performance of the GB model. Nevertheless, radius comparisons are instructive as rough
quality measures and in identifying sources of error that may not be readily apparent when
molecular solvation free energies are compared. It is most useful to compare inverse radii, as
these more faithfully represent the contribution of the effective radii to the energy in equation
1. Such a comparison for a set four structures that includes native and partially unfolded
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proteins and peptides is presented in table 2. For all structures, the F-test shows a highly
significant improvement in the accuracy of effective radii calculated by the GBn model
compared to the OBC GB model.

A more detailed analysis of effective radii is illustrated in figure 3, showing improvement
across the whole range of effective radii. This includes an improvement in the accuracy of large
effective radii (left portion of the figure), although these radii continue to have the largest
errors. Errors seem to be largest for atoms near crevices that are slightly too small for a water
molecule; presumably the pairwise approximation is poorest here.

A more direct test of GB model performance is comparison of GB solvation free energies with
those calculated by PB methods. Minimizing error across multiple conformations of the same
system is of particular interest for GB methods that will be used in dynamics, as conformation-
dependent errors will bias sampling. Figure 4 plots the difference between GB and PB solvation
free energies for a series of conformations obtained from a thermal denaturation molecular
dynamics trajectory of protein A. Error is reduced for the GBn model (standard deviation 6.4
kcal/mol) relative to the OBC GB model (standard deviation 7.2 kcal/mol). The F-statistic for
this improvement approaches the accepted theshold of significance with p ≈ 0.06. Solvation
free energy errors are plotted as a function of the number of native tertiary contacts for the
corresponding conformation to elucidate trends in error with respect to degree of denaturation.
The GB model of Hawkins et al.14 has significantly more negative errors for near-native
conformations than for denatured conformations, but this native state bias is almost entirely
corrected by the rescaling function in equation 4 employed by the OBC GB model.32 As seen
in figure 4, the GBn model has a very small native state bias, similar to OBC GB. Similar,
slightly better results are obtained for conformations of protein L and apo-myoglobin along
their respective denaturation trajectories; these results are not shown because they were used
as part of the objective function in the optimization process and as such are likely to be less
indicative of performance on other systems.

3.3 Comparison with PB PMFs

The improvements in effective radius and solvation free energy calculations described above
represent useful but still fairly incremental improvement over the existing OBC GB model.
Indeed, the OBC GB model’s performance is already quite good on low free energy
conformations, such as those found in crystal structures or sampled from molecular dynamics
trajectories, making dramatic improvements on these structures unlikely. However,
performance on higher free energy conformations is also important for common applications
like dynamics and docking; here there is ample room for improvement on OBC GB. One
common high free energy conformation is encountered in the free energy curve for separating
a salt bridge or hydrogen bond, referred to here as a PMF to reflect the averaging of solvent
degrees of freedom by the implicit solvent model. It has been shown that implicit solvent
models that employ a molecular surface dielectric boundary have a free energy barrier to
separation of the bond,44 in qualitative agreement with explicit solvent results,47 but models
based on traditional pairwise integration, even with average molecular volume corrections such
as OBC GB, fail to reproduce this behavior.

Since the GBn model attempts to approximate a molecular surface dielectric boundary it should
be capable of reproducing the barrier in the PMF. As shown in figures 5 and 6 this result is
seen in most cases, a distinct departure from implicit solvent models that allow interstitial high
dielectrics.44 In general, the GBn minima are less deep and the maxima are less high than the
PB PMFs. This is probably a consequence of the CFA. The CFA underestimates the
descreening contribution of nearby regions relative to more distant regions, because r−4

diminishes less rapidly than the higher order integrands of more accurate expressions.21, 39

Since the neck region is very close to the atom of interest, it seems likely that its effect is
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underestimated by the CFA, leading to a smaller difference between minimum and maximum.
The shallow minima exhibited by the GBn model, most notable in the β-sheet model of figure
5, raise concerns that secondary structure may not be stable, possibly leading to denaturation.
However, this has not been observed in molecular dynamics trajectories (see following),
perhaps because the extent of destabilization is less in the protein environment than for these
highly solvated model systems, or because the time scales of the simulations conducted here
are not sufficient to observe these problems.

3.4 Molecular dynamics

The primary purpose for the development of computationally efficient pairwise approximated
GB is application in dynamics; the GBn model, implemented in AMBER, was tested by
conducting 10 ns molecular dynamics trajectories of ubiquitin and thioredoxin. As expected,
the GBn model retains the computational efficiency of the OBC GB model running only 8–
10% more slowly. Conformational stability of trajectories is commonly assessed by computing
the RMSD of alpha carbons from their crystal coordinates; plots of the RMSD for thioredoxin
and ubiquitin trajectories conducted using the GBn and OBC GB models are shown in figure
7. The GBn model maintains approximately the same high level of stability as OBC GB, with
slightly higher RMSD in the thioredoxin trajectory and lower RMSD in the ubiquitin trajectory.

Performance of a GB model is affected by the set of atomic intrinsic radii used to define the
dielectric boundary. Previous work has shown that for simulations conducted under the HCT

or OBC GB models, structural stability is slightly increased and results are somewhat improved
by increasing the intrinsic radius of hydrogens bound to nitrogen, H(N), from their Bondi
radii48 of 1.2 Å to 1.3 Å (forming the mbondi2 radius set).26, 32 As seen in figure 7, little benefit
is realized by this change when using the GBn model.

The GBn model presented here was parameterized for peptides and proteins. This
parameterization of GBn is not recommended for use with nucleic acids, since they require
different degrees of correction for overlap and CFA error than amino acids. In some of our MD
simulations of DNA 10 bp duplexes at room temperature conducted under this GBn

parameterization we observed breaking of a substantial number of Watson-Crick bonds after
a few nanoseconds (results not shown), in contrast to the corresponding explicit water
simulations.

3.5 Comparison with explicit solvent ensembles

To examine whether the improved PMFs seen in figures 5 and 6 translate into improvements
in the ensemble of macromolecular conformations sampled during MD, distributions of
hydrogen bond lengths were compared between 10 ns ubiquitin trajectories conducted under
OBC GB, GBn and TIP3P explicit solvation models. Figure 8 illustrates the differences in mean
and standard deviation of hydrogen bond length for native backbone hydrogen bonds under
the three solvation models. In nearly all cases, the OBC GB model yields hydrogen bonds with
a higher mean length and standard deviation than in explicit solvent. As a consequence of the
narrower potential wells seen in the PMFs, hydrogen bonds under the GBn model are generally
shorter and their length distributions usually have lower standard deviations than under OBC

GB. The GBn average hydrogen bond lengths are in better agreement with explicit solvent
results than OBC GB in 24 of 32 cases, while the length distribution standard deviations are
in better agreement in 23 of 32 cases. Based on these results, the null hypothesis that there is
no impovement of GBn over OBC GB in reproducing the explicit solvent ensemble of hydrogen
bond lengths can be rejected with p < 0.01 and p ≈ 0.01, respectively. The differences between
GBn and OBC GB are particularly noticeable for the shorter, more stable hydrogen bonds (left
portions of the plots in figure 8), where length distributions are presumably mostly determined
by the potential between bonding partners, while distributions for longer hydrogen bonds may
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be more affected by tertiary structural forces. The data in figure 8 suggest that the free energy
barrier introduced by the neck correction affects not only dynamics and kinetic properties, but
also average properties of the ensemble sampled by MD.

Further exploration of the effects of GBn on conformational ensembles were conducted using
a small polypeptide system where converged sampling of the ensemble is feasible. Simmerling
and coworkers49 recently used replica exchange molecular dynamics (REMD) simulations50,
51 to show that the OBC GB and HCT GB models performed poorly for short polyalanine
sequences. Both of these GB models demonstrated a strong bias favoring α-helical
conformations as compared to simulations with TIP3P explicit solvent. These calculations (100
ns REMD) were repeated with GBn. Figure 9 illustrates the φ/ψ free energy surface for Ala5
of deca-alanine. This residue does not adopt a preferred conformation in explicit solvent, with
the basins corresponding to the major secondary structure types (right- and left-handed α-helix,
β-sheet and polyproline II) nearly equal in free energy. At the same time, OBC GB favors right-
handed α-helix by 1–1.5 kcal/mol relative to the other basins; for example, the ratio of the total
α-helix to β-sheet populations is 8.67, in noticeable disagreement with the corresponding
explicit solvent value of just 1.7. In the GBn model, this α-helical bias is no longer present and
the landscape is in much better agreement with the explicit solvent data: the same ratio of α to
β populations is 1.64, in very close agreement with the explicit solvent result. Both the OBC

GB and GBn models show somewhat too shallow minima for the left-handed α-helix basin
with positive φ values as compared to explicit solvent simulations.

Since the free energy surfaces as in figure 9 give insight primarily into local conformational
preferences, more global properties of the chain were examined by calculating end-to-end
distance distributions for the ensembles obtained with the different solvent models (figure 10).
As previously described,49 the distribution is broad in explicit solvent, in concordance with
the lack of specific structural preferences seen in figure 9. At the same time, OBC GB yields
a shifted distribution that is distinctly peaked near 10Å due to a high population of fully α-
helical conformations that are not observed in explicit solvent. In contrast, the distribution
obtained using the GBn model is in good agreement with the explicit solvent data, providing
further evidence that the neck model represents a significant improvement over the previous
OBC GB model. These improvements suggest that the correction term introduced by the
GBn is a move in the right direction with respect to development of fast analytical GB models.
However, due to the computational costs associated with generating explicit solvent PMFs, we
have been able to provide direct comparisons for only a few systems, and therefore due caution
is recommended when applying the GBn model to systems dissimilar to those described above.

4 Methods

PB solvation energies and “perfect” radii were calculated using a modified version of APBS
0.3.2. The linearized PB model was employed along with the multiple Debye-Huckel boundary
condition. Charge was discretized using the cubic B-spline method (spl2). Dielectric values
were 1.0 for solute and 80.0 for solvent regions, except for “perfect” radii calculations, where
solvent had dielectric 1000.35 A Lee-Richards type dielectric boundary (mol) was used. APBS
versions 0.3.2 and earlier have a flawed molecular surface algorithm that overestimates solute
volume; this flaw was fixed in the APBS version used here. All calculations were performed
initially on a coarse grid and then on a smaller, finer grid using the coarse grid potential as
boundary conditions. Grid spacings were 0.5/0.25 Å (coarse/fine) for protein solvation and
perfect radii calculations and 0.2/0.1 Å for PMF calculations.

GB effective radius, solvation energy and MD trajectories were calculated using a pre-release
version of AMBER 9.52 MD was carried out using the AMBER ff99 force field.53, 54 Backbone
torsional potentials for thioredoxin and ubiquitin were modified by frcmod.mod_phipsi.1;29 a
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newer version of these modifications55 was employed for the Ala10 simulations. The timestep
was 2 fs. Explicit solvent MD employed the TIP3 water model.56 Implicit solvent MD, GB
effective radius and GB solvation energy calculations used the OBC GB or GBn models with
no cut off. Non-polar solvation effects were represented using a surface area term of 0.005
kcal/mol·Å2. Bonds involving hydrogen were constrained using SHAKE.57 Temperature was
maintained at 300K using the Berendsen weak coupling method and a time constant of 2 ps
for the thioredoxin trajectory and using Langevin dynamics with a collision frequency of 1.0
ps−1 for the ubiquitin trajectory. The crystal structures (2TRX and UBQ) were prepared for
dynamics with 100 steps of steepest descent minimization during which all atoms were
harmonically restrained with a weight of 1.0 kcal/mol·Å2, followed by a 20 ps period of
equilibration during which all atoms were harmonically restrained with a weight of 0.1 kcal/
mol·Å2. The enesemble of protein-A structures was generated by temperature unfolding as
previously described.32

Ensembles of Ala10, with acetylated and amidated N- and C-termini, respectively, were
generated using replica exchange molecular dynamics (REMD)50, 51 as implemented in
AMBER 8.52 Data for the TIP3P and OBC GB models were previously described.49 Parameters
for REMD simulations were identical to those used for MD (described above), except eight
replicas were used to cover the temperature range of 270K–570K (as with the previously
described OBC GB simulations). Exchanges were attempted every 1 ps, with the REMD
simulation running for 100,000 exchange attempts (100 ns). The first 5 ns were discarded. Data
convergence was monitored by calculating populations of φ/ψ basins corresponding to
secondary structure types, which were essentially unchanged after 30ns. Free energy surfaces
were calculated using 2-dimensional histograms for backbone φ and ψ dihedrals, with a bin
size of 5 degrees. Free energies for bin i relative to the most populated bin were calculated
using ΔG = −RT ln(Ni/N0) where Ni and N0 are the populations of bin i and the most populated
bin, respectively. End-to-end distances for Ala10 were calculated between Cα atoms of Ala2
and Ala9 (omitting terminal residues) using the ptraj module of AMBER.

Illustrations of molecular geometry in figures 5 and 6 were produced with VMD.58

The Sneck, α, β, γ and Sx parameters were optimized using the Nelder-Mead simplex
algorithm45 implemented by the SciPy library.59 The objective function that was minimized
measured agreement between PB and GB solvation free energies over a training set consisting
of structures from denaturation trajectories of apo-myoglobin46 and protein L21 and structures
representing varying degrees of separation of a salt bridge between aspartate and arginine and
hydrogen bonds between two asparagine side chains and between serine and aspartate. The
total value of the objective function was the sum of each system’s contribution. For the
structures from the denaturation trajectories, the difference between PB and GB solvation free
energy was calculated for each structure and a linear regression was performed on these data
points using the structure’s time value (for apo myoglobin) or number of native tertiary contacts
(for protein L) as the independent variable, yielding a regression line slope, m, and intercept,
b. Additionally, the root mean square deviation (RMSD) between PB and GB solvation free
energies for each structure was calculated. Each system’s contribution to the objective function
was defined as . This term is designed to emphasize
minimizing native state bias (represented by m) and random error while not overly penalizing
systematic error for a particular system. Salt bridge and hydrogen bond systems consisted of
80 configurations where the bonding partners were separated by 1 Å in the first configuration
and are moved 0.1 Å further apart in each subsequent configuration (see figure 6 for picture
of orientations). PB and GB solvation free energies were calculated for each configuration,
and the PB and GB solvation free energies were set to be equal at maximum separation by
subtracting the energy calculated for maximal separation from that calculated for every other
configuration. The objective function term for these systems was the RMSD of the adjusted
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errors multiplied by 10. The RMSD was increased by a factor of 10 to prevent the objective
function from being dominated by the larger errors of the larger protein systems. Since the
objective function has multiple local minima, 100 minimizations were performed starting from
random initial points. Initial points were chosen from the following intervals of a uniform
random distribution: Sneck ∈ [0.2, 0.5], α ∈ [0.5,1.5], β,γ ∈ [0.5,3.0], and S{C,H,N,O} ∈ [0.6,
0.95].

5 Conclusion

The GBn model, presented here, extends current pairwise GB models with an intuitively
attractive property: geometry-dependent exclusion of high dielectric (representing water) from
regions into which a water molecule is too large to fit. This extension is computationally
efficient, slowing MD simulations by only about 10%. Implementation of the neck correction
is simple, requiring only two lookup tables and (in the present implementation) approximately
30 lines of code. The GBn model is available in both the sander and pmemd modules of version
9 of the AMBER suite, and given its simplicity it should be straightforward to add the neck
correction to any pairwise volumetric integration-based GB method. Although the correction
is a pairwise approximation, it yields non-bonded PMFs with a free energy barrier to separation,
a property unique to molecular surface-like dielectric boundaries. The improved agreement
between explicit and implicit solvent ensembles sampled by proteins and polypeptides under
GBn underscores the importance of calculating accurate solvation energies for high free energy
configurations as well as the more stable configurations that have traditionally received more
attention.

The neck GB model is the fastest model that reproduces the essential characteristics of
molecular surface dielectric boundaries, but it does not correlate as well with PB results as the
slower GBMV2 model of Lee et al.38, 44 One potential source of error is the fairly simplistic
treatment of neck region overlaps in the current model. Some improvement might be realized
by a higher order approach to overlaps, but the largest source of error appears to be the use of
the Coulomb field approximation (CFA) to define the integral used to calculate effective radii.
Even with a perfect region of integration, errors due to the CFA are large, with effective radii
overestimated by a factor of two in the worst case.39 Despite the limitations imposed by the
CFA, the current model serves as a proof of principle that a simple pairwise correction can
produce an accurate approximation of molecular surface-like solvation properties. We
anticipate that a pairwise GB model based on the neck correction and a non-CFA integral,
currently under development, will yield substantially improved accuracy.
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7 Appendix I

The neck region can be analytically defined using only basic trigonometry, but as the derivation
is somewhat tedious, the details are provided here. As shown in figure 1, a triangle is formed
by the centers of the atoms and the solvent molecule; the angles of the vertices centered at
atoms 1 and 2 are defined as angle A and angle B, and their cosines can be expressed in terms
of the four parameters d, R1, R2 and Rw, using the law of cosines, as shown in equation 8.

(8)

The system is cylindrically symmetric about an axis connecting the centers of the two atoms,
so it is most naturally analyzed in cylindrical coordinates. The origin is placed at the center of
atom 1 with the positive z axis extending toward the center of atom 2. There are three geometric
cases for the neck region, illustrated in figure 11: (i) the atoms overlap and the neck region is
ring shaped; (ii) the atoms are moderately separated forming a contiguous region; (iii) the atoms
are widely separated such that the surface of the solvent molecule intersects the z axis, forming
two noncontiguous spike regions. When d ≥ R1 + R2 + 2Rw a solvent molecule can pass between
the atoms and there is no neck region.

For case (i), a second triangle can be formed between the centers of the two atoms and a point
at which the surfaces of the atoms intersect. The angle formed by the vertex of this triangle
that is located at the center of atom 1 is designated A′ and its cosine is defined in equation 9.

(9)

Computation of a CFA term based on the neck region requires an expression for the integral

of r−4 over the neck region. In the cylindrical coordinate system used here,  so when
the volume element is included, the integrand becomes r (r2 +z2)−2. Because of the cylindrical
symmetry, the limits of integration over θ are always 0 to 2π. The upper limit of the integration
over r is formed by the surface of the solvent molecule (dotted line in figures 1 and 11). Since
the expression defining the r coordinate of the solvent surface as a function of z (that is, the
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perpendicular distance from the z axis to the dashed line in figure 1 for a given z) is somewhat
complex, the notation is clarified by defining a function, solv, representing this expression:

(10)

The lower limit of integration for r is defined by the surface of atom 1, the z axis (r = 0), or
the surface of atom 2, depending on the value of the z coordinate. In addition to defining the
geometric extents of the neck region, the limits of integration over z are used to break the overall
integral into pieces at the points where the r lower limit of integration changes. Thus in case
(i) the integral has two contiguous pieces defined by three z limits: the coordinate at which the
solvent molecule touches atom 1, the coordinate for the intersection of the two atoms and the
coordinate where atom 2 touches the solvent molecule. Case (ii) has three contiguous pieces,
with the extreme upper and lower limits defined by the locations that the solvent molecule
touches the atoms, as in (i) and the two intermediate limits occurring where the lower r limit
changes at the edges of atoms 1 and 2. Finally, case (iii) has two noncontiguous spike regions,
each of which is composed of two parts, where the z limits are the intersection of the atom and
solvent molecule, the edge of the atom and the tip of the spike. The tips of the spikes are located
at the two points where the solvent sphere intersects the z axis (see figure 11). The z coordinate
of these intersections can be obtained by setting the function in equation 10 equal to zero and
solving for z, yielding

(11)

(12)

Using the preceding definitions, the integrals of r−4 over the neck region for cases (i), (ii) and
(iii) are presented in equations 13, 14 and 15.

(13)

(14)
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(15)

Mongan et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2010 November 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 1.

The neck region (shaded) is defined by the radius of atom 1, R1, the radius of atom 2, R2, the
distance that separates them, d, and the radius of the solvent molecule, Rw. The coordinate
system used for performing integration is also illustrated (see Appendix I).
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Figure 2.

Values of numerical integration over the neck region (black) and analytical approximation
(red) as a function of distance between atoms in angstroms. Left to right, top to bottom, radii
(in angstroms) for atoms 1 and 2, respectively are 1.2 and 1.2; 1.2 and 1.7; 1.7 and 1.2; 1.7 and
1.7.
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Figure 3.

Scatter plot comparison of inverse effective radii calculated by the current GB neck model (red
+) and earlier OBC GB model (black X) to inverse “perfect” PB radii for thioredoxin (PDB
code 2TRX). Diagonal line indicates perfect agreement.
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Figure 4.

Relative deviation from PB solvation energy for GBn and OBC GB for a series of snapshots
from a denaturation trajectory of protein A. GBn has a tighter clustering of points, indicating
less random error than OBC GB (stdev 6.4 vs 7.2 kcal/mol), while maintaining a similar native
state bias (trend of points across the plot). Average errors of −9.2 (OBC GB) and 68.9 (GBn)
kcal/mol removed to facilitate comparison.
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Figure 5.

Potentials of mean force for hydrogen bonding systems not included in the objective function,
calculated with three implicit solvent methods. Two protonated aspartic acids and two alanines
(β-sheet model) are used as examples. Potential includes electrostatic and van der Waals
energies.
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Figure 6.

Potentials of mean force for hydrogen bonding and salt bridge systems included in the objective
function, calculated with three implicit solvent methods. The hydrogen bonding systems are
asparagine and asparagine; aspartate and serine; arginine and aspartate. Potential includes
electrostatic and van der Waals energies.
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Figure 7.

RMSD of alpha carbons from crystal structure over the course of 10 ns of molecular dynamics
of ubiquitin (left) and thioredoxin (right).
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Figure 8.

Ubiquitin backbone hydrogen bond length data collected over 10 ns of MD for TIP3P explicit
solvent, OBC GB and GBn. Plots represent difference between implicit and explicit solvent
bond length distribution mean (left) and standard deviation (right) as a function of mean explicit
solvent bond length. The zero line represents an exact match between the explicit and implicit
solvent results. Hydrogen bond lengths under the GBn model are generally in better agreement
with explicit solvent results.
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Figure 9.

Free energy surfaces at 300K for the backbone conformation of Ala5 in the Ala10 peptide
calculated from 100ns of REMD. Energies are in kcal/mol, with the lowest free energy assigned
a value of 0. TIP3P and GBn result in similar free energies for the α, β and polyproline II basins,
while OBC GB shows a strong preference for α-helix.
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Figure 10.

End to end distance distributions of deca-alanine at 300K for 3 solvent models. Profiles from
GBn and TIP3P explicit water are in good agreement, with a relatively broad distribution
slightly peaked near 15–20 Å. However, OBC GB significantly differs from the other models,
with a strong peak at 10 Å.
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Figure 11.

Three cases of neck regions (shaded) formed by atoms (solid circles) at varying separations.
Dotted lines represent the surface of the solvent sphere. The leftmost vertex of the dashed
triangle in (i) describes the angle A′ referenced in equation 9. Although this figure shows two
atoms with the same radius, neck regions may also be formed between atoms with unequal
radii.
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Table 1

Optimized scaling parameters

Parameter Value

α 1.095

β 1.908

γ 2.508

Sneck 0.362

SH 1.091

SC 0.484

SN 0.700

SO 1.066
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Table 2

RMS deviation (in units of inverse Å) between inverse effective radii, computed by the GBn and OBC GB models
relative to the PB reference with significance of improvement measured by F-test. The β-hairpin and thioredoxin
structures are in their native states, while apomyoglobin is represented by two partially unfolded states along an
acid denaturation trajectory.46 Both models perform more poorly on thioredoxin than other structures due to a
higher number of large effective radius atoms in thioredoxin. The much larger p-value for β-hairpin is due to the
small number of atoms in the molecule, resulting in fewer degrees of freedom in the F-test.

thioredoxin apomyoglobin-I apomyoglobin-II β–hairpin

OBC GB 0.128 0.067 0.046 0.055

GBn 0.092 0.050 0.033 0.045

p-value 10−40 10−47 10−60 10−3
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