
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Generalized Bounded Linear Logic
and its Categorical Semantics

FUKIHARA, Yōji; KATSUMATA, Shin-ya

FUKIHARA, Yōji ...[et al]. Generalized Bounded Linear Logic and its Categorical Semantics.
2020: 1-34: RIMS-1932.

2020-11

http://hdl.handle.net/2433/261830

RIMS-1932

Generalized Bounded Linear Logic and

its Categorical Semantics

By

Yōji FUKIHARA and Shin-ya KATSUMATA

November 2020

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

KYOTO UNIVERSITY, Kyoto, Japan

Generalized Bounded Linear Logic and its
Categorical Semantics

Yōji Fukihara1 and Shin-ya Katsumata2

1 Kyoto University
2 National Institute of Informatics

Abstract. We introduce GBLL and GBAL, generalizations of Girard et
al.’s BLL. The calculus extracts an underlying fundamental structure of
BLL, while separates complexity-related issues in BLL. We analyze the
complexity of cut-elimination in GBLL, and give a translation of QBLL,
a fragment of QBAL (a variant of BLL by Dal Lago and Hofmann), into
GBAL. We then introduce indexed linear exponential comonads (ILEC for
short) as a categorical structure for interpreting the !-modality of GBLL.
This is obtained by extending the grading semiring of graded linear ex-
ponential comonads to the 2-category Idx, which may be seen as a multi-
object pseudo-semiring. We give an elementary example of ILEC using
folding product, and its modification via symmetric monoidal comonads.
We then instantiate this elementary example with the category of assem-
blies of a BCI-algebra, and discuss (dis)similarity with the realizability
category studied by [18,9].

Keywords: Linear Logic · Categorical Semantics · Linear Exponential
Comonad · Graded Comonad

1 Introduction

Girard’s linear logic is a refinement of the ordinary (non-linear) logic by restrict-
ing the usage of weakening and contraction in proofs [14]. The linear logic also
has the of-course modality !, which partially restores these structural rules to
the formulas of the form !A.

Later, Girard et al. introduced an extension of the !-modality called bounded
!-modality, and applied it to a logical characterization of P-time computations
[15]. In their paper, the bounded !-modality is introduced in two steps.

First, a simple !-modality !rA is introduced [15, Section 2.4]. The index r
ranges over a semiring, and in modern terminology r is called a grade [10,12].
This simple !-modality and its variants has been considered in various logics and
programming languages [7,29,13,25,27]. The categorical structure corresponding
to !rA has been identified as graded linear exponential comonad in [6,12], and its
double-category theoretic characterization was given in [21]

Second, the bounded !-modality !x<pA involving variable binding is intro-
duced [15, Section 3]. This is the actual modality employed in the bounded linear

2 Y. Fukihara and S. Katsumata

logic (BLL for short) [15]; p is called a resource polynomial. The logic thus al-
lows two kinds of dependency: grade-dependent grades, which occurs as p in the
modal formula !x<pA, and grade-dependent formulas, such as !x<pA itself. These
two kinds of dependency significantly increases the expressiveness and flexibility
of the bounded linear logic, leading to the characterization of P-time complex-
ity. This characterization result is later proved through a realizability semantics
of BLL [15,18,9]. Inside this semantics, however, mechanisms for controlling the
complexity of proof reductions are hard-coded, and it is not very clear which
categorical structure is behind the semantics.

In this paper we propose a generalized bounded linear logic GBLL and its
categorical semantics. GBLL extracts the essence of the bounded linear logic,
while abstracts away complexity-related issues in BLL, such as resource poly-
nomials and computability constraints. The main feature of GBLL is the new
format of !-modal formula. It is of the form ∆ ` !fA, where f is a function of
type ∆ → (∆′)∗, ∆′ ` A is a formula and ∆,∆′ are indexing sets of formu-
las. Intuitively, the !-modal formula !fA evaluated at an index i ∈ ∆ invokes A
with each index in the list f(i) = j1 · · · jn, then form the meaning of !fA from
A(j1) · · ·A(jn), which is typically A(j1)⊗· · ·⊗A(jn). This mechanism is enough
to encode the bounded quantification !x<pA of BLL. We regard the inequality
x < p as the function sending an environment ρ to the list of extended environ-
ments ρ{x 7→ 0}, · · · , ρ{x 7→ JpKρ− 1}. They are then passed to A in this order,
resulting the tensor product

⊗
0≤i<JpKρAρ{x 7→ i}.

We equip this new format of !-modality with the structure of linear expo-
nential comonad, referred as weakening, contraction, dereliction, digging and
monoidality. For the case of graded linear exponential comonads, these struc-
tures interact with the semiring structure over grades. We follow the same strat-
egy in this paper: we find a semiring-like structure on the collection of functions
of the form ∆→ (∆′)∗. For the multiplication g •f , we adopt the Kleisli compo-
sition of the free monoid monad (−)∗, while for the addition f+g, the pointwise
concatenation (f + g)(x) = f(x)g(x). However, these operations fail to satisfy
one of the semiring axioms: (f + g) • h = f • h+ g • h. We make it hold up-to-
isomorphism by introducing 2-cells between functions of type ∆ → (∆′)∗ given
by (pointwise) list permutations. The resulting 2-category Idx may be naturally
seen as a multi-object pseudo-semiring. This 2-category is the common structure
for both the syntax and semantics of GBLL.

Upon this indexing mechanism, we first study syntactic properties of GBLL.
We introduce the cut elimination rules and study its complexity property. It
turns out that the proof technique used in BLL naturally extends to GBLL - as
done in [15], we classify cuts into reducible and irreducible, introduce weights
of proofs, and show that the reduction steps of reducible cuts will terminate in
cubic time of the weight of the proof. We also examine the expressive power of
GBLL by giving a translation of QBLL, which is a monomorphic linear variant
of Dal Lago and Hofmann’s QBAL, to GBLL. The key idea of this translation is
the aforementioned encoding mentioned.

Generalized Bounded Linear Logic and its Categorical Semantics 3

We next give a categorical semantics of GBLL. We introduce the concept of
indexed linear exponential comonad (ILEC); it is a Idx-graded linear exponential
comonad satisfying a commutativity condition with respect to an underlying
indexed SMCCs. We then present a construction of ILEC from a symmetric
monoidal closed category C with a symmetric monoidal comonad on it. We
demonstrate this construction with the category of assemblies over a BCI algebra
[2,19] and relate the constructed model of GBLL with the realizability category
studied in [18,9].

Acknowledgment The authors are grateful to Masahito Hasegawa, Naohiko Hoshino,
Clovis Eberhert and Jérémy Dubut for fruitful discussions. This research was
supported by JST ERATO HASUO Metamathematics for Systems Design Project
(No. JPMJER1603).

Preliminaries For a set ∆, by ∆∗ we mean the set of finite sequences of ∆.
The empty sequence is denoted by (). Juxtaposition of ∆∗-elements denotes the
concatenation of sequences. For x ∈ ∆∗, by |x| we mean the length of x. We
identify a natural number n and the set {0, · · · , n−1}; note that 0 = ∅. We also
identify a sequence x ∈ ∆∗ and a function of type |x| → ∆ where x(i) is the i-th
element of x.

2 Generalized Bounded Linear Logic

2.1 Indexing Category

As mentioned in introduction, we consider indexing sets ∆,∆′ and functions
f, g : ∆ → (∆′)∗ listing up instantiation parameters of a formula A indexed by
∆′. For two functions f, g such that f(i) is a permutation of g(i) for each i ∈ ∆,
we would like to have isomorphisms between formulas !fA ∼= !gA. To validate
this argument, 1) we introduce a notion of morphisms between functions of type
∆→ (∆′)∗, and 2) we assume that the modality !f is functorial on f . Especially,
the notion of morphism introduced in 1) is designed so that f, g are isomorphic
when f(i) is a permutation of g(i) for each i.

To formulate this idea, we introduce the following 2-category Idx3. 0-cells
are sets, and the hom-category Idx(∆,∆′) is defined by:

– An object (1-cell) is a function f : ∆→ (∆′)∗.
– A morphism (2-cell) from f to g in Idx(∆,∆′) is a ∆-indexed family of

bijection {σx : |g(x)| → |f(x)|}x∈∆ such that f(x)(σx(i)) = g(x)(i).

The identity 1-cell and the composition of 1-cells in Idx are denoted by i∆ and

(•), respectively. The composition functor is defined by (g•f)(x)
def
= g(y1) · · · g(yn)

where y1 · · · yn = f(x). The hom-category Idx(∆,∆′) has a symmetric strict
monoidal structure:

3 This is a full sub-2-category of the Kleisli 2-category CATS , where S is the 2-monad
of symmetric strict monoidal category [20].

4 Y. Fukihara and S. Katsumata

– the monoidal unit is the constant empty-sequence function 0(x) = (),
– the tensor product of f, g, denoted by f + g, is defined by the index-wise

concatenation (f + g)(x)
def
= f(x)g(x).

We write J : Set→ Idx for the inclusion, namely J∆ = ∆ and (Jf)(x) = f(x)
(the singleton sequence).

Proposition 2.1. The composition • is symmetric strong monoidal in each ar-
gument. Especially, we have

f • 0 = 0 0 • f = 0 f • (g + h) = f • g + f • h (f + g) • h ∼= f • h+ g • h.

We also define Idxa by replacing “bijection” in the definition of 2-cell of Idx
with “injection”. The hom-category Idxa(∆,∆′) has the 1-cell 0 as the terminal
object, hence is a symmetric affine monoidal category.

2.2 Formulas and Proofs

Definition of GBLL Formulas We first fix an indexed set {A(∆)}∆∈Set of
atomic propositions. We define the set of formulas by the following BNF:

A ::= a ? r | A⊗A | A(A | !fA

where a ∈ A(∆) for some set ∆, r is a function and f is a 1-cell in Idx. Formula
formation rules are introduced to derive the pair ∆ ` A of an index set ∆ and
a formula A, and are defined as follows:

a ∈ A(∆′) r ∈ ∆→ ∆′

∆ ` a ? r
∆ ` A ∆ ` B
∆ ` A⊗B

∆ ` A ∆ ` B
∆ ` A(B

∆′ ` A f ∈ Idx(∆,∆′)

∆ ` !fA

The formula a?r represents the atomic formula a precomposed with a reindexing
function r. We next introduce reindexing of formulas.

Definition 2.1. Let r ∈ Set(∆,∆′). We define the reindexing operation (−)|r
as follows:

a ? r|r′
def
= a ? (r ◦ r′), (A⊗B)|r

def
= A|r ⊗B|r,

(A(B)|r
def
= A|r (B|r, (!fA)|r

def
= !f•JrA.

It holds that for any r ∈ Set(∆,∆′), ∆′ ` A implies ∆ ` A|r. We iden-
tify well-formed formulas by the congruent equivalence relation on well-formed
formulas generated from (below r ∈ Set(∆′, ∆′′), f ∈ Idx(∆,∆′), ∆′′ ` A)

!Jr•fA = !f (A|r). (2.1)

We see some formations of formulas in GBLL.

Generalized Bounded Linear Logic and its Categorical Semantics 5

Example 2.1. Let us illustrate how a formula !y<x2 !z<x+yA in BLL is represented
in GBLL; here we assume that x, y, z are the only resource variables used in this
formula. We first introduce a notation. Let E be a mathematical expression using
variables x1 · · ·xn. Then by [E]n : Nn → (Nn+1)∗ we mean the function

[E]n(x1, · · · , xn) = (x1, · · · , xn, 0) · · · (x1, · · · , xn, E[x1/x1, · · · , xn/xn]− 1).

For instance, [x2
1]1(x) = (x, 0), · · · , (x, x2− 1). Then from a well-formed formula

N3 ` A, we obtain N ` ![x2
1]1 ![x1+x2]2A. Generalizing this, a BLL formula !x<EA

under a resource variable {x1, · · · ,xn} corresponds to the GBLL formula ![E]nA.

Example 2.2. We look at how we express the substitution of a resource polyno-
mial A[x := p(x1, ..., xn)]. We define a function 〈p〉n : Nn → Nn+1 by

〈p〉n(x1, ..., xn)
def
= (x1, ..., xn, p(x1, ..., xn))

Then the reindexed formula Nn ` A|〈p〉n corresponds to A[x := p(x1, · · · , xn)].

Example 2.3. We illustrate the equality between well-formed formulas. Consider
a formula N ` A and a function r : N3 → N. Then we equate formulas N2 `
![x1+x2]2(A|r) and N2 ` !hA, where h : N2 → N∗ is given by

h
def
= Jr • [x1 + x2]2(x, y) = r(x, y, 0), · · · , r(x, y, x+ y − 1).

Definition of GBLL Proofs A judgment of the GBLL is the form ∆ | Γ ` A,
where ∆ is a set, Γ is a sequence of formulas well-formed under ∆, and A is
a well-formed formula under ∆, respectively. The inference rules of GBLL is
presented in Table 1. Similarly, we define GBAL to be the system obtained by
replacing Idx in Table 1 with Idxa.

Example 2.4. We mimic a special case of the contraction rule in BLL

Γ, !x<xiA, !y<xjA{xi+y/x} ` B
Γ, !x<xi+xjA ` B

see also (!C)-rule of QBLL in Section 3.2. We use the shift function sn,i : Nn+1 →
Nn+1 defined by sn,i(x1, · · · , xn, y)

def
= (x1, · · · , xn, xi + y). Then we easily see

[xi]n + Jsn,i • [xj]n = [xi + xj]n. Therefore by Contraction rule of GBLL, we
obtain the following derivation for well-formed formulas Nn+1 ` A and Nn ` B,
mimicking the contraction of BLL:

![xi]nA, ![xj]n(A|sn,i) ` B
![xi+xj]nA = ![xi]n+Jsn,i•[xj]nA ` B

Here, we use the formula equality !Jsn,i•[xj]nA = ![xj]n(A|sn,j).

6 Y. Fukihara and S. Katsumata

∆ ` A (Ax) Axiom
∆ | A ` A

∆ | Γ,X, Y, Γ ′ ` A
(Exch) Exchange

∆ | Γ, Y,X, Γ ′ ` A

∆ | Γ1 ` A ∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2 ` B

∆ | Γ,X, Y ` A
(⊗L)

∆ | Γ,X ⊗ Y ` A
∆ | Γ1 ` X ∆ | Γ2 ` Y

(⊗R)
∆ | Γ1, Γ2 ` X ⊗ Y

∆ | Γ1 ` X ∆ | Γ2, Y ` B
((L)

∆ | Γ1, Γ2, X (Y ` B
∆ | Γ,X ` Y

((R)
∆ | Γ ` X (Y

∆ | Γ ` B
(!W) Weakening

∆ | Γ, !0A ` B
∆ | Γ, A ` B

(!D) Dereliction
∆ | Γ, !idA ` B

∆ | Γ, !gA ` B σ ∈ Idx(∆,∆′)(f, g)
(!F) !-Functor

∆ | Γ, !fA ` B

∆ | Γ, !f1A, !f2A ` B (!C) Contraction
∆ | Γ, !f1+f2A ` B

∆′ | !g1A1, · · · , !gkAk ` B f ∈ Idx(∆,∆′)
(P!) Composition

∆ | !g1•fA1, · · · , !gk•fAk ` !fB

Table 1. GBLL Proof Rules

Example 2.5. We consider reindexing of proofs. Let r ∈ Set(∆,∆′) and Γ |r
denotes a sequence C1|r, · · · , Cn|r for Γ = C1, · · · , Cn. For axiom rule ∆′ | A `
A, we give reindexing by r as ∆ | A|r ` A|r. Other cases except (P!) are easily
defined. Each judgment ∆′ | Γ ` A in each rule is replaced ∆ | Γ |r ` A|r by
reindexing. For (P!) rule, reindexing by r is given as follows:

∆′′ | !g1A1, · · · , !gkAk ` B f • Jr ∈ Idx(∆,∆′′)

∆ | (!g1•fA1)|r, · · · , (!gk•fAk)|r ` (!fB)|r

2.3 Complexity of Cut Elimination in GBLL

By a similar discussion to BLL [15], cut inferences are divided in two classes:
reducible cuts and irreducible cuts. We define a weight of proof |π| (for each proof
π) and reduction steps of proofs such that every reducible cut will be eliminated
by reduction steps and every reduction steps will terminate in polynomial of |π|
(specifically, in |π|3 steps).

Definition 2.2. In GBLL (resp. GBAL) proofs, an instance of the Cut infer-
ence is irreducible if there are at least one Composition rule below it or if its
left premise is obtained by a Composition rule with nonempty context and the

Generalized Bounded Linear Logic and its Categorical Semantics 7

other premise is obtained by a Weakening, !-Functor, Dereliction, Contraction or
Composition inference. A reducible Cut is Cut inferences that is not irreducible.

Definition 2.3. A GBLL or GBAL proof is irreducible if it contains only irre-
ducible Cut inferences.

Definition 2.4. For a given proof π .∆ | Γ ` A of GBLL or GBAL, the weight
of π is a function |π| : ∆→ N defined as follows:

1. For an Axiom rule π . ∆ | A ` A, |π|(δ) def
= 1.

2. If π is obtained from π′ by an unary rule except Contraction and Composi-

tion, |π| def
= |π′|+ 1.

3. If π is obtained from π1 and π2 by a binary rule except Cut, |π| def
= |π1| +

|π2|+ 1.

4. If π is obtained from π1 and π2 by a Cut rule, |π| def
= |π1|+ |π2|.

5. If π is obtained from π′ by a Contraction rule, |π| def
= |π′|+ 2

6. If π is obtained from π′ by a Composition rule, such as

...π′

∆′ | !α1
A1, · · · , !αkAk ` Bπ.

∆ | !α1•fA1, · · · , !αk•fAk ` !fB

then |π|(δ) def
=
∑
γ∈f(δ) (|π′|(γ) + 2k + 1) + k + 1. Note that the summation∑

γ∈f(δ) scans all elements in the list f(δ), hence the weight depends on the

length of f(δ).

Definitions of reduction steps for reducible cuts are shown in Section A.
In each reduction step, the weight of proof is not increasing (some cases keep
the weight). We call such reductions (keeping the weight of proof) commutative
reductions, specifically L⊗, R⊗, L(, R(-L, R(-R, W, F, D and C. And we
call symmetric reductions as reductions of S⊗, S(, !W, !F, !D, !C and !P. The
axiom reductions Ax are the different case.

Definition 2.5. For a proof π of GBLL or GBAL, the cut size of the proof ‖π‖
is defined as the same rule to the weight of the proof except Cut rule. When π

is obtained by Cut rule from π1 and π2, then the cut size is defined as ‖π‖ def
=

‖π1‖+ ‖π2‖+ |π1|+ |π2|.

Proposition 2.2. In each commutative reduction step, the cut size decreases.

Proof. We use π′, κ, etc. as the same subproof named in each case of definition
of reduction steps.

– (L⊗),(R(-R),(W),(F),(D) The cut size decreases from ‖π1‖+ ‖π2‖+ |π1|+
|π2|+ 2 to ‖π1‖+ ‖π2‖+ |π1|+ |π2|+ 1.

8 Y. Fukihara and S. Katsumata

– (R⊗),(R⊗-L) The cut size decreases from ‖π′‖+ ‖κ1‖+ ‖κ2‖+ |π′|+ |κ1|+
|κ2|+ 2 to ‖π′‖+ ‖κi‖+ |π′|+ |κ1|+ |κ2|+ 1 (i = 0, 1).

– (L() The cut size decreases from ‖π1‖+ ‖π2‖+ ‖κ‖+ |π1|+ |π2|+ |κ|+ 2
to ‖π2‖+ ‖κ‖+ |π1|+ |π2|+ |κ|+ 1.

– (C) The cut size decreases from ‖π1‖+‖π2‖+ |π1|+ |π2|+4 to ‖π1‖+‖π2‖+
|π1|+ |π2|+ 2.

Lemma 2.1. For every proof π, it holds ‖π‖ ≤ |π|2.

Proof. By induction on the structure of π. Clearly |π′|2 + 1 ≤ (|π′|+ 1)2, |π1|2 +
|π2|2 + 1 ≤ (|π1|+ |π2|+ 1)2 and so on.

In the case that π is obtained from π1 and π2 by Cut rule, it holds |π1|2 +
|π2|2 + |π1|+ |π2| ≤ (|π1|+ |π2|)2 because |π1|, |π2| ≥ 1.

Theorem 2.1. For every proof π, reduction steps will terminate in |π|3 steps.

Proof. Since non-commutative reduction steps decrease the weight of proof |π|,
these steps are at most |π|. In each non-commutative reduction step, commu-
tative reduction steps are at most ‖π‖ ≤ |π|2. Therefore reduction steps are at
most |π|3.

3 Translation from Constrained BLL

To examine the expressiveness of our general framework, we give a translation
from Dal Lago and Hofmann’s QBAL [9], a modern extension of BLL, to a minor
extension of GBLL. Actually, the source of the translation is a monomorphic,
linear fragment of QBAL, which we call QBLL4. Following QBAL, a judgment
of QBLL is of the form Γ `C A, and is inferred under a set C of constraints
on free resource variables. Annotating judgments with constraints is one of the
main differences between the BLL and QBLL / QBAL. Especially each judgment
Γ ` A in BLL corresponds to the QBLL judgment Γ `Ø A.

The target of the translation is a minor extension of GBLL; the plain GBLL
is insufficient for the translation. The extension involves two points. First, we
add the weakening ∆ | !f+gA ` !fA to GBLL; thus we actually work with GBAL.
This is to soundly interpret the weakening !p+qA `C !pA in QBAL. Second, we
assume the positivity of each atomic formulas, which is assumed in QBAL. For
every n-ary atomic formula a ∈ A in QBAL, we introduce an atomic formula
[a] ∈ A(Nn) in GBLL together with the positivity axiom:

VC (F) | Ø ` [a] ? 〈p1, · · · , pn〉([a] ? 〈q1, · · · , qn〉 (∀i.pi vC qi).

Here the definition of each notation is given in section 3.1 and 3.3. Positivity
axiom induces proofs VC (F) | A′ ` A for every formulas A,A′ such that A′vC A
(the relation vC for formulas defined in section 3.2).

4 QBAL admits unrestricted weakening, which is not available in GBLL/GBAL.

Generalized Bounded Linear Logic and its Categorical Semantics 9

3.1 Resource Polynomials and Constraints

We introduce basic concepts around QBLL, referring to its original calculus QBAL
[9]. We put a reference in the beginning of each paragraph when the contents
comes from QBAL.

[9, Definition 2.1] Given a countably infinite set RV of resource variables, a
resource monomial over RV is a finite product of binomial coefficients

∏m
i=1

(
xi
ni

)
,

where the resource variables x1, · · · , xm are distinct and n1, · · · , nm ∈ N are
natural numbers. A resource polynomial over RV is a finite sum of resource
monomials. We write 1 as

(
x
0

)
and x as

(
x
1

)
for short. Each positive natural

number n denotes a resource polynomial 1 + 1 + · · · + 1. Resource polynomials
are closed under sum, product, bounded sum and composition [9, Lemma 2.2].

[9, Definition 2.3] A constraint is an inequality p ≤ q, where p and q are
resource polynomials. We abbreviate p+1 ≤ q as p < q. A constraint p ≤ q holds
(written � p ≤ q) if it is true in the standard model. A constraint set (denoted
with C , D) is a finite set of constraints. A constraint p ≤ q is a consequence
of a constraint set C (written C � p ≤ q) if p ≤ q is logical consequence of C .
For every constraint sets C and D , we write C � D iff C � p ≤ q for every
constraints p ≤ q in D . For each constraint set C , we define an order vC on
resource polynomials by pvC q iff C � p ≤ q.

[9, Definition 2.3] We define the polarity of occurrences of free resource vari-
ables. For a constraint p ≤ q, we say that an occurrence of a resource variable x
in p is called negative, while the one in q is called positive.

3.2 Formulas and Inference Rules of QBLL

Let A be a set of atomic formulas and assume that each atomic formula a ∈ A
is associated with an arity ar(a). Formulas of QBLL are defined by:

A,B ::= a(p1, · · · , par(a)) | A⊗B | A(B | !x<pA

where a formula !x<pA satisfies x /∈ FV(p).
[9, Definition 2.6] Each occurrence of a free resource variable in a formula is

classified into positive or negative. Below we inductively define a positive occur-
rence of a resource variable. An occurrence of x in:

– a(p1, · · · , par(a)) is always positive.
– A⊗B is positive iff it is in A and positive, or so in B.
– A(B is positive iff it is in A and negative, or it is in B and positive.
– !x′<pA is positive iff it is in A and positive. We remark that an occurrence

of a free resource variable in p is counted as negative in !x′<pA.

[9, Definition 2.8] We extend the order vC on resource polynomials to the
one on QBLL formulas.

a(p1, · · · , par(a))vC a(q1, · · · , qar(a)) iff ∀i.pi vC qi

A⊗B vC C ⊗D iff (AvC C) ∧ (B vC D)

A(B vC C (D iff (C vC A) ∧ (B vC D)

!x<pAvC !x<qB iff (q vC p) ∧ (x /∈ FV(C)) ∧ (AvC∪{x<q} B)

10 Y. Fukihara and S. Katsumata

AvCB
(Ax)

A`CB

Γ1 `C A Γ2, A `C B
(Cut)

Γ1, Γ2 `C B

Γ,A,B `C C
(⊗L)

Γ,A⊗B `C C

Γ1 `C A Γ2 `C B
(⊗R)

Γ1, Γ2 `C A⊗B

Γ1 `C A Γ2, B `C C
((L)

Γ1, Γ2, A(B `C C

Γ,A `C B
((R)

Γ `C A(B

Γ `C A D � C
(Str)

Γ `D A

Γ `C B
(!W)

Γ, !x<0A `C B

A{0/x}, Γ `C B
(!D)

!x<1A,Γ `C B

Γ, !x<pA, !y<qA{p+y/x} `C B
(!C)

Γ, !x<p+qA `C B

A1, · · · , An `C∪{x<p} B x /∈ FV(C)
(!P)

!x<pA1, · · · , !x<pAn `C !x<pB

!y<p!z<q{y/w}A
{

(z+
∑
w<y q(w))/x

}
, Γ `C B

(!N)
!x<∑

w<p q(w)A,Γ `C B

Table 2. Inference rules for QBLL

[9, Section 2.3] A QBLL judgment is an expression Γ `C A, where C is
a constraint set, Γ is a multiset of formulas and A is a formula. A judgment
Γ `C A means that A is a consequence of Γ under the constraints C .

Inference rules are shown in Table 2. Basically this is a fragment of QBAL.
We restricted the Weakening rule (!W) and separated two operations from each
rules: (1) Γ `C A and D � C implies Γ `D A and (2) Γ, !x<pX `C A implies
Γ, !x<p+qX `C A.

3.3 Translation into GBAL

As mentioned at the beginning of section 3, the translation we will give is from
QBLL into GBAL. For a QBLL proof Γ `C A, its translation is dependent on
the constraint set C and a set of free resource variables F (satisfying FV(Γ) ∪
FV(A) ∪ FV(C) ⊆ F). That is to say, the translation of Γ `C A has the form
VC (F) | [Γ](F ;C) ` [A](F ;C) in GBAL.

For Constraints We first define an environment over a finite set F of resource
variables to be a function from F to N; by V (F) we mean the set of environments
over F . Given an environment ρ ∈ V (F) and a resource variable x 6∈ F and
n ∈ N, by ρ{x 7→ n} we mean the environment over F ∪ {x} that extends ρ
with a mapping x 7→ n. Given a resource polynomial p such that FV (p) ⊆ F , by
JpK : V (F) → N we mean the function that evaluates the resource polynomial
p under a given environment. For resource polynomials p1, · · · , pn such that

Generalized Bounded Linear Logic and its Categorical Semantics 11

FV(pi) ⊆ F , we give a map 〈p1, · · · , pn〉 : (V (F)) → Nn by 〈p1, · · · , pn〉ρ =
(Jp1Kρ, · · · , JpnKρ).

For a constraint p ≤ q with a set F of free resource variables (such that
FV(p) ∪ FV(q) ⊆ F) and for an environment ρ ∈ V (F), let ρ � p ≤ q denote
JpKρ ≤ JqKρ. For a subset S ⊂ V (F) and for a constraint set C , S � C is also
defined similarly: for every ρ ∈ S and for every p ≤ q ∈ C , ρ � p ≤ q. Given
a constraint set C and a set F of resource variables such that FV(C) ⊆ F , let
VC (F) be a set given by:

VC (F)
def
= {ρ ∈ V (F) | ρ � C }

For a resource polynomial p, a free resource variable x such that x /∈ FV(p), a
constraint set C and a set F of resource variables such that FV(p)∪FV(C) ⊆ F ,
we introduce a map [x < p](F,C) : VC (F)→ VC∪{x<p}(F ∪ {x})∗ by

[x < p](F,C)ρ
def
= ρ{x 7→ 0}, ρ{x 7→ 1}, · · · , ρ{x 7→ (JpKρ− 1)}

For Formulas For a QBLL formula A, a constraint set C and a set of resource
variables F such that FV(A) ∪ FV(C) ⊂ F , the translation [A](F ;C) of A under
F and C is defined inductively as follows:

[a(p1, ..., pn)](F ;C) def
= [a] ? 〈p1, ..., pn〉|VC (F) [A⊗B](F ;C) def

= [A](F ;C) ⊗ [B](F ;C)

[A(B](F ;C) def
= [A](F ;C) ([B](F ;C) [!x<pA](F ;C) def

= ![x<p](F,C)
[A](F∪{x};C∪{x<p})

Every translation [A](F ;C) of QBLL formula is well-formed under VC (F).

For Proofs To give a translation of proofs, we define another notation. For a
resource polynomial p, q, a set F of resource variables and a constraint set C
such that FV(p) ∪ FV(C) ⊆ F , a set [p, q)(F,C) of environments is defined by

[p, q)(F,C) = {ρ ∈ V (F ∪ {t}) | ρ � C , JpK(ρ) ≤ ρ(t) < Jp+ qKρ}

here t be a “fresh” resource variable such that t /∈ F .
For a proof π . Γ `C A, a translation [π](F ;C) . VC (F) | [Γ](F ;C) ` [A](F ;C)

is defined inductively on the structure of the proof:

– For Axiom rule, we can prove VC (F) | [A](F ;C) ` [B](F ;C) for formulas A,B
such that AvC B.

– For rules (Cut), (⊗L), (⊗R), ((L), ((R) and (!W), the translation is simple
replacement of each formula A with [A](F ;C).

– For (Str) rule, we have a map r : VD(F) → VC (F) then the translation is
given as reindexed proof [π′](F ;C)|r of the translation [π′](F ;C) of the premise.

– For (!D) rule, the premise is translated VC (F) | A′, [Γ](F ;C) ` [B](F ;C),
where A′ = [A](F∪{x};C∪{x<1})|r and r is a map such that Jr = [x < 1](F,C).

12 Y. Fukihara and S. Katsumata

– For (!C) rule, let a morphism s
(F ;C)
p,q and maps r

(F ;C)
p,q , i

(p,q;F ;C)
1 , i

(p,q;F ;C)
2

(s, r, i1 and i2 for short) be defined by

s(F ;C)
p,q : VC (F)→ [p, q)(F,C)

ρ 7→ ρ{t 7→ JpKρ}, · · · , ρ{t 7→ (Jp+ qKρ− 1)}
r(F ;C)
p,q : [p, q)(F,C) ∼−→ VC∪{y<q}(F ∪ {y})

ρ{t 7→ (JpKρ+ k)} 7→ ρ{y 7→ k}

i
(p,q;F ;C)
1 : VC∪{x<p}(F ∪ {x})→ VC∪{x<p+q}(F ∪ {x})

ρ{x 7→ k} 7→ ρ{x 7→ k}

i
(p,q;F ;C)
2 : [p, q)(F,C) → VC∪{x<p+q}(F ∪ {x})

ρ{t 7→ (JpKρ+ k)} 7→ ρ{x 7→ JpKρ+ k}

In this time, ![x<p][A](F∪{x};C∪{x<p}) =![x<p]([A](F∪{x};C∪{x<p+q})|i1) and

![y<q][A{p+y/x}](F∪{y};C∪{y<q}) =!Jr•s([A](F∪{x};C∪{x<p+q})|i2◦r−1) hold. We
obtain the conclusion of (!C) as

VC (F) | [Γ](F ;C), !(Jii•[x<p])+(Ji2•s)[A](F∪{x};C∪{x<p+q}) ` [B](F ;C)

– For (!P) rule, let F ′ = F ∪ {x} and C ′ = C ∪ {x < p}. We can prove the
translated conclusion from the translated premise by the following proof:

VC ′(F
′) | [A1](F

′;C ′), · · · , [An](F
′;C ′)` [B](F

′;C ′)

n times (!D)’s
...

VC ′(F
′) | !id[A1](F

′;C ′), · · · , !id[An](F
′;C ′)` [B](F

′;C ′)

VC (F) | ![x<p][A1](F
′;C ′) · · · ![x<p][An](F

′;C ′)` ![x<p][B](F
′;C ′)

– For (!N) rule, let sets ∆0, ∆1, ∆2 and constraint sets C0,C1,C2 be

C0 = C ∪ {y < p} ∆0 = VC0
(F ∪ {y})

C1 = C ∪ {y < p, z < q{y/w}} ∆1 = VC1
(F ∪ {y, z})

C2 = C ∪ {x <
∑
w<p

q(w)} ∆2 = VC2
(F ∪ {x})

In this time, there is an isomorphism r : ∆1
∼−→ ∆2 and an equation of mor-

phisms [z < q{y/w}](F∪{y},C0) • [y < p](F,C) = Jr−1 • [x <
∑
w<p q(w)](F,C)

holds. Therefore (!N) rule can be translated by using the following provable
judgment:

VC (F) | ![x<∑
w<p q]

[A](F∪{x};C2) ` ![y<p]![z<q{y/w}][A{z+
∑
w<y q/x}](F∪{y,z};C1)

Since every BLL proof Γ ` A can be translated as a QBLL proof Γ `Ø A, it
can be translated as a GBAL proof VØ(F) | [Γ](F ;Ø) ` [A](F ;Ø).

Generalized Bounded Linear Logic and its Categorical Semantics 13

4 Categorical Semantics for GBLL

In this section, we give a categorical semantics of the GBLL. First, notice that
each index set ∆ determines a multiplicative linear logic under ∆. We model
this situation by a set-indexed symmetric monoidal closed categories, given by
a functor C : Setop → SMCCstrict. That is, for each ∆ ∈ Set, a symmetric
monoidal closed category C∆ is given, and any function f : ∆ → ∆′ induces a
strict symmetric monoidal closed functor Cf : C∆′ → C∆, performing renaming
of indexes.

Upon this indexed symmetric monoidal closed categories, we introduce a
categorical structure that models !f modality. We call it indexed linear exponen-
tial comonad. This is a generalization of the semiring-graded linear exponential
comonad studied in [12,21]. Our generalization replaces the semiring with Idx,
which may be regarded as a many-object pseudo-semiring (Proposition 2.1).

We write [C,D]l for the category of symmetric lax monoidal functors from C
to D and monoidal natural transformations between them. We equip it with the
pointwise symmetric monoidal structure (İ , ⊗̇) given by İX = I and (F ⊗̇G)X =
FX ⊗GX for X ∈ C.

Definition 4.1. An indexed linear exponential comonad (ILEC for short) over
a set-indexed SMCC C consists of:

– A collection of symmetric colax monoidal functors

(D,w∆,∆
′
, c∆,∆

′
) : Idx(∆,∆′)→ [C∆′, C∆]l (∆,∆′ ∈ Set).

The symmetric lax monoidal structure of Df is denoted by mf : I → DfI
and mf,A,B : DfA⊗DfB → Df(A⊗B).

– Monoidal natural transformations ε∆ : D(id∆)→ IdD∆ and δg,f : D(g•f)→
Df ◦Dg satisfying axioms in Figure 1.

– Cr′ ◦Df ◦ Cr = D(Jr • f • Jr′) holds for any morphism f in Idx and r, r′

in Set of appropriate type.

The last axiom has two purposes: the equality Cr′(DfA) = D(f • Jr′)A
is to allow reindexing functions to act from outside, and the other equality
Df(CrA) = D(Cr • f)A is to make D invariant under internal reindexing of
formulas. This will be tied up with the formula equivalence in Definition (2.1)
and the definition of reindexing at !fA in Definition (2.1). We postpone a concrete
example of ILEC to Section 4.2.

4.1 Semantics of GBLL

We interpret well-formed formula ∆ ` A as an object J∆ ` AK ∈ C∆. This is
done by induction on the structure of formula. We assume that each atomic
formula a ∈ A(∆) comes with its interpretation as an object [a] ∈ C∆.

J∆ ` a ? rK def
= Cr[a] J∆ `!fAK def

= DfJ∆′ ` AK

J∆ ` A⊗BK def
= J∆ ` AK⊗ J∆ ` BK J∆ ` A(BK def

= J∆ ` AK(J∆ ` BK

14 Y. Fukihara and S. Katsumata

D(f • h+ g • h)A

��

D((f + g) • h)A

��
D(f • h)A⊗D(g • h)A

��

Dh(D(f + g)A)

��
Dh(DfA)⊗Dh(DgA) // Dh(DfA⊗DgA)

D0A

��

D(0 • h)A

��
Dh(D0A)

��
I // DhI

D(h • f + h • g)A
D∼=A //

��

D(h • (f + g))A

��
D(h • f)A⊗D(h • f)A

��

D(f + g)(DhA)

��
Df(DhA)⊗Dg(DhA) (Df ⊗Dg)(DhA)

D0A

��

D(h • 0)A

��
D0(DhA)

��
I I

DfA //

��

D(id∆)(DfA)

��

D(h • g • f)A //

��

D(g • f)(DhA)

��
Df(D(id∆)A) // DfA Df(D(h • g)A) // Df(Dg(DhA))

Fig. 1. Axioms of Indexed Linear Exponential Comonad

Proposition 4.1. For any r : ∆ → ∆′ and well-formed formula ∆′ ` A, we
have J∆ ` A|rK = CrJ∆′ ` AK.

Proposition 4.2. J∆ ` !Jr•fAK = J∆′ ` !f (A|r)K.

Each proof π .∆ | Γ ` A of GBLL is interpreted as a morphism J∆ | Γ ` AK :
J∆ ` Γ K → J∆ ` AK in C∆. Here , for a sequence Γ = C1, · · · , Cm of formulas,
J∆ ` Γ K denotes J∆ ` C1K⊗· · ·⊗J∆ ` CmK. We write this interpretation only the
cases of modalities, because the other rules, Axiom, Exchange, Cut, ⊗(L,R) and
((L,R) are interpreted similarly to the semantics of multiplicative intuitionistic
linear logic. The rules related to the modality are interpreted as in Table 3.

Theorem 4.1. For a proof π . ∆ | Γ ` A, if π has a reducible cut and reduces
into π′ by a reduction step, then JπK = Jπ′K in C∆.

4.2 Construction of an Indexed Linear Exponential Comonad

We present a construction of an indexed SMCCs C : Setop → SMCCstrict and
an ILEC D : Idx(∆,∆′)→ [C∆′, C∆]l over C from a SMCC 〈C,⊗, I,(〉, and
a symmetric lax monoidal comonad 〈V,mV ,mV

X,Y , ε, δ〉 on C.

Construction of Indexed SMCCs First, for each set ∆, we define the cate-
gory ∆ tC to be the product of ∆-many copies of C. We represent objects and

Generalized Bounded Linear Logic and its Categorical Semantics 15

u

www
v

...π′

∆ | Γ ` B
∆ | Γ, !0∆,∆′A ` B

}

���
~

= JΓ, !0∆,∆′AK
id⊗w∆,∆

′
JAK−−−−−−−→ JΓ K⊗ I

Jπ′K◦∼=−−−−→ JBK
u

ww
v

...π′

∆ | Γ, A ` B
∆ | Γ, !idA ` B

}

��
~ = JΓ, !id∆AK

id⊗ε∆JAK−−−−−→ JΓ K⊗ JAK
Jπ′K−−−→ JBK

u

ww
v

...π′

∆ | Γ, !gA ` B σ : f ⇒ g

∆ | Γ, !fA ` B

}

��
~ =

JΓ, !fAK
id⊗(Dσ)JAK−−−−−−−−→ JΓ, !gAK
Jπ′K−−−→ JBK

u

ww
v

...π′

∆ | Γ, !fA, !gA ` B
∆ | Γ, !f+gA ` B

}

��
~ = JΓ, !f+gAK

id⊗c∆,∆
′

f,g,JAK−−−−−−−→ JΓ K⊗ (J!fAK⊗ J!gAK)
Jπ′K◦∼=−−−−→ JBK

u

ww
v

...π′

∆, g | !g1A1, · · · , !gkAk ` B
∆ | !g1•fA1, · · · , !gk•fAk ` !fB

}

��
~ =

⊗
iJ!gi•fAiK

⊗
i δgi,f,JAiK−−−−−−−−−→

⊗
iD(f)(J!giAiK)

mf,···J!giAiK···−−−−−−−−−−→ D(f)
(⊗

iJ!giAiK
)

D(f)(Jπ′K)−−−−−−−→ J!fBK

Table 3. Interpretations of Modal Rules (JAK denotes J∆ ` AK for each well-formed
formula ∆ ` A).

morphisms of this category by maps X : ∆→ Obj(C) and maps f : ∆→ Mor(C),
respectively. Since SMCCs are closed under products, ∆ t C is a SMCC by the
component-wise tensor product and internal hom:

I(d)
def
= I, X ⊗̇ Y(d)

def
= X(d)⊗ Y(d), X(̇Y(d)

def
= X(d)(Y(d)

We then define the indexed SMCCs C by C∆
def
= ∆ t C.

Folding Product We next introduce the folding product functor T; we later
compose it with the symmetric lax monoidal comonad V so that we can derive
various ILECs over C. Note that T itself is also an ILEC; set V = Id. The type
of T is S∆×∆ t C −→ C and defined by

T(i1i2 · · · in,A)
def
= A(i1)⊗ A(i2)⊗ · · · ⊗ A(in), T((),A)

def
= I

On morphisms, T maps a list permutation in the first argument to the symmetry
morphism in C. T is symmetric strong monoidal in each argument. Moreover,
each strong monoidal structure interacts well with each other, concluding that
it becomes a multi-symmetric strong monoidal functor in the sense of [20].

16 Y. Fukihara and S. Katsumata

Proposition 4.3. For ∆
f−→ ∆′ in Idx and l = i1 · · · ik ∈ S∆, let f(l) denote

f(i1) · · · f(ik). Then it holds T(f(l),A) ' T(l,T(f(−),A)) and this isomorphism
is natural for A.

Construction of ILEC We now compose the folding product functor with the
symmetric lax monoidal comonad V , to derive an ILEC. Fixed two sets ∆,∆′, we
define a symmetric strong (hence colax) monoidal functor D : Idx(∆,∆′) −→
[C∆′, C∆]l by

DfA(i)
def
= T(f(i), V ◦ A) Dfp(i)

def
= T(f(i), V p) DαA

def
= T(α,V ◦ A).

(4.1)

Here, A ∈ ∆′ t C, and p and α are morphisms in ∆′ t C and Idx(∆,∆′),
respectively. We also define a helper morphism γlA : T(l, V ◦ A) → V T(l,A) for
(l1 · · · lk) ∈ S∆ and A ∈ ∆ t C. It is the multiple composite of mA,B :

V A(l1)⊗ · · · ⊗ V A(lk)→ V (A(l1)⊗ · · · ⊗ A(lk)) .

It is routine to verify that this morphism is monoidal natural on l and A.
Two monoidal natural transformations ε : Did∆ → Id∆tC and δg,f : D(g •

f)→ Df ◦Dg is defined by:

εA,i :T(i, V ◦ A) = V A(i) (4.2)

δg,f ;A;i :T((g • f)(i), V ◦ A)
∼−→ T(f,T(g(−), V ◦ A))

T(f,T(g(−),δA))−−−−−−−−−−→ T(f,T(g(−), V ◦ V ◦ A))

T(f,γ
g(−)
A)

−−−−−−−→ Df(DgA)(i)

(4.3)

Theorem 4.2. The symmetric colax monoidal functor D defined by (4.1) with
monoidal natural transformations ε, δ defined by (4.2) and (4.3) determines an
ILEC over C.

4.3 GBLL Semantics by Realizability Category

Hofmann et al., and also Dal Lago et al. employ a realizability semantics to
show that the complexity of BLL proof reductions belongs to P-time [18,9].
In this section we compare their semantics and the simple semantics of GBLL
constructed in the previous section.

We instantiate C in the previous section with the realizability category over a
BCI algebra (A, ·), which is a combinatory algebra based on B,C, I-combinators;
see e.g. [2,19]. We then form the realizability category Ass(A) by the following
data: an object is a function f into P+A, where P+ is the nonempty powerset
construction, and a morphism from f to g is a function h : dom f → dom g
with the following property: there exists an element e ∈ A such that for any

Generalized Bounded Linear Logic and its Categorical Semantics 17

x ∈ dom f and a ∈ f(x), we have e · a ∈ g(h(x)). The category Ass(A) is
symmetric monoidal closed; see e.g. [19, Proposition 4]. The tensor product of f
and g is given by (f ⊗ g)(x, y) = {u� v | u ∈ f(x), v ∈ g(y)}, where u� v is the
BCI-algebra element corresponding to λx.xuv [19, Section 2].

Next, let ∆ be a set and consider the power category ∆tAss(A). Under the
axiom of choice, ∆ tAss(A) is equivalently described as follows: an object is a
family of functions {fi}i∈∆ into P+A, and a morphism from {fi}i∈∆ to {gi}i∈∆
is a family of functions {hi : dom fi → dom gi}i∈∆ with the following property:
there exists a function e : ∆ → A such that for any i ∈ ∆, x ∈ dom fi and
a ∈ fi(x), we have e(i) · a ∈ gi(hi(x)).

This power category is quite close to the realizability category introduced
in [18, Section 4] and [9, Section 4]. This becomes apparent when identifying
a membership statement a ∈ fi(x) for an object {fi}i∈∆ ∈ ∆ tAss(A) and a
realizability statement i, a
 x in the realizability category (see [18]). The major
difference between these categories is twofold: 1) In the realizability category, a
computability constraint is imposed on e : ∆→ A to achieve the characterization
of P-time complexity. 2) Objects in the realizability category are limited to ∆t
Ass(A)-objects such that all fi share the common domain. This is to synchronize
with the a set-theoretic semantics ignoring resource polynomials [18, Section 3]
[9, Section 3].

We compute the bounded !-modality using the folding product ILEC T with
respect to the indexed SMCC (−) tAss(A). Let F be a finite set of variables,
x 6∈ F be a resource variable, p be a resource polynomial and C be a constraint
set under F . For any object X in VC∪{v≤p}(F∪{v})tAss(A), the folding product
T([v ≤ p](F,C),X) is an object in VC (F) tAss(A) satisfying

T([v < p](F,C),X)(i)

= λ(x0, · · · , xJpKi−1) . {a0 ⊗ · · · ⊗ aJpKi−1 | aj ∈ X(i{v 7→ j})(xj)} (4.4)

This is different from the modality over the realizability category introduced in
[18, Definition 16] and [9, Definition 4.6]:

(!v<pX)(i) = λx . {a0 ⊗ · · · ⊗ aJpKi−1 | aj ∈ X(i{v 7→ j})(x)};
it only takes a single argument. This is again because their realizability se-
mantics is designed to synchronize with the set-theoretic semantics ignoring
resource polynomials - especially it interprets J!x≤pAK = JAK. On the other
hand, the bounded quantification computed in (4.4) does not ignore resource
polynomials and indexing, as the domain of (4.4) is the index-dependent prod-
uct

∏
j dom(X(i{v 7→ j})). From this, we conjecture that the semantics of BLL

using the ILEC T over (−) tAss(A) realizes an index-dependent set-theoretic
semantics of BLL - we leave this semantics as a future work.

5 Conclusion and Related Work

We introduced GBLL, a generalization of Girard et al.’s BLL. The calculus ex-
tracts an underlying fundamental structure of BLL while separates complexity-
related issues in BLL. We analyzed the complexity of cut-elimination in GBLL,

18 Y. Fukihara and S. Katsumata

and gave a translation of QBLL, a variant of BLL by Dal Lago and Hofmann,
into GBLL. We then introduced ILEC as a categorical structure for interpret-
ing the !-modality of GBLL. The ILEC is an extension of semiring-graded linear
exponential comonad, replacing semirings with the 2-category Idx, which may
be seen as a multi-object pseudo-semiring. Additionally, it should interacts well
with a specified indexed SMCCs. We gave an elementary construction of ILEC
using folding product, and its variant inserting symmetric monoidal comonads.
We instantiated this elementary example with the category of assemblies of a
BCI-algebra, and discussed (dis)similarity with the realizability category studied
by [18,9].

Girard’s BLL has a great influence on the subsequent development of indexed
modalities and implicit complexity theory [15]. Hofmann and Scott introduced
the realizability technique to BLL and semantically proved that BLL characterizes
P-time complexity [18]. Their work was further enriched and studied by Dal Lago
and Hofmann [9]. Gaboardi combined the !-modality involving variable binding
with PCF and showed that the combined system is relatively complete [23].

Bucciarelli and Ehrhard’s indexed linear logic with exponential [8] is one of
the closest systems to GBLL. However, the type of the !-modality is different:
their system derives ∆ ` !fA from ∆′ ` A and an almost injective function
f : ∆′ → ∆; it is a function where each f−1(i) is finite. To relate their system
and GBLL, let us use the finite powerset construction Pfin and convert f into
its inverse f−1 : ∆ → Pfin(∆′). This exhibit the similarity with GBLL: GBLL
relaxes Pfin to (−)∗, and takes the inverse as the parameter for the !-modality.
The novelty of this work to [8] is that a categorical axiomatics for the !f modality
is identified as an extension of the graded linear exponential comonads [6,21].
Another novelty is to show that GBLL is enough to encode BLL.

As described in Section 1, the simple form of !-modality !rA is also widely
used in various type systems and programming languages. Examples include:
INTML [29], coeffct calculus [27,7] and its combination with effect systems [12],
Granule language [25], bounded linear type system [13,25], type systems for the
analysis of higher-order model-checking [17,16], a generic BLL-like logic BSLL
over semirings [5], Fuzz type system for function sensitivity and differential pri-
vacy [28,11,3], and many more. A combination of !rA with dependent type the-
ory called QTT is also introduced in [24] and [4]. Among these systems, each of
[11,25,1] supports 1) full universal and existential, 2) full universal and 3) partial
universal quantification over grades, respectively.

The categorical structure corresponding to the simple form of !-modality ap-
pears in [6,12,21], and is identified as semiring-graded linear exponential comonad.
Breuvert constructed various examples of semiring-graded linear exponential
comonads on relational models of linear logic [5] using his slicing technique.
In this work we replaced semirings to Idx, which may be seen as a multi-object
pseudo-semiring. In the study of graded monad, Orchard et al. generalize the
grading structure from ordered monoids to 2-categories [26]. The main difference
from this work is that their generalized graded monad is defined over a single
categories, while an ILEC is defined over an indexed SMCCs.

Generalized Bounded Linear Logic and its Categorical Semantics 19

References

1. Abel, A., Bernardy, J.P.: A unified view of modalities in type systems. Proc. ACM
Program. Lang. 4(ICFP) (Aug 2020). https://doi.org/10.1145/3408972, https://
doi.org/10.1145/3408972

2. Abramsky, S., Lenisa, M.: Linear realizability and full completeness for
typed lambda-calculi. Ann. Pure Appl. Log. 134(2-3), 122–168 (2005).
https://doi.org/10.1016/j.apal.2004.08.003, https://doi.org/10.1016/j.apal.
2004.08.003

3. de Amorim, A.A., Gaboardi, M., Hsu, J., Katsumata, S., Cherigui, I.: A semantic
account of metric preservation. In: Castagna, G., Gordon, A.D. (eds.) Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18-20, 2017. pp. 545–556. ACM (2017).
https://doi.org/10.1145/3009837, http://dl.acm.org/citation.cfm?id=3009890

4. Atkey, R.: Syntax and semantics of quantitative type theory. In: Dawar, A.,
Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp. 56–65.
ACM (2018). https://doi.org/10.1145/3209108.3209189, https://doi.org/10.1145/
3209108.3209189

5. Breuvart, F., Pagani, M.: Modelling coeffects in the rela-
tional semantics of linear logic. In: Kreutzer [22], pp. 567–581.
https://doi.org/10.4230/LIPIcs.CSL.2015.567, https://doi.org/10.4230/LIPIcs.
CSL.2015.567

6. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A core quantitative coeffect
calculus. In: Shao, Z. (ed.) Programming Languages and Systems. pp. 351–370.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

7. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A core quantitative coeffect
calculus. In: Shao, Z. (ed.) Programming Languages and Systems. pp. 351–370.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

8. Bucciarelli, A., Ehrhard, T.: On phase semantics and denotational seman-
tics: the exponentials. Annals of Pure and Applied Logic 109(3), 205 – 241
(2001). https://doi.org/https://doi.org/10.1016/S0168-0072(00)00056-7, http://
www.sciencedirect.com/science/article/pii/S0168007200000567

9. Dal Lago, U., Hofmann, M.: Bounded linear logic, revisited. In: Curien, P.L. (ed.)
Typed Lambda Calculi and Applications. pp. 80–94. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009)

10. Fujii, S., Katsumata, S., Melliès, P.: Towards a formal theory of graded monads.
In: Jacobs, B., Löding, C. (eds.) Foundations of Software Science and Computation
Structures - 19th International Conference, FOSSACS 2016, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eind-
hoven, The Netherlands, April 2-8, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9634, pp. 513–530. Springer (2016). https://doi.org/10.1007/978-3-
662-49630-5 30, https://doi.org/10.1007/978-3-662-49630-5 30

11. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear depen-
dent types for differential privacy. In: Giacobazzi, R., Cousot, R. (eds.) The
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013. pp. 357–370.
ACM (2013). https://doi.org/10.1145/2429069.2429113, https://doi.org/10.1145/
2429069.2429113

https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1016/j.apal.2004.08.003
https://doi.org/10.1016/j.apal.2004.08.003
https://doi.org/10.1016/j.apal.2004.08.003
https://doi.org/10.1145/3009837
http://dl.acm.org/citation.cfm?id=3009890
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.4230/LIPIcs.CSL.2015.567
https://doi.org/10.4230/LIPIcs.CSL.2015.567
https://doi.org/10.4230/LIPIcs.CSL.2015.567
https://doi.org/https://doi.org/10.1016/S0168-0072(00)00056-7
http://www.sciencedirect.com/science/article/pii/S0168007200000567
http://www.sciencedirect.com/science/article/pii/S0168007200000567
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/2429069.2429113

20 Y. Fukihara and S. Katsumata

12. Gaboardi, M., Katsumata, S.y., Orchard, D., Breuvart, F., Uustalu, T.:
Combining effects and coeffects via grading. SIGPLAN Not. 51(9), 476–489
(Sep 2016). https://doi.org/10.1145/3022670.2951939, https://doi.org/10.1145/
3022670.2951939

13. Ghica, D.R., Smith, A.I.: Bounded linear types in a resource semiring. In: Shao,
Z. (ed.) Programming Languages and Systems. pp. 331–350. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2014)

14. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987).
https://doi.org/10.1016/0304-3975(87)90045-4, https://doi.org/10.1016/
0304-3975(87)90045-4

15. Girard, J., Scedrov, A., Scott, P.J.: Bounded linear logic: A modular ap-
proach to polynomial-time computability. Theor. Comput. Sci. 97(1), 1–66
(1992). https://doi.org/10.1016/0304-3975(92)90386-T, https://doi.org/10.1016/
0304-3975(92)90386-T

16. Grellois, C., Melliès, P.: An infinitary model of linear logic. In: Pitts, A.M. (ed.)
Foundations of Software Science and Computation Structures - 18th Interna-
tional Conference, FoSSaCS 2015, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-
18, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9034, pp. 41–55.
Springer (2015). https://doi.org/10.1007/978-3-662-46678-0 3, https://doi.org/10.
1007/978-3-662-46678-0 3

17. Grellois, C., Melliès, P.: Relational semantics of linear logic
and higher-order model checking. In: Kreutzer [22], pp. 260–276.
https://doi.org/10.4230/LIPIcs.CSL.2015.260, https://doi.org/10.4230/LIPIcs.
CSL.2015.260

18. Hofmann, M., Scott, P.J.: Realizability models for bll-like languages. Theor.
Comput. Sci. 318(1-2), 121–137 (2004). https://doi.org/10.1016/j.tcs.2003.10.019,
https://doi.org/10.1016/j.tcs.2003.10.019

19. Hoshino, N.: Linear realizability. In: Duparc, J., Henzinger, T.A. (eds.) Com-
puter Science Logic, 21st International Workshop, CSL 2007, 16th Annual Con-
ference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Pro-
ceedings. Lecture Notes in Computer Science, vol. 4646, pp. 420–434. Springer
(2007). https://doi.org/10.1007/978-3-540-74915-8 32, https://doi.org/10.1007/
978-3-540-74915-8 32

20. Hyland, M., Power, J.: Pseudo-commutative monads and pseudo-closed 2-
categories. Journal of Pure and Applied Algebra 175(1), 141 – 185
(2002). https://doi.org/https://doi.org/10.1016/S0022-4049(02)00133-0, http://
www.sciencedirect.com/science/article/pii/S0022404902001330, special Volume
celebrating the 70th birthday of Professor Max Kelly

21. Katsumata, S.y.: A double category theoretic analysis of graded linear exponential
comonads. In: Baier, C., Dal Lago, U. (eds.) Foundations of Software Science and
Computation Structures. pp. 110–127. Springer International Publishing, Cham
(2018)

22. Kreutzer, S. (ed.): 24th EACSL Annual Conference on Computer Science Logic,
CSL 2015, September 7-10, 2015, Berlin, Germany, LIPIcs, vol. 41. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2015), http://www.dagstuhl.de/
dagpub/978-3-939897-90-3

23. Lago, U.D., Gaboardi, M.: Linear dependent types and relative completeness. In:
Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science,
LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada. pp. 133–142. IEEE Com-

https://doi.org/10.1145/3022670.2951939
https://doi.org/10.1145/3022670.2951939
https://doi.org/10.1145/3022670.2951939
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1007/978-3-662-46678-0_3
https://doi.org/10.1007/978-3-662-46678-0_3
https://doi.org/10.1007/978-3-662-46678-0_3
https://doi.org/10.4230/LIPIcs.CSL.2015.260
https://doi.org/10.4230/LIPIcs.CSL.2015.260
https://doi.org/10.4230/LIPIcs.CSL.2015.260
https://doi.org/10.1016/j.tcs.2003.10.019
https://doi.org/10.1016/j.tcs.2003.10.019
https://doi.org/10.1007/978-3-540-74915-8_32
https://doi.org/10.1007/978-3-540-74915-8_32
https://doi.org/10.1007/978-3-540-74915-8_32
https://doi.org/https://doi.org/10.1016/S0022-4049(02)00133-0
http://www.sciencedirect.com/science/article/pii/S0022404902001330
http://www.sciencedirect.com/science/article/pii/S0022404902001330
http://www.dagstuhl.de/dagpub/978-3-939897-90-3
http://www.dagstuhl.de/dagpub/978-3-939897-90-3

Generalized Bounded Linear Logic and its Categorical Semantics 21

puter Society (2011). https://doi.org/10.1109/LICS.2011.22, https://doi.org/10.
1109/LICS.2011.22

24. McBride, C.: I got plenty o’ nuttin’. In: Lindley, S., McBride, C., Trinder,
P.W., Sannella, D. (eds.) A List of Successes That Can Change the World
- Essays Dedicated to Philip Wadler on the Occasion of His 60th Birth-
day. Lecture Notes in Computer Science, vol. 9600, pp. 207–233. Springer
(2016). https://doi.org/10.1007/978-3-319-30936-1 12, https://doi.org/10.1007/
978-3-319-30936-1 12

25. Orchard, D., Liepelt, V.B., Eades III, H.: Quantitative program reasoning
with graded modal types. Proc. ACM Program. Lang. 3(ICFP) (Jul 2019).
https://doi.org/10.1145/3341714, https://doi.org/10.1145/3341714

26. Orchard, D., Wadler, P., Eades, H.: Unifying graded and parameterised monads.
Electronic Proceedings in Theoretical Computer Science 317, 18–38 (May 2020).
https://doi.org/10.4204/eptcs.317.2, http://dx.doi.org/10.4204/EPTCS.317.2

27. Petricek, T., Orchard, D., Mycroft, A.: Coeffects: Unified static analysis of context-
dependence. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
Automata, Languages, and Programming. pp. 385–397. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013)

28. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calcu-
lus for differential privacy. In: Hudak, P., Weirich, S. (eds.) Proceeding of
the 15th ACM SIGPLAN international conference on Functional programming,
ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010. pp. 157–168.
ACM (2010). https://doi.org/10.1145/1863543.1863568, https://doi.org/10.1145/
1863543.1863568

29. Schöpp, U.: Computation-by-interaction with effects. In: Yang, H. (ed.) Program-
ming Languages and Systems. pp. 305–321. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

https://doi.org/10.1109/LICS.2011.22
https://doi.org/10.1109/LICS.2011.22
https://doi.org/10.1109/LICS.2011.22
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.4204/eptcs.317.2
http://dx.doi.org/10.4204/EPTCS.317.2
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568

22 Y. Fukihara and S. Katsumata

A Proofs for Section 2 (Generalized Bounded Linear
Logic)

In this section, we show reduction steps for reducible Cut eliminations of GBLL
and GBAL and the proof size is non-increasing in each reduction step.

Case 1. (Axiom)

∆ ` A (Ax)
∆ | A ` A

...π′

∆ | Γ,A ` B
(Cut)

∆ | Γ ` B

−→
...π′

∆ | Γ,A ` B

...π′

∆ | Γ ` A
∆ ` A (Ax)

∆ | A ` A
(Cut)

∆ | Γ ` A

−→
...π′

∆ | Γ,A ` B

The weight of each proof decreases from |π′|+ 1 to |π′|.
Case 2. (L⊗,R⊗-L)

...π1

∆ | Γ1, X, Y ` A
(⊗L)

∆ | Γ1, X ⊗ Y ` A

...π2

∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2, X ⊗ Y ` B

−→

...π1

∆ | Γ1, X, Y ` A

...π2

∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2, X, Y ` B
(⊗L)

∆ | Γ1, Γ2, X ⊗ Y ` B

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, X, Y,A ` B
(⊗L)

∆ | Γ2, X ⊗ Y,A ` B
(Cut)

∆ | Γ1, Γ2, X ⊗ Y ` B

−→

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, X, Y,A ` B
(Cut)

∆ | Γ1, Γ2, X, Y ` B
(⊗L)

∆ | Γ1, Γ2, X ⊗ Y ` B
The weight of the proof keeps |π1|+ |π2|+ 1 in this reduction step.

Case 3. (R⊗-R)

...π′

∆ | Γ ` A

...κ1

∆ | Γ ′1, A ` X

...κ2

∆ | Γ ′2 ` Y (⊗R)
∆ | Γ ′1, Γ ′2, A ` X ⊗ Y (Cut)

∆ | Γ, Γ ′1, Γ ′2 ` X ⊗ Y

Generalized Bounded Linear Logic and its Categorical Semantics 23

−→

...π′

∆ | Γ ` A

...κ1

∆ | Γ ′1, A ` X (Cut)
∆ | Γ, Γ ′1 ` X

...κ2

∆ | Γ ′2 ` Y (⊗R)
∆ | Γ, Γ ′1, Γ ′2 ` X ⊗ Y

...π′

∆ | Γ ` A

...κ1

∆ | Γ ′1 ` X

...κ2

∆ | Γ ′2, A ` Y (⊗R)
∆ | Γ ′1, Γ ′2, A ` X ⊗ Y (Cut)

∆ | Γ, Γ ′1, Γ ′2 ` X ⊗ Y

−→

...π′

∆ | Γ ` A

...κ2

∆ | Γ ′2, A ` X (Cut)
∆ | Γ, Γ ′2 ` X

...κ1

∆ | Γ ′1 ` Y (⊗R)
∆ | Γ, Γ ′1, Γ ′2 ` X ⊗ Y

The weight of each proof keeps |π′| + |κ1| + |κ2| + 1 in this reduction
step.

Case 4. (L()
...π1

∆ | Γ1 ` X

...π2

∆ | Γ2, Y ` A
((L)

∆ | Γ1, Γ2, X (Y ` A

...κ

∆ | Γ ′, A ` B
(Cut)

∆ | Γ1, Γ2, Γ
′, ∆,X (Y ` B

−→
...π1

∆ | Γ1 ` X

...π2

∆ | Γ2, Y ` A

...κ

∆ | Γ ′, A ` B
(Cut)

∆ | Γ2, γ
′, Y ` B

((L)
∆ | Γ1, Γ2, Γ

′, X (Y ` A
The weight of the proof keeps |π1|+ |π2|+ |κ|+ 1 in this reduction step.

Case 5. (R(-L)

...π′

∆ | Γ ` A

...κ1

∆ | Γ ′1, A ` X

...κ2

∆ | Γ ′2, Y ` B ((L)
∆ | Γ ′1, Γ ′2, A,X (Y ` B

(Cut)
∆ | Γ, Γ ′1, Γ ′2, X (Y ` B

−→

...π′

∆ | Γ ` A

...κ1

∆ | Γ ′1, A ` X (Cut)
∆ | Γ, Γ ′1 ` X

...κ2

∆ | Γ ′2, Y ` B ((L)
∆ | Γ, Γ ′1, Γ ′2, X (Y ` B

...π′

∆ | Γ ` A

...κ1

∆ | Γ ′1 ` X

...κ2

∆ | Γ ′2, A, Y ` B ((L)
∆ | Γ ′1, Γ ′2, A,X (Y ` B

(Cut)
∆ | Γ, Γ ′1, Γ ′2, X (Y ` B

24 Y. Fukihara and S. Katsumata

−→
...κ1

∆ | Γ ′1 ` X

...π′

∆ | Γ ` A

...κ2

∆ | Γ ′2, A, Y ` B (Cut)
∆ | Γ, Γ ′2, Y ` B ((L)

∆ | Γ, Γ ′1, Γ ′2, X (Y ` B
The weight of each proof keeps |π′| + |κ1| + |κ2| + 1 in this reduction
step.

Case 6. (R(-R)

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, A,X ` Y
((R)

∆ | Γ2, A ` X (Y
(Cut)

∆ | Γ1, Γ2 ` X (Y

−→

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, A,X ` Y
(Cut)

∆ | Γ1, Γ2, X ` Y
((R)

∆ | Γ1, Γ2 ` X (Y

The weight of the proof keeps |π1|+ |π2|+ 1 in this reduction step.
Case 7. (S⊗)

...π1

∆ | Γ1 ` X

...π2

∆ | Γ2 ` Y
(⊗R)

∆ | Γ1, Γ2 ` X ⊗ Y

...κ

∆ | Γ ′, X, Y ` B
(⊗L)

∆ | Γ ′, X ⊗ Y ` B
(Cut)

∆ | Γ1, Γ2, ∆ ` B

−→
...π1

∆ | Γ1 ` X

...π2

∆ | Γ2 ` Y

...κ

∆ | Γ ′, X, Y ` B
(Cut)

∆ | Γ2, ∆,X ` B
(Cut)

∆ | Γ1, Γ2 ` B
The weight of the proof decreases from |π1| + |π2| + |κ| + 2 to |π1| +
|π2|+ |κ|.

Case 8. (S()
...π′

∆ | Γ,X ` Y
((R)

∆ | Γ ` X (Y

...κ1

∆ | Γ ′1 ` X

...κ2

∆ | Γ ′2, Y ` B ((L)
∆ | Γ ′1, Γ ′2, X (Y ` B

(Cut)
∆ | Γ, Γ ′1, Γ ′2 ` B

−→
...κ1

∆ | Γ ′1 ` X

...π′

∆ | Γ,X ` Y

...κ2

∆ | Γ ′2, Y ` B (Cut)
∆ | Γ, Γ ′2, X ` B (Cut)

∆ | Γ, Γ ′1, Γ ′2 ` B
The weight of the proof decreases from |π′| + |κ1| + |κ2| + 2 to |π′| +
|κ1|+ |κ2|.

Generalized Bounded Linear Logic and its Categorical Semantics 25

Case 9. (W)
...π1

∆ | Γ1 ` A
(!W)

∆ | Γ1, !0X ` A

...π2

∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2, !0X ` B

−→

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2 ` B
(!W)

∆ | Γ1, Γ2, !0X ` B

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2 , A ` B
(!W)

∆ | Γ2, !0X,A ` B
(Cut)

∆ | Γ1, Γ2, !0X ` B

−→

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2 ` B
(!W)

∆ | Γ1, Γ2, !0X ` B
The weight of the proof keeps |π1|+ |π2|+ 1 in this reduction step.

Case 10. (D)
...π1

∆ | Γ1, X ` A
(!D)

∆ | Γ1, !idX ` A

...π2

∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2, !idX ` B

−→

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, X,A ` B
(Cut)

∆ | Γ1, Γ2, X ` B
(!D)

∆ | Γ1, Γ2, !idX ` B

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, X,A ` B
(!D)

∆ | Γ2, !idX,A ` B
(Cut)

∆ | Γ1, Γ2, !idX ` B

−→

...π1

∆ | Γ1, X ` A

...π2

∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2, X ` B
(!D)

∆ | Γ1, Γ2, !idX ` B
The weight of the proof keeps |π1|+ |π2|+ 1 in this reduction step.

26 Y. Fukihara and S. Katsumata

Case 11. (F)
...π1

∆ | Γ1, !gX ` A
(!F)

∆ | Γ1, !fX ` A

...π2

∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2, !fX ` B

−→

...π1

∆ | Γ1, !gX ` A

...π2

∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2, !gX ` B
(!F)

∆ | Γ1, Γ2, !fX ` B

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, !gX,A ` B
(!F)

∆ | Γ2, !fX,A ` B
(Cut)

∆ | Γ1, Γ2, !fX ` B

−→

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, !gX,A ` B
(Cut)

∆ | Γ1, Γ2, !gX ` B
(!F)

∆ | Γ1, Γ2, !fX ` B
The weight of the proof keeps |π1|+ |π2|+ 1 in this reduction step.

Case 12. (C)
...π1

∆ | Γ1, !f1X, !f2X ` A
(!C)

∆ | Γ1, !f1+f2X ` A

...π2

∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2, !f1+f2X ` B

−→

...π1

∆ | Γ1, !f1X, !f2X ` A

...π2

∆ | Γ2, A ` B
(Cut)

∆ | Γ1, Γ2, !f1X, !f2X ` B
(!C)

∆ | Γ1, Γ2, !f1+f2X ` B

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, !f1X, !f2X,A ` B
(!C)

∆ | Γ2, !f1+f2X,A ` B
(Cut)

∆ | Γ1, Γ2, !f1+f2X ` B

−→

...π1

∆ | Γ1 ` A

...π2

∆ | Γ2, !f1X, !f2X,A ` B
(Cut)

∆ | Γ1, Γ2, !f1X, !f2X ` B
(!C)

∆ | Γ1, Γ2, !f1+f2X ` B
The weight of the proof keeps |π1|+ |π2|+ 2 in this reduction step.

Generalized Bounded Linear Logic and its Categorical Semantics 27

Case 13. (!W)
...π1

∆′ | Ø ` A
(P!)

∆ | Ø ` !0A

...π2

∆ | Γ ` B
(!W)

∆ | Γ, !0A ` B
(Cut)

∆ | Γ ` B

−→
...π2

∆ | Γ ` B

The weight of the proof decreases from |π2|+ 2 to |π2| in this reduction
step.

Case 14. (!D)
...π1

∆ | Ø ` A
(P!)

∆ | Ø ` !idA

...π2

∆ | Γ, A ` B
(!D)

∆ | Γ, !idA ` B
(Cut)

∆ | Γ ` B

−→

...π1

∆ | Ø ` A

...π2

∆ | Γ,A ` B
(Cut)

∆ | Γ ` B
The weight of the proof decreases from |π1|+ |π2|+ 3 to |π1|+ |π2|.

Case 15. (!F) Let f, g ∈ Idx(∆,∆′) and there is σ ∈ Idx(∆,∆′)(f, g) (resp.
f, g ∈ Idxa(∆,∆′) and σ ∈ Idxa(∆,∆′)(f, g))

...π1

∆′ | Ø ` A
(P!)

∆ | Ø ` !fA

...π2

∆ | Γ, !gA ` B
(!F)

∆ | Γ, !fA ` B
(Cut)

∆ | Γ ` B

−→

...π1

∆′ | Ø ` A
(P!)

∆ | Ø ` !gA

...π2

∆ | Γ, !gA ` B
(Cut)

∆ | Γ ` B
When σ : f → g is a morphism in Idx(∆,∆′), f(δ) and g(δ) (for δ ∈ ∆)
are just permutation of each other. Therefore

∑
γ∈f(δ) and

∑
γ∈g(δ)

are the same. On the other hand, when σ is in Idxa(∆,∆′), it holds∑
γ∈f(δ) ≥

∑
γ∈g(δ) from the definition.

The weight of proof (for δ ∈ ∆) decreases from
∑
γ∈g(δ)(|π1|(γ) + 1) +

|π2|(δ) + 2 to
∑
γ∈f(δ)(|π1|(γ) + 1) + |π2|(δ) + 1.

Case 16. (!C)
...π1

∆′ | Ø ` A
(P!)

∆ | Ø ` !f1+f2A

...π2

∆ | Γ, !f1A, !f2A ` B
(!C)

∆ | Γ, !f1+f2A ` B
(Cut)

∆ | Γ ` B

−→

28 Y. Fukihara and S. Katsumata

...π1

∆′ | Ø` A
(P!)

∆ | Ø` !f1A

...π1

∆′ | Ø` A
(P!)

∆ | Ø` !f2A

...π2

∆ | Γ, !f1A, !f2A` B
(Cut)

∆ | Γ, !f1A` B
(Cut)

∆ | Γ ` B
The weight of the proof for δ ∈ ∆ decreases from

∑
γ∈f1+f2(δ)(|π1|(γ) +

1)+ |π2|(δ)+2 to
∑
γ∈f1(δ)(|π1|(γ)+1)+

∑
γ∈f2(δ)(|π1|(γ)+1)+ |π2|(δ)

in this reduction step.
Case 17. (!P)

...π1

∆′′ | Ø ` A
(P!)

∆ | Ø ` !g•fA

...π2

∆′ | · · · , !β`B`, !gA ` B (P!)
∆ | · · · , !β`•fB`, !g•fA ` !fB

(Cut)
∆ | · · · , !β`•fB` ` !fB

−→

...π1

∆′′ | Ø ` A
(P!)

∆′ | Ø ` !gA

...π2

∆′ | · · · , !β`B`, !gA ` B
(Cut)

∆′ | · · · , !β`B` ` B (P!)
∆ | · · · , !β`•fB` ` !fB

For each δ ∈ ∆, the weight of proof decreases from∑
γ∈g•f(δ)

(
|π1|(γ) + 1

)
+

∑
γ′∈f(δ)

(
|π2|(γ′) + 2(`+ 1) + 1

)
+ `+ 3

to ∑
γ∈f(δ)

 ∑
γ′∈g(γ)

(|π1|(γ′) + 1) + |π2|(γ) + 2`+ 2

+ `+ 1

B Proofs for Section 3 (Translation from Constrained
BLL)

Proposition B.1. For a well-formed formula A of QBLL, VC (F) ` [A](F ;C).

Proof. Recall we supposed it exists an atomic [a] ∈ A(Nn) of GBLL for each
atomic a of QBLL with arity n(= ar(a)).

1. For an atomic a(p1, · · · , pn), a map from VC (F)→ Nn is given as the restric-
tion of 〈p1, · · · , pn〉 to VC (F). Soon we have VC (F) ` [a] ? 〈p1, · · · , pn〉|VC (F).

2. For a formula A ⊗ B, from hypothesis of induction, we obtain VC (F) `
[A](F ;C) and VC (F) ` [B](F ;C). Then we have VC (F) ` [A⊗B](F ;C).

3. For a formula A (B, we obtain VC (F) ` [A(B](F ;C) from VC (F) `
[A](F ;C) and from VC (F) ` [B](F ;C).

4. For a formula !x<pA, we obtain VC∪{x<p}(F ∪ {x}) ` [A](F∪{x};C∪{x<p})

from hypothesis of induction. Then we have VC (F) ` ![x.p](F,C)
[A](F∪{x};C∪{x<p}).

Generalized Bounded Linear Logic and its Categorical Semantics 29

C Proofs for Section 4 (Categorical Semantics for GBLL)

C.1 Semantics of GBLL

Proposition 4.1. For any r : ∆ → ∆′ and well-formed formula ∆′ ` A, we
have J∆ ` A|rK = CrJ∆′ ` AK.

Proof. The crucial cases are atomic formulas and ! formulas.

J∆ ` a ? (r ◦ r′)K = C(r ◦ r′)[a] = CrCr′[a] = CrJ∆′ ` aK
J∆ `!f•JrAK = D(f • Jr)J∆′ ` AK = Cr(DfJ∆′ ` AK) = CrJ∆ `!fAK.

Proposition 4.2. J∆ ` !Jr•fAK = J∆′ ` !f (A|r)K.

Proof. We have the following equality:

J∆ `!Jr•fAK = D(Jr • f)(J∆′′ ` AK) = Df(CrJ∆′′ ` AK) = J∆′ `!f (A|r)K.

Theorem 4.1. For a proof π . ∆ | Γ ` A, if π has a reducible cut and reduces
into π′ by a reduction step, then JπK = Jπ′K in C∆.

Proof. We will discuss according to cases in section A. For the first eight cases,
because the category C∆ is symmetric monoidal closed, we can verify the sound-
ness. Next, the first case of (W), (D), (F) and (C) are trivial. For the rest cases,
it is shown in Figure 2.

C.2 Construction of an Indexed Linear Exponential Comonad

In the following proofs, we use some specific natural isomorphisms:

rlA,B : [i ∈ l]A(i)⊗ [i ∈ l]B(i)
∼−→ [i ∈ l](A ⊗̇B)(i)

wkA : [i ∈ ()]A(i)
=−→ I, ctl,l

′

A : [i ∈ l + l′]A(i)
∼−→ [i ∈ l]A(i)⊗ [i ∈ l′]A(i)

Proposition 4.3. For ∆
f−→ ∆′ in Idx and l = i1 · · · ik ∈ S∆, let f(l) denote

f(i1) · · · f(ik). Then it holds T(f(l),A) ' T(l,T(f(−),A)) and this isomorphism
is natural for A.

Proof. Let f(ij) = (ij1 · · · ijmj). Then

T(f(l),A) ' A(i11)⊗ · · · ⊗ A(i1m1
)⊗ · · · ⊗ A(in1)⊗ · · · ⊗ A(inmn)

' T(f(i1),A)⊗ · · · ⊗ T(f(in),A)

' T(l,T(f(−),A))

clearly this equation is natural for A.

30 Y. Fukihara and S. Katsumata

Proposition C.1. For l = (l1 · · · lk) ∈ S∆ and A ∈ ∆ t C, we define a mor-
phism γlA : T(l, V ◦ A)→ V T(l,A) to be the multiple composition of mA,B:

V A(l1)⊗ · · · ⊗ V A(lk)→ V (A(l1)⊗ · · · ⊗ A(lk)) .

This morphism is monoidal natural on l and A.

Proof. For every l ∈ S∆ and A ∈ ∆ t C, γlA is natural for A because each mor-
phism mV

A(l1)⊗···⊗A(lj),A(lj+1) is natural. On the other hand, since C is symmetric

monoidal and V is lax monoidal functor, γlA is natural for l ∈ S∆. Moreover from
each definition the following diagram commutes hence γlA is monoidal natural
for l and A.

T(l, V ◦ A)⊗ T(l, V ◦ B) V T(l,A)⊗ V T(l,B)

T(l, (V ◦ A) ⊗̇ (V ◦ B)) V (T(l,A)⊗ T(l,B))

T(l, V ◦ (A ⊗̇ B)) V T(l,A ⊗̇ B)

γlA⊗γ
l
B

rlV◦A,V◦B mVT(l,A),T(l,B)

T(l,mVA(−),B(−)) V rlA,B
γl
A⊗̇B

T(l, V ◦ A)⊗ T(l′, V ◦ A) V T(l,A)⊗ V T(l′,A)

V (T(l,A)⊗ T(l′,A))

T(l + l′, V ◦ A) V T(l + l′,A)

γlA⊗γ
l′
A

ct−1
A

mV
T(l,A),T(l′,A)

V ct−1
A

γl+l
′

A

Theorem 4.2. The symmetric colax monoidal functor D defined by (4.1) with
monoidal natural transformations ε, δ defined by (4.2) and (4.3) determines an
ILEC over C.

Proof. This theorem is proved by Prop. C.2, C.3 and C.4.

Proposition C.2. The following diagrams commute for every ∆
f−→ ∆′

g−→
∆′′

h−→ ∆′′′ in Idx.

Df Did∆ ◦Df

Df ◦Did∆′ Df

δf,id

δid,f ε◦Df

Df◦ε

D(h • g • f) D(g • f) ◦Dh

Df ◦D(h • g) Df ◦Dg ◦Dh

δh,g•f

δh•g,f δg,f◦Dh
Df◦δh,g

Generalized Bounded Linear Logic and its Categorical Semantics 31

Proof. In this proof, we write [i ∈ l]A(i) for T(l,A). First, for f : ∆→ ∆′,

εDfA ◦ δf,id;A : DfA = [j ∈ (−)][k ∈ f(j)]V A(k)

[j∈(−)][k∈f(j)]δA(k)−−−−−−−−−−−−−→ [j ∈ (−)][k ∈ f(j)]V V A(k)

[j∈(−)]γ
f(j)
V ◦A−−−−−−−−→ [j ∈ (−)]V [k ∈ f(j)]V A(k)

εDfA−−−→ DfA

Df(εA) ◦ δid,f ;A : DfA = [j ∈ f(−)][k ∈ (j)]V A(k)

[j∈f(−)][k∈(j)]δA(k)−−−−−−−−−−−−−→ [j ∈ f(−)][k ∈ (j)]V V A(k)

[j∈f(−)]γ
(j)
V ◦A−−−−−−−−−→ [j ∈ f(−)]V [k ∈ (j)]V A(k)

∼−→ [j ∈ f(−)]V (Did∆′A(j))

[j∈f(−)]V εA;j−−−−−−−−−→ [j ∈ f(−)]V A(j)
∼−→ DfA

Then it holds (ε ◦ Df)(δf,id) = (Df ◦ ε)(δid,f) = idDf . On the other hand, for

∆
f−→ ∆′

g−→ ∆′′
h−→ ∆′′′, each composite are shown that:

δg,f ;DhA ◦ δh,g•f : D(h • g • f)A
∼−→ [k ∈ (g • f)(−)][l ∈ h(k)]V A(l)

[k∈(g•f)(−)][l∈h(k)]δA(l)−−−−−−−−−−−−−−−−→ [k ∈ (g • f)(−)][l ∈ h(k)]V V A(l)

[k∈(g•f)(−)]γ
h(k)
V ◦A−−−−−−−−−−−→ [k ∈ (g • f)(−)]V [l ∈ h(k)]V A(l)

∼−→ [j ∈ f(−)][k ∈ g(j)]V (DhA)(k)

[j∈f(−)][k∈g(j)]δDhA(k)−−−−−−−−−−−−−−−→ [j ∈ f(−)][k ∈ g(j)]V V (DhA)(k)

[j∈(−)]γ
g(j)

V ◦(DhA)−−−−−−−−−−→ [j ∈ f(−)]V [k ∈ g(j)]V (DhA)(k)

= Df(Dg(DhA))

Dfδh,g;A ◦ δh•g,f ;A : D(h • g • f)A
∼−→ [j ∈ f(−)][l ∈ (h • g)(j)]V A(l)

[j∈f(−)][l∈(h•g)(j)]δA(l)−−−−−−−−−−−−−−−−→ [j ∈ f(−)][l ∈ (h • g)(j)]V V A(l)

[j∈f(−)]γ
(h•g)(j)
V ◦A−−−−−−−−−−−→ [j ∈ f(−)]V [l ∈ (h • g)(j)]V A(l)

∼−→ Df([k ∈ g(−)][l ∈ h(k)]V A(l))

Df([k∈g(−)][l∈h(k)]δA(l))−−−−−−−−−−−−−−−−→ Df([k ∈ g(−)][l ∈ h(k)]V V A(l))

Df([k∈g(−)]γ
h(k)
V ◦A)

−−−−−−−−−−−−→ Df([k ∈ g(−)]V [l ∈ h(k)]V A(l))

= Df(Dg(DhA))

Therefore δg,fδh,g•f = (Df ◦ δh,g)δh•g,f .

32 Y. Fukihara and S. Katsumata

Lemma C.1. For f, g ∈ Idx(∆,∆′), l, l′ ∈ S∆ and for A ∈ ∆′, the following
diagrams commute:

T(f(l)+g(l),A) T((f+g)(l),A)

T(f(l),A)⊗T(g(l),A) T(l,T((f+g)(−),A))

T(l,T(f(−),A))⊗T(l,T(g(−),A)) T(l,T(f(−),A)⊗̇T(g(−),A))

T((),A) T(0(l),A)

T(l,T(0(−),A))

I T(l,I)

T(f(l)+f(l′),A) T(f(l+l′),A)

T(f(l),A)⊗T(f(l′),A)

T(l,T(f(−),A))⊗T(l′,T(f(−),A)) T(l+l′,T(f(−),A))

T((),A) T(f(),A)

T((),T(f(−),A))

I I

Proof. It follows from the definition of folding product.

Proposition C.3. The following diagrams commute:

D(f•h+g•h)A D((f+g)•h)A

D(f•h)A⊗̇D(g•h)A Dh(D(f+g)A)

Dh(DfA)⊗̇Dh(DgA) Dh(DfA⊗̇DgA)

D0A D(0•h)A

Dh(D0A)

I DhI

D(h•f+h•g)A D(h•(f+g))A

D(h•f)A⊗̇D(h•g)A D(f+g)(DhA)

Df(DhA)⊗̇Dg(DhA) (Df⊗̇Dg)(DhA)

D0A D(h•0)A

D0(DhA)

I I

Proof. From lemma C.1, we obtain the following diagrams for each i:

D(f•h+g•h)A(i) D((f+g)•h)A(i)

D(f•h)A(i)⊗D(g•h)A(i) T(h(i),D(f+g)A) Dh(D(f+g)A)(i)

T(h(i),DfA)⊗T(h(i),DgA) T(h(i),DfA⊗̇DgA)

Dh(DfA)(i)⊗Dh(DgA)(i) Dh(DfA⊗̇DgA)(i)

Generalized Bounded Linear Logic and its Categorical Semantics 33

D0A(i) D(0•h)A(i)

T(h(i),D0A) Dh(D0A)(i)

I T(h(i),I) DhI

D(h•f+h•g)A(i) D(h•(f+g))A(i)

D(h•f)A(i)⊗D(g•f)A(i)

T(f(i),DhA)⊗T(g(i),DhA) T(f(i)+g(i),DhA)

Df(DhA)(i)⊗Dg(DhA)(i) D(f+g)(DhA)(i)

(Df⊗̇Dg)(DhA)(i)

D0A(i) D(h•0)A(i)

T(0(i),DhA) D0(DhA)(i)

I I I

Proposition C.4. Cr′ ◦Df ◦ Cr = D(Jr • f • Jr′) holds for every morphism
f in Idx and morphisms r, r′ in Set.

Proof. First, note that ((rtC)A)(j) = A(r(j)) for a map r in Set. This equation
also holds when A is replaced by a family of morphisms f. We prove the goal
separately.

D(Jr • f)A(k) = T((Jr • f)k, V ◦ A)

= [j ∈ f(k)]V (A(r(j))

= T(f(k), V ◦ (r t A))

= Df(r t A)(k).

D(f • Jr)A(k) = [j ∈ f(r(k))]V (Aj)

= (DfA)(r t C)(k).

Again, these equations also extend to morphisms. We have therefore proved the
functor equality

D(Jr • f • Jr′) = (r′ t C) ◦Df ◦ (r t C).

34 Y. Fukihara and S. Katsumata

JΓ1, Γ2, !0XK JΓ2, A, !0XK

JΓ1, Γ2K JΓ2, AK JBK

JΓ1`AK

id⊗w id⊗w

JΓ1`AK

JΓ1, Γ2, !idXK JΓ2, !idX,AK

JΓ1, Γ2, XK JΓ2, X,AK JBK

JΓ1`AK

id⊗ε id⊗ε

JΓ1`AK

JΓ1, Γ2, !fXK JΓ2, !fX,AK

JΓ1, Γ2, !gXK JΓ2, !gX,AK JBK

JΓ1`AK

id⊗Dσ id⊗Dσ

JΓ1`AK

JΓ1, Γ2, !f1+f2XK JΓ2, !f1+f2X,AK

JΓ1, Γ2, !f1X, !f2XK JΓ2, !f1X, !f2X,AK JBK

JΓ1`AK

'◦id⊗cJXK '◦id⊗cJXK

JΓ1`AK

JΓ K JΓ K⊗D0I JΓ, !0AK

JΓ K JΓ K⊗ I JΓ K⊗ I

JBK

m0 D0JØ`AK

wI wA

JΓ`BK

∼

JΓ K JΓ K⊗DidI JΓ, !idAK

JΓ K⊗ I JΓ,AK

JBK

mid

∼

DidJØ`AK

εI εJAK

JØ`AK

JΓ,A`BK

JΓ K JΓ K⊗D(f1 + f2)I JΓ, !f1+f2AK

JΓ K⊗Df1I JΓ K⊗ (Df1I ⊗Df2I) JΓ K⊗ (J!f1AK⊗ J!f2AK)

JΓ, !f1AK JΓ, !f1AK⊗Df2I JΓ, !f1A, !f2AK JBK

mf1

mf1+f2

cf1+f2

D(f1+f2)JØ`AK

cf1+f2

mf2

Df1JØ`AK

(Df1⊗Df2)JØ`AK

Df1JØ`AK o
mf2 Df2JØ`AK JΓ,!f1A,!f2A`BK

⊗
iJ!βi•fBiK

(⊗
iJ!βi•fBiK

)
⊗D(g • f)I

(⊗
iJ!βi•fBiK

)
⊗ J!g•fAK

⊗
iDfJ!βiBiK

(⊗
iDfJ!βiBiK

)
⊗DfDgI

(⊗
iDfJ!βiBiK

)
⊗DfDgA

Df
(⊗

iJ!βiBiK
)

Df
(⊗

iJ!βiBiK⊗DgI
)

Df
(⊗

iJ!βiBiK⊗ J!gAK
)

J!fBK

⊗
i δgi,f

mg•f

(
⊗
i δβi,f)⊗δg,f

D(g•f)JØ`AK

(
⊗
i δβi,f)⊗δg,f

Dfmg◦mf DfDgJØ`AK

Dfmg DfDgJØ`AK

DfJ··· ,!β`B`,!gA`BK

Fig. 2. Commutativity for cases of cut reduction

	web-title
	Generalized Bounded Linear Logic and its Categorical Semantics
	Generalized Bounded Linear Logic and its Categorical Semantics

