
GENERALIZED BRANCHING PROCESSES I1: ASYMPTOTIC
THEORY

BY. E.N

1. Introduction

This pper continues the study of the process X(t) total energy at t,
defined in [9], the latter paper to be referred to from now on as I. All the
notations and definitions of I carry over here. In addition some strong
regularity conditions will be imposed on the underlying distributions G,, q}. These will be essentially (a) a homogeneity restriction on .;
(b) the requirement that 1 G and be sufficiently small, respectively, for
large and small values of their arguments; (c) the existence of certain moments.

After some preliminaries in Section 2, it will be shown in Section 3 that
the moments of the process satisfy renewal equations, and thence their asymp-
totic behavior is given. In Section 4 the convergence, to a random variable,
of the energy X(t) divided by its mean is studied. Some regularity properties
of the limit random variable are given in Section 5. Section 6 deals briefly
with the total energy of all particles which have existed up to time t.

Since paper I will be frequently referred to, specific expressions or theorems
from that paper will be identified by preceding them by a I, e.g., expression
(I.2.1) or Theorem 1.3.
The results and techniques of the present paper follow closely the develop-

ment of Bellman and Harris [1] for the standard age-dependent process, and
the purpose of the present paper is to extend the results of [1] to the generalized
process. In certain instances it has been possible to reduce problems in this
paper to ones which have already been dealt with in [1]. To save space and
avoid repetitious analysis, this device has been adopted wherever practicable.

2. Preliminaries and assumptions
It will be assumed throughout that for any integer j and any constant c

(h.1) ((cx cx cxo) @(x x xo).

If @()(XlXo) is defined as in (I.3.8.1), then (A.1) implies @(’)(cxlcxo)
X0).

(A.2)

also that

(A.3)

It will be further assumed that

exists;

q0 - q < 1;
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and

(A.) Jo triP-(t)< .
In Sections 3 and 4 it is also assumed that G(t) is nonperiodic, i.e., not a step
function with all its jumps at integral multiples of some constant.
The homogeneity condition (A.1) is essential in the subsequent analysis.

The condition (A.2) will guarantee the existence of the required moments of
the process. Note that by Lemma 1.3, (A.2) is somewhat stronger than re-
quiring the existence of the second moment of the total energy of the first
generation offspring of a parent particle of unit energy. It also implies that, n2qn < (see 1.3.8.1). The purpose of (A.3) is to avoid certain un-
interesting degeneracies.
By Theorem 1.1, (A.2) is thus sufficient to guarantee that (I.2.1) has a

unique, bounded solution P(x, lxo), which is adistribution function. By
replacing x by cx, and xi, i 0, 1, j, by cx in (I.2.1), and using the
homogeneity property (A.1), one can show that P(cx, CXo) is also a solution
of (I.2.1). Hence by the uniqueness of the solution, it follows that

(2.1)

for any constant c.

exists, then

P(cx, CXo) P(x, Xo)

From (2.1) it follows at once that if

u(")(tlx) Jo’" xnp(dx, Xo)

n) cnlA( n)(2.2) u cxo) (tlx0).

Now write P(x, 1) P(x, t),j(xl, xj] 1) --- .(xl, xj), and
let P(s, t) be the characteristic function of P(x, t). Then (I.2.1) and (I.2.2)
become

(2.3)

and
P(s, t) [1 G(t)]e --qoG(t)

+

_
q dG(y) j(dx, ..., dx) H P(xs, y).

By Theorem 1.1, (2.3) and (2.4) have unique bounded solutions; P(x, t) is a
distribution function, and/5(s, t) is its characteristic function. Furthermore,
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writing t(n) (t 1) (n) (t), the moment equation (I.3.9) becomes

(2.5)

where

I(n)(t) [1 G(t)] -- c(nl, n) fo dG(y)
4=1

t(n)(t y),

c(nl, n.) (nl,...,n

and the summation in (2.5) is overj 1, 2, andall n, n suchthat
nl + -F n. n, ni => 0, for all i.
The existence and uniqueness properties of u(n) (t) can be established directly

from Theorem 1.2.

THEOREM 1. If f xn(n) (dx) exists for n 1, r, then

u,(t) fo x"P(dx, t), n 1,

exist, are of exponential order, satisfy (2.5), and are the unique simultaneous
solutions (for n 1, r) of (2.5) among the class of solutions of exponential
order.

Proof. LetN(n) (Xo) be the function defined in (I.3.7) and (I.3.8). Then

k (Xo) XO xn(n) (dx)

Hence vk+l’()(x0)/N()(x0) xnp(n)(dx), and the theorem then follows by
hypothesis and Theorem 1.2.

Let

(2.6) c, q (dx, dx)(x + + x)- x(dx),

where (I)(x) (x 1 ), and (x x0) is defined in (I.3.3).
equation

e-St(2.7) c dG(t) 1

If cl _-> 1, then the

will have a nonnegative root s . If c < 1, then (2.7) may not have a
root. In what follows, it will be seen that the asymptotic behavior of the
moments u,(t) will depend on the constants c,, and several cases will have to
be considered, depending on the values of the constants. In order to simplify
the enumeration of hypotheses for these cases, it will be assumed, once and
for all, that"

(A.5) If cl < 1, then G is such that f e-st dG(t) converges in a negative
s-interval containing a root a of (2.7). Furthermore 1 G(t)
O(J’).

As a final preliminary, some well known results in renewal theory which
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will be extensively used in the next section will be summarized in two lemmas.
The results contained in these lemmas can be extracted from Feller [3], and
from similar summary lemmas in Bellman and Harris [1]. Further references
are given in the latter paper.

LEMMA 1. If U( t) satisfies the equation

(2.8) U(t) bK(t) -- a Jo U(t y) dH(y),

where K( t) is bounded, K( t) -- 1 as -- and H is a distribution function,
then

(i) if a > 1 and K is a distribution function, then

e-t dK (t) te-t dH (t)U(t)
az

where is the positive root of
(2.9) a .f. e-t dH(t) 1;

(ii) ira- 1, then

U(t) bt dH(t)

(iii) if a < 1, then U(t) b/(1 a).

:LEMMA 2. If u( t) satisfies the equation

(2.10) u(t) bl(t) -- a Jo u(t y) dH(y),

where t is a density function and H is a nonperiodic distribution function, then
if a > 1, then

(2.11) u(t) e-*tk(t) dt te-t dH(t)

(ii) ira 1, then

u( t) -- b dIt t)

(iii) if a < 1 and if f e-St dH(t) converges in a negative s-interval con-
taining a root (r of (2.9), and if f e-tlc(t) dt converges, then (2.11) holds.

3. Asymptotic behavior of moments

THEOREM 2. Let cl be defined as in (2.6), as defined in (2.7).
(t) (t).)

(i) If cl 1, then

(3.1) t(t) e(c 1)c-*- te-t dG(t)

(ii) If c 1, then --, 1.

(Write
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Proof. (A.1), (A.2), and Theorem 1 imply the existence of t(t), which
by (2.5) therefore satisfies the equation

(3.2) t(t) [1 G(t)] + cl fo (t y) dG(y).

Application of Lemma 2, and integration by parts of f e-t[1 G(t)] dr,
yields the theorem.

Let

(3.3) C11 2q’jo" fo j(dxl, ***,dxj) XiXk,

If c2 f7 e-: dG(t) > 1, then denote by a the positive root of the equation

(3.4) e--(s/2a)c dG( t) 1.

THEOREM 3.
()

(3.5)

where

(3.6)

(3.7)

where

Let cl c c11, (, 2 be as defined in (2.6), (3.3), (2.7), (3.4).
If c. f e-t dG(t) > 1, then

t(t)e-(2+) ---> c-1 B(y) dy ye-(2+)y dG(y)

B(t) e-(*) 1 G(t) + cll (t y) dG(y)

If c f7 e-2t dG(t) 1, then

]_1--1 f e-2y(t)t-e- cc d dG(y) ye dG(y)o

(3.8) d (cl 1) c:a-1 te- dG(t) if cl 1,

=1 if c1=1.

(iii) If c e- dG(t) < 1, then

(3.9) E e-2a(t) e- --. c1 d e- dG(y) 1 c2 dG (t)

Remark 1. The integrals on the right sides of (3.7) and (3.9) are explicitly
computable, and hence the limits in these expressions can be evaluated. This
is however not the case for (3.5), since B(t) is not explicitly known. Thus
f B (t) dt is to be regarded as a finite but unknown constant.

Remark 2. as + 2 > =, <) O when c > =, <) 1.

Proof of Theorem 3. (A.1), (A.2), and Theorem 1 imply the existence of
t(t), which by (2.5) therefore stisfies the equation
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(3.10) 2(t) 1 G(t) -{- Cll (t y) dG(y) -4- c2 t2(t y) dG(y).

(i) If c f e- dG(t) > 1, then

(3.11) t.(t)e-(2+:)t B(t) + c [(t- y)e-(+:)(t-)]e-(+) dG(y).

Theorem 2 and (A.5) imply that f B(y)dy < , and hence the result
follows from Lemma 2(ii) and (3.11).

(ii) If c f e-t dG(t) 1, write

(t)e-:t [1 G(t)]e-:t + c [ [(t y)e-(t-)]e- dG(y)
(3.12)

+ c [(t y) e-(t-)]e-: dG (y).

By (A.5), [1 G(t)]e-t O. Using Theorem 2 one can see that as

d e- dG(y)(3.13) cn [(t y)e-(t-)]e- dG(y) Cll

and hence Lemma 1 (ii) and (3.12) imply (3.7).
(iii) Ifc f:e-2tdG(t) < 1, then again [1 -G(t)]e-2t--O. ByTheorem

2(i), (3.13), and Lemma 1 (iii), one obtains (3.9).
Example. In the case of the binary age-dependent process treated in [1],

cl=c c1 2. Hencez>0, andl 2f’e-tdG(t) >2fe-2tdG(t).
Thus Theorem 3 is always in case (iii), which with c c2 2 is Lemma 7
of [1]. Similarly in the genera] age-dependent process c c, and hence
1 d (t) > e

4. Convergence of X(t)/t(t)
In this section we will study the mean square convergence of X(t)/(t)

w(t) to a random variable. In the case of the binary branching process,
where X(t) is the number of particles at t, such convergence was proved by
Bellman and Harris [1]. Convergence in probability was proved by Levinson
[7] for the general age-dependent process, without requiring nqn < oo

but subject to rather strong regularity conditions on G. He also assumed_, nqn , > 1. (Recall that for this process cl .) Since

t(t)--(,0,1) if u(>, <, =) 1,

one would expect limit theorems for X(t) to show different character for these
cases. Most work for age-dependent branching processes has been for > 1
(see [5], [7]).

It will be seen below that the mean square convergence of w(t) does not,
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in fact, depend on > 1, but rather on c2 f e-2at dG(t) < 1. In Theorem 4
it will be shown that this inequality (together with some regularity conditions)
is sufficient for mean square convergence. Conversely, if the inequality is
violated, then it is clear from Theorems 2 and 3 that EwS(t) diverges as- , and hence in this situation (t) is not the correct normalizing factor
for X(t).

If cl c2, as is the case in the age-dependent branching process, then
the condition < 1 implies c f e-2t dG(t) > 1, as is indicated in the example
at the end of Section 3. In the present process, however, one can easily
construct examples for which cl < 1 and c f e-t dG(t) < 1. Such an
example will be given after Theorem 4.

It will be necessary to consider the joint distribution of X(tl) and X(t)
given an initial particle of unit energy at time zero. Denote this distribution
by P(Xl, x, tl, t). The law of total probability suggests that it satisfies
the equation

Ps(xl x2, tl t) [1 G(t)]Z(xl 1)Z(x. 1) -t- qoG(tl)Z(xl)Z(x.)

+ qo[G(t) G(t)]Z(x 1)Z(x)

if+ Z(xl 1) q dG(y) (dul, ...,du)

(4.1) .p (X,t2 y) . . p (X., t2 y)
ff-t- _, q dG(y) (dul ,... du)

) )--,tl-- y,t-- y ....P Xl x tl- y,t- y
U.

An argument analogous to that of Theorem 1.1 shows that if < , then
(4.1) has a unique bounded solution, that this solution is a distribution func-
tion, and that the bivariate characteristic function P of P. is the unique
bounded solution of the equation

P2(81, 82, tl, t2) [1 G(t2)]e+ + qoG(tl) + qo[G(t2) G(t)]e

(.) + e _, q d(u)
j-.-I

f f+ -’q fo da()

(dul ,"’, du) II P(us, t2 y)
i=l

i(dul dtl) HP(us,us.,t y,t. y).
i.--1

By the methods of Theorem 1.2, and using (4.2), one can then show that
(A.2) implies that re(t1, t) f f x x. P(dx dx tl t:) exists, and is the
unique exponential order solution of
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(4.3)

THEOREM 4. If C2 f e-t dG(t) < 1, then w(t) converges in mean square to
a random variable w.

Proof. As in [1], se t t, t -- h for any t, h > O, and let
m(t, -F h)e-(h+:t) u(t, h). Then by (4.3)

u(t, h) e-(h+2t)[1 -F G(t -t- h) + ce-(‘+2t)
,t

(4.4) + cn f0
tt(t- h y) dG(y)

[t(t y)e-(t-Y)][t(t -[- h y)e-(t+-Y)]e-2 dG(y)

.t

-t- c Jo u(t y, h)e- dG(y).

By (A.5), e-(+t)[1 G(t 27 h)] --+ 0 as -- . Also

cle,-a(h+2t) ft
t+h

(t z7 h y) dG(y) <- constart .e-’t[G(t -F h) G(t)]- 0

Define d as in (3.8).aS -----> 0.

side of (4.4) converges to cn d f e- dG(y).
Lemma 1 (iii)

By Theorem 2 the third term on the right
Hence by hypothesis and

E e-2Y(4.5) u(t, h) --> cn d e- dG(y) 1 c dG(y)

as -- oo. But by Theorem 3(iii), --2o’t
t2)e converges to u. Hence

E[e-tx(t) e-(t+h)X(t + h)] t2(t)e-2t -t- t2(t -t- h)e-2(t+a)

--U

2u(t, h)

"-->0 aS t’-

and E[w(t) w(t -t- h)]-- 0.

Example. To show that the remarks preceding the above theorem are not
void, we give a simple example satisfying (A.1)-(A.5) and

e-t (t)(i) c < 1; (ii) c dG 1 iii e-t dG(t) < 1C2

Takeq =q,= 1/2;G(t) =Oift< 1,= lift->_ 1;(x) 0ifx < 1/2, 1
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ifx 1/2;2(Xl,X2) 1if X1--> 1/2andx-> 1/2, 0otherwise. ThenCl= ,
c -; (ii)becomes e-= 1, and hence e- < -e-= 1.
The special case when G is aa exponential’ distribution has received much

attention in the literature on cascades, and deserves special comment in the
present process. The following property was pointed out to the author by
T. E. Harris.

THEOREM 5. If G( t) is exponential, then w( t) is a martingale.

Proof. From (2.2) it follows that (tlx is a linear function of x. This
implies that the mean total energy at due to any number of independent
particles with total energy x0 at time zero, is simply t(t x0).

Define the random vector V(t) (N(t), X(t), XN(t)(t) ), where N(t)
is the number of particles at t, and Xi(t), i 1, N(t), is the energy of the
ith particle. If G(. is exponential, then the process defined by V(t) is a
time-homogeneous Markov process. For a further discussion of such proc-
esses, see MoyM [8]. Let P,(t)(" denote the distribution function of V(t).
For a formal definition of P(t(’) see [8]. Choose tl -<- -<_ t -<_ t+.
Then using the linearity of t(t and the Markovian property of V,

E[Z(tn+l) X(tl) xl ,..., X(tn) Xn]

f E[X(t +l)

f E[X(tn+l)

x,...,X(t) x,V(t)

=x, V(t)

J (t+- tn xn)Py(t,)(dv) tZ(tn+- tn

x(t+ t).

w( tl wl W( tn Wn]

[#(tn+l)]-E[X(t,+l) IX(t1) w #(t),

Wn l.t tn tt tn+ tn "tOn,--[#(tn+l) -1

since t(t) is an exponential function in the present case.

Hence

X(t) Wn

COnOLAIY. If G( t) is exponential, then w( t) converges with probability one
to a random variable.

Proof. The corollary is a direct consequence of Theorem 5, the martingale
convergence theorem (see Doob [2, p. 319]), and the fact that Ew(t) 1.

In the next section some properties of the limit random variable will be
studied.
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5. The limit random variable

THEOREM 6. If w( t) converges in probability to a random variable w, then the
characteristic fnction of w, say f, satisfies the equation

(Note that the hypothesis of Theorem 4 or 5 implies that of Theorem 6.)
Proof. Let f(s, t) denote the characteristic function of w(t). Then

f(s, t) E exp {isX(t)/(t)} P(s/t(t), t). Also

( )((t-y) )s (t-- y)
t- y =f xi s,t-yP xi (t y) #(t) (t)

Hence, substituting s/t(t) for s in (2.4) yields

f(s, t) [1 G(t)]e8/E(t) + qoG(t)

+q G() (,...

Clearly by hypothesis, f(s, t) -- f(s) as -- .Turning to the right side of (5.2), and given any e > 0, we may choose
T1 and a K1 such that

(5.3)

and

(5.4)

where R (xl,
complementation.

1 G(T) < el8

q J J ,j(dx,... dxj) < /8,

x.) x <= K, i 1, ,j}, and the prime denotes
This is clearly possible since Ill =< 1 and. and G are dis-

tributions. By Theorem 2, (t y)/u(t) ---* ey uniformly in every bounded
y-interval, and hence there is a Ts < and a Ks such that for all > Ts,
y < T1, one has (t y)/(t) < K2. But f(u, t) ---f(t) uniformly in any
bounded u-interval, in particular for u -<- K1 Ks s (see e.g. Doob [2, p. 39]);
and hence there is a T’ such that if > T and lull _-< K Ks s, i 1, j,
then II=if(u, t) 1-I=f(u)l < e/4. Choose T > T + T’.
Finally, since f(u) is uniformly continuous in any closed interval, one may
choose a such that if u us[ < ti for i 1, j, then

and since t(t y)/t(t) --+ e-u uniformly on 0 <- y <-_ T one may choose
T so that for y _-< TI, and => T one has [t(t y)/u(t) e-u < 6/sK.
Now takeT => max(T2,T, T4). Then fort > T
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I (t(t-y)dx) f x= ta(t)

dx) IIf(xie-s)
i=1

f(xie-Us)

The sum of the first four terms on the right side of (5.5) is -< e/2. To

the lst term dd nd substrct f x s under the bsolute vlue
=, (t)

sign. Then (5.5) =<
T K1

+

:
(dXl dx)

t(t--y) ) I (t(t) s,t y 4=1f x

dG(y) jo" fo ((dxl dx)

I ((t-y)s)f x II f (xi e-yS)
= #(t) =

But now for all > T and for y < T, x =< K, one has

xt(t y) Y
t(t)

s <= KIK2s aad x t(t
t(t)

s x e-s < .
Alsoy < Tlandt > Timplyt- y > T- T > T. Thus for allt > T,
y < T,onehas
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f x s,t--y f X S

f x s -IIf(x e-,s) <-
i=1 [(t) i=1 4"

Hence (5.5) -< /2 A- /4 -t- /4 for all > T, which proves the theorem.
The next result is the generalization of Theore 5 and 6 of [1]. It will be

shown that f(t) is of exponential order as , and thence that the dis-
tribution function of w is absolutely continuous. To state the conditions of
the theorem we will first have to introduce some more notation. Let

A(j, ) {(y, x, ..., x) xe- 1 for at least subscripts i},

B(j,) {(y,x,... ,x) "xe- 1 for at least k subscripts i}

u(j, f f dG(y)O (dx 

(i,)

.., dx),

,dxj).

aj the conditional expected total energy of the offspring of a particle
of unit energy, given that there are j offspring

The sgagement and proof of the theorem will be substantially simplified
if we assume ghat 0 0, and we will hence do so. In some remarks following
he proof of ghe theorem we shall indicate what modifications musg be made
to treat q0 0.

THEOREM 7. Assume that
(i) there is a A > 0 such that for all j 1,2,...,we have

q?(xl xj) O if xi < A for any i 1, ,j;
(ii) ql al/c < x
(iii) there is a sequence of integers {k}, j 1, 2, such that 0 < k -< j

and max [kqju(j, k), jkqv(j, k.)] > 1;
(iv) 1 G(t) is of exponential order;
(v) q0 0.

Then either w has an absolutely continuous distribution, or is identically equal to
a constant with probability one.

Remarks. Since some of the conditions of the theorem may at first sight
appear artificial, the following remarks might be in order.

Condition (i) is far from necessary, and is made because it greatly simplifies
the analysis. A close inspection of the following proof will show that the
difficulties created by the (I).-distributions near zero are very similar to those



344 P.E. NEY

of the G-distribution for large values of the argument. (The proof would be
further simplified if we assumed G(t) - 1 for sufficiently large t.) In the
present case 1 G(t) has been assumed of exponential order as - , and
it seems fairly clear that if the kind of treatment of G carried out in [1, Lemma
2, p. 290], and below, were mirrored for. near zero, then condition (ii) could
be replaced by the weaker one that be of exponential order near zero.
Next note that if we had q 1, i.e., that all offspring were "only" children,

then the theorem would be false. (Take for (x) a step function with unit
mean.) What is in fact required is that not too large a proportion of the
energy of a parent should be transmitted through aa "only child". The
precise formulation of this idea is condition (ii), namely that the conditional
expected energy of the offspring given that there is exactly one of these, times
the probability that there is one, divided by the unconditional mean energy
transmitted by the parent, should be less than

Condition (iii) is a technical one needed in the proof which will be satis-
fied in a great variety of circumstances. In the case of the age-dependent
branching process it is equivalent to jq > 1, and in more general circum-
stances it will always be satisfied if the q’} distribution is large enough in its
upper tail. It thus re-enforces the kind of property already required in (ii).

Together, (ii) and (iii) assure us that a sufficiently large part of the trans-
mitted energy is spread among a sufficiently large number of offspring
particles.
Assumption (iv) has already been made throughout the paper for the case

c < 1, and is now needed for all c.
Note also that (by (5.1)) it would be easy to guarantee that w not be

identically equal to a positive constant by such conditions as that G not be
a step function of one step, or q. 1 for any j, or. not be a step function
of one step, etc.

Proof. The main outline of the proof is as in [1], and certain steps will be
treated by reducing them to situations in [1]. We shall show that

(5.6) f(s)O as s+/-;

thence that

(5.7) f(s) o([ s -) as

for some > 0; and finally that (5.7) implies

(5.8) f’ (it)

where f’ is the derivative of f.
The conclusion of the theorem follows by an argument similar to that given

in Theorem 4.1 of [4], and given in detail in [10].
It will first be shown that there exist an s’ and a such that

(5.9) If(s) < 1 ti for all s > s’.
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As in [1], suppose the contrary, and write

(5.10) f(s) 1 + isEw (s2/2)Ew + o(s2).
Either w a constant with probability one, or Ew > (Ew)2. In the latter
case (5.10) implies that there is a pair (a, s,) such that

f s < 1 a when s
(5.11)

< 1 when 0 < s < s,.

Let So and s00 be the first points to the left and right respectively of s,, such
that

(5.12) If(so)] f(soo) 1 o.

The former exists since f(s) is a continuous function of s with If(0) 1 and
f(s,,)l < 1 a. The latter exists by assumption of the nonexistence of

(s’, ) satisfying (5.9).
Suppose now that there is a sequence {/c} as hypothesized in (iii) such that
kqju(j, k.) > 1. Let T1 (1/a)log (Soo/So) if a > 0, T1 o if a -< 0.

Let bl (So/Soo), and C. {(y, xl, ,x) xi ->_ b,i 1, ,j; y -< T}.
Then by (5.1) (and the assumption that q0 0)

f ff()l q
j----1 C i[’la(j,ki)

Setting s s00 in (5.1) yields

dG(y)qP(dx, ..., dxj) II f(x e-s)
i=l

+ q[1 P[Cj n A (j, k.) }].

(1 a) <-= qP{CnA(j,k])}(1 a) += q[1-P{.CjnA(j,k])}],

or

(5.13) 1 -> ’.qP{CnA(j,l)}[(1- (1- a))/a].
If a --. 0, then So -- 0 (continuity of the characteristic function at zero), and
since s00 will not decrease, b -- 0, and thus T -- (if it does not already
equal ). Therefore P{CnA(j, k.)} -- u(j, k.), andtheright sideof (5.13)
converges to qju(j, )t, which is > 1 by hypothesis. Thus (5.13) is
contradicted.
Suppose on the other hand that

q u(j, /c.) -< 1 but k q v(j, k) > 1.

In this case let T2 (l/a) log(s0/s00) ira < 0, T2 ifz >- 0;andlet
b2 (So#So). Then setting s So in (5.1) and arguing as above but with
A(j, tc) replaced by B(j, tc) and u(j, k) by v(j, ), we are again led to a
contradiction like (5.13). Hence the pair (s’, )) in. (5.9) exists.
We shall now prove (5.6) for the case a _>_ 0. Take nl, t so large that for

a given e > 0 we have 1 G(tl) < e, Ej=nl qj < . Take s so large that
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se-tlA >-- s’. Then

f(s) < (1 a)q G(t) + 3
+ (1 o) qj dG(y) j(dx,,..., dx) l If(xi e-s) I.

il

Let M(s) sup{f(t) "t s}. Then

(5.14) M(s) < (1 )q G(t) + 3 + (1 a)(1 q)G(t)M(Ae-ts).
Let a max [A-[, 2]. Then (5.14) implies

(1 )q + 3e
(5.15) i(a s) < 1 (1 a)(1 q) + [(1 a)(1 q)]"M(s).

Since q/[1 (1 a)(1 q)] < 1, it is clear that one may choose e so that
[(1- a)q+ae]/[1- (1- a)(1- q)] < (1- a)b,whereb < 1. Then
it follows from (5.15) that there is an s-such that for all s s, M(s) <
(1 a)b, where b < 1. Repeating this argument with (1 a) replaced
by (1 a)b, then repeating it similarly n-fold, implies that there is an s.
such that M(s) < (1 a)b for all s s,. This proves (5.6)for a 0.
We shall next prove (5.7) for the case a 0. By (5.1) and hypothesis

(i) of the theorem we see that

f(s) 1- G(A

+ f e(,) jail... (dx, ..., dx) ]f(xe-Us)]
=1 J0 /=1

for shy A < . In psrticulr set A (1/2,) log (s/&), s > 1; nd let
b(s) 1 G(A). Then V 3 A implies e-* /&, and hence

M(s) 3 %zqM() +bs
(5.16)

3 qz M () + (1 qz) M () + b(s).

This expression is the same as that obtained by Bellman and Harris [1] for
the age-dependent branching process. The binary case is identical to the
right side of (5.16) with q, 0, and is expression (11), [1, p. 290]. The not
necessarily binary case is discussed in Section 9 of the same paper. The
conclusion is (5.7).
Turning to the case a 0 we shall prove (5.7) directly without going

through the intermediate step (5.6). By (5.1)

<= =t q fo dG(y)

<-_ Z qiM (A).

dxl) II M(x e-t)
i1

dx) IX M(x t)
i=l

But this is a stronger inequality than (5.16), and hence implies (5.7).
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Turning to the proof of (5.8) let Ml(t) sup f’(s) s >- t}, where
f’ is the derivative of f. Then

M(t) <= f e-v dG(y) (dx, ...,
j----1

Leg B(T) f’ MI() d, and seg- . Then
Te--

do

Suppose first that > O. Then
T

B(T) Z qa f e dG(v) f M(Au)M-(Au) du

T
__

iA=- qa e-* dG(y) M(u)M-i(u) du,

and hence, if we recall that f e- dG(y) 1/c

1 B(T) q dG(y) M,(u)M(u) du.

By (5.7) and hypothesis (ii) of the theorem it follows that there is a constant
K < m such that

M(u) du
(5.19) B(T) K

(1 + u)"

This is of exactly the same form as (31), [1, p. 292], and the ensuing argument
of the latter paper implies our result.
Now suppose that 0. Then by (5.17)

M(t) f e- da(y) (dx, ..., dx)

Defining B(T) as before, we geg

B(T) N e-I qii Mi-()M(t) d,

and ghis again implies (g.19), proving he heorem.
Remr. Ig remains go consider he ease when q0 > 0. Define he fune-

ion (as suggested in [1])

1-
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where Q is the unique nonnegative root, less than one, of s =0 q s.
Then

(5.20) f(s) Q q-- (1 Q)f*
1 Q

and substituting this into (5.1) yields

dxl, ..., dxj)

If the product on the right side of (5.21) is multiplied out, then it is seen
that it yields a term .=1 q Q’, which when added to q0, cancels the Q on
the left side of (5.21). We are thus left with an equation similar in form to
(5.1) with q0 0, but with the products II=f(xie-ys) of (5.1) replaced
by linear combinations of the form _,= at I-IIKI f (xi e-Ys), where the co-
efficients at are functions of Q, and the sets {K} over which the products are
taken are appropriate subsets of the integers {1,..., j}. The argument
of Theorem 7 can now be pushed through as before, provided that hypotheses
(ii) and (iii) are suitably modified to correspond to the more complicated
version of (5.1).
The conclusion will then be that f*(s) is the characteristic function of a

random variable which either equals a constant with probability one, or has
an absolutely continuous distribution. In the latter case it follows from
(5.20) that w itself has a distribution which is absolutely continuous except
for a jump Q at zero. Thus P{w 0} Q, as was the case in the regular
age-dependent branching process (see [1]).

Note that if q0 0, then Q 0.

6. The total energy of the process
In I we introduced the random variable Y(t), namely the total energy of

all particles which have existed up to time t. It is possible to carry out a
development for Y(t) analogous to that of this paper for X(t). Letting
R(y, x0) denote the distribution of Y(t) with an initial particle of energy
x0, and using Theorem 1.4 and assumptions (A.1) and (A.2), we can show
that R(cy, t]cxo) R(y, t[ Xo). Hence the characteristic function of R, say
/, satisfies [(s, t] CXo) [(cs, t] Xo), and hence writing/(s, t[ 1) /(s, t),
(I.5.2) becomes

/(s, t) [1 (1 --qo)G(t)]e
(6.1) fot f fq- e q dG(y) ,(dx, ..., dx) II (xs, y).

j=l
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From (6.1) one may obtain equations for the moments of Y(t). These
are again renewal equations, and hence their asymptotic behavior may be
determined. The convergence of a suitably normalized version of Y(t) to a
random variable, the derivation of an equation satisfied by the characteristic
function of this random variable, and regularity properties of the distribution
of the limit random variable, may all be developed as for X(t).
We will not go through this repetitious procedure, and will content our-

1 0 / (0, t), and point-selves with looking at the results for the mean n(t) --ing out their similarity to known results for discrete branching processes.
From (6.1) it follows that

(6.2) (t) 1 + cl fo (t-- y) dg(y).

Then by Lemma 1, there follows at once from (6.2)

THEOREM 8. (i) If cl > 1, then

(ii)

(iii)

,(t)
Cl o"

If cl 1, then

(t) t[f
If cl < 1, then 7(t) ---+ (1 cl)-1

te-t dG 1-1.
tdG(t)J-1.

In the discrete branching process, with _, nq, let N be the mean total
number of particles that ever exist in the course of the process until extinction
(see Kemeny and Snell [6, p. 83]; Harris [4]). Then N is finitive if and only
if c 1. In the latter case N (1 )-1. This is obviously a special
and less precise form of Theorem 8, with c and G(t) Z(t 1). In
the continuous-parameter age-dependent process, which also leads to a spe-
cialization of Theorem 8, such questions have been studied only for binary
processes, in which the case cl _-< 1 does not arise. Hence the result
(t) -- (1 )-1 has not been explicitly stated before.
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