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Polarization is one of the key properties defining the state of light. It was discovered in the early 19" century by
Brewster, among others, while studying light reflected from materials at different angles. These studies led to the
first polarizers, based on Brewster’s effect. One of the most active trends in photonics now is devoted to the study
of miniaturized, sub-wavelength devices exhibiting similar, or even improved, functionalities compared to those
achieved with bulk optical elements. In the present work, it is theoretically predicted that a properly designed all-
dielectric metasurface exhibits a generalized Brewster’s effect potentially for any angle, wavelength and
polarization of choice. The effect is experimentally demonstrated for an array of silicon nanodisks at visible
wavelengths. The underlying physics of this effect can be understood in terms of the suppressed scattering at
certain angles that results from the interference between the electric and magnetic dipole resonances excited in the
nanoparticles, predicted by Kerker in early 80s. This reveals deep connection of Kerker’s and Brewster’s legacies
and opens doors for Brewster phenomenon to new applications in photonics, which are not bonded to a specific
polarization or angle of incidence.

The oldest, and probably simplest, way to obtain
linearly polarized light starting from unpolarized one is
impinging it on a dielectric interface at the so called
Brewster’s angle. In this way, the reflected light will only
have electric field component parallel to the interface.
Well understood since the 1820’s after the pioneering
work of Fresnel, and experimentally known since the
early 1810’s from works of Malus and Brewster' (see also
Ref. 2 for a succinct historical perspective), the
Brewster’s angle for homogeneous isotropic non-
magnetic media can be defined as the angle for which
Fresnel’s reflection coefficient for p-polarized light (i.e.,
with the electric field parallel to the plane of incidence)
vanishes, R, = 0. An alternative definition states that
Brewster’s angle is the one at which the reflected and
refracted waves are orthogonal, thus fulfilling the

condition 6; + 0, =m/2, where 0; is the angle of
incidence and 8, is the angle of refraction/transmission.
The common microscopic interpretation of this effect is
illustrated in Fig.la. The induced electric dipoles,
generated inside the medium in response to the driving
electromagnetic wave, oscillate along the direction of the
electric field perpendicular to the propagation direction.
As the far field power radiated by a dipole vanishes along
its oscillation axis, whenever the dipole and reflection
direction are parallel, no radiation is emitted into that
direction and reflection is inhibited. In all other directions
apart from that of refraction, radiation is compensated by
the rest of the dipoles within the medium. If polarization
is switched, as shown in Fig.1b, due to the non-zero
radiation in the plane perpendicular to the dipole, it is
clear that such effect cannot be achieved.



The situation becomes more interesting when one
considers a material which has both electric and magnetic
dipoles excited in response to the electric and magnetic
components of the incident wave. Such materials should
have both electric permittivity and magnetic permeability
different from unity (e # 1, u # 1). In this case, the
radiation pattern is no longer zero in the direction of
oscillation of any of the orthogonal electric or magnetic
dipoles (due to the non-zero contribution of the
orthogonal dipole) and thus the classical Brewster effect
can no longer be observed. Instead, there can be other
particular directions at which the collective radiation of
both dipoles vanishes due to their destructive interference,
as predicted by Kerker and co-authors in early 80s’. These
directions are determined by the relative amplitudes and
phases of the dipoles. In the macroscopic picture, this
interference may lead to the appearance of an analogue to
Brewster’s angle defined by both electric and magnetic
properties of the material, as depicted in Fig.1c. This is,
the ratio £/u determines the angle at which the condition
Rsp =0 is satisfied". More importantly, inhibition of
radiation from a pair of dipoles can happen at any angle
and in any of the two oscillation planes depending on their
relative amplitudes and phases. Thus, for such a material
Brewster’s angle may exist, potentially, for any of the two
polarizations and at any angle of incidence (even below
45 degrees without leading to total internal reflection at
some higher angles). Both polarizations cannot, however,
simultaneously have zero reflection for a given angle,
except for the very particular case of € = u (impedance
matched) at normal incidence’. In this case, each
polarizable portion of matter will have induced electric
and magnetic dipoles having the same amplitude and
phase leading to inhibition of backscattered radiation, i.e.,
fulfilling the so called first Kerker’s condition, originally
derived for small magnetic particles’. In case of purely
magnetic media, ¢ # 1 and € = 1, one can find a situation
when the analogue to Brewster’s angle appears for s-
polarized light, having the magnetic field vector parallel
to the plane of incidence, which is orthogonal to the
conventional Brewster effect in dielectric media. Some of
the important phenomenology associated to the
generalized Brewster effect can be found in the
Supplementary Information, Section 1.

All this findings remained a mere theoretical curiosity
for almost 20 years, since for natural materials the
magnetic response is typically very weak at optical
frequencies (p = 1). Nevertheless, since the advent of
metamaterials new ways to produce optical magnetic
response have been explored®®. As a result some attempts
have been done towards finding Brewster’s angle in s-
polarization in bulk magnetic metamaterials, both in
microwaves’ in arrays of split ring resonators and at
optical frequencies in strongly anisotropic media'’.
Recently, polarization rotation in reflection from meta-
films of bi-anisotropic split rings has been theoretically

studied at microwave frequencies in connection to
Brewster effect''.
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Figure 1. Microscopic interpretation of Brewster effect
and proposed metasurface. a, p-polarized light
impinging on a dielectric medium, e # 1 and pu=1,
under usual Brewster’s condition. Red line shows 2D
emission diagram of electric dipoles excited inside the
material by the refracted wave. b, Same as in a but for s-
polarized incidence, for which no Brewster effect can be
observed. ¢, Generalized Brewster effect for a dielectric
medium with electric and magnetic response, € # 1 and
u#1. Blue line shows 2D emission diagram of
interfering electric and magnetic dipoles excited inside the
material by the refracted wave. d, Generalized Brewster-
Kerker effect in the proposed array of high refractive
index nanoparticles.

In this paper, it is demonstrated both theoretically and
experimentally that the generalized Brewster effect can be
observed, potentially, in any two-dimensional sub-
diffractive  arrangement of high-index dielectric
nanoparticles, or in any other system where strong electric
and magnetic resonances can be efficiently excited. It is
shown that this effect is a direct consequence of the angle-
suppressed radiation/scattering due to interference
between the electric and magnetic dipoles excited in the
particles within the array (see schematic in Fig.1d), thus
connecting two apparently unrelated phenomena such as
Brewster’s angle and Kerker’s conditions. We thus call it
Brewster-Kerker effect. Silicon (Si) nanoparticles are
specifically considered, for which such resonances have
been broadly studied both theoretically'*'* and
experimentally’>"’.  They have attracted particular
attention within the field of artificial magnetism at optical
frequencies'>!” due to their low intrinsic losses and
CMOS compatibility which holds promise for finding real



world applications. Their exciting properties regarding
magnetic near-field enhancement'®** and directional
scattering”*°, together with their low dissipation, makes
them ideal nanoantennas for visible and near-infrared
light””. The possibility to realize the first Kerker’s
condition™?* has also inspired studies on using them as
ideal Huygens’ sources in highly-efficient transmissive
metasurfaces™ . Also their strong interaction with light,
leading to high reflection and phase accumulation, makes
them ideal candidates to act as efficient reflectors or
phase-controlled mirrors'>*'**. The present study comes
to extend this already broad realm with new fascinating
properties. Moreover, novel generalized Brewster
phenomenon giving great degree of freedom in
polarization and incident angles may open doors to
multiple new applications in photonics, which could not
be achieved with standard Brewster effect in conventional
dielectric media.

1. Generalized Brewster-Kerker effect in two-
dimensional arrays of silicon spheres.

Let us start considering a single silicon nanosphere
under plane wave illumination (see Figs.2a and 2b), for
which the required electric and magnetic dipole modes
can be efficiently excited. The scattering cross section
(Csa) for a sphere with diameter D = 180 nm, as
computed analytically with Mie theory™, is depicted in
Fig.2c. Partial scattering cross-sections by the first excited
resonant modes, namely the electric (ED) and magnetic
(MD) dipoles and the electric (EQ) and magnetic (MQ)
quadrupoles are also shown. As can be seen, the usual
hierarchy of resonances in high-contrast dielectric
nanoparticles starts with the lowest-energy magnetic
dipole followed by the electric dipole mode'*'®. Thus,
whenever higher order modes are negligible each sphere
can be accurately described by a pair of these dipoles.

Kerker and co-workers® showed that, in such systems,
the scattered far-field can be completely polarized parallel
or perpendicular to the scattering plane in some particular
observation direction, and this direction depends on the
relative strength of the induced electric (p) and magnetic
(m) dipoles. Originally derived for magnetic spheres, this
result relates to interference in the electric far-field
radiated by a pair of such dipoles, which reads:
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with k, = 2m/A the wavenumber and €, and ¢ the
permittivity and speed of light in vacuum, respectively,
and 71 the unit vector in the observation direction.

Consider now the particular situations depicted in
Figs.2a and b. It also follows from (1), see section 2 in
Supplementary Information, that in the plane containing
the incident wave-vector and the induced electric dipole

(highlighted in Fig.2a), the radiated electric field vanishes
in the observation direction defined by the angle 8 if:

cos(f —6;,) =m/p ()

in which p and m are the complex amplitudes of
electric and magnetic dipoles. In the orthogonal plane,
which contains the incident wave-vector and the induced
magnetic dipole (case depicted in Fig.2b), the field
vanishes when:

cos(8 —6;) =p/m 3)

Note that the backscattering direction is defined by
6 = 0;. In this direction, the field vanishes whenp = m
(first Kerker’s condition’). Note also that equations (2)
and (3) are, in general, complex and become real only
when the dipoles are in phase or anti-phase. From these
equations, it can be seen that radiation can be totally
suppressed for angles in backward directions |6 — 0;| <
/2 exclusively if the dipoles are in phase (p and m
having the same sign) and in forward directions (|6 —
0;| = m/2) if they are in anti-phase (p and m having
opposite sign). The spectral regions in which the induced
dipoles are approximately in phase or anti-phase for the
silicon sphere are highlighted in Fig.2c by yellow and
green shading colours, respectively. They indicate the
spectral ranges for which scattering cancellation in
forward and backward directions may happen.

The partial scattering cross sections® associated with
the electric (CED ) and magnetic (CM2) dipoles are
proportional to the squared modulus of the dipole
moments (CE2 o« |p|? and CMP « |m|?), and this allows
to recast equations (2) and (3) as:

Cied /Cs2 = |cos(8 — 6))|? 4)
Coa/Caed = lcos(8 — ). 5)
It immediately follows from (4) that the electric dipole

scattering must dominate (CM2/CEP < 1) to achieve
cancellation in the plane containing the electric dipole.
Similarly, it follows from (5) that the magnetic dipole
scattering should be dominant (CEL /CMP < 1) to achieve
the scattering cancellation in the plane containing the
magnetic dipole. The regions of dominant electric and
magnetic dipoles are highlighted in Fig.2c by red and
purple shading colours, respectively.

In Fig.2d the 2D scattering pattern of the Si sphere
computed from Mie theory is plotted for two selected
wavelengths, 4; = 614 nm and A1, = 728 nm, in the
plane containing the incident wave-vector and the electric
or magnetic dipole, respectively. Vanishing scattering
intensity angles predicted by equations (4) and (5),
respectively, are also shown. At A; the ED dominates and
the dipoles are in anti-phase leading to scattering
cancellation at an angle |6 —0;| = /2 in the plane
containing the incident electric field.
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Figure 2. Optical properties of a silicon spheres with diameter D = 180 nm in air under plane wave illumination.
a-b. Schematic representation of the two situations studied. ¢, Total scattering cross section (black curve) and
contributions from the electric dipole (red curve), magnetic dipole (blue curve), electric quadrupole (magenta curve) and
magnetic quadrupole (green curve). The different shaded regions indicate those frequency windows for which the induced
electric and magnetic dipoles are approximately in phase (yellow) or in anti-phase (green), and those for which the electric
dipole (light red) or the magnetic dipole (light blue) dominate over the other. d, Far-field radiation patterns for two
wavelengths leading to inhibition of radiation at 60 degrees with respect to the forward- (1; = 614 nm, red solid circle)
and backward- (1, = 728 nm, blue hollow diamond) scattering directions. In the first case zero radiation is only possible
in the plane parallel to the electric field whereas in the second it is only possible in the perpendicular one.

At A, the MD contribution is dominant and dipoles are
in phase leading to scattering cancellation at an angle
[0 —6;] <m/2 in the plane containing the incident
magnetic field. Relative amplitudes and phases are such
that interference suppresses radiation at 60 degrees with
respect to the forward- and back-scattering directions,
respectively.

Let us now consider the case of similar spheres
arranged in an infinite two-dimensional sub-diffractive
array in the xy-plane (see Fig.3a) under plane wave
oblique incidence. It is clear that for p-polarized light the
plane of incidence coincides with the plane that contains
the incident electric field and the induced electric dipoles
(as in Fig.2a). Correspondingly, for s-polarization the
incidence plane contains the magnetic field and the
induced magnetic dipoles (as in Fig.2b). Although the
effective dipoles induced in the particles in the array are
different from the single particle case due to the lattice
interactions™, they still radiate according to equations (1)-
(3) in the plane of incidence. Note that interference from
different sites in the infinite array makes radiation of the
whole system allowed only as plane waves along the
diffraction directions. In the case of sub-diffractive arrays,
this implies radiation in the reflection and transmission
directions only. Therefore, if the induced dipoles do not
radiate along the direction of reflection, no reflection at all
will occur in the system, leading to the Brewster’s
condition (see Supplementary Section 3 for a
demonstration in the context of phased arrays). Following

the discussion above, in such systems this may happen for
both s- and p-polarized incident waves.

In the following, we consider an infinite square lattice
of silicon spheres with diameter D = 180 nm and period
P =300nm, as depicted in Fig.3a, and study its
reflection properties as a function of the wavelength and
angle of incidence. We start with p-polarized light.
Simulated results obtained by means of Finite Element
Method (see Methods section for details) are shown in
Fig.3b. At normal incidence, the electric and magnetic
resonances of the particles lead to the appearance of well-
known bands of high reflectivity'>*'2. However, oblique
incidence strongly changes this behaviour. At high angles
of incidence one can observe three regions of extremely
low reflection. The first one is a narrow region located at
the blue side of the resonances (~515 nm). It is present at
normal incidence and slightly redshifts for increasing
angles (from 0 up to ~40 degrees). The second one,
located in the red side of the resonances (~790 nm), is
also present at normal incidence and strongly redshifts
with increasing angles. Finally, a broad region, both in
bandwidth (~150 nm) and angles of incidence (from ~40
to ~80 degrees), appears at higher angles, spectrally
located between the positions of the electric and magnetic
dipole resonances observed at normal incidence.
Importantly, the angle of minimum reflection strongly
depends on the wavelength and varies in the wide range.
Figure 3¢ shows the angular dependence of reflection at
some selected wavelengths to better illustrate this effect.



¢ Reflection

14 —A~660nm d | h
g i = e 14 —
Yo 0.8 | Bt
. . I EeD
0.4 - \ / | i
| L -
Y 7] h=] |
L 0 o A ;
A ~620 nm L e
%7 8 0 =45
4 L%
S g 7 2 |
Pt . W oGl 0.4 - 5 ')
D=180nm Y | 5
1= T2 A j
b Reflection 08 .~ 580 nm N
— 2ok [}
T S
W =
g I 08 947 z
> 60 | 5
- g,
g 0 £
g 08 — .~ 540 nm s 1
< 40 ; z
o
= t04
“6 aemm T ,-"—
3 ’ o bty
D 20
< 0.2
0
p-pol '
0 o ——— A 0 40 400 600 800 1,000 Incidence
400 600 800 1,000 Angle (degrees) plane

Wavelength (nm)

Wavelength (nm)

Figure 3. Simulated optical response of a square lattice of silicon spheres under p-polarized oblique incidence. a,
Scheme of the simulated system. b, Numerically calculated reflection versus wavelength and angle of incidence for a
square array of silicon spheres with diameter D = 180 nm and pitch P = 300 nm. ¢, Reflection versus angle of incidence
for selected wavelengths showing the strong dependence of Brewster’s angle on wavelength as well as the possibility of
achieving values below 45 degrees. Solid lines correspond to p-polarization while dashed lines are the corresponding
curves for s-polarization. Grey shaded areas mark the spectral regions affected by diffraction. d-g, Reflection (black
curve), together with electric dipole (red curve and corresponding shaded area) and magnetic dipole (blue curve and
corresponding shaded area) contributions to scattering (normalized to their common maximum) as a function of
wavelength for the cases of normal incidence and oblique incidence with 8; = 45,60 and 70 degrees respectively.
Diffractive region is indicated by a shaded grey area. i-l, Radiation patterns in the plane of incidence numerically
computed via Stratton-Chu formulas (blue solid curve) and from the induced electric and magnetic dipoles only (red
dashed curve) at the wavelength of minimum reflection (arrowheads in d-g). Incidence and reflection direction are shown

by arrows.

One can observe that reflection of p-polarized light (solid
lines) turns into zero at some particular angle of
incidence, resembling the conventional Brewster effect in
dielectric media, while no special features are observed
for s-polarized light at this angle (corresponding dashed
lines). However, there are two major peculiarities of this
system, which should be highlighted. First, the range of
angles at which the reflection minimum is observed
covers almost the whole 0-90 degrees span, not being
restricted to angles above 45 degrees (opposite to the
conventional Brewster effect). Second, as will be shown
next, the effect is not restricted to p-polarization, thus
gathering the main features of generalized Brewster
phenomenon. It is important to mention that this effect is
not related to diffraction. The first non-zero diffraction
order, indicated as a dashed white line in Fig.3b and as
shaded regions in Fig.3c, appears out of the range of
wavelengths and angles for which the effect is observed.

Let us now focus on the spectral region between the
electric and magnetic dipole resonances. In Figs.3d-g the
case of normal incidence is shown, together with some
cases with zero reflection in that region, namely 45, 60
and 75 degrees incidence. For normal incidence both
reflection maxima spectrally coincide with the excitation
of dipolar resonances inside the particles. Zero reflection
is observed at 775 nm, where the induced electric and
magnetic dipoles have the same amplitudes and phases
meeting the first Kerker’s condition®**?, and at 515 nm,
which is close to the Kerker’s condition but also affected
by higher-order contributions. In the cases of oblique
incidence, zeros in reflection are observed at 566 nm for
45 degrees, 657 nm for 60 degrees, and 686 nm for 75
degrees (indicated by arrow-heads in Figs.3d-g) showing
the strong wavelength dependence.
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Figure 4. Simulated optical response of a square lattice of silicon spheres under s-polarized oblique incidence. a,
Numerically calculated reflection versus wavelength and angle of incidence for a square array of silicon spheres with
diameter D = 180 nm and pitch P = 300 nm. The wavelength for which the first diffracted order appears is indicated by
the white dashed line. b, Reflection versus angle of incidence for selected wavelengths showing Brewster’s angle for s-
polarization. Solid lines represent s-polarization while dashed lines are the corresponding curves for p-polarization.
Dependence on wavelength and the possibility to achieve values below 45 degrees are observed. ¢, Reflection (black
curve) and electric dipole (red curve and corresponding shaded area, ED) and magnetic dipole (blue curve and
corresponding shaded area, MD) contributions to the scattering (normalized to their common maximum) from a single
sphere in the array for several angles of incidence. Log;, scale is used for better visualization of the minima. Diffractive
regions are indicated by the shaded grey area. d, Associated radiation patterns of each single particle in the array in the

plane of incidence at the wavelengths of minimum reflection (arrowheads in c).

One explanation of the emergence of the reflection
minimum at higher angles could be associated with
disappearance of the dipolar resonances at off-normal
incidence. However, this is not the case. Both dipolar
modes are still efficiently excited, and it is their mutual
interference which results in the radiation inhibition in the
reflection direction. Figs.3d-g show by red and blue
curves (and corresponding shaded areas), the ED and MD
contributions to the total scattering cross-section (Csqq)
from each single particle in the array, computed using the
multipole decomposition technique, as explained in
Methods. As readily seen, both dipole modes are present
for those angles and wavelengths for which the reflection
vanishes. The dipolar contributions are dominant and
higher order modes only appear at shorter wavelengths
(the complete map can be found in Section 4 in
Supplementary Information). Interestingly, multipole
decomposition reveals that the ED dominates in all the
above cases. This is expected from equation (4) to be able
to cancel radiation in the plane containing the electric
field, which in p-polarized case coincides with the plain of
incidence. In a simplified case with no interaction
between the particles in the array, the induced dipoles
should oscillate parallel to the incident field. In that case,

in order to cancel scattering at the reflection angle
6 =0, =—6;, equation (4) imposes CXMP/CED = {0,
0.25, 0.75} for 6; = {45, 60, 75} degrees, respectively.
Thus, usual Brewster at 45 degrees is covered in this
description and requires vanishing of magnetic dipole for
p-polarization, as expected. Actual values retrieved from
simulations, in which interparticle interaction is taken into
account, become CMP/CEP =1{0.0078, 0.24, 0.63} ,
which are quite close to the interaction-free case. The
second zero in reflection observed at 560 nm for 6; = 60
degrees is related to the onset of the diffractive regime
(indicated as grey-shaded areas).

As a test of consistency, far-field radiation patterns
from each single particle in the infinite array were
computed using Stratton-Chu formulas® from the fields on
the surface of the sphere and plotted in the plane of
incidence in Figs.3h-k (blue solid lines). Also shown (red
dashed lines) are the patterns radiated by the pair of
electric p and magnetic m dipoles given by the multipole
decomposition, computed through equation (1). Both
patterns closely coincide and show zero radiation in the
direction of the reflected wave (indicated, together with
the incident one by arrows), thus confirming the dipole
interference origin of the vanishing reflection regions.



Let us now switch to the case of s-polarized incidence
to show that similar effects can be obtained. The change
in polarization makes the plane of incidence coincide with
that containing the magnetic field in the analysis for a
single sphere, thus obeying equations (3) and (5). The
simulated reflection versus wavelength and angle of
incidence for the same array of spheres in s-polarized case
is shown in Fig.4a. Two narrow-band frequency windows
of vanishing reflection, shifting very weakly with the
angle of incidence, can be observed starting at around 515
nm and 770 nm for normal incidence. Also, an omni-
directional, high reflectivity region is observed in
between, analogous to that reported for high index infinite
cylinders®®. Brewster effect in this polarization is
evidenced by plotting, as in Fig.4b, the reflection against
the angle of incidence for several wavelengths. We focus
on the narrow band observed between 700 nm — 750 nm,
for which no higher order multipoles are present. For s-
polarized light (shown as solid lines) emergence of
Brewster’s angle is apparent, while no special features are
observed for p-polarization (dashed lines). As readily
observed, strong dependence on wavelength and span
over the whole 0-80 degrees simulated range are also
observed for s-polarization.

Now we show that the origin of Brewster’s angle in
this polarization is totally analogous to that of p-
polarization. To this end, particular angles are plotted in
Fig.4c together with the ED and MD partial scattering
cross sections (normalized to their common maximum).
For normal incidence spectral position of the dip
corresponds to the first Kerker’s condition at which
electric and magnetic dipoles have similar amplitude and
phases® #%°. The observed weak blue-shift of this dip
with increased angle of incidence is a consequence of the
particular shape of the resonances excited in the particles
and their mutual interplay, which allows fulfilling
equation (5) for every angle in a narrow spectral region.
Note that within the whole range of wavelengths and
angles with vanishing reflection, the MD contribution is
higher than the ED one, as predicted by equation (5).
Similar to the case of p-polarized incidence, the radiation
patterns of each single particle in the array associated with
zero-reflection wavelengths show no radiation in the
reflection direction, thus confirming the interference
origin of the effect also in s-polarization as depicted in
Fig.4d.

It is important to stress that the observed spectral and
angular behaviour of the zero reflection regions in the
metasurface (Figs.3b and 4a) can be directly related to the
scattering properties of the single building-blocks through
amplitudes and phases of the induced dipoles, as
described in detail in Section 5 of the Supplementary
Information (and Fig.S7 therein). Thus, engineering these
parameters, e.g. through the geometry of the inclusions,
could lead to the generalized Brewster effect, potentially,

at any desired angle, frequency and polarization of
interest.

2. Experimental verification with arrays of silicon
nanodisks.

To experimentally demonstrate the Brewster-Kerker
effect, an array of silicon nanodisks was fabricated on a
fused silica substrate (as described in Methods) through
silicon film deposition, electron beam lithography and
etching. Disks are chosen for ease of fabrication and, for
aspect ratios close to unity, they are expected to have
similar optical properties to spheres. The actual diameter
is around D = 180 nm, height H = 150 nm and array
pitch P = 300 nm (see SEM images of the fabricated
array in the insets to Fig.5a). Angular-dependent
reflection measurements were performed using a home
built free-space microscopy setup (see Methods for
details). The measured reflection and transmission spectra
under normal incidence are plotted in Fig.5a as blue and
red lines respectively.

Reflection measurements as a function of the angle of
incidence for several wavelengths in the spectral region
covering both electric and magnetic dipole resonances are
presented as solid circles in Fig.5b for p- (red) and s-
polarized light (blue), together with results of numerical
simulations (corresponding solid lines). The best
agreement with the experiment was achieved for
simulated diameter D = 170 nm, height H = 160 nm,
pitch P = 300 nm and substrate refractive index of 1.45.
The origin of the small discrepancy between the
experiment and simulations is due to a difference between
the refractive index of the fabricated silicon and the
tabulated data for o-silicon’’ used in the simulations,
suggesting that the fabricated silicon has less dissipation
than that commonly found in literature (see Section 6 in
Supplementary Information for details). For p-
polarization, it is clearly observed the appearance of a
zero reflection angle showing strong wavelength
dependence and ranging from about 25 to nearly 70
degrees in the studied frequency range, i.e. going well
below 45 degrees. For those values below 45 degrees no
sign of total internal reflection is found. These results are
strongly different from conventional Brewster’s angle
behaviour and represent the first experimental
demonstration of the generalized Brewster effect in arrays
of particles with both electric and magnetic responses, i.e.,
of Brewster-Kerker effect. Numerical simulations, shown
as solid lines in Fig.5c, closely reproduce the
experimental values and demonstrate excellent agreement
in the position of the minima. The slight differences in the
reflection intensity, as mentioned, are due to the smaller
absorption of the deposited silicon compared to the
common amorphous silicon data from literature used in
simulations®’. Taking in simulations slightly lower value
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Figure 5. Experiment and simulations of angular reflection of light from a square lattice of silicon nanodisks over a
glass substrate. a, Experimentally measured reflection (blue solid curve) and transmission (red solid curve) of a square
lattice of silicon disks with diameter D = 180 nm, height H = 150 nm and pitch P = 300 nm under normal incidence.
The insets show the top (left) and tilted (right) SEM images of the measured sample. b, Reflection versus angle of
incidence measured for different wavelengths under p-polarized (red circles) and s-polarized (blue circles) illumination.
The corresponding simulated data, obtained for D = 170 nm and H = 160 nm with the same pitch are shown as solid
curves. ¢-d, Maps of simulated values of reflection as a function of angle of incidence and wavelength for p-polarized and
s-polarized incidence, respectively. White dashed lines indicate the onset of the different diffraction orders.

of imaginary part of refractive index than in Palik’’ leads
to almost perfect agreement to the experiment (see
Section 6 in Supplementary Information).

To complete the picture, the full simulated maps of
reflection of p- and s-polarized light as a function of angle

of incidence and wavelength are shown in Figs.5¢ and d.
Although with some differences, the general trend
observed in the simulated region strongly resembles that
shown in Figs.3b and 4a for spheres. For p-polarized light,
the minimum in reflection strongly varies both with



wavelength and angle of incidence, starting in the blue
side of the resonances and moving into the region
between them for increasing angles. As in the case of
spheres both ED and MD modes retrieved from multipole
decomposition for single disk in the array are strongly
excited in the regions of zero reflection (see Section 7 in
the Supplementary Information). Radiation patterns of
these interfering dipoles computed for two of the zero
reflection cases in p-polarization are shown in Fig.S10
(Section 8 in Supplementary Information). They
demonstrate vanishing intensities of the radiation in the
direction of the reflected wave at the operation
wavelength, thus confirming the interference origin of the
observed effect.

For s-polarization a shallow minimum in reflection at
735 nm, 755 nm and 775 nm can be observed both in
simulations and experiment (Fig.5b). These minima
correspond to the tail of the vanishing reflection region
(see Fig.5d) and provide further experimental evidence of
the generalized Brewster effect. An experimental plot
focused on the cases of 755 nm and 775 nm can be found
in Fig.S9c (Section 7 in the Supplementary Information),
clearly showing a minimum in reflection for angles below
and above 45 degrees. It is worth mentioning that for this
particular system the complete vanishing of reflection
under s-polarized incidence can be obtained in the spectral
region around 850 nm. However, at these wavelengths the
array has very low reflectivity even at normal incidence.

Remarkably, even for the realistic system described
above the Brewster-Kerker effect is very robust and can
easily be detected in experiment, the only true
requirement being the efficient excitation of electric and
magnetic dipole resonances in the particles forming a sub-
diffractive array.

3. Conclusions

It has been shown that sub-diffractive arrays of high
permittivity dielectric nanoparticles supporting both
electric and magnetic dipole resonances present a form of
generalized Brewster effect, named Brewster-Kerker
effect, leading to wvanishing reflection at particular
wavelengths and angles both under p- and s-polarized
incidence. The phenomenon can be explained in terms of
radiation interference between the electric and magnetic
dipoles induced in each particle in the array and connects
the angle-suppressed scattering from magneto-electric
particles (usually studied in relation to first Kerker’s
condition) with the zero reflection (Brewster effect)
observed in two-dimensional arrangements of such
particles. As a consequence of this interference the range
of zero reflection angles spans almost over the entire 0-90
degrees without implying total internal reflection. It
shows a strong dependence on the incident wavelength
and is present for both p and s polarizations. The effect
has been experimentally demonstrated in dense arrays of

silicon disks over a fused silica substrate, with measured
zero reflection angles ranging from 20 to 70 degrees for
wavelengths varying from 590 nm to 775 nm in the
visible spectrum. These results represent the first
experimental demonstration of the generalized Brewster’s
effect at optical frequencies in particle arrays with both
electric and magnetic response to incident light.

Since this effect is a universal phenomenon related to
the directional interference of resonances excited in the
particles, it is foreseen that it will be observed in a variety
of systems, provided they present electric and magnetic
responses. Moreover, tuning the shape and material
properties of the particles may lead to almost-on-demand
Brewster’s effect with regard to polarization, wavelength
and angle of incidence. Taking advantage of the strongly
resonant character of the structures may bring
opportunities for design of efficient sub-wavelength-thick
polarizers with a great degree of freedom.

Methods.

Numerical simulations of arrays of silicon spheres in air

Finite Element Method was used to compute the
reflection, transmission and absorption of light from
infinite square arrays of Silicon spheres (commercial
COMSOL  Multiphysics  software =~ was  used).
Experimentally measured values of the refractive index of
crystalline silicon, taken from Ref. 37, were used in the
simulations. The simulation domain consisted of a single
unit cell with Bloch boundary conditions applied in the
periodicity directions (x- and y-axes) to simulate an
infinite lattice. The so called scattered field formulation of
the problem was used. The exciting field was defined as a
plane wave with the electric field in the incidence plane
for p-polarized light and perpendicular to it for s-polarized
light. Perfectly Matched Layers were applied in the top
and bottom directions to absorb all scattered fields from
the system. Additionally two planes, £, perpendicular to
the z-axis at z = +450 nm were used as monitors to
compute the reflected and transmitted power. Reflection
was computed as the flux of the Poynting vector of the
scattered fields in the X_ plane normalized to the power of
the plane wave in the same area. Total fields instead of
scattered ones were considered in X, to compute
transmission. Absorption was computed as the volume
integration of the Ohmic losses inside the sphere and
normalized in the same way. Conservation of energy leads
toR+ T + A =1, condition that allows internal check of
consistency. These results were also checked by
performing the same calculation in CST Microwave
Studio, showing excellent agreement.



Numerical simulations of arrays of silicon disks on
substrate

Simulations of silicon disk arrays over substrate (with
interface in z = 0 and refractive index n = 1.45) were
carried out using the same approach as described for
spheres. The main difference is that, in this case, Fresnel
equations were used to explicitly write the excitation
fields in the upper (z > 0) and lower (z < 0) half spaces.
While transmission and absorption are computed in
exactly the same way, for reflection calculations one
needs to consider the Poynting vector of the scattered
fields plus the reflected fields from the substrate. In these
simulations the refractive index of amorphous silicon®’
was used to approximate the deposited amorphous silicon
in the experiment.

Multipole decomposition

Multipole decomposition technique was employed to
analyse the different modes being excited in the particles.
For particles in an array embedded in air, multipoles can
be computed through the polarization currents induced
within them:

J = —iwey(e — 1)E,

where € is the permittivity of the particle and E = E(r) is
the electric field inside it.

This approach fully takes into account mutual
interactions in the lattice™ as well as the possible presence
of a substrate. In particular, a Cartesian basis with origin
in the centre of the particles was used in the present work.
An accurate description of the radiative properties in this
basis involves the introduction of the family of toroidal
moments” " and the mean-square radii corrections. The
explicit expressions of the multipoles as well as the
associated partial scattering cross section can be found in
Section 9 of the Supplementary Information.

Nanodisk array fabrication

Thin films of amorphous silicon of desired thickness
were deposited on fused silica substrates via electron
beam evaporation (Angstrom Engineering Evovac). The
samples were then patterned by single-step electron beam
lithography: by spin-coating HSQ resist (Dow Corning,
XR-1541-006) and a charge-dissipation layer (Espacer
300AX01), e-beam patterning of the resist (Elionix ELS-
7000), and subsequent etching via reactive-ion-etching in
inductively coupled plasma system (Oxford Plasmalab
100). The remaining HSQ resist (~ 50 nm after etching)
on the top of the nanodisks was not removed since its
optical properties after e-beam exposure are close to that
of silicon dioxide. To reduce losses the fabricated sample
was annealed in vacuum at 600°C for 40 minutes by using
Rapid Thermal Process system (Model: JetFirst200).

Optical Measurements

Transmission and reflection measurements of the
nanodisk arrays at normal incidence were conducted using
an inverted microscopy setup (Nikon Ti-U). For
transmission measurements, light from a broadband
halogen lamp was normally incident onto the sample from
the substrate side before being collected by a 5x objective
(Nikon, NA 0.15) and routed to a spectrometer (Andor
SR-303i) with a 400 x 1600 pixel EMCCD detector
(Andor Newton), as described in detail elsewhere".
Transmitted light through the array was normalized to the
transmitted power through the substrate only, after
accounting for photodetector noise effects (dark current
subtraction). For reflection measurements, light from the
broadband halogen lamp was incident into the nanodisk
array directly passing through the 5x objective. The
reflected light was then collected by the same objective
and routed into the spectrometer. Reflected light from the
array was normalized to the incident power, which is
characterized by the reflection of a silver mirror with
known spectral response.

Angular transmission and reflection measurements
were performed using a home-built free-space microscopy
setup. Light originating from a supercontinuum source
(SuperK Power, NKT Photonics) was transmitted through
a variable band-pass filter for wavelength selection
(SuperK Varia, NKT Photonics) and then through a
broadband polarizing beam-splitter cube (Thorlabs,
PBS252). The linear polarized light passed then through a
quarter wave plate (Thorlabs, WPQ10M-808) to obtain
circularly polarized light, which was sent to a rotating
linear polarizer (Thorlabs, LPNIREI100-B) to obtain
linearly polarized light of selected direction. A biconvex
lens with 75 mm focusing distance (Thorlabs) was used to
focus the light onto the sample surface with silicon
nanoparticle arrays. The sample was mounted on a
rotation stage for adjusting the angle of incidence. The
beam spot size at the sample at normal incidence had a
diameter of around 50 pm being smaller than the size of
the fabricated arrays (100 pum x 100 pm). A white light
lamp source was also coupled into the beam path through
the same broadband polarizing beam-splitter cube for
sample imaging. Both the incident beam power and the
transmitted/reflected beam power were measured by a
pixel- photodetector attached to a digital handheld laser
power/energy meter console (Thorlabs, PM100D). A
scheme of the experimental setup is included in Figure
S11 in section 10 of the Supplementary Information.
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1. Generalized Brewster’s effect for a magneto-electric slab.

The present section aims to present the not-so-well-known rich phenomenology associated with
reflection of plane waves at an interface between an ordinary medium and one having simultaneous electric and
magnetic responses. Instead of analyzing a single interface, let us focus on the case of a slab, located either in
air or standing over a semi-infinite glass, since these cases arguably model more accurately the system studied
in the main manuscript.

Consider the general case represented in Fig.S1. The thickness of the film with optical properties given
by €, and u, is &, while media 1 and media 3 are semi-infinite. As usual, two different polarizations (p- and s-)

should be considered.
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Similar to the case of ordinary dielectrics, Fresnel’s formulas follow from the boundary conditions of
electric and magnetic fields at interfaces z=0 and z =/ (continuity of the tangential field components). This
yields four equations for the y-components of the magnetic or electric fields (for p or s-polarization,

respectively). Solving these equations the formulas for the amplitudes of the reflection coefficients are obtained.

z i
b oix
[ ks
€y Hy '
Z=Nn -
\I} \
Erit k, Kk
z=0 - A > X
& 1y k i
6 |6 °-.

Figure S1. Schematics of light transmission and reflection from a slab confined between two infinite media.

a) p-polarization. The reflection coefficient is given by 7, = Hy,,/Hy,, where H,,, and Hy,, are the

magnetic field amplitude of the forward (incident) and backward (reflected) propagating waves in media 1. The

reflectivity is given by R, = |1, |2. This formula can be presented in standard form':

(

p)
I3

=7, IS
Y "

;,i(zp)e_zu// +
r =
p

where the amplitude reflection coefficient 1, (between media 1 and media 2) is given by:

o) Enlb cos@—\/(s‘_l\/,s‘z,u2 — &L, sin” @

= (29)
N &, cos 0+\/;1\/82,u2—81/11 sin” @
and the amplitude reflection coefficient 1,5 (between media 2 and media 3) is given by:
. 2 . 2
”2(3{7) _5 \/gzluz — &4 8in” 0 — &, \/€3ﬂ3 — &4y sin” 0 (3S)

83\/82/12 — &M, sin” @ +£2\/63/13 — &M, sin” @

and Y = Y (0) represents the change in the wave phase over the thickness / of the layer (k, = w/c):

Y= koh\/gzluz — &4 sin” 6 (49)
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b) s-polarization. In a totally analogous way, the reflection coefficient is given by r; = Ey,,/E,, and the

reflectivity is R = |r;|?. In this case:

(s) ~2iy  .(5)
__ e "t
C— FNOROR (55)
where:
o) = My € €Os 0 — | 1y \/gzluz — &4 sin’ @ (6S)

v ﬂz\/e_lcost9+\/;1\/82,u2—€lﬂl sin @

L) = A \/gz,uz —g 4 sin” 0 — 4, \/83/13— £, sin” 0
23 - ‘ ,
s \/52/“2 — &y sin® 6 + 1, \/€3ﬂ3— g4, sin” @

(7S)

Note that amplitude coefficients of reflection 7,, and 7y in the limiting case 6 = 0 differ in sign, as E
represents a polar, and H an axial vector’.

From this analysis it is readily seen that with appropriate variations of € and y it is possible to obtain
arbitrary values for the Brewster angle, corresponding to the vanishing value of reflectivity, both for p-polarized
light and for s-polarized light.

We illustrate now the phenomenology associated with the generalized Brewster’s effect by considering a
slab with ¢ and u standing in air. Results, shown in Fig.S2, are selected to illustrate the main characteristics of
the generalized Brewster, namely, the possibility to obtain Brewster angle for s-polarized light (Fig.S1a-c) and
the possibility to obtain Brewster for angles below 45 degrees without having total internal reflection (TIR) for
larger angles (Fid.S2c and f). Note that this phenomenology is analogous to that observed in the case of sub-
diffractive silicon nanosphere array embedded in air, as presented in section 1 of the main text.

For the sake of completeness we illustrate, in Fig.S3 the case of a magneto-electric slab on top of a glass
semi-infinite medium (incidence from the side of air). As readily seen, this configuration retains all major
characteristics, and serves to illustrate the phenomenology found in the case of silicon nanoparticle array over

glass substrate presented in section 2 of the main text.
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Figure S2. Reflectivity of a magneto-electric slab in vacuum: &; = uy = &3 = u3 =1 and kgh = 1.4
(corresponding to h = 150 nm at wavelength A~670 nm) versus angle of incidence for different values of
&, and p,. a-c Brewster’s angle for s-polarization; d-f Brewster’s angle for p-polarization. Arbitrary values of

Brewster’s angle can be obtained between 0° and 90° without having total internal reflection at larger angles.
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Figure S3. Reflectivity of a magneto-electric slab on top of glass: €, = u; =1, &3 = 2.25, uy3 = 1 and
koh = 1.4 (corresponding to h = 150 nm at wavelength A~670 nm) versus angle of incidence for
different values of €, and u,. a-c Brewster’s angle for s-polarization; d-f Brewster’s angle for p-polarization.

Arbitrary values of Brewster’s angle can be obtained (0° - 90°) without having total internal reflection.
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2. Electric far-field radiated by a pair of electric and magnetic dipoles

Consider a pair of electric and magnetic dipoles. The electric far-field radiated in the direction given by

the unit vector 1 can be written as:

Epp = Bpf" + By = 25 [ x (p x ) + 2m x A (89)
with k, = 2m /2 the wavenumber and €, and ¢ the permittivity and speed of light in vacuum,
respectively.

Consider the situations depicted in Fig.2a of the main text. The induced dipoles, oscillating parallel to
the driving incident fields can be written as p = (—p cos 6;, 0, psin8;) and m = (0, m- ¢, 0), with p and
m the complex amplitudes of the induced dipoles and 6; the angle of incidence. In this situation, the radiated
(scattered) field in a direction of observation given by the polar angle 6 in the xz-plane (highlighted in the
figure) is purely polar and reads:

Effp < [m —p cos(0 — Hi)]a, 9S)
with @ the unitary polar vector. It is clear that, in this situation, the electric field is suppressed if:
cos(8 — 6;) = m/p = (Iml|/Ipl)e’ (10S)
with & being the phase difference between the two dipoles. Whenever the phase difference between
dipoles is a multiple of 7 the field exactly vanishes. It is clear that, when an infinite array of spheres is
considered in the xy-plane, this situation represents the p-polarization incidence case, and the plane of incidence
coincides with the xz-plane.
Analogously, when the case depicted in Fig.2b holds, the induced electric and magnetic dipoles can be
describedbym = (—m-ccos0;, 0, m-csin@;) and p = (0, —p, 0). In this situation, the radiated
(scattered) field in the plane containing the magnetic dipole (highlighted in Fig.2b) is purely azimuthal and

reads:

—~~

Eff < [p—mcos(6 — 6;)]¢ (11S)

with ¢ the unitary azimuthal vector. It vanishes if:
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cos(8 — 6;) = p/m = (Ipl/Im])e™", (12S)

and will represent the s-polarization case for infinite arrays.

3. Phased arrays of point scatters.

It is known from the phased array antennas theory that the total intensity from an array of identical

emitters can be expressed as:

10,8) = IF(P) 2| Esing1e (0, )| (138)
where F (1) is the so called form factor of the array, which describes the phase retardation from
different elements in the lattice and E sjng1¢ (6, @) is the far-field of each identical constituent. An analogous
formula holds to describe the scattering properties of an array of identical point-like scatters. As in the case of
phased array antennas, F(3) carries information about the geometry of the array and does not depend on the
particular scatters considered. It reads:

an (%)

N sin (%)

F@) =

in which ¥ = kd sin@ cos¢ + &, with k = 21 /A being the wavenumber, d the lattice period and § =
kd sin@; the phase difference due to oblique incidence at an angle 8; (we consider the plane of incidence as

¢ = 0). Here N is the number of particles in the array. In the limit N — oo one has:

gm e ={5 37

Fixing the scattering plane to ¢ = 0, F (1) is non-zero only when:
. . . 6+06; 0-0;\ _
sinf + sin6; = 2sin (T) cos (T) = 0.
This implies that, if no higher diffracted order are present, F (1) is non-zero when = —6; = 6, or

0 =m+0; = 0,. InFig.S4a, |F(1)|? is plotted for 8; = m/6, 1 = 730 nm and d = 300 nm for several
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increasing number of particles N. As seen, it quickly converges to the limit above, vanishing everywhere except
in the reflection and transmission directions.

Let us now assume that each single element in the array is a pair of electric (p) and magnetic (m)
dipoles. The radiated far-field E 5,40 (68, ) Will be given by equation (8S), see section 2 above. Consider the
two main situations presented there. In the first the electric dipole is contained in the plane of incidence (¢p = 0)
withp = (—pcos8;, 0, psinf;),and m = (0, m- ¢, 0). In this case, the radiated field in this plane is given
by (9S). Clearly, this situation will represent the case of p-polarized incidence. In the second case, the magnetic
dipole is contained in the incidence plane and reads m = (—m - ccos8;, 0, m - csin ;) while p = (0, —p, 0).
In this situation the radiated field in the plane of incidence is given by (11S) and will represent the case of s-
polarized incidence.

From (10S) and (12S) one can compute the relative values of p and m for which the field at 0 = 6, =
—0; will be zero. In this case, no intensity at all will be radiated in the reflection direction (as follows from
equation (13S)), leading to perfect transmission, i.e., to Brewster’s effect. Let us consider, e.g. the case of
0; = m/6 and s-polarization. From equation (12S) it follows that the field vanishes at 8 = —8; = —m /6 for
p = m/2. Note that this relation immediately implies CED /CMP = 1/4 (see equations (4) and (5) of the main
text), which precisely corresponds to the case depicted in the bottom panel of Fig.2c in the main text. In Fig.S4b
we plot |F()|? (left), |Esingle 6, 9) |2 (center) and 1(60, ¢) (right) for this case (with 8; = /6 , A = 730 nm,
d = 300 nm and N = 500). It is clear from the calculation that, due to the modulation of the form factor
|F(1)|?, radiation in any other direction rather than those of transmission and reflection is totally inhibited due
to interference from different lattice sites, even if the single particles radiate in those directions. It is also
immediately seen that the suppression of radiation in the reflection direction from each single element implies
the suppression of radiation from the whole array. Finally, to stress the origin of the effect in the inhibition of
radiation from single elements, we plot in Fig.S4c the case p = m/3. This ratio does not lead to zero radiation

in the reflection direction and, thus, no Brewster is obtained.
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Figure S4. Scattering properties of a phased array of identical electric and magnetic dipoles. a, The form

factor |F (1)|? of the array as a function of the number of particles considered. The form factor quickly

converges towards zero everywhere except at the reflection and transmission direction, for which |F(y)|? = 1.

The direction of incidence is indicated by a black arrow together with the incidence angle 8; = /6. The

wavelength is A = 730 nm and the pitch d = 300 nm. b, The form factor |F(1)|? (left), the radiation pattern of

each single element in the array E ;g1 (6, ) (center) and the total radiated intensity from the array 1(6, ¢)
(right) for an array of electric and magnetic dipoles withm = (—m-ccos8;, 0, m-csin6;) and p =

(0, —p, 0), fulfilling the condition p = m/2. Parameters A, 8; and d are the same as in a, N = 500. This

configuration suppresses reflection in s-polarization. ¢, The same as in b but with p = m/3 for which reflection

is not suppressed.
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4. Absorption and higher order multipoles in arrays of spheres at p-polarized incidence.

It is our intention here to complete the picture given in Section 1 of the main manuscript, regarding the
analysis of the resonances excited in the array of silicon (Si) spheres with diameter D = 180 nm and pitch
P = 300 nm for different wavelengths and angles of incidence for p-polarized light. As mentioned in the main
text, the electric and magnetic dipole contributions are the dominant ones in the range of wavelengths and
angles of incidence studied. Those are shown in the whole simulated range in Fig.S5a and b, respectively. Also,
the electric quadrupole partial scattering cross section, as computed through the multipole decomposition, is
shown in Fig.S5b, while the corresponding plot for the magnetic quadrupole is shown in Fig.S5c. As readily
seen, both resonances appear for wavelengths much shorter than those for which the generalized Brewster effect
is observed. Figure S5d also shows the absorption in the array, computed through volume integration of the
Ohmic losses inside the spheres. These results serve first as a demonstration of the energy conservation in our
simulations and also to track all resonances excited in the system, showing excellent correspondence with those
computed through the multipole decomposition technique (the magnetic one, however, is fainter due to the

lower dissipation of silicon at that wavelength).
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Figure S5. Multipolar contributions and absorption in a square lattice of silicon spheres versus

wavelength and angle of incidence under p-polarized incidence. a, and b, respectively, electric and magnetic

dipolar contributions to the scattering from each particle in the array as retrieved by multipole decomposition.

Dashed white lines show the spectral position of the first diffraction order. ¢ and d, respectively, electric and

magnetic quadrupolar contributions to the scattering from a particle in the array as retrieved by multipole

decomposition. e, Absorption computed through volume integration of the Ohmic losses.

5. Interpretation of the observed generalized Brewster effect based on the scattering characteristics of a

single sphere.

Let us consider more carefully the scattering characteristics of a single silicon sphere, Fig.S6 (the figure

is similar to Fig.2b in the main manuscript, but some points of interest are added). Although the real picture is

more complicated due to the inter-particle interactions inside the arrays, a simplified model of a single sphere
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may reveal major features of the reflection maps in Figs.3b and 4a from the main manuscript. In this spirit let us
assume here that particles in the lattice behave similar to individual scatters. In this case, as already mentioned,
cancellation of radiation in the plane containing the incident electric field (corresponding to the case of p-
polarized incidence) is only possible when the induced electric dipole dominates, i.e., in the red shaded regions
in Fig.S6. Cancellation in the perpendicular plane (corresponding to the case of s-polarized incidence) is only
possible under the blue shaded regions (dominance of magnetic dipole). Since the scattering angle and the
reflection angle are related as 8 = —6,, it is clear that for 8; < 45 the dipoles must be in phase (yellow shaded

regions) while for 8; > 45 they must be in anti-phase (green shaded region).

25 . o : ;
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Figure S6. Optical properties of a silicon sphere with diameter D = 180 nm in air under plane wave
illumination, and regions and points of interest. Total scattering cross section (black curve) and contributions

from the electric dipole (red curve), magnetic dipole (blue curve), electric quadrupole (magenta curve) and

magnetic quadrupole (green curve).

Let us start by analyzing the p-polarized case. Thus, to achieve the zero reflection effect we must restrict
ourselves to the red shaded regions where electric dipole dominates. At normal incidence the first Kerker’s
condition, indicated by (1) and (3) in Fig.S5, leads to zero reflection. Let us first analyze the spectral region

around (1). For increasing angles of incidence, equation (4) implies that CM2 /CER should correspondingly
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decrease. This is achieved at longer wavelengths with respect to (1), which manifests as the slight redshift in the
zero of reflection in Fig.3b for angles below 45 degrees. Above 45 degrees, the dipoles have to be in opposite
phases to cancel radiation in the reflection direction, thus crossing @) in Fig.S6 and entering in the green
region, as it is observed in the zero of reflection in Fig.3b. In order to satisfy equation (4) now the rate CMP
CED should increase instead, which is again possible at longer wavelengths. In this region, however, the range
of wavelengths is wider going up to (2) (above (2) MD contribution starts to dominate), leading to a more
pronounced redshift in Fig.3b. Thus, the sequence (1) —» @) — (2) always implies a redshift to fulfill equation
(4), as observed in Fig.3b. Interestingly, if now (3) is chosen as the starting point, fulfilling equation (4) again
implies longer wavelengths for larger angles of incidence. However, cancellation is only possible below 45
degrees, since there is no region in which the dipoles are in anti-phase, thus explaining the asymptotic behavior
of the zero in reflection < 45 degrees observed in Fig.3b.

Having analyzed the p-polarized case, the corresponding analysis of s-polarization is straightforward.
We are now restricted to move within the blue shaded region. Starting again in Kerker’s first condition at
normal incidence (3), fulfilling equation (5) now implies a blue-shift. Since at 45 degrees the dipoles must
change from in-phase to anti-phase, the complete sequence is now 3) — @ — (2), which implies a constant
blue-shift in the whole range, as observed in Figs.4a and b. Since the blue area is narrower, this directly
translates in a narrow spectral band for zero reflection, which in the real system gets reinforced by a narrowing
of the magnetic resonance due to the lattice interactions.

Let us conclude showing that the main features observed in the reflectivity of the arrays can be obtained
in a simple way from equations (8S)-(12S), which describe the radiation of a pair of electric and magnetic
dipoles. For that, let us assume that the electric (ay) and magnetic (a,,) polarizabilities of the dipoles are those
of a Si sphere according to Mie theory (i.e., ap = 6mia,/k3 and ay = 6mib, /k3, with a; and b, the electric
and magnetic dipolar scattering coefficients, respectively’). One important assumption is made to correctly
reproduce the results. The dipoles are assumed to change their phase abruptly around the resonance peak. For
single spheres this only holds approximately but it correctly models the effect of interactions in the array. Of

course one could fully take into account the effect of the lattice by computing the self-consistent field at each
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dipole position and computing the effective polarizabilities. However, it is enough to have good results to
consider that the effect of the lattice manifests just as a steeper phase change in the polarizabilities of the
particles. Thus, we take the amplitudes as given by Mie theory but assume a step function for the phases, as
depicted in Fig.S7a. Then, by simply applying equations (9S) and (11S), it is possible to compute the intensity
radiated in the reflection angle 8 = —6;, as a function of the angle of incidence 6; and wavelength A for p- and
s-polarization, respectively. Recall that the condition of zero radiated intensity in the reflection direction is
sufficient to have zero reflection (see section 3). The computed intensity is shown in Figs.S7b and c for p- and
s-polarizations. It can be seen that the zones showing zero radiated intensity in the reflection direction closely
reproduce those of zero reflectivity found by full numerical simulations (Figs.3b and 4a). For p-polarization, it
correctly predicts the red-shift of the region of zero reflection at long wavelengths (red side of resonances) as it
approaches 68; = 45 degrees. Also, it reproduces the behavior of the zero reflection region at shorter
wavelengths (blue side of the resonances). It predicts its continuous red-shift for increasing angles of incidence
and the “jump” to the region between resonances for 8; > 45. Finally, for s-polarization, it correctly predicts

the continuous blue-shift of the zero intensity region located in the red side of the resonances.
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Figure S7. Radiated intensity in the reflection direction by a pair of electric and magnetic dipoles
under p-polarized (red) and s-polarized (blue) light. a, Amplitudes and phases of the polarizabilities of the
dipoles. b, Radiated intensity in the plane of incidence (¢p = 0) and reflection direction (8 = —86;) by the pair of

dipoles under p-polarization. ¢, The same as in b but for s-polarization.
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6. Impact of losses on the angular reflection of a square lattice of nanodisks on top of fused silica.

Experiment vs simulations.

In the present section we demonstrate that, as mentioned in the main text, the differences observed
between experiment and simulations in the angular reflection of a sample of silicon nanodisks on top of silica
substrate are almost entirely due to the lower absorption of the fabricated sample compared to values tabulated”
for amorphous silicon (a-Si).

As seen in Fig.5 in the main text, the differences are more pronounced above 600nm. Below that limit
the agreement is fairly good (see the case at 590nm). Above, however, experiment and theory quickly depart,
and reflection is higher in the fabricated sample, indicating a quick drop of absorption as compared to the
tabulated data used for simulations.

In Fig.S8 we show the same set of curves as in Fig.5d of the main manuscript but, instead of directly
taking the complex refractive index (n' + in'’) from Ref.4 we take only the real part (n'), and allow the
imaginary (n'’) to be smaller. For each wavelength, we choose it in such a way that measured values show good
agreement for low angles of incidence (thus fitting the spectrum at normal incidence). It is readily seen that the
agreement between experiment and simulations obtained in this way is excellent.

In Table S1 we show the set of values of n'’ used together with those tabulated. At 590 nm we just took
the same value as the tabulated. The mentioned quick drop of the absorption is clearly seen and the value at 775

nm approaches that of Ref.4.
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Figure S8. Reflection vs angle of incidence under p-polarized (red) and s-polarized (blue) light in a square

lattice of a-silicon nanodisks over a fused silica substrate. The plot shows the comparison between measured

values (symbols) and simulations (lines) obtained fitting the imaginary part of the index (n'"). Real part (n')

was taken from Ref 4.

Table S1. Values of imaginary part of refractive index used in simulations in Fig.S8 and those from Ref.4.

Wavelength
n'’ (fitting) n'' (Ref.4)
(nm)
590 0.583 0.583
625 0.300 0.445
690 0.140 0.269
715 0.135 0.224
735 0.130 0.191
735 0.130 0.164
755 0.130 0.136
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7. Multipole contributions and absorption in the square lattice of Si nanodisks on top on fused silica

substrate.

In order to complete the analysis of the generalized Brewster’s effect for the Si nanodisks metasurface with
pitch P = 300 nm, diameter D = 170 nm and height H = 160 nm, given in section 2 of the main manuscript,
we present here some additional results. In particular, the electric and magnetic dipolar contributions to the
scattering from a single element in the array as a function of wavelength and angle of incidence under
irradiation with p-polarized light are shown in Fig.S9a and b. Also, we plot in Fig.S9c the reflection of s-
polarized light as a function of angle of incidence for the particular cases of A = 755 nm and A = 775 nm. It is
readily observed the emergence of a minimum in reflection, the angle of which decreases with increasing
wavelength. Note that this angle can have values above (for A = 755 nm) and below (A = 775 nm) 45 degrees,
a clear signature of the generalized Brewster’s effect. We also include, for completeness, the absorption, both
under s- and p-polarized incidence, in Figs.S9d and e, respectively. It allows tracking the resonances excited in
the system. For p-polarized light, comparison with Figs.S9a and b also serves as a verification of the resonances

computed by the multipole decomposition.
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Figure S9. Multipolar contributions from a single disk in the array under p-polarized incidence, detail of

reflection under s-polarized light and absorption in both polarizations in a square lattice of silicon

nanodisks over a fused silica substrate versus angle of incidence and wavelength. a-b, Simulated electric

(a) and magnetic (b) dipole contributions to the total scattering cross section of a single disk in the square lattice

of silicon nanodisks over a fused silica substrate under p-polarized light. ¢, Details of the measured angular

reflection from the array under s-polarized light for particular wavelengths. d, e, Simulated absorption

computed through volume integration of the ohmic losses inside the particles, under s- and p-polarized incident

light, respectively.
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8. Radiation patterns of each nanodisk in a square lattice on top of fused silica substrate leading to

vanishing reflection at p-polarized incidence.

In this section, the radiation patterns emitted by pairs of electric and magnetic dipoles excited in each
silicon nanodisk in the array retrieved through the multipole decomposition are presented. Parameters of the
simulated array are the same as in Fig.5 from the main text (disk diameter D = 170 nm, disk height H =
160 nm, array pitch P = 300 nm and substrate refractive index is of 1.45). Figures S10a and b show the
radiation patterns of the dipoles at wavelengths of 590 nm and 735 nm leading, respectively, to a minimum
reflection at 25 and 60 degrees of incidence, respectively. The radiation patterns were computed with Stratton-
Chu equations taking into account the presence of the substrate. For these calculations, a sphere enclosing the
dipoles and the substrate was considered. Although the solution is not exact, convergence against variations in
the radius of the sphere was checked, yielding almost the same results. Both radiation patterns show minima in
the direction of the reflected wave, thus confirming the interference origin of the observed vanishing reflection

effect also in the case of silicon disks on substrate.

/~

Figure S10. Radiation patterns in the plane of incidence from electric and magnetic dipoles excited in
each silicon nanodisk in the square array of the nanodisks on silica substrate under p-polarized incident
light. a, A = 590 nm, when reflection vanishes at the incidence angle of 25 degrees. b, A = 735 nm, when

reflection vanishes at the incidence of 60 degrees.
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9. Explicit expressions used in the Multipole Decomposition.

Multipole decomposition technique was employed to analyze the different modes excited inside the
particles. For particles in an array embedded in air, multipoles can be computed through the polarization
currents induced inside them:

J = —iwey(e — 1)E,

where € is the permittivity of the particle and E = E(7) the electric field inside it.

This approach fully takes into account mutual interactions in the lattice® as well as the possible presence
of a substrate. Cartesian basis with origin in the center of the particles was used in the present work. An
accurate description of the radiative properties in this basis involves the introduction of the family of toroidal
moments’ and the mean-square radii corrections. Although the explicit expression of the multipoles can be
found in some references (see, in particular Ref.7, for the explicit connection with the usual spherical multipole
moments) we repeat them here for completeness.

The dipolar moments induced in the system read as:

Pcar = f g(e — DEdr

Megr = %J g(e — D[r x E]ldr

t= % g(e — D[ E)r — 2r2Eldr

and the mean-square radii of the dipole distributions as:

RZ = _lej go(e — D[r x E]ridr

—  —lw
R? = —5 go(e — D[372%E — 2(r - E)r]ridr
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where only the magnetic and toroidal components are considered, since the electric one does not contribute to

radiation’. For the quadrupolar moments we have the following expressions:

1 2 =
Q. = Ef gle—1) [T®E+ E®r—§(r-E)I] dr
Q, = _Sﬂj g(e—D[r®(r X E) + (r x E)®r]dr

0="p f go(e — D[4(r E)r®r — 5r2(r@E + E®r) + 2r2(r - E)|dr

with ® being the dyadic product. It can be shown that both the Cartesian electric dipole and the toroidal dipole

have the same radiation pattern. Thus, when using equation (1), the following identifications were made:

ik k —
P =Pcar + C t+ER

- 2p2
m=mMcqr kOR

The scattering cross sections in SI units then read:

2

ki ik, k2
ED 0 0
Csca( ) = 67‘[80E2 Pcar + — c (t +E R%)
21,4
noko =712
Csca(MD) = 61 E2 |mcar - kgRZml
0
k8 - iky=
c. (EQ) o ___ 70 0
sca 807T£§Eg Q.+ Qt

2Ré —
Csca(MQ) 873)0 Eovzl ml
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10. Experimental setup scheme.

For completeness we present in Figure S11 a schematic representation of the home-built experimental
setup used for measuring the angular transmission/reflection from the fabricated silicon nanodisks arrays. The
state of polarization of incident light is described in each of the major steps in the setup. The lamp is used for

alignment purposes only and is switch-off during the measurements.

linearly circularly chosen
@ polarized polarized polarization

Supercontinuum ‘ L i ‘ * |
Laser @ £
,2 L

2./4 Plate
Screen

Figure S11. Scheme of the home-built experimental setup used for measuring angular

transmission/reflection from the fabricated nanodisks arrays.
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