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Polarization is one of the key properties defining the state of light. It was discovered in the early 19
th

 century by 

Brewster, among others, while studying light reflected from materials at different angles. These studies led to the 

first polarizers, based on Brewster’s effect. One of the most active trends in photonics now is devoted to the study 

of miniaturized, sub-wavelength devices exhibiting similar, or even improved, functionalities compared to those 

achieved with bulk optical elements. In the present work, it is theoretically predicted that a properly designed all-

dielectric metasurface exhibits a generalized Brewster’s effect potentially for any angle, wavelength and 

polarization of choice. The effect is experimentally demonstrated for an array of silicon nanodisks at visible 

wavelengths. The underlying physics of this effect can be understood in terms of the suppressed scattering at 

certain angles that results from the interference between the electric and magnetic dipole resonances excited in the 

nanoparticles, predicted by Kerker in early 80s. This reveals deep connection of Kerker’s and Brewster’s legacies 

and opens doors for Brewster phenomenon to new applications in photonics, which are not bonded to a specific 

polarization or angle of incidence. 

 

The oldest, and probably simplest, way to obtain 

linearly polarized light starting from unpolarized one is 

impinging it on a dielectric interface at the so called 

Brewster’s angle. In this way, the reflected light will only 

have electric field component parallel to the interface. 

Well understood since the 1820’s after the pioneering 

work of Fresnel, and experimentally known since the 

early 1810’s from works of Malus and Brewster1 (see also 

Ref. 2 for a succinct historical perspective), the 

Brewster’s angle for homogeneous isotropic non-

magnetic media can be defined as the angle for which 

Fresnel’s reflection coefficient for p-polarized light (i.e., 

with the electric field parallel to the plane of incidence) 

vanishes, ℜ௣ = 0 . An alternative definition states that 

Brewster’s angle is the one at which the reflected and 

refracted waves are orthogonal, thus fulfilling the 

condition ߠ௜ + ௧ߠ = ߨ 2⁄ , where ߠ௜  is the angle of 

incidence and ߠ௧  is the angle of refraction/transmission. 

The common microscopic interpretation of this effect is 

illustrated in Fig.1a. The induced electric dipoles, 

generated inside the medium in response to the driving 

electromagnetic wave, oscillate along the direction of the 

electric field perpendicular to the propagation direction. 

As the far field power radiated by a dipole vanishes along 

its oscillation axis, whenever the dipole and reflection 

direction are parallel, no radiation is emitted into that 

direction and reflection is inhibited. In all other directions 

apart from that of refraction, radiation is compensated by 

the rest of the dipoles within the medium. If polarization 

is switched, as shown in Fig.1b, due to the non-zero 

radiation in the plane perpendicular to the dipole, it is 

clear that such effect cannot be achieved. 
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world applications. Their exciting properties regarding 

magnetic near-field enhancement
18-22

 and directional 

scattering23-26, together with their low dissipation, makes 

them ideal nanoantennas for visible and near-infrared 

light
27

. The possibility to realize the first Kerker’s 

condition
23-25

 has also inspired studies on using them as 

ideal Huygens’ sources in highly-efficient transmissive 

metasurfaces28-30. Also their strong interaction with light, 

leading to high reflection and phase accumulation, makes 

them ideal candidates to act as efficient reflectors or 

phase-controlled mirrors
12,31-33

. The present study comes 

to extend this already broad realm with new fascinating 

properties. Moreover, novel generalized Brewster 

phenomenon giving great degree of freedom in 

polarization and incident angles may open doors to 

multiple new applications in photonics, which could not 

be achieved with standard Brewster effect in conventional 

dielectric media. 

 

1. Generalized Brewster-Kerker effect in two-

dimensional arrays of silicon spheres. 

 

Let us start considering a single silicon nanosphere 

under plane wave illumination (see Figs.2a and 2b), for 

which the required electric and magnetic dipole modes 

can be efficiently excited. The scattering cross section 

(Csca) for a sphere with diameter ܦ = 180  nm, as 

computed analytically with Mie theory34, is depicted in 

Fig.2c. Partial scattering cross-sections by the first excited 

resonant modes, namely the electric (ED) and magnetic 

(MD) dipoles and the electric (EQ) and magnetic (MQ) 

quadrupoles are also shown. As can be seen, the usual 

hierarchy of resonances in high-contrast dielectric 

nanoparticles starts with the lowest-energy magnetic 

dipole followed by the electric dipole mode
12-16

.  Thus, 

whenever higher order modes are negligible each sphere 

can be accurately described by a pair of these dipoles. 

Kerker and co-workers3 showed that, in such systems, 

the scattered far-field can be completely polarized parallel 

or perpendicular to the scattering plane in some particular 

observation direction, and this direction depends on the 

relative strength of the induced electric (࢖) and magnetic 

 dipoles. Originally derived for magnetic spheres, this (࢓)

result relates to interference in the electric far-field 

radiated by a pair of such dipoles, which reads: ࡱ௙௙ = ௙௙௣ࡱ + ௙௙௠ࡱ = ௞బమସగఢబ ቂ࢔ෝ × ࢖) × (ෝ࢔ + ଵ௖࢔×࢓ෝቃ (1) 

with ݇଴ = ߨ2 ⁄ߣ  the wavenumber and ߳଴  and ܿ  the 

permittivity and speed of light in vacuum, respectively, 

and ࢔ෝ the unit vector in the observation direction. 

Consider now the particular situations depicted in 

Figs.2a and b. It also follows from (1), see section 2 in 

Supplementary Information, that in the plane containing 

the incident wave-vector and the induced electric dipole 

(highlighted in Fig.2a), the radiated electric field vanishes 

in the observation direction defined by the angle ߠ if: cos(ߠ − (௜ߠ =  (2)           ݌/݉

in which ݌  and ݉  are the complex amplitudes of 

electric and magnetic dipoles. In the orthogonal plane, 

which contains the incident wave-vector and the induced 

magnetic dipole (case depicted in Fig.2b), the field 

vanishes when: cos(ߠ − (௜ߠ =  (3)          ݉/݌

Note that the backscattering direction is defined by ߠ = ݌ ௜. In this direction, the field vanishes whenߠ = ݉ 

(first Kerker’s condition
3
). Note also that equations (2) 

and (3) are, in general, complex and become real only 

when the dipoles are in phase or anti-phase. From these 

equations, it can be seen that radiation can be totally 

suppressed for angles in backward directions |ߠ − |௜ߠ ߨ≥ 2⁄  exclusively if the dipoles are in phase (݌  and ݉ 

having the same sign) and in forward directions (|ߠ |௜ߠ− ≥ ߨ 2⁄ ) if they are in anti-phase (݌  and ݉  having 

opposite sign). The spectral regions in which the induced 

dipoles are approximately in phase or anti-phase for the 

silicon sphere are highlighted in Fig.2c by yellow and 

green shading colours, respectively. They indicate the 

spectral ranges for which scattering cancellation in 

forward and backward directions may happen. 

The partial scattering cross sections
34

 associated with 

the electric ( ௦௖௔ா஽ܥ ) and magnetic ( ௦௖௔ெ஽ܥ ) dipoles are 

proportional to the squared modulus of the dipole 

moments (ܥ௦௖௔ா஽ ∝ ௦௖௔ெ஽ܥ ଶ and|࢖| ∝  ଶ), and this allows|࢓|

to recast equations (2) and (3) as: ܥ௦௖௔ெ஽/ܥ௦௖௔ா஽ = |cos	(ߠ −  ௜)|ଶ       (4)ߠ

௦௖௔ெ஽ܥ/௦௖௔ா஽ܥ  = |cos	(ߠ −  (௜)|ଶ.        5ߠ

It immediately follows from (4) that the electric dipole 

scattering must dominate ( ௦௖௔ா஽ܥ/௦௖௔ெ஽ܥ < 1 ) to achieve 

cancellation in the plane containing the electric dipole. 

Similarly, it follows from (5) that the magnetic dipole 

scattering should be dominant (ܥ௦௖௔ா஽/ܥ௦௖௔ெ஽ < 1) to achieve 

the scattering cancellation in the plane containing the 

magnetic dipole. The regions of dominant electric and 

magnetic dipoles are highlighted in Fig.2c by red and 

purple shading colours, respectively. 

 In Fig.2d the 2D scattering pattern of the Si sphere 

computed from Mie theory is plotted for two selected 

wavelengths, ߣଵ = 614  nm and ߣଶ = 728  nm, in the 

plane containing the incident wave-vector and the electric 

or magnetic dipole, respectively. Vanishing scattering 

intensity angles predicted by equations (4) and (5), 

respectively, are also shown. At ߣଵ the ED dominates and 

the dipoles are in anti-phase leading to scattering 

cancellation at an angle |ߠ − |௜ߠ ≥ ߨ 2⁄  in the plane 

containing the incident electric field.  
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Let us now switch to the case of s-polarized incidence 

to show that similar effects can be obtained. The change 

in polarization makes the plane of incidence coincide with 

that containing the magnetic field in the analysis for a 

single sphere, thus obeying equations (3) and (5). The 

simulated reflection versus wavelength and angle of 

incidence for the same array of spheres in s-polarized case 

is shown in Fig.4a. Two narrow-band frequency windows 

of vanishing reflection, shifting very weakly with the 

angle of incidence, can be observed starting at around 515 

nm and 770 nm for normal incidence. Also, an omni-

directional, high reflectivity region is observed in 

between, analogous to that reported for high index infinite 

cylinders
36

. Brewster effect in this polarization is 

evidenced by plotting, as in Fig.4b, the reflection against 

the angle of incidence for several wavelengths. We focus 

on the narrow band observed between 700 nm – 750 nm, 

for which no higher order multipoles are present. For s-

polarized light (shown as solid lines) emergence of 

Brewster’s angle is apparent, while no special features are 

observed for p-polarization (dashed lines). As readily 

observed, strong dependence on wavelength and span 

over the whole 0-80 degrees simulated range are also 

observed for s-polarization. 

Now we show that the origin of Brewster’s angle in 

this polarization is totally analogous to that of p-

polarization. To this end, particular angles are plotted in 

Fig.4c together with the ED and MD partial scattering 

cross sections (normalized to their common maximum). 

For normal incidence spectral position of the dip 

corresponds to the first Kerker’s condition at which 

electric and magnetic dipoles have similar amplitude and 

phases3, 23-25. The observed weak blue-shift of this dip 

with increased angle of incidence is a consequence of the 

particular shape of the resonances excited in the particles 

and their mutual interplay, which allows fulfilling 

equation (5) for every angle in a narrow spectral region. 

Note that within the whole range of wavelengths and 

angles with vanishing reflection, the MD contribution is 

higher than the ED one, as predicted by equation (5). 

Similar to the case of p-polarized incidence, the radiation 

patterns of each single particle in the array associated with 

zero-reflection wavelengths show no radiation in the 

reflection direction, thus confirming the interference 

origin of the effect also in s-polarization as depicted in 

Fig.4d. 

It is important to stress that the observed spectral and 

angular behaviour of the zero reflection regions in the 

metasurface (Figs.3b and 4a) can be directly related to the 

scattering properties of the single building-blocks through 

amplitudes and phases of the induced dipoles, as 

described in detail in Section 5 of the Supplementary 

Information (and Fig.S7 therein). Thus, engineering these 

parameters, e.g. through the geometry of the inclusions, 

could lead to the generalized Brewster effect, potentially, 

at any desired angle, frequency and polarization of 

interest. 

 

2. Experimental verification with arrays of silicon 

nanodisks. 

 

To experimentally demonstrate the Brewster-Kerker 

effect, an array of silicon nanodisks was fabricated on a 

fused silica substrate (as described in Methods) through 

silicon film deposition, electron beam lithography and 

etching. Disks are chosen for ease of fabrication and, for 

aspect ratios close to unity, they are expected to have 

similar optical properties to spheres. The actual diameter 

is around ܦ = 180  nm, height ܪ = 150  nm and array 

pitch ܲ = 300  nm (see SEM images of the fabricated 

array in the insets to Fig.5a). Angular-dependent 

reflection measurements were performed using a home 

built free-space microscopy setup (see Methods for 

details). The measured reflection and transmission spectra 

under normal incidence are plotted in Fig.5a as blue and 

red lines respectively. 

Reflection measurements as a function of the angle of 

incidence for several wavelengths in the spectral region 

covering both electric and magnetic dipole resonances are 

presented as solid circles in Fig.5b for p- (red) and s-

polarized light (blue), together with results of numerical 

simulations (corresponding solid lines). The best 

agreement with the experiment was achieved for 

simulated diameter ܦ = 170  nm, height ܪ = 160  nm, 

pitch ܲ = 300 nm and substrate refractive index of 1.45. 

The origin of the small discrepancy between the 

experiment and simulations is due to a difference between 

the refractive index of the fabricated silicon and the 

tabulated data for α-silicon37 used in the simulations, 

suggesting that the fabricated silicon has less dissipation 

than that commonly found in literature (see Section 6 in 

Supplementary Information for details). For p-

polarization, it is clearly observed the appearance of a 

zero reflection angle showing strong wavelength 

dependence and ranging from about 25 to nearly 70 

degrees in the studied frequency range, i.e. going well 

below 45 degrees. For those values below 45 degrees no 

sign of total internal reflection is found. These results are 

strongly different from conventional Brewster’s angle 

behaviour and represent the first experimental 

demonstration of the generalized Brewster effect in arrays 

of particles with both electric and magnetic responses, i.e., 

of Brewster-Kerker effect. Numerical simulations, shown 

as solid lines in Fig.5c, closely reproduce the 

experimental values and demonstrate excellent agreement 

in the position of the minima. The slight differences in the 

reflection intensity, as mentioned, are due to the smaller 

absorption of the deposited silicon compared to the 

common amorphous silicon data from literature used in 

simulations
37

. Taking in simulations slightly lower value  
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wavelength and angle of incidence, starting in the blue 

side of the resonances and moving into the region 

between them for increasing angles. As in the case of 

spheres both ED and MD modes retrieved from multipole 

decomposition for single disk in the array are strongly 

excited in the regions of zero reflection (see Section 7 in 

the Supplementary Information). Radiation patterns of 

these interfering dipoles computed for two of the zero 

reflection cases in p-polarization are shown in Fig.S10 

(Section 8 in Supplementary Information). They 

demonstrate vanishing intensities of the radiation in the 

direction of the reflected wave at the operation 

wavelength, thus confirming the interference origin of the 

observed effect. 

For s-polarization a shallow minimum in reflection at 

735 nm, 755 nm and 775 nm can be observed both in 

simulations and experiment (Fig.5b). These minima 

correspond to the tail of the vanishing reflection region 

(see Fig.5d) and provide further experimental evidence of 

the generalized Brewster effect. An experimental plot 

focused on the cases of 755 nm and 775 nm can be found 

in Fig.S9c (Section 7 in the Supplementary Information), 

clearly showing a minimum in reflection for angles below 

and above 45 degrees. It is worth mentioning that for this 

particular system the complete vanishing of reflection 

under s-polarized incidence can be obtained in the spectral 

region around 850 nm. However, at these wavelengths the 

array has very low reflectivity even at normal incidence. 

Remarkably, even for the realistic system described 

above the Brewster-Kerker effect is very robust and can 

easily be detected in experiment, the only true 

requirement being the efficient excitation of electric and 

magnetic dipole resonances in the particles forming a sub-

diffractive array. 

 

3. Conclusions 

 

It has been shown that sub-diffractive arrays of high 

permittivity dielectric nanoparticles supporting both 

electric and magnetic dipole resonances present a form of 

generalized Brewster effect, named Brewster-Kerker 

effect, leading to vanishing reflection at particular 

wavelengths and angles both under p- and s-polarized 

incidence. The phenomenon can be explained in terms of 

radiation interference between the electric and magnetic 

dipoles induced in each particle in the array and connects 

the angle-suppressed scattering from magneto-electric 

particles (usually studied in relation to first Kerker’s 

condition) with the zero reflection (Brewster effect) 

observed in two-dimensional arrangements of such 

particles. As a consequence of this interference the range 

of zero reflection angles spans almost over the entire 0-90 

degrees without implying total internal reflection. It 

shows a strong dependence on the incident wavelength 

and is present for both p and s polarizations. The effect 

has been experimentally demonstrated in dense arrays of 

silicon disks over a fused silica substrate, with measured 

zero reflection angles ranging from 20 to 70 degrees for 

wavelengths varying from 590 nm to 775 nm in the 

visible spectrum. These results represent the first 

experimental demonstration of the generalized Brewster’s 

effect at optical frequencies in particle arrays with both 

electric and magnetic response to incident light. 

Since this effect is a universal phenomenon related to 

the directional interference of resonances excited in the 

particles, it is foreseen that it will be observed in a variety 

of systems, provided they present electric and magnetic 

responses. Moreover, tuning the shape and material 

properties of the particles may lead to almost-on-demand 

Brewster’s effect with regard to polarization, wavelength 

and angle of incidence. Taking advantage of the strongly 

resonant character of the structures may bring 

opportunities for design of efficient sub-wavelength-thick 

polarizers with a great degree of freedom.  

 

Methods. 

 

Numerical simulations of arrays of silicon spheres in air 

Finite Element Method was used to compute the 

reflection, transmission and absorption of light from 

infinite square arrays of Silicon spheres (commercial 

COMSOL Multiphysics software was used). 

Experimentally measured values of the refractive index of 

crystalline silicon, taken from Ref. 37, were used in the 

simulations. The simulation domain consisted of a single 

unit cell with Bloch boundary conditions applied in the 

periodicity directions (x- and y-axes) to simulate an 

infinite lattice. The so called scattered field formulation of 

the problem was used. The exciting field was defined as a 

plane wave with the electric field in the incidence plane 

for p-polarized light and perpendicular to it for s-polarized 

light. Perfectly Matched Layers were applied in the top 

and bottom directions to absorb all scattered fields from 

the system. Additionally two planes, Σ±, perpendicular to 

the z-axis at ݖ = ±450	nm  were used as monitors to 

compute the reflected and transmitted power. Reflection 

was computed as the flux of the Poynting vector of the 

scattered fields in the Σି plane normalized to the power of 

the plane wave in the same area. Total fields instead of 

scattered ones were considered in Σା  to compute 

transmission. Absorption was computed as the volume 

integration of the Ohmic losses inside the sphere and 

normalized in the same way. Conservation of energy leads 

to ܴ + ܶ + ܣ = 1, condition that allows internal check of 

consistency. These results were also checked by 

performing the same calculation in CST Microwave 

Studio, showing excellent agreement. 
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Numerical simulations of arrays of silicon disks on 

substrate 

Simulations of silicon disk arrays over substrate (with 

interface in ݖ = 0  and refractive index ݊ = 1.45 ) were 

carried out using the same approach as described for 

spheres. The main difference is that, in this case, Fresnel 

equations were used to explicitly write the excitation 

fields in the upper (ݖ > 0) and lower (ݖ < 0) half spaces. 

While transmission and absorption are computed in 

exactly the same way, for reflection calculations one 

needs to consider the Poynting vector of the scattered 

fields plus the reflected fields from the substrate. In these 

simulations the refractive index of amorphous silicon37 

was used to approximate the deposited amorphous silicon 

in the experiment. 

 

Multipole decomposition 

Multipole decomposition technique was employed to 

analyse the different modes being excited in the particles. 

For particles in an array embedded in air, multipoles can 

be computed through the polarization currents induced 

within them: ࡶ = ߝ)଴ߝ߱݅− −  ,ࡱ(1

where ε is the permittivity of the particle and ࡱ =  is (࢘)ࡱ

the electric field inside it.  

This approach fully takes into account mutual 

interactions in the lattice
38

 as well as the possible presence 

of a substrate. In particular, a Cartesian basis with origin 

in the centre of the particles was used in the present work. 

An accurate description of the radiative properties in this 

basis involves the introduction of the family of toroidal 

moments
39-41

 and the mean-square radii corrections. The 

explicit expressions of the multipoles as well as the 

associated partial scattering cross section can be found in 

Section 9 of the Supplementary Information.  

 

Nanodisk array fabrication 

Thin films of amorphous silicon of desired thickness 

were deposited on fused silica substrates via electron 

beam evaporation (Angstrom Engineering Evovac). The 

samples were then patterned by single-step electron beam 

lithography: by spin-coating HSQ resist (Dow Corning, 

XR-1541-006) and a charge-dissipation layer (Espacer 

300AX01), e-beam patterning of the resist (Elionix ELS-

7000), and subsequent etching via reactive-ion-etching in 

inductively coupled plasma system (Oxford Plasmalab 

100). The remaining HSQ resist (~ 50 nm after etching) 

on the top of the nanodisks was not removed since its 

optical properties after e-beam exposure are close to that 

of silicon dioxide. To reduce losses the fabricated sample 

was annealed in vacuum at 600ºC for 40 minutes by using 

Rapid Thermal Process system (Model: JetFirst200). 

 

 

Optical Measurements 

Transmission and reflection measurements of the 

nanodisk arrays at normal incidence were conducted using 

an inverted microscopy setup (Nikon Ti-U). For 

transmission measurements, light from a broadband 

halogen lamp was normally incident onto the sample from 

the substrate side before being collected by a 5x objective 

(Nikon, NA 0.15) and routed to a spectrometer (Andor 

SR-303i) with a 400 x 1600 pixel EMCCD detector 

(Andor Newton), as described in detail elsewhere
15

. 

Transmitted light through the array was normalized to the 

transmitted power through the substrate only, after 

accounting for photodetector noise effects (dark current 

subtraction). For reflection measurements, light from the 

broadband halogen lamp was incident into the nanodisk 

array directly passing through the 5x objective. The 

reflected light was then collected by the same objective 

and routed into the spectrometer. Reflected light from the 

array was normalized to the incident power, which is 

characterized by the reflection of a silver mirror with 

known spectral response. 

Angular transmission and reflection measurements 

were performed using a home-built free-space microscopy 

setup. Light originating from a supercontinuum source 

(SuperK Power, NKT Photonics) was transmitted through 

a variable band-pass filter for wavelength selection 

(SuperK Varia, NKT Photonics) and then through a 

broadband polarizing beam-splitter cube (Thorlabs, 

PBS252). The linear polarized light passed then through a 

quarter wave plate (Thorlabs, WPQ10M-808) to obtain 

circularly polarized light, which was sent to a rotating 

linear polarizer (Thorlabs, LPNIRE100-B) to obtain 

linearly polarized light of selected direction. A biconvex 

lens with 75 mm focusing distance (Thorlabs) was used to 

focus the light onto the sample surface with silicon 

nanoparticle arrays. The sample was mounted on a 

rotation stage for adjusting the angle of incidence. The 

beam spot size at the sample at normal incidence had a 

diameter of around 50 μm being smaller than the size of 

the fabricated arrays (100 μm × 100 μm). A white light 

lamp source was also coupled into the beam path through 

the same broadband polarizing beam-splitter cube for 

sample imaging. Both the incident beam power and the 

transmitted/reflected beam power were measured by a 

pixel- photodetector attached to a digital handheld laser 

power/energy meter console (Thorlabs, PM100D). A 

scheme of the experimental setup is included in Figure 

S11 in section 10 of the Supplementary Information. 
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1. Generalized Brewster’s effect for a magneto-electric slab.  

The present section aims to present the not-so-well-known rich phenomenology associated with 

reflection of plane waves at an interface between an ordinary medium and one having simultaneous electric and 

magnetic responses. Instead of analyzing a single interface, let us focus on the case of a slab, located either in 

air or standing over a semi-infinite glass, since these cases arguably model more accurately the system studied 

in the main manuscript. 

Consider the general case represented in Fig.S1. The thickness of the film with optical properties given 

by ߝଶ and ߤଶ is h , while media 1 and media 3 are semi-infinite. As usual, two different polarizations (p- and s-) 

should be considered.  
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b) s-polarization. In a totally analogous way, the reflection coefficient is given by ݎ௦ =  ଴௬, and theܧ/ଵ௬ܧ

reflectivity is  ܴ௦ =  :௦|ଶ. In this caseݎ|
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Note that amplitude coefficients of reflection ݎ௣  and ݎ௦ in the limiting case ߠ = 0 differ in sign, as E 

represents a polar, and H an axial vector
2
. 

From this analysis it is readily seen that with appropriate variations of ߝ and ߤ it is possible to obtain 

arbitrary values for the Brewster angle, corresponding to the vanishing value of reflectivity, both for p-polarized 

light and for s-polarized light.  

We illustrate now the phenomenology associated with the generalized Brewster’s effect by considering a 

slab with ߝ and ߤ standing in air. Results, shown in Fig.S2, are selected to illustrate the main characteristics of 

the generalized Brewster, namely, the possibility to obtain Brewster angle for s-polarized light (Fig.S1a-c) and 

the possibility to obtain Brewster for angles below 45 degrees without having total internal reflection (TIR) for 

larger angles (Fid.S2c and f). Note that this phenomenology is analogous to that observed in the case of sub-

diffractive silicon nanosphere array embedded in air, as presented in section 1 of the main text.   

For the sake of completeness we illustrate, in Fig.S3 the case of a magneto-electric slab on top of a glass 

semi-infinite medium (incidence from the side of air). As readily seen, this configuration retains all major 

characteristics, and serves to illustrate the phenomenology found in the case of silicon nanoparticle array over 

glass substrate presented in section 2 of the main text. 
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2. Electric far-field radiated by a pair of electric and magnetic dipoles 

 

Consider a pair of electric and magnetic dipoles. The electric far-field radiated in the direction given by 

the unit vector ࢔ෝ can be written as: ࡱ௙௙ = ௙௙௣ࡱ + ௙௙௠ࡱ = ௞బమସగఢబ ቂ࢔ෝ × ࢖) × (ෝ࢔ + ଵ௖࢔×࢓ෝቃ               (8S) 

with ݇଴ = ߨ2 ⁄ߣ  the wavenumber and ߳଴ and ܿ the permittivity and speed of light in vacuum, 

respectively. 

 Consider the situations depicted in Fig.2a of the main text. The induced dipoles, oscillating parallel to 

the driving incident fields can be written as ࢖ = ݌−) ݏ݋ܿ ௜ߠ , 0, ݌ ݊݅ݏ ࢓  ௜) andߠ = (0, ݉ ∙ ܿ, 0), with ݌ and ݉ the complex amplitudes of the induced dipoles and ߠ௜ the angle of incidence. In this situation, the radiated 

(scattered) field in a direction of observation given by the polar angle ߠ in the xz-plane (highlighted in the 

figure) is purely polar and reads: ࡱ௙௙ ∝ [݉ − ߠ)cos	݌ −  ෡,                         (9S)ࣂ[(௜ߠ

with ࣂ෡ the unitary polar vector. It is clear that, in this situation, the electric field is suppressed if: cos(ߠ − (௜ߠ = ݌/݉ =  ௜ఋ                     (10S)݁(|݌|/|݉|)

with ࢾ being the phase difference between the two dipoles. Whenever the phase difference between 

dipoles is a multiple of ࣊ the field exactly vanishes. It is clear that, when an infinite array of spheres is 

considered in the xy-plane, this situation represents the p-polarization incidence case, and the plane of incidence 

coincides with the xz-plane. 

Analogously, when the case depicted in Fig.2b holds, the induced electric and magnetic dipoles can be 

described by ࢓ = ࢓−) ∙ ࢉ ࢏ࣂ࢙࢕ࢉ , ૙, ࢓ ∙ ࢉ ࢖ and (࢏ࣂ࢔࢏࢙ = (૙,−࢖, ૙). In this situation, the radiated 

(scattered) field in the plane containing the magnetic dipole (highlighted in Fig.2b) is purely azimuthal and 

reads:  ࡱ௙௙ ∝ ݌] −݉	cos(ߠ − [(௜ߠ ෡ࣘ                         (11S) 

with ෡ࣘ  the unitary azimuthal vector. It vanishes if: 
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cos(ߠ − (௜ߠ = ݉/݌ =  ௜ఋ,                    (12S)ି݁(|݉|/|݌|)

and will represent the s-polarization case for infinite arrays.  

 

3. Phased arrays of point scatters. 

 

It is known from the phased array antennas theory that the total intensity from an array of identical 

emitters can be expressed as:  ߠ)ܫ, ߶) = ,ߠ)௦௜௡௚௟௘ࡱଶห|(߰)ܨ| ߶)หଶ                   (13S) 

where	(࣒)ࡲ is the so called form factor of the array, which describes the phase retardation from 

different elements in the lattice and (ࣘ,ࣂ)ࢋ࢒ࢍ࢔࢏࢙ࡱ is the far-field of each identical constituent. An analogous 

formula holds to describe the scattering properties of an array of identical point-like scatters. As in the case of 

phased array antennas,	(࣒)ࡲ  carries information about the geometry of the array and does not depend on the 

particular scatters considered. It reads:  

(߰)ܨ = sin ቀܰ2߰ ቁܰ sin ቀ2߰ቁ 

in which ࣒ = ࣘܛܗ܋	ࣂܖܑܛ	ࢊ࢑ + ࢑ with ,ࣈ = ૛ࣅ/࣊ being the wavenumber, ࢊ the lattice period and	ࣈ ࣘ we consider the plane of incidence as) ࢏ࣂ the phase difference due to oblique incidence at an angle ࢏ࣂܖܑܛ	ࢊ࢑= = ૙). Here N is the number of particles in the array. In the limit ࡺ ⟶ ∞ one has: 

limே→	ஶܨ(߰) = ൜1,					߰ → 	0	0,				߰ ↛ 	0  

Fixing the scattering plane to ߶ = ߠis non-zero only when: sin (߰)ܨ  ,0 + 	sinߠ௜ = 2sin ቀఏାఏ೔ଶ ቁ cos ቀఏିఏ೔ଶ ቁ = 0. 

This implies that, if no higher diffracted order are present, ܨ(߰) is non-zero when ߠ = ௜ߠ− ≡ ߠ ௥ orߠ = ߨ + ௜ߠ ≡ ௜ߠ ଶ is plotted for|(߰)ܨ| ,௧. In Fig.S4aߠ = ߨ 6⁄ ߣ , = 730 nm and ݀ = 300 nm for several 
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increasing number of particles ܰ. As seen, it quickly converges to the limit above, vanishing everywhere except 

in the reflection and transmission directions. 

Let us now assume that each single element in the array is a pair of electric (࢖) and magnetic (࢓) 

dipoles. The radiated far-field ࡱ௦௜௡௚௟௘(ߠ, ߶) will be given by equation (8S), see section 2 above. Consider the 

two main situations presented there. In the first the electric dipole is contained in the plane of incidence (߶ = 0) 

with ࢖ = ݌−) cos ௜ߠ , 0, ݌ sin ࢓ ௜), andߠ = (0, ݉ ∙ ܿ, 0). In this case, the radiated field in this plane is given 

by (9S). Clearly, this situation will represent the case of p-polarized incidence. In the second case, the magnetic 

dipole is contained in the incidence plane and reads ࢓ = (−݉ ∙ ܿ cos ௜ߠ , 0, ݉ ∙ ܿ sin ࢖ ௜) whileߠ = ,݌−,0) 0). 
In this situation the radiated field in the plane of incidence is given by (11S) and will represent the case of s-

polarized incidence. 

From (10S) and (12S) one can compute the relative values of ݌ and ݉ for which the field at	ߠ = ௥ߠ  ௜ will be zero. In this case, no intensity at all will be radiated in the reflection direction (as follows fromߠ−=

equation (13S)), leading to perfect transmission, i.e., to Brewster’s effect. Let us consider, e.g. the case of ߠ௜ = ߠ and s-polarization. From equation (12S) it follows that the field vanishes at 6/ߨ = ௜ߠ− = ݌ for 6/ߨ− = ݉/2. Note that this relation immediately implies ܥ௦௖௔ா஽/ܥ௦௖௔ெ஽ = 1/4 (see equations (4) and (5) of the main 

text), which precisely corresponds to the case depicted in the bottom panel of Fig.2c in the main text. In Fig.S4b 

we plot |ܨ(߰)|ଶ (left),	หࡱ௦௜௡௚௟௘(ߠ, ߶)หଶ (center) and ߠ)ܫ, ߶) (right) for this case (with ߠ௜ = ߣ , 6/ߨ = 730 nm, ݀ = 300 nm and ܰ = 500). It is clear from the calculation that, due to the modulation of the form factor |ܨ(߰)|ଶ, radiation in any other direction rather than those of transmission and reflection is totally inhibited due 

to interference from different lattice sites, even if the single particles radiate in those directions. It is also 

immediately seen that the suppression of radiation in the reflection direction from each single element implies 

the suppression of radiation from the whole array. Finally, to stress the origin of the effect in the inhibition of 

radiation from single elements, we plot in Fig.S4c the case ݌ = ݉/3. This ratio does not lead to zero radiation 

in the reflection direction and, thus, no Brewster is obtained. 
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4. Absorption and higher order multipoles in arrays of spheres at p-polarized incidence. 

 

It is our intention here to complete the picture given in Section 1 of the main manuscript, regarding the 

analysis of the resonances excited in the array of silicon (Si) spheres with diameter D = 180	nm and pitch P = 300	nm for different wavelengths and angles of incidence for p-polarized light. As mentioned in the main 

text, the electric and magnetic dipole contributions are the dominant ones in the range of wavelengths and 

angles of incidence studied. Those are shown in the whole simulated range in Fig.S5a and b, respectively. Also, 

the electric quadrupole partial scattering cross section, as computed through the multipole decomposition, is 

shown in Fig.S5b, while the corresponding plot for the magnetic quadrupole is shown in Fig.S5c. As readily 

seen, both resonances appear for wavelengths much shorter than those for which the generalized Brewster effect 

is observed. Figure S5d also shows the absorption in the array, computed through volume integration of the 

Ohmic losses inside the spheres. These results serve first as a demonstration of the energy conservation in our 

simulations and also to track all resonances excited in the system, showing excellent correspondence with those 

computed through the multipole decomposition technique (the magnetic one, however, is fainter due to the 

lower dissipation of silicon at that wavelength). 
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decrease. This is achieved at longer wavelengths with respect to ①, which manifests as the slight redshift in the 

zero of reflection in Fig.3b for angles below 45 degrees. Above 45 degrees, the dipoles have to be in opposite 

phases to cancel radiation in the reflection direction, thus crossing ❶ in Fig.S6 and entering in the green 

region, as it is observed in the zero of reflection in Fig.3b. In order to satisfy equation (4) now the rate ܥ௦௖௔ெ஽/ܥ௦௖௔ா஽  should increase instead, which is again possible at longer wavelengths. In this region, however, the range 

of wavelengths is wider going up to ②	(above ②	MD contribution starts to dominate), leading to a more 

pronounced redshift in Fig.3b. Thus, the sequence ① → ❶ → ② always implies a redshift to fulfill equation 

(4), as observed in Fig.3b. Interestingly, if now ③	is chosen as the starting point, fulfilling equation (4) again 

implies longer wavelengths for larger angles of incidence. However, cancellation is only possible below 45 

degrees, since there is no region in which the dipoles are in anti-phase, thus explaining the asymptotic behavior 

of the zero in reflection < 45 degrees observed in Fig.3b. 

Having analyzed the p-polarized case, the corresponding analysis of s-polarization is straightforward. 

We are now restricted to move within the blue shaded region. Starting again in Kerker’s first condition at 

normal incidence ③, fulfilling equation (5) now implies a blue-shift. Since at 45 degrees the dipoles must 

change from in-phase to anti-phase, the complete sequence is now ③ → ❷ → ②, which implies a constant 

blue-shift in the whole range, as observed in Figs.4a and b. Since the blue area is narrower, this directly 

translates in a narrow spectral band for zero reflection, which in the real system gets reinforced by a narrowing 

of the magnetic resonance due to the lattice interactions. 

Let us conclude showing that the main features observed in the reflectivity of the arrays can be obtained 

in a simple way from equations (8S)-(12S), which describe the radiation of a pair of electric and magnetic 

dipoles. For that, let us assume that the electric (ߙா) and magnetic (ߙெ) polarizabilities of the dipoles are those 

of a Si sphere according to Mie theory (i.e., ߙா = ுߙ ଵ/݇ଷ andܽ݅ߨ6 =  ଵ/݇ଷ, with ܽଵ and ܾଵ the electricܾ݅ߨ6

and magnetic dipolar scattering coefficients, respectively
3
). One important assumption is made to correctly 

reproduce the results. The dipoles are assumed to change their phase abruptly around the resonance peak. For 

single spheres this only holds approximately but it correctly models the effect of interactions in the array. Of 

course one could fully take into account the effect of the lattice by computing the self-consistent field at each 
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6. Impact of losses on the angular reflection of a square lattice of nanodisks on top of fused silica. 

Experiment vs simulations. 

 

In the present section we demonstrate that, as mentioned in the main text, the differences observed 

between experiment and simulations in the angular reflection of a sample of silicon nanodisks on top of silica 

substrate are almost entirely due to the lower absorption of the fabricated sample compared to values tabulated
4
 

for amorphous silicon (a-Si).  

As seen in Fig.5 in the main text, the differences are more pronounced above 600nm. Below that limit 

the agreement is fairly good (see the case at 590nm). Above, however, experiment and theory quickly depart, 

and reflection is higher in the fabricated sample, indicating a quick drop of absorption as compared to the 

tabulated data used for simulations. 

In Fig.S8 we show the same set of curves as in Fig.5d of the main manuscript but, instead of directly 

taking the complex refractive index (࢔′ +  and allow the ,(′࢔) from Ref.4 we take only the real part (′′࢔࢏

imaginary (࢔′′) to be smaller. For each wavelength, we choose it in such a way that measured values show good 

agreement for low angles of incidence (thus fitting the spectrum at normal incidence). It is readily seen that the 

agreement between experiment and simulations obtained in this way is excellent.  

In Table S1 we show the set of values of ࢔′′ used together with those tabulated. At 590 nm we just took 

the same value as the tabulated. The mentioned quick drop of the absorption is clearly seen and the value at 775 

nm approaches that of Ref.4. 
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7. Multipole contributions and absorption in the square lattice of Si nanodisks on top on fused silica 

substrate. 

 

In order to complete the analysis of the generalized Brewster’s effect for the Si nanodisks metasurface with 

pitch ܲ = 300	nm, diameter ܦ = 170	nm and height ܪ = 160	nm, given in section 2 of the main manuscript, 

we present here some additional results. In particular, the electric and magnetic dipolar contributions to the 

scattering from a single element in the array as a function of wavelength and angle of incidence under 

irradiation with p-polarized light are shown in Fig.S9a and b. Also, we plot in Fig.S9c the reflection of s- 

polarized light as a function of angle of incidence for the particular cases of λ = 755 nm and λ = 775 nm. It is 

readily observed the emergence of a minimum in reflection, the angle of which decreases with increasing 

wavelength. Note that this angle can have values above (for λ = 755 nm) and below (λ = 775 nm) 45 degrees, 

a clear signature of the generalized Brewster’s effect. We also include, for completeness, the absorption, both 

under s- and p-polarized incidence, in Figs.S9d and e, respectively. It allows tracking the resonances excited in 

the system. For p-polarized light, comparison with Figs.S9a and b also serves as a verification of the resonances 

computed by the multipole decomposition. 
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9. Explicit expressions used in the Multipole Decomposition. 

 

Multipole decomposition technique was employed to analyze the different modes excited inside the 

particles. For particles in an array embedded in air, multipoles can be computed through the polarization 

currents induced inside them: ࡶ = ߝ)଴ߝ߱݅− −  ,ࡱ(1

 

where ε is the permittivity of the particle and ࡱ =   .the electric field inside it (࢘)ࡱ

This approach fully takes into account mutual interactions in the lattice
6
 as well as the possible presence 

of a substrate. Cartesian basis with origin in the center of the particles was used in the present work. An 

accurate description of the radiative properties in this basis involves the introduction of the family of toroidal 

moments
7
 and the mean-square radii corrections. Although the explicit expression of the multipoles can be 

found in some references (see, in particular Ref.7, for the explicit connection with the usual spherical multipole 

moments) we repeat them here for completeness.  

The dipolar moments induced in the system read as: 

࢘ࢇࢉ࢖ = නߝ଴(ߝ −  ݎ݀ࡱ(1

࢘ࢇࢉ࢓ = −݅2߱ න ߝ)଴ߝ − ࢘](1 ×  ݎ݀[ࡱ

࢚ = −݅߱10 නߝ଴(ߝ − ࢘)](1 ∙ ࢘(ࡱ −  ݎ݀[ࡱଶݎ2

 

and the mean-square radii of the dipole distributions as: 

 

૛തതതത࢓ࡾ = −݅2߱ න ߝ)଴ߝ − ࢘](1 ×  ݎଶ݀ݎ[ࡱ

૛തതതത࢚ࡾ = −݅߱28 නߝ଴(ߝ − ࡱଶݎ3](1 − ࢘)2 ∙  ݎଶ݀ݎ[࢘(ࡱ
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where only the magnetic and toroidal components are considered, since the electric one does not contribute to 

radiation
7
. For the quadrupolar moments we have the following expressions: 

 

ന௘ࡽ = 12නߝ଴(ߝ − 1) ൤ࡱ⨂࢘ + ࢘⨂ࡱ − 23 ࢘) ∙ ധ൨ࡵ(ࡱ  ݎ݀

ന௠ࡽ = −݅3߱ න ߝ)଴ߝ − ࢘)⨂࢘](1 × (ࡱ + ࢘) ×  ݎ݀[࢘⨂(ࡱ

ന௧ࡽ = −݅߱28 නߝ଴(ߝ − ࢘)4ൣ(1 ∙ ࢘⨂࢘(ࡱ − ࡱ⨂࢘)ଶݎ5 + (࢘⨂ࡱ + ࢘)ଶݎ2 ∙  ݎധ൧݀ࡵ(ࡱ

 

with ⨂ being the dyadic product. It can be shown that both the Cartesian electric dipole and the toroidal dipole 

have the same radiation pattern. Thus, when using equation (1), the following identifications were made:  

 

࢖ = ࢘ࢇࢉ࢖ + ݅݇଴ܿ ቆ࢚ + ݇଴ଶ10	࢚ࡾ૛തതതതቇ 

࢓ = ࢘ࢇࢉ࢓ − ݇଴ଶࡾ	࢓૛തതതതത 
 

The scattering cross sections in SI units then read: 

 

௦௖௔(ா஽)ܥ = ݇଴ସ6ߝߨ଴ଶܧ଴ଶ ቤ࢘ࢇࢉ࢖ + ݅݇଴ܿ ቆ࢚ + ݇଴ଶ10	࢚ࡾ૛തതതതቇቤଶ 

௦௖௔(ெ஽)ܥ = ଴ଶܧߨ଴ଶ݇଴ସ6ߟ ห࢘ࢇࢉ࢓ − ݇଴ଶࡾ	࢓૛തതതതതหଶ 

௦௖௔(ாொ)ܥ ≈ ݇଴଺80ߝߨ଴ଶܧ଴ଶ ฬࡽന௘ + ݅݇଴ܿ  ന௧ฬଶࡽ

௦௖௔(ெொ)ܥ ≈ ଴ଶܧߨ଴ଶ݇଴଺80ߟ หࡽന௠หଶ 
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