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GENERALIZED BRÉZIN–GROSS–WITTEN TAU-FUNCTION AS A

HYPERGEOMETRIC SOLUTION OF THE BKP HIERARCHY

ALEXANDER ALEXANDROV

Abstract. In this paper, we prove that the generalized Brézin–Gross–Witten tau-
function is a hypergeometric solution of the BKP hierarchy with simple weight generat-
ing function. We claim that it describes a spin version of the strictly monotone Hurwitz
numbers. A family of the hypergeometric tau-functions of the BKP hierarchy, corre-
sponding to the rational weight generating functions, is investigated. In particular, the
cut-and-join operators are constructed, and the explicit description of the BKP Sato
Grassmannian points is derived. Representatives of this family can be associated with
interesting families of spin Hurwitz numbers including a spin version of the monotone
Hurwitz numbers.
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1. Introduction

Spin Hurwitz numbers were introduced by Eskin, Okounkov, and Pandharipande
[EOP08]. Analogously to the ordinary Hurwitz numbers, they count the ramified cov-
erings, but this time of the surfaces with spin structure. This is an interesting class of
enumerative geometry invariants, closely related to the fundamental structures in rep-
resentation theory and mathematical physics. In particular, the relation between spin
Hurwitz numbers and Schur Q-functions was noticed by Gunningham [Gun16]. On the
representation theory side the spin Hurwitz numbers are related to the characters of the
Sergeev group.

Generating functions of the weighted double spin Hurwitz numbers were identified
with the tau-functions of the 2-component BKP integrable hierarchy by Mironov, Mo-
rozov and Natanzon [MMN]. Corresponding class of the BKP tau-functions, so-called
hypergeometric tau-functions was introduced and investigated by Orlov [Orl03]. In this
paper, we introduce and investigate an infinite parametric family of the hypergeometric
tau-functions of the 2-component BKP hierarchy. This family is associated with the
rational weight generating functions.

The motivation for the investigation of this family is two-fold. On the one hand, the
simplest representative of this family is given by the generalized Brézin–Gross–Witten
(BGW) tau-function. Relation between the generalized BGW tau-function and a hyper-
geometric solution of the BKP hierarchy was conjectured in [Ale21a], and its proof is one
of the main results of this paper. On the other hand, we claim that this family contains
several interesting examples of the generating functions of the weighted spin Hurwitz
numbers, including the natural spin analogs of the monotone, strictly monotone, and
Bousquet-Mélou-Schaeffer Hurwitz numbers. In particular, the generalized BGW tau-
function can be associated with the generating function of the strictly monotone spin
Hurwitz numbers. Ordinary strictly monotone Hurwitz numbers describe Grothendieck’s
dessins d’enfants and hypermaps, and the spin case should also be related to the inter-
esting invariants of enumerative geometry and combinatorics.

For the ordinary Hurwitz numbers, the rational weight generating functions can be
obtained from the combination of the Schur functions with a particular choice of the
variables. In the spin case, the correspondence is more complicated and will be consid-
ered elsewhere. Therefore, we do not discuss the detailed interpretation of the obtained
generating functions in terms of spin Hurwitz numbers and relations between these num-
bers and intersection theory invariants. Instead in this paper, we focus on the integrable
properties of this family. For this purpose we use the standard ingredients of the the-
ory of integrable hierarchies including the free fermions, vertex operators, and the Sato
Grassmannian. However, for the BKP and KP hierarchies, corresponding to the spin
and ordinary Hurwitz numbers respectively, these ingredients are different, because of
the difference between the underlying symmetry algebras, go(∞) and gl(∞).

In particular, we construct the basis for the corresponding points for the BKP Sato
Grassmannian and derive associated Kac–Schwarz operators. Moreover, we construct the
cut-and-join operators, which, for the polynomial weight generating functions, are the
finite degree differential operators. The Kac–Schwarz description allows us to construct
the quantum spectral curves and to derive the linear constraints for the tau-functions. We
expect that these ingredients will be useful for further investigation of the spin Hurwitz
numbers. In particular, they should be useful for the construction of the Chekhov–
Eynard–Orantin topological recursion. The description obtained in this paper is the
spin analog of the description for the ordinary Hurwitz numbers, considered in [ALS16,
AMMN14, KZ15, Zog15].
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A few days after the current paper was posted on the arXiv, a new paper [LY22]
appeared with an alternative proof of Theorem 4 via an action of the Virasoro operators
on the Schur Q-functions.

Notation. In this paper we denote the families of variables or parameters, finite or
infinite, by bold symbols. In particular, t denotes the set of odd variables,

(1.1) t = {t1, t3, t5, . . . }.
A partition λ is strict, if λ1 > λ2 > λ3 > · · · > λℓ(λ) > λℓ(λ)+1 = 0, where ℓ(λ) is the

length of the partition. We denote the set of strict partitions, including the empty one,
by DP.

Acknowledgments. This work was supported by IBS-R003-D1. We thank the anony-
mous referee of the paper for the comments that led to a substantial improvement of the
paper.

1.1. Organization of the paper. In Section 2 we remind the reader the neutral fermion
formalism and describe associated vertex operators. Section 3 is devoted to the wB

1+∞

algebra and its central extension, WB
1+∞. In particular, we explicitly describe the conve-

nient bases for these algebras. In Section 4 we outline the Sato Grassmannian description
of the BKP hierarchy. In Section 5 we describe the diagonal group element, associated
with the generalized BGW tau-function and prove that this tau-function is a hyperge-
ometric solution of the BKP hierarchy. The generalization of this tau-function to the
family with rational weight generating functions is investigated in Section 6.

2. Neutral fermions and boson-fermion correspondence

In this section we remind the reader the neutral fermion formalism and boson-fermion
correspondence in the framework of the BKP hierarchy. More details can be found in
[DKM81, DJKM82, You89, vdL95, Orl03].

2.1. Neutral fermions. Let φk, k ∈ Z be the neutral free fermions satisfying the
canonical anticommutation relations

(2.1) {φk, φm} = (−1)kδk+m,0.

Note that φ2
0 = 1/2. These relations define the Clifford algebra as the associative algebra.

For the vacuum |0〉 and the co-vacuum 〈0| vectors, satisfying
(2.2) φm |0〉 = 0, 〈0|φ−m = 0, m < 0

the elements φk1φk2 . . . φkm |0〉 with k1 > k2 > · · · > km ≥ 0 form a basis of a version of
infinite wedge space (or neutral fermion Fock space) FB,

(2.3) FB = span {φk1φk2 . . . φkm |0〉 | k1 > k2 > · · · > km ≥ 0} ,
and its dual

(2.4) F∗
B = span {〈0|φkm . . . φk2φk1 | k1 < k2 < · · · < km ≤ 0} .

The space FB splits into two subspaces

(2.5) FB = F0
B ⊕F1

B,

where F0
B and F1

B denote the subspaces with even and odd numbers of generators re-
spectively. The same decomposition exists for F∗

B.
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There is a nondegenerate bilinear pairing FB ×F∗
B → C, and the pairing of 〈U | ∈ F∗

B

and |V 〉 ∈ FB is denoted by 〈U |V 〉 with
(2.6) 〈0|0〉 = 1.

The vacuum expectation value of the Clifford algebra element a is a pairing of 〈0| and a |0〉
which is denoted by 〈0| a |0〉. It is uniquely defined by the anticommutation relations
(2.1), property (2.2), and a relation

(2.7) 〈0|φ0 |0〉 = 0.

In particular, if a is an odd element of the Clifford algebra, then 〈0| a |0〉 = 0. It is easy
to see that the bases in (2.3) and (2.4) are orthogonal. Let us focus on the space F0

B.
The basis can be labelled by strict partitions λ ∈ DP in the following way:

(2.8) |λ〉 =
®
φλ1φλ2 . . . φλℓ(λ)

|0〉 for ℓ(λ) = 0 mod 2,√
2φλ1φλ2 . . . φλℓ(λ)

φ0 |0〉 for ℓ(λ) = 1 mod 2.

For the dual space F0∗
B we have a similar basis. From the anticommutation relations we

have:

Proposition 2.1. ∀ λ, µ ∈ DP

(2.9) 〈λ|µ〉 = (−1)|λ|δλ,µ.

It is easy to see that

(2.10) 〈0|φkφm |0〉 = δk+m,0H [m],

where

(2.11) H [m] =





0 for m < 0,
1

2
for m = 0,

(−1)m for m > 0.

Bilinear combinations of neutral fermions φkφm satisfy the commutation relations of
the Lie algebra go(∞). Let (Ei,j)k,l = δi,kδj,l be the standard basis of the matrix units

{Ei,j| i, j ∈ Z}. Then φkφ−m corresponds [DJKM82] to

(2.12) Fk,m = (−1)mEk,m − (−1)kE−m,−k

with the commutation relations

(2.13) [Fa,b, Fc,d] = (−1)bδb,cFa,d − (−1)aδa+c,0F−b,d + (−1)bδb+d,0Fc,−a − (−1)aδa,dFc,b.

For the bilinear combinations of neutral fermions we introduce the normal ordering
by :φkφm:= φkφm − 〈0|φkφm |0〉. It is skew-symmetric

(2.14) :φkφm:= − :φmφk:,

in particular, :φkφk:= 0. The normal ordered quadratic combinations of neutral fermions
satisfy the commutation relations of a central extension of the algebra go(∞)

(2.15) [:φaφb:, :φcφd:] = (−1)bδb+c,0 :φaφd: −(−1)aδa+c,0 :φbφd:

+(−1)bδb+d,0 :φcφa: −(−)aδa+d,0 :φcφb: +(δc,bδa,d−δa−c,0δb−d,0)((−1)aH [b]−(−1)bH [a]),

where H [a] is given by (2.11).
Let us consider the generating function

(2.16) φ(z) =
∑

k∈Z

φkz
k.
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It satisfies the anticommutation relation

(2.17) {φ(z), φ(w)} = δ(z + w).

Here we introduce the delta-function

(2.18) δ(z − w) =
∑

k∈Z

( z
w

)k
.

It satisfies

(2.19) δ(z − w)f(z) = δ(z − w)f(w)

for any formal series f(z) ∈ C[[z, z−1]], and can be represented as

(2.20) 2δ(z + w) =
z − w

z + w
− z − w

w + z
.

Here 1
z−w

denotes the Laurent series expansion in the region |z| > |w|,

(2.21)
1

z − w
:=

1

z

∞∑

k=0

(w
z

)k
.

Quadratic combinations of these generating functions generate a Lie algebra with the
following commutation relations

(2.22) [φ1(z1)φ(w1), φ(z2)φ(w2)] = δ(w1 + z2)φ(z1)φ(w2)− δ(z1 + z2)φ(w1)φ(w2)

+ δ(w1 + w2)φ(z2)φ(z1)− δ(z1 + w2)φ(z2)φ(w1).

For the normal ordered operator we have

(2.23) φ(z)φ(w) =:φ(z)φ(w): +
1

2

z − w

z + w
.

2.2. Vertex operators. For k ∈ Zodd we introduce the bosonic operators

(2.24) Jk =
1

2

∑

m∈Z

(−1)m+1 :φmφ−m−k:

satisfying a commutation relation of the Heisenberg algebra

(2.25) [Jk, Jm] =
k

2
δk+m,0.

From (2.2) we have

(2.26) Jm |0〉 = 0, 〈0| J−m = 0, m > 0.

Let us consider the vertex operator for the BKP hierarchy introduced in [DJKM82],

(2.27) “VB(z) = exp

Ñ
∑

k∈Z+
odd

zktk

é

exp

Ñ

−2
∑

k∈Z+
odd

1

kzk
∂

∂tk

é

.

These operators satisfy the anticommutation relations

(2.28)
¶“VB(z),“VB(w)

©
= 2δ(z + w)

similar to (2.17).
It is convenient to introduce the generating functions of the bosonic operators

(2.29) J+(t) =
∑

k∈Z+
odd

tkJk, J−(s) =
∑

k∈Z+
odd

skJ−k.
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Then one has

“VB(z) 〈0| eJ+(t) = 2 〈0|φ0e
J+(t)φ(z),

“VB(z) 〈0|φ0e
J+(t) = 〈0| eJ+(t)φ(z).

(2.30)

Let us consider a bilinear combination of the vertex operators “VB,

(2.31) “VB(z, w) =
1

2
“VB(z)“VB(w).

Using the anticommutation relation (2.28) it is easy to show that the vertex operators
“VB(z, w) satisfy the commutation relation, equivalent to the one described by (2.22) for
the bilinear combinations φ(z)φ(w),

(2.32)
î“VB(z1, w1),“VB(z2, w2)

ó
= δ(w1 + z2)“VB(z1, w2)

− δ(z1 + z2)“VB(w1, w2) + δ(w1 + w2)“VB(z2, z1)− δ(z1 + w2)“VB(z2, w1).

These vertex operators, dependent on two parameters, can be represented as
(2.33)

“VB(z, w) =
1

2

z − w

z + w
exp

Ñ
∑

k∈Z+
odd

(zk + wk)tk

é

exp

Ñ

−2
∑

k∈Z+
odd

Å
1

kzk
+

1

kwk

ã
∂

∂tk

é

.

It is also convenient to consider a regularized version of the vertex operator, corre-
sponding to :φ(z)φ(−w):

(2.34) “YB(z, w) = “VB(z, w)−
1

2

z − w

z + w
,

or, equivalently

(2.35) “YB(z, w) =
1

2

Å
“VB(z)“VB(w)−

z − w

z + w

ã
.

This expression is regular at z = −w, moreover, it is antisymmetric with respect to the
permutation of z and w,

(2.36) “YB(z, w) = −“YB(w, z).
From (2.30) it follows that

(2.37) “YB(z, w) 〈0| eJ+(t) = 〈0| eJ+(t) :φ(z)φ(w): .

2.3. Boson-fermion correspondence. For the neutral fermions the boson-fermion
correspondence [You89] describes an isomorphism

(2.38) σi
B : F i

B ≃ B(i) = C[[t1, t3, t5, . . . ]]

for i = 0, 1. Here

(2.39) σi
B(|i〉) = 1,

where we introduce |1〉 =
√
2φ0 |0〉, and for both i = 0, 1 we have

(2.40) σi
BJ−k(σ

i
B)

−1 =
k

2
tk, σi

BJk(σ
i
B)

−1 =
∂

∂tk

for k ∈ Z+
odd. The boson-fermion correspondence is given by

(2.41) σi
B(|a〉) =

{
〈1| eJ+(t) |a〉 for |a〉 ∈ F1

B,

〈0| eJ+(t) |a〉 for |a〉 ∈ F0
B,
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where 〈1| =
√
2 〈0| φ0. The boson-fermion correspondence between two different repre-

sentations of the central extension of the go(∞) algebra is given by

(2.42) σi
B :φ(z)φ(w): (σi

B)
−1 = “YB(z, w).

Below we will work only with F0
B component of the fermionic Fock space and its bosonic

counterpart. For them we denote the boson-fermion correspondence by σ.

3. WB
1+∞-algebra

Content of this section is closely related to the results of van de Leur [vdL95].

3.1. wB
1+∞-algebra and its central extension. Let us introduce the algebra WB

1+∞.
Consider w1+∞, the algebra of diffeomorphisms on the circle,

(3.1) w1+∞ = span{zk∂mz | k ∈ Z, m ∈ Z≥0}.
Let ι be the anti-involution of w1+∞

(3.2) ι(z) = −z, ι(z∂z) = −z∂z .

We define

(3.3) wB
1+∞ = {a ∈ w1+∞ | ι(a) = −a}.

For any a ∈ w1+∞ we denote by ā the operator, obtained by the sign inversion of z,

(3.4) a = a
∣∣
z 7→−z,∂z 7→−∂z

.

Then it is easy to see that

(3.5) ι(a) = a∗,

where a∗ ∈ w1+∞ is the adjoint operator for which an identity

Resz
(
z−1f(z) a g(z)

)
= Resz

(
z−1g(z) a∗ f(z)

)

holds for any commuting f(z) and g(z). Here

(3.6) Resz
∑

k∈Z

akz
k := a−1.

In particular,

(3.7) (zk∂mz )∗ = z(−∂z)mzk−1.

Definition 1. For any operator a ∈ w1+∞ we introduce a differential operator, acting
in the bosonic Fock space C[[t1, t3, t5 . . . ]]:

(3.8) ŴB
a

=
1

2
Resw w

−1 aw ·“YB(z, w)
∣∣∣
z=−w

.

Here by aw we denote the operator a acting on the space of functions of the variable
w.

Lemma 3.1. For a ∈ w1+∞

(3.9)
î“VB(z), ŴB

a

ó
=

1

2
(az − ι(az)) ·“VB(z).
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Proof. From the anticommutation relation (2.28) we have

(3.10)
î“VB(z),“YB(v, w)

ó
= δ(z + v)“VB(w)− δ(z + w)“VB(v).

Hence,
î“VB(z), ŴB

a

ó
=

1

2
Resw w

−1 aw

Ä
δ(z + v)“VB(w)− δ(z + w)“VB(v)

ä∣∣∣
v=−w

=
1

2
Resw w

−1
Ä
δ(z − w)aw“VB(w)− δ(z + w)a∗w

“VB(−w)
ä
,

(3.11)

and the statement of the lemma follows from (3.5). �

Corollary 3.2. For a ∈ wB
1+∞

(3.12)
î“VB(z), ŴB

a

ó
= az ·“VB(z).

From the commutation relation (2.32) and definition of the regularized vertex operator
(2.34) we have

(3.13)
î“YB(z1, w1),“YB(z2, w2)

ó
= δ(w1 + z2)“YB(z1, w2)

− δ(z1 + z2)“YB(w1, w2) + δ(w1 + w2)“YB(z2, z1)− δ(z1 + w2)“YB(z2, w1)

+
1

4

Ç
w1 − z2
w1 + z2

z1 − w2

z1 + w2
− z1 − z2
z1 + z2

w1 − w2

w1 + w2
+
w2 − w1

w2 + w1

z2 − z1
z2 + z1

− w2 − z1
w2 + z1

z2 − w1

z2 + w1

å
.

Here we use (2.20).
Let

(3.14) µ(a, b) =
1

8
Resw1 Resw2 w

−1
1 w−1

2

w1 − w2

w1 + w2
(aw2bw1 − aw1bw2)

w1 − w2

w1 + w2
.

Then using (3.13), from a direct computation we see that operators ŴB
a

describe algebra
WB

1+∞, a central extension of the algebra wB
1+∞:

Lemma 3.3. For a, b ∈ wB
1+∞

(3.15)
î
ŴB

a
, ŴB

b

ó
= ŴB

[a,b] + µ(a, b).

From (2.37) we have

(3.16) ŴB
a
· 〈0| eJ+(t) = 〈0| eJ+(t)WB

a
,

where

(3.17) WB
a

=
1

2
Resw w

−1 :φ(−w)awφ(w):

is the bilinear fermionic operator acting on the fermionic Fock space.

3.2. Bases in wB
1+∞-algebra and its central extension. Let us consider the operators

(3.18) wk,m := −zk+m(∂z)
m + (−1)k+mz(∂z)

mzk+m−1

for k ∈ Z, m ∈ Z≥0. It is easy to see that wk,m ∈ wB
1+∞. Operators with k +m ∈ Zodd

constitute a basis in wB
1+∞, for example

(3.19)

wk,0 = −2zk, k ∈ Zodd,

wk,1 = −2zk+1∂z − kzk, k ∈ Zeven,

wk,2 = −2zk+2∂2z − 2(k + 1)zk+1∂z − (k + 1)kzk, k ∈ Zeven.
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Associated basis of WB
1+∞ consists of operators

(3.20) ŴB
k,m := ŴB

wk,m
.

for k +m ∈ Zodd, and a central element.
Let

(3.21) ĴB(z) =
∑

k∈Z+
odd

Å
ktkz

k−1 + 2z−k−1 ∂

∂tk

ã
.

We introduce the bosonic normal ordering •

•
. . . •

•
which puts all tk to the left of all ∂

∂tk
.

Consider the operators

(3.22) Uk(z) = •

•
Pk(ĴB(z)) •

•
.

Here Pm are the Faà di Bruno differential polynomials:

(3.23) Pk(ϕ
′) = e−ϕ(z)∂kz e

ϕ(z) = (∂z + ϕ′)k,

where ϕ′ = ∂zϕ(z). They have a simple expression in terms of elementary Schur functions
pk,

(3.24) Pk(ϕ
′) = k!pk(ϕ

(j)(z)/j!),

because

(3.25)
∞∑

k=0

sk

k!
Pk(∂zϕ) = e−ϕ(z)eϕ(z+s) = e

∑
∞

j=1
sj

j!
ϕ(j)(z) =

∞∑

k=0

skpk(ϕ
(j)(z)/j!).

Let

(3.26) ϕ̂B(z) =
∑

k∈Z+
odd

Å
tkz

k − 2
1

kzk
∂

∂tk

ã
,

then ĴB(z) = ∂zϕ̂B(z) and the vertex operator (2.35) can be expressed as

(3.27) “YB(z, w) =
1

2

z − w

z + w
•

•
eϕ̂B(z)+ϕ̂B(w) − 1 •

•
.

The following lemma describes operators ŴB
k,m in terms of the Faà di Bruno polyno-

mials

Lemma 3.4. For k ∈ Z, m ∈ Z≥0

(3.28) ŴB
k,m =

1

2
Resw w

k+m−1

Å
2w

m+ 1
Um+1(w) + Um(w)

ã
,

where we put U0(w) = 0.

Proof. By definition

ŴB
k,m =

1

2
Resw w

−1
(
(−1)k+mw∂mw w

k+m−1 − wk+m∂mw
)“YB(z, w)

∣∣∣
z=−w

=
1

2
Resw w

−1
(
zk+m∂mz − wk+m∂mw

)“YB(z, w)
∣∣∣
z=−w

.

(3.29)

It is easy to see that for any series f(z, w) ∈ C[[z, w]] such that f is antisymmetric,
f(z, w) = −f(w, z), one has

(3.30) Resw w
−1 zk∂mz f(z, w)

∣∣
z=−w

= −Resw w
−1 wk∂mw f(z, w)

∣∣
z=−w

.
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Since “YB(z, w) is antisymmetric, (2.36), we conclude that

(3.31) ŴB
k,m = −Resw w

k+m−1(∂w)
m“YB(z, w)

∣∣∣
z=−w

.

Then

wk∂mw
“YB(z, w)

∣∣∣
z=−w

= wk∂m∆
“YB(−w,w +∆)

∣∣∣
∆=0

= −1

2
wk∂m∆ (2w +∆)

∞∑

j=1

∆j−1

j!
Uj(w)

∣∣∣∣∣∣
∆=0

= −1

2
wk

Å
2w

m+ 1
Um+1(w) + Um(w)

ã
,

(3.32)

where for m = 0 we assume U0(w) = 0. This concludes the proof. �

The Heisenberg-Virasoro subalgebra of the algebraWB
1+∞ is generated by the operators

(3.33) ĴB
k =





2
∂

∂tk
for k ∈ Z+

odd,

−kt−k for − k ∈ Z+
odd,

0 overwise

and the Virasoro operators

(3.34) L̂B
k =





1

2

∑

i+j=k

•

•
ĴB
i Ĵ

B
j

•

•
, for k ∈ Zeven,

0, for k ∈ Zodd.

Here the bosonic normal ordering puts all ĴB
m with positive m to the right of all ĴB

m with
negative m. Let us also consider the W (3)-algebra, which includes the generators

(3.35) M̂B
k =





1

3

∑

i+j+l=k

•

•
ĴB
i Ĵ

B
j Ĵ

B
l

•

•
, for k ∈ Zodd,

0, for k ∈ Zeven.

These operators satisfy the following commutation relations

(3.36)

î
ĴB
k , Ĵ

B
m

ó
= 2δk+m,0k, k,m ∈ Zodd,î

ĴB
k , L̂

B
m

ó
= 2kĴB

k+m, k ∈ Zodd, m ∈ Zeven,
î
L̂B
k , L̂

B
m

ó
= 2(k −m)L̂B

k+m +
1

3
k(k2 − 1)δk,−m, k,m ∈ Zeven,

î
ĴB
k , M̂

B
m

ó
= 4k L̂B

k+m. k,m ∈ Zodd,
î
L̂B
k , M̂

B
m

ó
= 2(2k −m)M̂k+m +

2

3
k(k2 − 1)Ĵk+m, k ∈ Zeven, m ∈ Zodd,

and, except for the case of two operators M̂B
m , these operators commute otherwise. A

commutator of two M̂B
k ’s contains the terms of fourth power of the bosonic operators

ĴB
m, so it can not be represented as a linear combination of ĴB

k , L̂
B
k , and M̂

B
k .
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For operators ŴB
k,m with m ≤ 2 we have

ŴB
k,0 = ĴB

k ,

ŴB
k,1 = L̂B

k − k

2
ĴB
k ,

ŴB
k,2 = M̂B

k − (k + 1)L̂B
k +

(k + 1)(2k + 1)

6
ĴB
k .

(3.37)

4. Orthogonal Sato Grassmannian

In this section we briefly summarize some properties of the Sato Grassmannian. It
describes the space of solutions of the KP hierarchy [SS83] and its BKP version. We
describe the action of the algebra wB

1+∞ on the BKP Sato Grassmannian and clarify the
difference between the points of the KP and BKP Sato Grassmannians for the solutions
of the KdV hierarchy.

4.1. Symmetries of the BKP Sato Grassmannian. Let us consider the space H =
H+ ⊕H−, where the subspaces

(4.1) H− = z−1C[[z−1]]

and

(4.2) H+ = C[z]

are generated by negative and nonnegative powers of z respectively. Then the Sato
Grassmannian Gr consists of all closed linear spaces W ∈ H , which are compatible with
H+. Namely, an orthogonal projection π+ : W → H+ should be a Fredholm operator, i.e.
both the kernel ker π+ ∈ W and the cokernel coker π+ ∈ H+ should be finite-dimensional
vector spaces. The Grassmannian Gr consists of components Gr(k), parametrized by an
index of the operator π+. Below we use only the component Gr(0); other components

have an equivalent description. The big cell Gr
(0)
+ of Gr(0) is defined by the constraint

ker π+ = coker π+ = 0. We call Gr
(0)
+ the Sato Grassmannian for simplicity.

A point of the Sato Grassmannian W ∈ Gr
(0)
+ can be described by an admissible basis

(4.3) W = spanC{ΦW
1 ,Φ

W
2 ,Φ

W
3 , . . . }.

Let

(4.4) Ψ = W ∩ 1 + z−1C[[z−1]].

be the wave function.
The BKP hierarchy can be represented in terms of tau-function τ(t) by the Hirota

bilinear identity

(4.5) Resz z
−1e

∑
k∈Z

+
odd

zk(tk−t′
k
)
τ(t− 2[z−1])τ(t′ + 2[z−1]) = τ(t)τ(t′).

Here t and t′ are two independent sets of variables. For f(z) ∈ H and g(z) ∈ H put

(4.6) (f(z), g(z))B := Resz z
−1f(z)g(−z).

Note that ( , )B is a non-degenerate symmetric bilinear pairing on H . For W ∈ Gr(0) we
denote by W⊥B the orthogonal compliment of W with respect to ( , )B. The BKP (or

orthogonal) Sato Grassmannian Gr
(0)
B is the subspace of Gr(0) such that W⊥B ⊂ W and

the quotient W/W⊥B is one dimensional and is generated by Ψ. Similarly to the KP

case, one can consider the big cell of the BKP Sato Grassmannian, Gr
(0)
B+ = Gr

(0)
+ ∩Gr

(0)
B .

There exists a bijection between the points of the BKP Sato Grassmannian W ∈ Gr
(0)
B+
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and the BKP tau-functions with τ(0) = 1. Below we focus on Gr
(0)
B+, and put τ(0) = 1

for simplicity.
Tau-functions of the BKP hierarchy are given by the vacuum expectation values of

neutral fermions

(4.7) τG(t) = 〈0| eJ+(t)G |0〉 .
They are labeled by the group element of the centrally extended go(∞) algebra,

(4.8) G = exp

( ∑

k,m∈Z

akm :φkφm:

)
.

The wave function is equal to the principal specialization of the BKP tau-function

(4.9) Ψ(z) = τ(−2[z−1]) = τ(2[−z−1]),

because the BKP tau-functions depend only on odd times. The Baker–Akhiezer function

(4.10) ΨB(z, t) = e
∑

k∈Z
+
odd

tkz
k τ(t − 2[z−1])

τ(t)

generates the corresponding point of the BKP Sato Grassmannian through the t series
expansion

(4.11) Ψ(z, t) ∈ W.

Let us label the Baker–Akhiezer function, associated with the tau-function (4.7), by G.
Then, from (2.30) we have

(4.12) ΨB
G(z, t) =

2 〈0|φ0e
J+(t)φ(z)G |0〉
τG(t)

.

For some a ∈ wB
1+∞ let us consider

(4.13) G̃ = eW
B
a G,

where WB
a

is given by (3.17). We assume that a and G are such that both τG and τG̃
are well defined. Then from (2.30) for the associated wave function we have

ΨB
G̃
(z, t) =

“VB(z) 〈0| eJ+(t)eW
B
a G |0〉

τG̃(t)

=
“VB(z)eŴB

a 〈0| eJ+(t)G |0〉
τG̃(t)

.

(4.14)

From Corollary 3.2 we have the operator identity

(4.15) “VB(z)eŴ
B
a = eŴ

B
a

Ä
e−ŴB

a “VB(z)eŴ
B
a

ä
= eŴ

B
a

Ä
eaz“VB(z)

ä
,

hence

ΨB
G̃
(z, t) =

eŴ
B
a eaz“VB(z) 〈0| eJ+(t)G |0〉

τG̃(t)

=
eŴ

B
a τG(t)e

azΨB
G(z, t)

τG̃(t)
.

(4.16)

Inverting the operator eŴ
B
a we have

(4.17) eazΨB
G(z, t) =

e−ŴB
a τG̃(t)Ψ

B
G̃
(z, t)

τG(t)
.
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Since ΨB
G̃
(z, t) ∈ WG̃, we also have

(4.18)
e−ŴB

a τG̃(t)Ψ
B
G̃
(z, t)

τG(t)
∈ WG̃.

Therefore,

(4.19) ea · WG ⊂ WG̃,

and inverse is also true

(4.20) e−a · WG̃ ⊂ WG.

Then the following lemma justifies Definition 1:

Lemma 4.1. For a ∈ wB
1+∞ and WG ∈ Gr

(0)
B

(4.21) ea · WG = W
eW

B
a G
.

4.2. KdV vs BKP. In [Ale21b] we prove that after a simple redefinition of times any
tau-function of the KdV hierarchy solves the BKP hierarchy:

Theorem 1 ([Ale21b]). For any KdV tau-function

(4.22) τBKP(t) = τKdV(t/2)

is a tau-function of the BKP hierarchy.

The KdV hierarchy is a 2-reduction of the KP hierarchy. Let us consider a tau-function
of KdV hierarchy τKdV and the point WKdV ∈ Gr(0) associated to it as a tau-function
of the KP hierarchy. If we consider the same tau-function as a tau-function of the BKP
hierarchy, in general it defines another point of the same Sato Grassmannian WBKP ∈
Gr

(0)
B ⊂ Gr(0). The reason is that the Baker–Akhiezer functions of two hierarchies have

different form.
Indeed, as a tau-function of the KP hierarchy, τKdV defines the Baker–Akhiezer func-

tion by

(4.23) ΨKdV(z, t) = e
∑

k∈Z
+
odd

tkz
k τKdV(t− [z−1])

τKdV(t)
,

where we put t2k = 0 for k > 0. If we represent it in terms of the corresponding BKP
tau-function using Theorem 1, we get

(4.24) ΨKdV(z, t/2) = e
1
2

∑
k∈Z

+
odd

tkz
k τBKP(t− 2[z−1])

τBKP(t)
.

The Baker–Akhiezer function of the same tau-function, considered in the context of the
BKP hierarchy, is

(4.25) ΨBKP(z, t) = e
∑

k∈Z
+
odd

tkz
k τBKP(t− 2[z−1])

τBKP(t)
.

If WBKP ∈ Gr
(0)
B+ then at t = 0 these two Baker–Akhiezer functions coincide

(4.26) ΦKdV
1 (z) = ΦBKP

1 (z) = τBKP(−2[z−1]) =: Ψ(z).

However, already the next basis vectors are different:

ΦKdV
2 (z) = 2

∂

∂t1
ΨKdV(z, t/2)

∣∣∣∣
t=0

= zΨ(z) + 2
∂

∂t1
τBKP(t− 2[z−1])

∣∣∣∣
t=0

− 2Ψ(z)
∂

∂t1
τBKP(t)

∣∣∣∣
t=0

,

(4.27)
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and

ΦBKP
2 (z) =

∂

∂t1
ΨBKP(z, t/2)

∣∣∣∣
t=0

= zΨ(z) +
∂

∂t1
τBKP(t− 2[z−1])

∣∣∣∣
t=0

−Ψ(z)
∂

∂t1
τBKP(t)

∣∣∣∣
t=0

.

(4.28)

Moreover, it is clear that this difference, in general, cannot be compensated by Ψ. Hence,
in general,

(4.29) WKdV 6= WBKP.

Therefore, the Kac–Schwarz algebras of a KdV tau-function, considered in the frame-
works of the KP and BKP hierarchies, are different.

5. Generalized Brézin–Gross–Witten model

5.1. Intersection theory. Denote by Mg,n the Deligne–Mumford compactification of
the moduli space of all compact Riemann surfaces of genus g with n distinct marked
points. It is a non-singular complex orbifold of dimension 3g− 3+ n. It is empty unless
the stability condition

2g − 2 + n > 0(5.1)

is satisfied.
For each marking index i consider the cotangent line bundle Li → Mg,n, whose fiber

over a point [Σ, z1, . . . , zn] ∈ Mg,n is the complex cotangent space T ∗
zi
Σ of Σ at zi.

Let ψi ∈ H2(Mg,n,Q) denote the first Chern class of Li. We consider the intersection
numbers

〈τa1τa2 · · · τan〉g :=
∫

Mg,n

ψa1
1 ψ

a2
2 · · ·ψan

n .(5.2)

The integral on the right-hand side of (5.2) vanishes unless the stability condition (5.1)
is satisfied, all ai are non-negative integers, and the dimension constraint

(5.3) 3g − 3 + n =

n∑

i=1

ai

holds true. Let Ti, i ≥ 0, be formal variables and let

(5.4) τKW := exp

(
∞∑

g=0

∞∑

n=0

~2g−2+nFg,n

)
,

where

(5.5) Fg,n :=
∑

a1,...,an≥0

〈τa1τa2 · · · τan〉g
∏
Tai
n!

.

Witten’s conjecture [Wit91], proved by Kontsevich [Kon92], states that the partition
function τKW becomes a tau-function of the KdV hierarchy after the change of vari-
ables Tn = (2n+ 1)!!t2n+1. This is the Kontsevich-Witten tau-function.

In this paper we will focus on a different version of intersection theory on the mod-
uli spaces, which is also governed by the KdV hierarchy, and was recently introduced
by Norbury [Nor17]. Namely, he introduced Θ-classes, Θg,n ∈ H4g−4+2n(Mg,n), and
described their intersections with the ψ-classes

(5.6) 〈τa1τa2 · · · τan〉Θg =

∫

Mg,n

Θg,nψ
a1
1 ψ

a2
2 · · ·ψan

n .
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Again, the integral on the right-hand side vanishes unless the stability condition (5.1) is
satisfied, all ai are non-negative integers, and the dimension constraint

(5.7) g − 1 =
n∑

i=1

ai

holds true. Consider the generating function of the intersection numbers of Θ-classes
and ψ-classes

(5.8) FΘ
g,n =

∑

a1,...,an≥0

∏
Tai
n!

∫

Mg,n

Θg,nψ
a1
1 ψ

a2
2 · · ·ψan

n ,

then it was conjectured by Norbury [Nor17], that it provides a direct analog of the
Kontsevich–Witten tau-function. Recently this conjecture was proven by Chidambaram,
Garcia-Failde, and Giacchetto.

Theorem ([CGFG22]). The generating function

(5.9) τΘ = exp

(
∞∑

g=0

∞∑

n=0

~2g−2+nFΘ
g,n

)

becomes a tau-function of the KdV hierarchy after the change of variables Tn = (2n +
1)!!t2n+1.

Moreover, τΘ is nothing but a tau-function of the Brézin–Gross–Witten (BGW) model

(5.10) τΘ = τBGW .

We refer the reader to [Nor17, Nor20, CGFG22] for a detailed presentation.
The BGW tau-function can be described by a matrix model. This matrix model

description has a natural one-parameter deformation, which we will consider below. Let
Λ = diag (λ1, λ2, . . . , λM) be a diagonal matrix. For any function f , dependent on the
infinite set of variables t = (t1, t3, t5, . . . ), let

(5.11) f
([
Λ−1

])
:= f(t)

∣∣∣
tk=

1
k
TrΛ−k

be the Miwa parametrization. The Generalized Brézin–Gross–Witten model was intro-
duced in [MMS96] and further investigated in [Ale18]. In the Miwa parametrization it
is given by the asymptotic expansion of the matrix integral

(5.12) τBGW ([Λ−1], N) := C̃−1

∫
[dΦ] exp

Å
− 1

2~
Tr
(
Λ2Φ+ Φ−1 + 2~(N −M) log Φ

)ã
.

where one integrates over the normal M ×M matrices.

Remark 5.1. Let us note that to make the normalization compatible with the one of
Norbury, we substitute ~ of [Ale18] with 2~.

For N = 0 the generalized BGW tau-function reduces to the original BGW model,
τBGW (t, 0) = τBGW (t). For arbitrary N , this is a tau-function of the KdV hierarchy.
Moreover, the tau-functions for different values of the parameter N (not to be confused
with M , the size of the matrices) are related to each other by the MKP hierarchy.
The first terms of the series expansion of τBGW (t, N) were described in [Ale18]. The
Virasoro constrains for the generalized BGW model can be derived with the help of
the Kac–Schwarz approach [Ale18]. These Virasoro constraints lead to the cut-and-join
description

(5.13) τBGW (t, N) = e~Ŵ0(N) · 1,
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with the cut-and-join operator
(5.14)

Ŵ0(N) =
∑

k,m∈Z+
odd

Å
kmtktm

∂

∂tk+m−1
+

1

2
(k +m+ 1)tk+m+1

∂2

∂tk∂tm

ã
+

Å
1

8
− N2

2

ã
t1.

5.2. Cut-and-join operator and BKP tau-function. In [Ale21a] it was proven that
after a transformation tk 7→ tk/2 the cut-and-join operator (5.14) acquires the form

(5.15) Ŵ0(N) =
1

4
M̂B

−1 +

Å
1

16
− N2

4

ã
ĴB
−1,

where the generators ĴB
−1 and M̂

B
−1 are given by (3.33) and (3.35). Hence, it is an element

of the BKP symmetry algebra, and τBGW (t/2, N) is a tau-function of the BKP hierarchy.

Remark 5.2. The BKP integrability also immediately follows from the KdV one, see
Theorem 1.

In the basis (3.37) the cut-and-join operator has the form

(5.16) Ŵ0(N) =
1

4
ŴB

−1,2 +

Å
1

16
− N2

4

ã
ŴB

−1,0,

and is equal to ŴB
w0(N) with

(5.17) w0(N) = −1

2

Å
z∂2z +

Å
1

4
−N2

ã
z−1

ã
∈ wB

1+∞.

In this section we will find another expression for the BKP tau-function τBGW (t/2, N)
in terms of the group elements of the WB

1+∞ algebra.
Let

(5.18) F (z; a) :=

∞∑

k=1

Bk+1(a + 1/2)

(k + 1)kzk
,

where Bk(z) are the Bernoulli polynomials. This series appears in Stirling’s expansion
of the gamma function,

(5.19) Γ(z + 1/2− a) ∼
√
2πzz−ae−zeF (z;a),

valid for large values of |z| with | arg(z)| < π. Here a is an arbitrary finite complex
number. Let us consider the group operator of the algebra wB

1+∞

(5.20) OB(N) = exp

Ñ

− log(−N2)D + 2
∑

k∈Z+
even

Bk+1(D + 1/2)

(k + 1)kNk

é

,

where

(5.21) D := z∂z .

It can be obtained from the asymptotic expansion of a combination of the gamma-
functions as N goes to infinity with finite D,

(5.22) OB(N) ∼ Γ(1/2 +N)

Γ(D + 1/2 +N)

Γ(1/2−N)

Γ(D + 1/2−N)
.

It is easy to see that

(5.23) Dk ∈ wB
1+∞, for k ∈ Z+

odd.
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Since Bk(x + 1/2) ∈ xQ[x2] for odd k, the operator log(OB(N)) is an odd series in D,
therefore,

(5.24) log(OB(N)) ∈ wB
1+∞.

The operator w0(N) can be related to the operator −z−1/2 by a conjugation:

Lemma 5.1.

(5.25) w0(N) = −OB(N)
z−1

2
OB(N)−1.

Proof. One can rewrite the operator w0(N) in terms of D and z−1,

(5.26) w0(N) = −z
−1

2

Å
D2 −D +

1

4
−N2

ã
.

Then

OB(N)
z−1

2
OB(N)−1 =

z−1

2

Γ(D + 1/2 +N)

Γ(D − 1/2 +N)

Γ(D + 1/2−N)

Γ(D − 1/2−N)

=
z−1

2
(D − 1/2 +N)(D − 1/2−N)

=
z−1

2

Å
D2 −D +

1

4
−N2

ã
.

(5.27)

�

Let us consider the group element of the WB
1+∞ algebra

(5.28) ÔB(N) := e
ŴB

log(OB(N)) .

It is obvious that ÔB(N) · 1 = 1, then from Lemma 5.1 and cut-and-join representation
(5.13) we have

Theorem 2. Tau-function of the generalized BGW model is a solution of the BKP
hierarchy, given by

(5.29) τBGW (t/2, N) = ÔB(N) · e
~t1
4 .

Using Lemma 4.1 we can get the basis vectors for the point of the BKP Sato Grass-

mannian Gr
(0)
B+, associated with τBGW (t/2, N). For the basis vectors normalized by

Φk = zk−1(1 +O(z−1)) one has

Φk =
Γ(k − 1/2 +N)

Γ(D + 1/2 +N)

Γ(k − 1/2−N)

Γ(D + 1/2−N)
· e− ~

2z zk−1

=
Γ(k − 1/2 +N)

Γ(D + 1/2 +N)

Γ(k − 1/2−N)

Γ(D + 1/2−N)
·

∞∑

m=0

(−~)m
zk−m−1

2mm!

=
∞∑

m=0

(−~)m
Γ(k − 1/2 +N)

Γ(k −m− 1/2 +N)

Γ(k − 1/2−N)

Γ(k −m− 1/2−N)

zk−m−1

2mm!
.

(5.30)

Remark 5.3. Expression for Φ1 coincides with the expression for the first basis vector
of the generalized BGW tau-function, obtained within the framework of KP in [Ale18]
see formula (77), if one substitutes ~ with 2~ and λ with −z. However, the points of the
Sato Grassmannian associated with KP and BKP frameworks are different, see Section
4.2.
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5.3. Schur Q-functions and BKP hierarchy. Schur Q-functions were introduced
by Schur [Sch11] for the description of the projective representations of the symmet-
ric groups. These functions are labeled by strict partitions λ ∈ DP. The definition
and description of the Schur Q-functions can be found in Section 3.8 of Macdonald’s
book [Mac95]. In many aspects the Schur Q-functions are similar to the ordinary Schur
functions. For example, let us mention the Cauchy formula

(5.31)
∑

λ∈DP

Qλ(t)Qλ(s)

2ℓ(λ)
= exp

Ñ

2
∑

k∈Z+
odd

ktksk

é

,

and an analog of the standard hook formula [Sch11]

(5.32) Qλ(δk,1) = 2|λ|
1

∏ℓ(λ)
j=1 λj !

∏

k<m

λk − λm
λk + λm

.

Schur Q-functions are closely related to the BKP hierarchy. Let us consider the class
of hypergeometric solutions of the BKP hierarchy introduced by Orlov [Orl03]. It was
shown by Mironov, Morozov, and Natanzon [MMN] that the hypergeometric solutions
can be interpreted as the generating functions of the spin Hurwitz numbers. Hypergeo-
metric solutions of the 2-component BKP hierarchy are given by the following sums over
strict partitions

τ(t, s) =
∑

λ∈DP

2−ℓ(λ)rλQλ(t/2)Qλ(s/2),(5.33)

where

(5.34) rλ =

ℓ(λ)∏

j=1

r(1)r(2) . . . r(λj)

for some function r(z), which we call the weight generating function.

Remark 5.4. Let us note that if r(k) = 0 for some k ∈ Z+, then the sum in (5.33) is
finite and contains only partitions with λ1 < k.

Relation between Schur Q-functions and BKP hierarchy, in particular, is described by
the following result of You:

Theorem 3 ([You89]). For the states (2.8) the boson-fermion correspondence yields

(5.35) σ0
B(|λ〉) = 2−ℓ(λ)/2Qλ(t/2).

Schur Q-functions are the polynomial solutions of the BKP hierarchy.

5.4. Schur Q-function expansion of the generalized BGW tau-function. In
[Ale21a] we suggest the following:

Conjecture 5.1.

(5.36) τBGW (t) =
∑

λ∈DP

Å
~

16

ã|λ| Qλ(t)Qλ(δk,1)
3

2ℓ(λ)Q2λ(δk,1)2
.

For the generalized BGW model with arbitrary N in [Ale21a] we conjecture a Schur
Q-function expansion, which generalizes (5.36). This expansion is of the hypergeometric
type (5.33), and the author conjectured in [Ale21a] that the generalized BGW tau-
function, after a simple rescaling of times, is a hypergeometric solution of the BKP
hierarchy. We prove this conjecture below, see Theorem 4, and this is one of the most
important results of this paper.
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It was also noted in [Ale21a], see Remark 3.1, that the analogous to (5.36) Schur Q-
function expansion for the Kontsevich–Witten tau-function was established in a series
of papers [DFIZ93, J9́5, MM]. In [Ale21a] we conjecture that this tau-function is also a
hypergeometric solution of the BKP hierarchy. The statement of this conjecture follows
from the Schur Q-function expansion of [DFIZ93, J9́5, MM] and the relations for the
values of the Schur Q-function on special loci proven in [MMNO21] (see also [LY21]).

Let us use Theorem 3 to describe the Schur Q-function expansion of the generalized
BGW model. From (3.16) we have

(5.37) ŴB
Dk · 〈0| eJ+(t) = 〈0| eJ+(t)1

2

∑

m∈Z

(−1)mmk :φ−mφm: .

Both sides of this identity vanish for even k. For the group operator we have

(5.38) ÔB(N) · 〈0| eJ+(t) = 〈0| eJ+(t)O(N),

where
(5.39)

O(N) = exp

Ñ
∑

m∈Z

(−1)m

Ñ

−1

2
log(−N2)m+

∑

k∈Z+
even

Bk+1(m+ 1/2)

(k + 1)kNk

é

:φ−mφm:

é

.

The tau-function is given by the vacuum expectation value

(5.40) τBGW (t/2, N) = 〈0| eJ+(t)O(N)e
~

2
J−1 |0〉 .

Operators ŴB
Dk are diagonal operators of the go(∞) algebra. For odd k using anti-

commutation relations for (2.8) we have

(5.41)
1

2

∑

m∈Z

(−1)mmk :φ−mφm: |λ〉 = −
ℓ(λ)∑

j=1

λkj |λ〉 ,

hence, from Theorem 3 for odd k one has

(5.42) ŴB
Dk ·Qλ(t/2) = −

ℓ(λ)∑

j=1

λkj Qλ(t/2).

Let us introduce

(5.43) r(N)(z) =
(2z − 1)2 − 4N2

4
.

Theorem 2 leads to the proof of Conjecture 2 of [Ale21a]:

Theorem 4. The partition function of the generalized BGW model in the properly nor-
malized times, τBGW (t/2, N) is a hypergeometric tau-function of the BKP hierarchy
(5.33) with s∗k = 2δk,1:

(5.44) τBGW (t/2, N) =
∑

λ∈DP

Å
~

4

ã|λ|
r
(N)
λ

Qλ(t/2)Qλ(δk,1)

2ℓ(λ)
.

Proof. Using Cauchy formula (5.31) one gets

(5.45) e
~t1
4 =

∑

λ∈DP

Å
~

4

ã|λ| Qλ(t/2)Qλ(δk,1)

2ℓ(λ)
.
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From Theorem 2 and formula (5.42) we have

τBGW (t/2, N) = ÔB(N) ·
∑

λ∈DP

Å
~

4

ã|λ| Qλ(t/2)Qλ(δk,1)

2ℓ(λ)

=
∑

λ∈DP

Å
~

4

ã|λ| Qλ(t/2)Qλ(δk,1)

2ℓ(λ)

ℓ(λ)∏

j=1

Γ(1/2 +N)

Γ(−λj + 1/2 +N)

Γ(1/2−N)

Γ(−λj + 1/2−N)

=
∑

λ∈DP

Å
~

4

ã|λ| Qλ(t/2)Qλ(δk,1)

2ℓ(λ)

ℓ(λ)∏

j=1

Γ(λj + 1/2 +N)

Γ(1/2 +N)

Γ(λj + 1/2−N)

Γ(1/2−N)
.

(5.46)

This formula is equivalent to that of Theorem. �

Please note that all λj are nonnegative, therefore no negative powers of N appear in
the proof.

The first few terms of the expansion (5.44) are given by

τBGW (t/2, N) = 1 +
~

16
(1− 4N2)Q(1)(t/2) +

~2

256
(1− 4N2)(9− 4N2)Q(2)(t/2)

+
~3

12288
(1− 4N2)(9− 4N2)(2(25− 4N2)Q(3)(t/2) + (1− 4N2)Q(2,1)(t/2)) +O(~4).

(5.47)

Let us stress that for the BGW tau-function (N = 0) the statement of this theorem
reduces to equation (5.36), because from (5.32) we have

(5.48)
Qλ(δk,1)

Q2λ(δk,1)
=

ℓ(λ)∏

j=1

(2λj − 1)!!.

For N = k + 1/2 with k ∈ Z≥0 the weight generating function (5.43) vanishes for z =
k+1, r(k+1/2)(k+1) = 0, hence, in this case the tau-function τBGW is a polynomial. These
polynomial tau-functions are given by certain shifted Schur functions for the triangular
partitions [Ale18], which coincide with the shifted Schur Q-functions [Ale21a].

The formula in Theorem 4 is a direct analog of the Schur function expansion of the
generating function for the strictly monotone Hurwitz numbers or Grothendieck’s dessins
d’enfant. We claim that the generalized BGW model is a generating function of the spin
version of the disconnected strictly monotone Hurwitz numbers. In this context the
cut-and-join description of the generalized BGW model is a direct analog of the Zograf
cut-and-join description of Grothendieck’s dessins d’enfant [Zog15]. We will discuss the
details of this identification with the spin Hurwitz numbers elsewhere.

6. Higher models

In this section we discuss a family of hypergeometric tau-functions for the 2-component
BKP hierarchy. This family includes the model, considered in the previous section, and
can serve as a deep generalization of this model.

First, let us note that the operator ÔB(N) is a group operator, therefore it is invertible.
Consider

(6.1) τa,b(t, s,u,w) =
ÔB(ua)ÔB(ua−1) . . . ÔB(u1)

ÔB(wb)ÔB(wb−1) . . . ÔB(w1)
· e

1
2

∑
k∈Z

+
odd

ktksk
,
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where uk and wk are formal parameters. We will focus on the case when the number of
the parameters uk and wk is finite, however, many formulas below are valid also for the
general case with infinitely many parameters. We regard (6.1) as a formal power series in
the variables t and s, and parameters u and w. By construction, this is a tau-function
of 2-component BKP hierarchy. The definition immediately implies the free fermion
formula

(6.2) τa,b(t, s,u,w) = 〈0| eJ+(t)O(ua) . . . O(u1)O
−1(wb) . . .O

−1(w1)e
J−(s) |0〉 ,

where the diagonal operators O are given by (5.39).
For a = 1, b = 0 and sj = δj,1~/2 it reduces to the generalized BGW tau-function,

considered above

(6.3) τ1,0(t, δk,1~/2, N, 0) = τBGW (t/2, N).

In (6.1) we do not introduce the expansion parameter ~, it can be restored by rescaling
of the variables t, s and parameters u, w.

Operators ÔB(Nm) commute with each other, hence, their order in (6.1) is not impor-
tant

Lemma 6.1. For all u1, u2

(6.4)
î
ÔB(u1), ÔB(u2))

ó
= 0.

Proof. From (5.28) we see that log(ÔB(N)) is a linear combination of ŴB
Dk with k ∈ Z+

odd.
Lemma 3.3 implies the identity

(6.5)
î
ŴB

Dk , Ŵ
B
Dm

ó
= 0

for all k,m ∈ Z+
odd, from which the statement of the lemma immediately follows. �

By analogy with Theorem 4 for the weight generating function, given by (5.43), we
have

Proposition 6.2.

(6.6) τa,b(t, s,u,w) =
∑

λ∈DP

r
(u1)
λ r

(u2)
λ . . . r

(ua)
λ

r
(w1)
λ r

(w2)
λ . . . r

(wb)
λ

Qλ(t/2)Qλ(s/2)

2−ℓ(λ)

Remark 6.1. It is easy to see that in general (6.1) is not a tau-function of the KdV
hierarchy.

We claim that these tau-functions are the generating functions for the interesting
family of the weighted spin Hurwitz numbers, which are the spin analogs to the double
weighted Hurwitz numbers with rational weight generating functions, see, e.g., [ACEH20]
and references therein. This section contains description of this family of the BKP
tau-functions analogous to the description of the corresponding family for the ordinary
Hurwitz numbers obtained in [AMMN14, ALS16]. Possible choices of the weights for the
weighed spin Hurwitz numbers associated with the hypergeometric tau-functions for the
2-component BKP hierarchy are discussed in [AS21].

Remark 6.2. This family of BKP tau-functions for sk = δk,1 was introduced by Orlov
[Orl03]. He proved, in particular, that this family is related to the hypergeometric solu-
tions of the KP hierarchy by a square root relation. Therefore, the generating functions
of the spin Hurwitz numbers (6.1) are related to the corresponding generating functions
of the ordinary Hurwitz numbers by a square root relation, completely analogous to the
one investigated in [Lee20].
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Remark 6.3. It would be interesting to construct and investigate the matrix model de-
scription of the tau-functions (6.1) similar to the one, constructed in [AC14, AMMN14]
for the hypergeometric solutions of the KP hierarchy.

6.1. Cut-and-join description. Let us derive the cut-and-join description for the tau-
functions (6.1). Consider the operator

(6.7) w(u,w) = z−1

∏a
j=1

(
(D − 1/2)2 − u2j

)
∏b

j=1

(
(D − 1/2)2 − w2

j

) ∈ wB
1+∞.

Theorem 5.

(6.8) τa,b(t, s,u,w) = e
−

∑
k∈Z

+
odd

skŴw(u,w)k · 1
Proof. Comparing (3.19), (3.33) and (3.37) we have

(6.9) ktk = −2Ŵz−k for k ∈ Z+
odd.

Therefore

(6.10) τa,b(t, s,u,w) = e
∑a

j=1 Ŵ
B
log(OB(uj))

−
∑b

j=1 Ŵ
B
log(OB (wj )) · e−

∑
k∈Z

+
odd

skŴz−k

.

Repeating the proof of Lemma 5.1 we have

(6.11)

∏a
j=1 OB(uj)∏b
j=1 OB(wj)

z−1

∏b
j=1 OB(wj)∏a
j=1 OB(uj)

= w(u,w),

and the statement of the theorem follows from Lemma 3.3. �

Remark 6.4. From Lemma 3.3 it follows that the operators Ŵw(u)k commute with each
other

(6.12)
î
Ŵw(u,w)k , Ŵw(u,w)m

ó
= 0.

thus, from Theorem 5 we have the equation

(6.13)
∂

∂sk
τa,b(t, s,u,w) = −Ŵw(u,w)k · τa,b(t, s,u,w).

The case b = 0 leads to the simple group operators. We expect, that, while the
case b 6= 0 leads to the more complicated group operators, it still can be described by
interesting cut-and-join equations.

By construction, the cut-and-join operator belongs to the the symmetry algebra of the
BKP hierarchy. If only a finite number of the variables sk do not vanish, then the sum∑

k∈Z+
odd
skŴw(u)k is finite, and for the finite number of parameters u the operator Ŵw(u)k

is a finite degree differential operator in variables t.
Consider the case sj = δj,1~/2. It corresponds to the single weighted spin Hurwitz

numbers. Then the sum over partitions (6.6) can be expanded as

(6.14) τa,0(t, δj,1~/2,u, 0) =

∞∑

k=0

~kτ
(k)
a,0 (t,u),

where

(6.15) τ
(k)
a,0 (t,u) =

∑

λ∈DP,|λ|=k

r
(u1)
λ r

(u2)
λ . . . r

(ua)
λ

Qλ(t/2)Qλ(δj,1)

4|λ|2−ℓ(λ)
.

Then the cut-and-join operator provides the recursion in degree of the ramified covering:

(6.16) τ
(k)
a,0 (t,u) = − 1

2k
Ŵw(u) · τ (k−1)

a,0 (t,u).
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We have a similar expansion for sj = δj,k~/2 with k > 1, it corresponds to the case of
orbifold spin Hurwitz numbers.

For the simplest case a = 1, sj = δj,1~/2 and u1 = N this operator reduces the the
cut-and-join operator (5.16) for the generalized BGW tau-function.

6.2. Sato Grassmannian and Kac–Schwarz operators. Let

(6.17) G =

∏a
j=1 OB(uj)∏b
j=1 OB(wj)

e
−

∑
k∈Z

+
odd

skz
−k

be the group operators of the wB
1+∞ algebra. The point of the Sato Grassmannian,

corresponding to the BKP tau-function (6.1) is given by

(6.18) W = G · W0,

where W0 = {1, z, z2, z3 . . . } is a point of the Grassmannian for the trivial BKP tau-
function τ(t) = 1.

The normalized basis vectors for the tau-function (6.1) are given by

(6.19) Φk =

∏b
j=1 Γ(k − 1/2 + wj)Γ(k − 1/2− wj)∏a
j=1 Γ(k − 1/2 + uj)Γ(k − 1/2− uj)

G · zk−1.

Let us introduce the operators

p := G ∂z G
−1,

q := G z G−1.
(6.20)

These are the Kac-Schwarz operators

(6.21) p · W ⊂ W, q · W ⊂ W,

satisfying the canonical commutation relation

(6.22) [p, q] = 1.

Let us introduce

(6.23) Rm =

∏b
j=1((D + 1/2−m)2 − w2

j )∏a
j=1((D + 1/2−m)2 − u2j)

.

For operators (6.20) we have

q =

∏a
j=1 OB(uj)∏b
j=1 OB(wj)

z

∏b
j=1 OB(wj)∏a
j=1 OB(uj)

= z R0

(6.24)

and

p =

∏a
j=1((D + 1/2)2 − u2j)∏b
j=1((D + 1/2)2 − w2

j )
∂z −

∑

k∈Z+
odd

kskq
−k−1

= R−1
0 ∂z −

∑

k∈Z+
odd

kskz
−k−1

k+1∏

m=1

R−1
m .

(6.25)

By construction for the wave function Ψ = Φ1 from (6.19) we have

(6.26) p ·Ψ(z) = 0.
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However, it is more convenient to introduce the operator

(6.27) c = qp = D −
∑

k∈Z+
odd

kskq
−k

which also annihilates the wave function, c ·Ψ = 0. Let us consider the case when sℓ 6= 0
for some finite odd ℓ and sk = 0 for k > ℓ. If b = 0, then the operator c is a finite order
differential operator with coefficients in C[z, z−1]. If b > 0 we introduce

(6.28) K =
ℓ∏

r=1

b∏

j=1

((D + r − 1/2)2 − w2
j ).

Then for the operator A := Kc we have

A = DK−
ℓ∑

k=1

kskz
−k

ℓ−k∏

r=1

b∏

j=1

((D + r − 1/2)2 − w2
j )

k−1∏

m=0

a∏

j=1

((D −m− 1/2)2 − u2j).

(6.29)

It is a polynomial of z−1 and D, which annihilates the wave function

(6.30) A ·Ψ(z) = 0.

We can interpret it as the quantum spectral curve. For K 6= 1 this operator, in general,
is not a Kac-Schwarz operator.

Conjecture 6.1. The n-point functions for the tau-function (6.1) can be given by the
topological recursion, associated with the semi-classical limit of the quantum spectral
curve (6.29).

6.3. Examples. The case of the generalized BGW tau-function, considered in Section
5, corresponds to a = 1, b = 0, sj = δj,1~/2. In this case

(6.31) Rm =
1

(D + 1/2−m)2 − u2
.

The Kac–Schwarz operators, introduced in the previous section, are

p = ((D + 1/2)2 − u2)∂z −
~

2
z−2R−1

1 R−1
2 ,

q = z
1

(D + 1/2)2 − u2
,

(6.32)

the operator

(6.33) c = D − ~

2
z−1((D − 1/2)2 − u2)

coincides with the quantum spectral curve operator A. The quantum spectral curve
equation in this case is closely related to the Bessel equation.

We expect, that the spin Hurwitz numbers interpretation of the case with a = 0, b = 1
is particularly interesting. Namely, this case can be associated with a spin version of the
monotone Hurwitz numbers. Let us consider it in more detail for sj = δj,1~/2. Then

(6.34) Rm = (D + 1/2−m)2 − w2,

and the Kac–Schwarz operators are

p =
1

(D + 1/2)2 − w2
∂z −

~

2
z−2R−1

1 R−1
2 ,

q = z((D + 1/2)2 − w2),

(6.35)
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and

(6.36) c = D − ~

2
z−1 1

(D − 1/2)2 − w2
.

Then the quantum spectral curve is given by the third order differential operator

(6.37) A = ((D − 1/2)2 − w2)D − ~

2
z−1.

6.4. Constraints. We expect that the tau-functions (6.1) satisfy the Virasoro and W-
constraints, analogous to ones obtained in [KZ15, AMMN14]. Some of these constraints
can be derived using the Kac-Schwarz approach for BKP hierarchy. However, not all of
them can be derived this way.

The illustrative example here is the generalized BGW tau-function, considered in
the previous section. This model is completely described by the Virasoro constraints,
derived in [Ale18] using the Kac-Schwarz description of the KP hierarchy. However,
these constraints do not appear in the BKP picture. Hence, for the generalized BGW
tau-function, the KP and BKP pictures are complimentary to each other: the Virasoro
constraints are natural symmetries of the KP hierarchy, while the cut-and-join operator is
an element of the BKP symmetry group. We expect that such interplay between different
integrable structures should be common for the enumerative geometry tau-functions.

The simplest constraint for the generalzed BGW model, which can be obtained from
the BKP approach, is given by

(6.38) ŴB
c
· τBGW (t/2, u) = µτBGW (t/2, u)

where c is given by (6.33), and µ is some eigenvalue. From the consideration of this
equation at t = 0 it is easy to see that µ = 0. The operator

(6.39) ŴB
c

= −1

2
ŴB

0,1 +
~

4
ŴB

−1,2 + ~

Å
1

16
− u2

4

ã
ŴB

−1,0

describes the cut-and-join equation. Indeed, comparing this operator with (5.16), we see
that (6.38) reduces to

(6.40)
1

2
ŴB

0,1 · τBGW (t/2, u) = ~Ŵ0(u) · τBGW (t/2, u).

Since ŴB
0,1 = L̂B

0 = 2
∑

k∈Z+
odd
ktk

∂
∂tk

, we have the cut-and-join equation

(6.41)
∑

k∈Z+
odd

ktk
∂

∂tk
τBGW (t/2, u) = ~Ŵ0(u) · τBGW (t/2, u)

with the unique solution normalized by τBGW (0, u) = 1. This solution is given by (5.13).
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