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Generalized Canonical Time Warping
Feng Zhou and Fernando De la Torre

Abstract—Temporal alignment of human motion has been
of recent interest due to its applications in animation, tele-
rehabilitation and activity recognition. This paper presents
generalized canonical time warping (GCTW), an extension
of dynamic time warping (DTW) and canonical correlation
analysis (CCA) for temporally aligning multi-modal sequences
from multiple subjects performing similar activities. GCTW
extends previous work on DTW and CCA in several ways:
(1) it combines CCA with DTW to align multi-modal data
(e.g., video and motion capture data); (2) it extends DTW
by using a more flexible path warping as combination of
monotonic functions. Unlike exact DTW that has quadratic
complexity, we propose a linear time algorithm to mini-
mize GCTW. (3) GCTW allows simultaneous alignment of
multiple sequences. Experimental results on aligning multi-
modal data, facial expressions, motion capture data and video
illustrate the benefits of GCTW. The code is available at
http://humansensing.cs.cmu.edu/ctw.

Index Terms—Multi-modal sequence alignment, Canonical
correlation analysis, Dynamic time warping, Time warping.

I. INTRODUCTION

Temporal alignment of multiple time series is an impor-

tant problem with applications in many areas such as speech

recognition [1], astronomy [2], computer graphics [3],

computer vision [4], and bio-informatics [5]. In particu-

lar, alignment of human motion from sensory data has

recently received increasing attention in computer vision

and computer graphics to solve problems such as curve

matching [6], temporal clustering [7], tele-rehabilitation [8],

activity recognition [9] and motion synthesis [10], [11].

While algorithms for alignment of time series analysis have

been commonly used in computer vision and computer

graphics, a relatively unexplored problem has been the

alignment of multi-dimensional and multi-modal time series

that encode human motion. Fig. 1 illustrates the main

problem addressed by this paper: how can we efficiently

find the temporal correspondence between (1) the frames

of a video, (2) the samples of motion capture data and (3)

the samples of 3-axis accelerometers of different subjects

performing a similar action (e.g., kicking a ball)?

Several challenges contribute to the alignment of multi-

dimensional, multi-modal time series of human motion.

First, there is typically a large variation in the subjects’

physical characteristics, motion style and speed of the

activity. Second, large changes in view point also compli-

cates the correspondence problem [12], [13]. Third, it is

unclear how existing techniques can be used to align sets

of time series that have different modalities (e.g., video and

motion capture data). While there is extensive literature on

time series alignment and string matching [14], standard
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Fig. 1. Temporal alignment of three sequences recorded with different
sensors (top row video, middle row motion capture and bottom row
accelerometers) of three subjects kicking a ball.

extensions of dynamic time warping (DTW) or Bayesian

networks are not able to align multi-modal data. Moreover,

it is unclear how existing technique can compensate for

subject variability in style and morphology.

To address these problems, this paper proposes gen-

eralized canonical time warping (GCTW), a technique

to temporally align multi-modal time series of different

subjects performing similar activities. GCTW is a spatio-

temporal alignment method that temporally aligns two or

more multi-dimensional and multi-modal time series by

maximizing the correlation across them. GCTW can be seen

as an extension of DTW or canonical correlation analysis

(CCA). To accommodate for subject variability and take

into account the difference in the dimensionality of the

signals, GCTW uses CCA as measure of spatial correlation.

GCTW extends DTW by incorporating a feature weighting

mechanism to provide more importance to most correlated

features and align signals of different dimensionality. It also

extends DTW by parameterizing the warping path as com-

bination of monotonic functions providing a more accurate

alignment and faster optimization strategies. Unlike exact

approaches based on DTW that have quadratic cost, GCTW

uses a Gauss-Newton algorithm that has linear complexity

in the length of the sequence. Preliminary versions of this

paper were published in [15], [16].

The remainder of the paper is organized as follows. Sec-

tion II reviews previous work on temporal alignment, CCA

and DTW. Section III describes canonical time warping

(CTW) and Section IV extends CTW to GCTW. Section V

provides experimental results.

II. PREVIOUS WORK

This section describes previous work on temporal align-

ment, CCA and DTW.
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A. Temporal alignment

This section discusses prior work on alignment of time

series in the context of computer graphics, computer vision

and data mining.

In the literature of computer graphics, temporal align-

ment of human motion has been commonly applied to

solve problems such as content modeling [17], [18], and

motion blending [3], [19], [20]. Hsu et al. [10] proposed

iterative motion warping (IMW), a robust method that

finds a spatio-temporal warping between two instances of

motion captured data. Shapiro et al. [21] used independent

component analysis to separate motion data into visually

meaningful components called style components. Heloir et

al. [22] introduced a multi-level dynamic time warping al-

gorithm based on a weighted principal component analysis

(PCA) [23]. Compared to these works, our method solves

a more general problem of aligning human motion from

multi-modal time series.

In the context of computer vision, temporal alignment

of video captured with different cameras and view points

has been a topic of interest. Rao et al. [24], [25] aligned

trajectories of two moving points using constraints from

the fundamental matrix. Junejo et al. [9] adopted DTW

for synchronizing human actions with view changes based

on a view-invariant descriptor. Compared to this work,

our method simultaneously estimates the optimal spatial

transformation and temporal correspondence to align video

sequences. Recently, Gong and Medioni [26] proposed

dynamic manifold warping to incorporate more complex

spatial transformations through manifold learning. Nicolaou

et al. [27] proposed a probabilistic extension of CTW

for fusing multiple continuous expert annotations in tasks

related to affective behavior.

In the field of data mining, there have been several exten-

sions of DTW to align time series that differ in the temporal

and spatial domain. Keogh and Pazzani [28], for example,

used derivatives of the original signal to improve alignment

with DTW. Listgarten et al. [2] proposed continuous profile

models, a probabilistic method for simultaneously aligning

and normalizing sets of time series in bio-informatics.

Unlike these works, which were originally designed for

aligning 1-D time series, our work addresses the more

challenging problem of aligning multi-modal and multi-

dimensional time series.

In the literature of manifold alignment, Ham et al. [29]

aligned manifolds of images in a semi-supervised manner.

The prior knowledge of pairwise correspondences between

two sets was used to guide the graph embedding. Wang

and Mahadevan [30] aligned manifolds based on an ex-

tension of the Procrustes Analysis (PA). A main benefit

of this approach is that PA learns a mapping that can

be applied to out-of-sample cases. In related work, Wang

and Mahadevan [31] addressed the manifold alignment

with no available correspondence information by learning a

projection that simultaneously matches the local geometry

and preserves the neighborhood relationship within each

set. However, these models lack a mechanism to enforce

temporal correspondence and continuity.

B. Canonical correlation analysis (CCA)

CCA [32] is a technique to extract common features from
a pair of multi-variate data. Given two sets of n variables
(see footnote for the notation1), X = [x1, · · · ,xn] ∈
R

dx×n and Y = [y1, · · · ,yn] ∈ R
dy×n, CCA finds the

linear combinations of the variables in X that are most
correlated with the linear combinations of the variables in
Y. Assuming zero-mean data (

∑

i xi =
∑

j yj = 0), reg-
ularized CCA finds a combination of the original features
that minimizes the sum of the Euclidean distances between
samples:

min
{Vx,Vy}∈Φ

Jcca = ‖VT
xX−V

T
y Y‖2F + φ(Vx) + φ(Vy),

(1)

where Vx ∈ R
dx×d and Vy ∈ R

dy×d denote the low-
dimensional embeddings (d ≤ min(dx, dy)) for X and Y
respectively. φ(·) is a regularization function that penalizes
the high-frequency of the embedding matrices:

φ(V) =
λ

1− λ
‖V‖2F , (2)

In order to avoid the trivial solution of VT
xX and

VT
y Y being zero, CCA decorrelates the canonical variates

(columns of VT
xX and VT

y Y) by imposing the following
orthogonal constraint on the embeddings:

Φ =
{

{Vx,Vy}
∣
∣
∣ V

T
x

(

(1− λ)XX
T + λI

)

Vx = I,

V
T
y

(

(1− λ)YY
T + λI

)

Vy = I
}

. (3)

where λ ∈ [0, 1] is a weight to trade-off between the least-

square error and the regularization terms.
Optimizing Eq. 1 has a closed-form solution in terms

of a generalized eigenvalue problem, i.e., [Vx;Vy] =
eigd(A,B), where:

A =

[
0 XYT

YXT 0

]

,B = (1− λ)

[
XXT 0

0 YYT

]

+ λI.

See [33] for a unification of several component analysis

methods and a review of numerical techniques to efficiently

solve generalized eigenvalue problems.

In computer vision, CCA has been used for matching

sets of images in problems such as activity recognition

from video [34] and activity correlation from cameras [35].

Recently, Fisher et al. [36] proposed an extension of

CCA with parameterized warping functions to align protein

expressions. The learned warping function is a linear com-

bination of hyperbolic tangent functions with non-negative

coefficients, ensuring monotonicity. Unlike our method, the

warping function is unable to deal with feature weighting.

1Bold capital letters denote a matrix X, bold lower-case letters a column
vector x. xi and x(i) represent the ith column and ith row of the matrix
X respectively. xij denotes the scalar in the ith row and jth column of the
matrix X. All non-bold letters represent scalars. 1m×n,0m×n ∈ R

m×n

are matrices of ones and zeros. In ∈ R
n×n is an identity matrix.

‖x‖p = p
√

∑

|xi|p denotes the p-norm. ‖X‖2
F

= tr(XTX) designates
the Frobenious norm. vec(X) denotes the vectorization of matrix X.
X ◦ Y is the Hadamard product of matrices. {i : j} lists the integers,
{i, i + 1, · · · , j − 1, j}. [⇒i Ai], [⇓i Ai], [

⇒
i
Ai] are the horizontal,

vertical, diagonal concatenation respectively. ⊖ denotes the tiled minus,
e.g., A6×2 ⊖B2×2 = A6×2 − (13×1 ⊗B2×2). eigd(A,B) denotes
the top d eigenvectors V that solve the generalized eigenvalue problem
AV = BVΛ.
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Fig. 2. An example of DTW for aligning time series. (a) Two 1-D time
series (nx = 7 and ny = 8) and the optimal alignment between samples
computed by DTW. (b) Euclidean distances between samples, where the
red curve denotes the optimal warping path (l = 9). (c) DP policy at
each pair of samples, where the three arrow directions, ↓,ց,→, denote
the policy, π(·, ·) ∈ {[1, 0], [1, 1], [0, 1]}, respectively. (d) A matrix-form
interpretation of DTW as stretching the two time series in matrix products.
(e) Warping matrix Wx. (f) Warping matrix Wy .

C. Dynamic time warping (DTW)

Given two time series, X = [x1, · · · ,xnx
] ∈ R

d×nx and
Y = [y1, · · · ,yny

] ∈ R
d×ny , DTW [1] is a technique to

align X and Y such that the sum of the Euclidean distances
between the aligned samples is minimized. DTW minimizes

min
{px,py}∈Ψ

Jdtw =
l∑

t=1

‖xpxt
− yp

y
t
‖22, (4)

where l ≥ max(nx, ny) is the number of indexes to align

the samples. The optimal l is automatically selected by the

DTW algorithm. The warping paths, px ∈ {1 : nx}
l and

py ∈ {1 : ny}
l, denote the composition of alignment in

frames. The ith frame in X and the jth frame in Y are

aligned if there exists pxt = i and p
y
t = j at some step t.

In order to find a polynomial time solution, the warping
paths have to satisfy three constraints:

Ψ =
{

{px,py}
∣
∣
∣ px ∈ {1 : nx}

l and py ∈ {1 : ny}
l
,

Boundary: [px1 , p
y
1 ] = [1, 1] and [pxl , p

y

l ] = [nx, ny],

Monotonicity: t1 ≥ t2 ⇒ p
x
t1

≥ p
x
t2

and p
y
t1

≥ p
y
t2
,

Continuity: [pxt , p
y
t ]− [pxt−1, p

y
t−1] ∈ {[0, 1], [1, 0], [1, 1]}

}

.

(5)

The choice of step size in the continuity constraint is

not unique. For instance, replacing the step size by

{[2, 1], [1, 2], [1, 1]} can avoid the degenerated case in

which a single frame of one sequence is assigned to many

consecutive frames in the other sequence. See [1] for an

extensive review on several DTW’s modifications to control

the warping paths.
Although the number of possible ways to align X and

Y is exponential in nx and ny , dynamic programming
(DP) [37] offers an efficient approach with complexity of
O
(

nxny

)

to minimize Jdtw using Bellman’s equation:

J
∗(pxt , p

y
t ) = min

π(pxt ,p
y
t )
‖xpxt

− yp
y
t
‖22 + J

∗(pxt+1, p
y
t+1),

where the cost-to-go value function, J∗(pxt , p
y
t ), represents

the cost remaining starting at tth step using the optimum

policy π∗. The policy function, π(·, ·) : {1 : nx} × {1 :
ny} → {[1, 0], [0, 1], [1, 1]}, defines the deterministic tran-

sition between consecutive steps, [pxt+1, p
y
t+1] = [pxt , p

y
t ] +

π(pxt , p
y
t ). Once the policy queue is known, the alignment

steps can be recursively selected by backtracking, pxl = nx
and p

y
l = ny .

Fig. 2a shows an example of DTW for aligning two 1-

D time series. Fig. 2b illustrates the Euclidean distance of

each pair of samples. To compute the optimal warping path,

DP efficiently enumerates all possible steps as in Fig. 2c

from the upper-left corner to the bottom-right one. At the

end, the optimal alignment (denoted as the red curve) can

be computed by iteratively tracing back along the arrows.

Given two sequences of length nx and ny , exact DTW

has a computational cost in space and time of O(nxny).
In practice, various modifications [1] on the step size,

local weights and global constraints have been proposed

to speed up DTW computation as well as to better con-

trol the possible routes of the warping paths. In recent

work [22], [38], [39], a multi-scale searching scheme has

been shown to effectively generate a speedup of one to

three orders of magnitude, compared to the classic DTW

algorithm. More recently, Rakthanmanon et al. [40] have

shown that DTW for mining 1-D sub-sequences can be

scaled up to very large datasets using early-abandoning and

cascading lower bounds. However, most of these works are

originally designed for 1-D time series. Compared to these

works, our method can be applied to handle more general

multi-dimensional sequences and align signals of different

dimensionality.

III. CANONICAL TIME WARPING (CTW)

DTW lacks a feature weighting mechanism and thus it

cannot be directly used to align multi-modal sequences

(e.g., video and motion capture) with different features.

To address this issue, this section presents CTW, a unified

framework that combines DTW with CCA.

A. Least-squares formulation for DTW

In order to have a compact and compressible energy
function for CTW, it is important to notice that the original
objective of DTW (Eq. 4) can be reformulated in matrix
form as

min
{px,py}∈Ψ

Jdtw = ‖XWx −YWy‖
2
F , (6)

where X ∈ R
d×nx and Y ∈ R

d×ny denote the two time

series needed to be aligned. Wx = W(px) ∈ {0, 1}
nx×l

and Wy = W(py) ∈ {0, 1}
ny×l are two binary warping

matrices associated with the warping paths by a non-linear

mapping, W(p) : {1 : n}l → {0, 1}n×l, which sets

wpt,t = 1 for any step t ∈ {1 : l} and zero otherwise.

These warping matrices Wx and Wy can only replicate

(multiple times) samples of the original sequences X and

Y. For instance, Fig. 2d illustrates that the DTW alignment

in Fig. 2a can be equivalently interpreted as stretching
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the two time series X and Y by multiplying the warping

matrices Wx and Wy as shown in Fig. 2e-f, respectively.

Observe that Eq. 6 is very similar to the CCA’s objective

(Eq. 1). CCA applies a linear transformation to combine the

rows (features), while DTW applies binary transformations

to replicate the columns (time).

B. Objective function of CTW

In order to accommodate for differences in style and
subject variability, add a feature selection mechanism, and
reduce the dimensionality of the signals, CTW adds a
linear transformation (Vx ∈ R

dx×d and Vy ∈ R
dy×d) as

CCA to the least-square form of DTW (Eq. 6). Moreover,
this transformation allows aligning temporal signals with
different dimensionality (e.g., video and motion capture). In
a nutshell, CTW combines DTW and CCA by minimizing:

min
{Vx,Vy}∈Φ,{px,py}∈Ψ

Jctw = ‖VT
xXWx −V

T
y YWy‖

2
F

+ φ(Vx) + φ(Vy), (7)

where Vx ∈ R
dx×d and Vy ∈ R

dy×d parameterize the
spatial transformation and project the sequences into the
same low-dimensional coordinate system. Constrained by
Eq. 5, Wx and Wy warp the signal in time to achieve
optimum temporal alignment. Similar to CCA, φ(·) is a
regularization term (Eq. 2) for Vx and Vy . In addition, the
projections have to satisfy the orthogonal constraints, i.e.,

Φ =
{

{Vx,Vy}
∣
∣
∣ V

T
x

(

(1− λ)XWxW
T
xX

T + λI
)

Vx = I,

V
T
y

(

(1− λ)YWyW
T
y Y

T + λI
)

Vy = I
}

,

where λ ∈ [0, 1] is a weight to trade-off between the least-

square error and the regularization term.

Eq. 7 is the main contribution of this paper. CTW is a

direct and clean extension of CCA and DTW to align two

signals X and Y in space and time. It extends previous

work on CCA by adding temporal alignment and on DTW

by allowing a feature selection and dimensionality reduc-

tion mechanism for aligning signals of different dimensions.

C. Optimization of CTW

Optimizing Jctw is a non-convex optimization problem

with respect to the warping matrices and projection matri-

ces. We take a coordinate-descent approach that alternates

between solving the temporal alignment using DTW, and

computing the spatial projections using CCA.
Given the warping matrices, the optimal projection ma-

trices are the leading d generalized eigenvectors, i.e.,
[Vx;Vy] = eigd(A,B), where:

A =

[
0 XWxW

T
y Y

T

YWyW
T
xX

T 0

]

,

B = (1− λ)

[
XWxW

T
xX

T 0

0 YWyW
T
y Y

T

]

+ λI.

The dimension d can be selected to preserve a certain

amount (e.g., 90%) of the total correlation. Once the spatial

transformation is computed, the temporal alignment is

computed using standard approaches for DTW. Alternating

between these two steps (spatial and temporal alignment)

monotonically decreases Jctw. Jctw is bounded bellow and

the proposed algorithm will converge to a critical point.

1 10 30 50(n) 70(l)

(b)

Logarithm

(a)

Polynomial Hyperbolic tangentExponential I-spline 

(c) (d)
10 30 50 70(l)

10

30

50(n)

1 70(l)

1

50(n)

 

 

Fig. 3. Approximating temporal warping using monotone bases. (a) Five
common choices for monotone bases. (b) An example of time warping
XW(Qa) ∈ R

1×70 of 1-D time series X ∈ R
1×50. (c) The warping

matrix W(Qa). (d) The warping function Qa is a linear combination
of three basis functions including a constant function (q1) and two
monotonically increasing functions (q2 and q3).

IV. GENERALIZED CANONICAL TIME WARPING

(GCTW)

In the previous section, we described CTW for align-

ing two multi-modal sequences with different features.

However, CTW has three main limitations inherited from

DTW: (1) The exact computational complexity of DTW for

multi-dimensional sequences is quadratic both in space and

time; (2) CTW and its extensions address the problem of

aligning two sequences, but it is unclear how to extend it

to the alignment of multiple sequences; (3) The temporal

alignment is computed using DTW, which relies on DP to

find the optimal path. In some problems (e.g., sub-sequence

alignment) the warping path provided by DP is too rigid

(e.g., the first and the last samples have to match).

To address these issues, this section proposes GCTW,

an efficient technique for spatio-temporal alignment of

multiple time series. To accommodate for subject variability

and to take into account the difference in the dimensionality

of the signals, GCTW uses multi-set canonical correlation

analysis (mCCA). To compensate for temporal changes,

GCTW extends DTW by incorporating a more efficient and

flexible temporal warping parameterized by a set of mono-

tonic basis functions. Unlike existing approaches based on

DP with quadratic complexity, GCTW efficiently optimizes

the time warping function using a Gauss-Newton algorithm,

which has linear complexity in the length of the sequence.

A. Objective function of GCTW

Given a collection of m time series, {Xi}
m
i=1, GCTW

aims to seek for each Xi = [xi
1, · · · ,x

i
ni
] ∈ R

di×ni , a

low-dimensional spatial embedding Vi ∈ R
di×d and a non-

linear temporal transformation Wi = W(pi) ∈ {0, 1}
ni×l

parameterized by pi ∈ {1 : ni}
l, such that the resulting

sequence VT
i XiWi ∈ R

d×l is well aligned with the others
in the least-squares sense. In a nutshell, GCTW minimizes
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the sum of pairwise distances between the sequences:

min
{Vi}i∈Φ,{pi}i∈Ψ

Jgctw =
m∑

i=1

m∑

j=1

1

2
‖VT

i XiWi −V
T
j XjWj‖

2
F

+

m∑

i=1

(

φ(Vi) + ψ(pi)
)

, (8)

where φ(·) is the regularization function penalizing the
irregularity of the spatial transformation Vi, i.e.,

φ(Vi) =
mλ

1− λ
‖Vi‖

2
F ,

where λ ∈ [0, 1] is a parameter to trade-off between the
least-square error and the regularization term. Following
the multi-set canonical correlation analysis (mCCA) [41],
GCTW constrains the spatial embeddings as:

Φ =
{

{Vi}i

∣
∣
∣

m∑

i=1

V
T
i

(

(1− λ)XiWiW
T
i X

T
i + λI

)

Vi = I
}

.

ψ(·) and Ψ(·) defined in the following sections, are used

to regularize and constrain the temporal transformation pi

respectively.
To be concise in notation, let us consider a single se-

quence X ∈ R
d×n and its temporal warping, p ∈ {1 : n}l.

While the possible composition of the temporal warping p
is locally enforced by the original DTW constraints (Eq. 5),
the global shape of any valid p must correspond to a mono-
tonic and continuous trajectory in matrix W ∈ {0, 1}n×l

starting from the upper-left corner and ending at the bottom-
right one. Since any positive combination of monotonic
trajectories is guaranteed to be monotonic. GCTW param-
eterizes the warping path p as a linear combination of
monotonic functions, that is:

p ≈
k∑

c=1

acqc = Qa, (9)

where a ∈ R
k is the non-negative weight vector and

Q = [q1, · · · ,qk] ∈ [1, n]l×k is the basis set com-

posed of k pre-defined monotonically increasing functions.

Fig. 3a illustrates five common choices for qc, including

(1) polynomial function (axb), (2) exponential function

(exp(ax + b)), (3) logarithm function (log(ax + b)), (4)

hyperbolic tangent function (tanh(ax + b)) and (5) I-

spline [42]. Similar work by Fisher et al. [36] also used

hyperbolic tangent functions as temporal bases, and the

weights were optimized using a non-negative least squares

algorithm. However, GCTW differs in three aspects: (1)

GCTW allows aligning multi-dimensional time series that

have different features, while [36] can only align one-

dimensional time-series; (2) we use a more efficient eigen

decomposition to solve mCCA and quadratic programming

for optimizing the weights; and (3) we use a family of

monotonic functions that allow for a more general warping

(e.g., sub-sequence alignment), and constraints to regularize

the solution.

To approximate the DTW constraints (Eq. 5) on the

warping path p, we alternatively impose the following

constraints on the weights a.

Boundary conditions: We enforce the position of the

first frame, p1 = q(1)a ≥ 1, and the last frame, pl =
q(l)a ≤ n, where q(1) ∈ R

1×k and q(l) ∈ R
1×k to be

the first and last rows of the basis matrix Q respectively.

In contrast to DTW, which imposes a tight boundary

(i.e., p1 = 1 and pl = n), GCTW relaxes the equality

with inequality constraints to allow p to index a sub-

part of X. This relaxation is useful in solving the more

general problem of sub-sequence alignment. For instance,

Fig. 4 illustrates an example of using GCTW for placing

two 1-D time series in correspondence. In particular, the

shorter blue sequence can only be partially matched to a

sub-sequence of the longer red one. In this sub-sequence

alignment problem, GCTW models the time warping p as

a combination of a linear basis q1 and a constant one q2.

Monotonicity: We enforce t1 ≤ t2 ⇒ pt1 ≤ pt2 by

constraining the sign of the weight: a ≥ 0. Notice that

constraining the weights is only a sufficient condition to

ensure monotonicity but it is not necessary. See [43]–[45]

for in-depth discussions on monotonic functions.
Continuity: To approximate the hard constraint on the

step size (e.g., pt−pt−1 ∈ {0, 1}), GCTW softly penalizes

the curvature of the warping path,
∑l

t=1 ‖∇q
(t)a‖22 ≈

‖FlQa‖22 where Fl ∈ R
l×l is the 1st order differential

operator. For instance, for any X ∈ R
d×4, the Matlab

function, gradient(X), computes the same value as XFT
4 ,

where:

F4 =







1 1
2

0 0
−1 0 1

2
0

0 − 1
2

0 1
0 0 − 1

2
−1






. (10)

In summary, we constrain the warping path in Eq. 8 by
the following constraints on a as:

ψ(a) = η‖FlQa‖22, Ψ = {a | La ≤ b}, (11)

where L =





−Ik

−q(1)

q(l)



 and b =





0k

−1
n



 .

Therefore, given a basis set of k monotone functions, all

feasible weights belong to a polyhedron in R
k parameter-

ized by L ∈ R
(k+2)×k and b ∈ R

k+2. For instance, Fig. 3b

illustrates an example of a warping function (red solid line)

as a combination of three monotone functions (blue dotted

lines).

B. Optimization of GCTW w.r.t. spatial basis

Minimizing Jgctw (Eq. 8) is a non-convex optimization

problem with respect to the temporal transformation and

the spatial projection. We optimize GCTW by alternating

between solving for time warping using an efficient Gauss-

Newton algorithm (discussed in the following section), and

computing the spatial transformation using mCCA.
Assuming the time warping is fixed, mCCA computes

the optimal {Vi}i in closed form using a generalized eigen
decomposition, i.e., [⇓i Vi] = eigd(A,B), where:

A = [⇓i XiWi][⇒j W
T
j X

T
j ]− [⇒

i
XiWiW

T
i X

T
i ],

B = (1− λ)[⇒
i
XiWiW

T
i X

T
i ] + λI.

These steps monotonically decrease Jgctw, and because

the function is bounded below, the alternating scheme will

converge to a critical point.
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C. Optimization of GCTW w.r.t. temporal weights

By relaxing the warping path as a linear combination of
monotonic paths, Eq. 9 provide a new model for temporal
alignment and new methods for optimizing it. Given k basis
functions2, Q ∈ R

l×k, optimizing Eq. 8 with respect to the
warping paths {pi}i can be approximated as:

min
{ai}i

Ja =
m∑

i=1

m∑

j=1

1

2
‖VT

i XiW(Qai)−V
T
j XjW(Qaj)‖

2
F

+
m∑

i=1

η‖FlQai‖
2
2, (12)

s. t. Liai ≤ bi, ∀i ∈ {1 : m},

where Li and bi are used to constrain the monotonicity and

boundary of the time warping for each sequence (Eq. 11).
A direct optimization of Ja is difficult due to the

non-linear function W(·). Inspired by the Lucas-Kanade
framework [46] for image alignment, we approximate
Ja by solving a series convex problems using a Gauss-
Newton method. More specifically, we linearize Ja by
performing a first-order Taylor approximation on each term,
Z(ai + δi)

.
= VT

i XiW(Q(ai + δi)) ∈ R
d×l, with respect

to the increment δi ∈ R
k. To simplify the discussion, let us

focus on, zt(ai)
.
= [VT

i XiW(Qai)]t ∈ R
d, the tth column

of VT
i XiW(Qai) ∈ R

d×l. Given the non-linear function
W(·) specified by the warping path Qai ∈ R

l, zt(ai) is
the replication of jth column of the signals VT

i Xi, i.e.,

zt(ai) = [VT
i Xi]q(t)ai

, (13)

where q(t) is the tth row of Q and q(t)ai is the tth element
of Qai. Based on this fact, we can break down the linear
approximation of Z(ai + δi) by each of its columns, i.e.,

zt(ai + δi) ≈ zt(ai) +∇
(

[VT
i Xi]q(t)ai

)∂q(t)ai

∂ai

δi. (14)

Putting all the columns of Z(ai + δi) together yields:

vec
(

V
T
i XiW(Q(ai + δi))

)

≈ vi +Giδi, (15)

where vi = vec
(

V
T
i XiW(Qai)

)

, Gi = [⇓t ∇
(

[VT
i Xi]q(t)ai

)

q
(t)].

Plugging Eq. 15 in Eq. 12 yields:

Ja ≈

m∑

i=1

m∑

j=1

1

2
‖vi +Giδi − vj −Gjδj‖

2
2

+
m∑

i=1

η‖FiQ(ai + δi)‖
2
2. (16)

Minimizing Eq. 16 with respect to all the weight increments
δ = [⇓i δi] ∈ R

mk yields a quadratic programming
problem:

min
δ

1

2
δ
T
Hδ + f

T
δ, s. t. Lδ ≤ b− La, (17)

whose components are computed as follows:

H = m[⇒
i
G

T
i Gi]− [⇓i G

T
i ][⇒j Gj ] + [⇒

i
ηQ

T
F

T
i FiQ],

f = [⇒
i
G

T
i ]
(

m[⇓i vi]⊖ [⇒i vi]1m

)

+ [⇓i ηQ
T
F

T
i FiQai],

a = [⇓i ai], b = [⇓i bi], L = [⇒
j
Li].

2Strictly speaking, sequences of different lengths (ni) should be asso-
ciated with different bases Qi ∈ {1 : ni}

l×k . To be concise in notation,
we remove the subscript i from Qi.

1st step (initial) 2nd step 3rd step (converged)original

warping function basis

1 300 500 1 300 1 300 1 300

1 300

1

500

 

 

1 300

1

500

1 300

1

500

(c) (d)

(a) (b)

Fig. 4. An example of using Gauss-Newton for solving the sub-
sequence alignment problem. (a) Two 1-D sequences. (b) The Gauss-
Newton optimization procedure, the longer red sequence is warped to
match the shorter blue sequence. (c) The contour of the objective function
(Ja as defined in Eq. 12) with respect to the weights of two bases. (d)
Warping function (p) as a combination of a linear function (q1) and a
constant function (q2) used for scaling and translation respectively.

Observe that the objective function of Eq. 17 is convex.

Fig. 4 illustrates an example of aligning two 1-D time series

(Fig. 4a) using this approach. To achieve sub-sequence

alignment, we model the time warping path p as a combi-

nation of a linear basis q1 and a constant one q2 (Fig. 4d).

As shown in Fig. 4b, Gauss-Newton takes three steps to find

the optimal warping parameter in a 2-D space (Fig. 4c).

In all our experiments, we initialized ai by uniformly

aligning the sequences (the curve of GN-Init in Fig. 5b).

The length of the warping path l is usually set to l =
1.1maxmi=1 ni. In practice, when the sequence length ni is

very large, an additional pre-conditioner should be used to

obtain a numerically stable solution. For instance, a nor-

malized version of Eq. 17 minimizes 1
2δ

TR−1HR−1δ +
fTR−1δ subject to LR−1δ ≤ b − La, where R =
[⇒

i
niIk] ∈ R

mk×mk is the scaling matrix. After solving

this new quadratic optimization problem, we need to rescale

the result as δ ← R−1δ. The computational complexity of

the algorithm is O(dlmk +m3k3).

D. Comparison with other DTW techniques

As discussed in [1], [39], there are various techniques

that have been proposed to accelerate and improve DTW.

For instance, the Sakoe-Chiba band (DTW-SC) and the

Itakura Parallelogram band (DTW-IP) reduce the com-

plexity of the original DTW algorithm to O(βnxny) by

constraining the warping path to be in a band of a certain

shape, where β < 1 is the size ratio between the band and

the original search space of DTW. However, using a narrow

band (a small β) cuts off potential warping space, and may

lead to a sub-optimal solution. For instance, Fig. 5a shows

an example of two 1-D time series and the alignment results

calculated by different algorithms. The results computed

by DTW-SC and DTW-IP are less accurate than the ones

computed using our proposed Gauss-Newton (GN). This

is because both the SC and IP bands are over-constrained

(Fig. 5b). See Fig. 6 for a detailed comparison on the

number of free variables and computational complexity of

different time warping methods.

To provide a quantitative evaluation, we synthetically

generated 1-D sequences at 15 scales. For DTW-SC, we set
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the band width as β = 0.1. For GN, we varied k among

6, 10, 14 to investigate the effect of the number of bases. For

each scale, we randomly generated 100 pairs of sequences.

The error is computed using Eq. 18 and shown in Fig. 5c-

d. DTW obtains the lowest error but takes the most time

to compute. This is because DTW exhaustively searches

the entire parameter space to find the global optima. Both

DTW-SC and DTW-IP need less time than DTW because

they need to search a smaller space constrained by different

bands. Empirically, DTW-IP is more accurate than DTW-

SC for our synthetic dataset. This is because the global

optima is more likely to lie in the IP band than the SC band.

Compared to DTW, DTW-SC and DTW-IP, GN is more

computationally efficient because it has linear complexity

in the length of the sequence. Moreover, increasing the

number of bases monotonically reduces the error.

V. EXPERIMENTS

This section compares CTW and GCTW against state-

of-the-art methods for temporal alignment of time series in

six experiments. In the first experiment, we compared the

performance of CTW and GCTW against DTW, DDTW

[28], IMW [10] and their multi-sequence extensions in

the problem of aligning synthetic time series of varying

complexity. In the second experiment, we aligned videos of

different subjects performing a similar activity; each video

is represented using different types of visual features. In

the third experiment, we aligned facial expressions across

subjects on videos with naturally occurring facial behavior.

In the fourth experiment, we showed how GCTW can be

applied to large-scale alignment. We aligned approximately

50, 000 frames of motion capture data of two subjects

cooking the same recipe. In the fifth experiment, we

showed how GCTW can be used to localize common sub-

sequences between two time series. The last experiment

shows how GCTW is able to align three sequences of

different subjects performing a similar action recorded

with different sensors (motion capture data, accelerometers

and video). In the first three experiments, the ground

truth was known and we provided quantitative evalua-

tion of the performance. In the other experiments, we

evaluated the quality of the alignment visually. The code

for our method and the baseline methods is available at

http://humansensing.cs.cmu.edu/ctw.

A. Evaluation methods

In the experiments, we compared CTW and GCTW with

several state-of-the-art methods for temporal alignment of

time series. Below, we provide a brief description of the

techniques that we used for comparison.
DTW and mDTW: DTW is solved using a standard

dynamic programming algorithm that minimizes Eq. 4.
To evaluate the performance of temporal alignment of
multiple sequences, we extended the concept of Procrustes
analysis [47] to time series. That is, given m(> 2) time
series, multi-sequence DTW (mDTW) aims to seek for a

set of warping paths {pi}i that minimizes:

min
{pi∈Ψ}i

Jmdtw =
m∑

i=1

m∑

j=1

1

2
‖XiWi −XjWj‖

2
F .

After some linear algebra, it can be shown that Jmdtw can
be equivalently computed as:

Jmdtw = m

m∑

i=1

‖XiWi −
1

m

m∑

j=1

XjWj

︸ ︷︷ ︸

X̄

‖2F .

Based on the above fact, mDTW alternates between in-

dependently solving each pi using an asymmetrical DTW3

and updating the mean sequence X̄ by averaging {XiWi}i.
DDTW and mDDTW: In order to make DTW invariant

to translation, derivative dynamic time warping (DDTW)
[28] uses the derivatives of the original features and mini-
mizes:

min
{px,py}∈Ψ

Jddtw = ‖XF
T
nx

Wx −YF
T
ny

Wy‖
2
F ,

where Fnx
and Fny

are the 1st order differential operators
defined similarly as Eq. 10. To align multiple sequences,
multi-sequence DDTW (mDDTW) extends DDTW in the
Procrustes framework by optimizing:

min
{pi∈Ψ}i

Jmddtw =

m∑

i=1

m∑

j=1

1

2
‖XiF

T
ni
Wi −XjF

T
nj
Wj‖

2
F .

IMW and mIMW: Similar to CTW, iterative motion
warping (IMW) [10] alternates between time warping and
spatial transformation to align two sequences. Assuming
the same number of spatial features between X ∈ R

d×nx

and Y ∈ R
d×ny , IMW translates and re-scales each feature

in X independently to match with Y. Written in a simple
matrix form, IMW minimizes:

min
px∈Ψ,Ax,Bx

Jimw = ‖(X ◦Ax +Bx)Wx −Y‖2F

+ λa‖AxF
T
nx

‖2F + λb‖BxF
T
nx

‖2F ,

where Ax,Bx ∈ R
d×nx are the scaling and translation pa-

rameter respectively. λa and λb are the weights to trade-off
between the least-square error and the regularization terms.
The regularization terms are used to enforce a smooth
change in the columns of Ax and Bx. In the experiments,
we set them as λa = λb = 1. IMW takes a coordinate-
descent approach to optimize the time warping, the scaling
and translation. Given the warping matrix Wx, the optimal
spatial transformation can be computed in closed-form.
To align multiple sequences, we extended IMW as multi-
sequence IMW (mIMW) by minimizing:

min
{pi∈Ψ,Ai,Bi}i

Jmimw

=

m∑

i=1

m∑

j=1

1

2
‖(Xi ◦Ai +Bi)Wi − (Xj ◦Aj +Bj)Wj‖

2
F

+
m∑

i=1

(

λa‖AiF
T
ni
‖2F + λb‖BiF

T
ni
‖2F

)

.

mCTW: CTW was originally proposed to align two

multi-modal sequences. Similar to other DTW-based meth-

ods, we extended CTW in multi-sequence CTW (mCTW)

3Given two sequences X and Y, asymmetric DTW is used to only
warp X towards Y and no time warping is computed for Y.
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Fig. 5. Comparison between Gauss-Newton and variants of DTW for temporal alignment. (a) An example of two 1-D time series (with 247 and
305 frames respectively) and the alignment results calculated using the ground truth, DTW, DTW constrained in the Sakoe-Chiba band (DTW-SC),
DTW constrained in the Itakura Parallelogram band (DTW-IP) and Gauss-Newton (GN). (b) Comparison of different warping paths. GN-Init denotes
the initial warping used for GN. SC-Bound and IP-Bound denote the boundaries of SC band and IP band respectively. (c) Comparison of alignment
errors. (d) Statistics of computational costs.

for aligning multiple time series using the Procrustes

Analysis framework. mCTW optimizes the same objective

(Eq. 8) as GCTW does. The main difference between

mCTW and GCTW comes from the temporal alignment

step. mCTW alternates between warping each time series

using asymmetric DTW and updating the mean sequence,

while GCTW uses Gauss-Newton for jointly optimizing

over all weights of the monotonic bases.

Fig. 6 compares the temporal alignment methods in terms

of the number of variables as well as the computational

complexity. The comparison is divided into two cases, one

for alignment of two sequences and another for alignment

of more than two sequences. In the first case, given two

time series, X ∈ R
dx×nx and Y ∈ R

dx×ny , DTW

and DDTW require the same complexity O(nxny) for

finding the optimal l-length warping path. IMW addition-

ally solves d least-squares problems for each row of Ax

and Bx independently. Similarly, CTW relies on DTW to

optimize the time warping, resulting in a complexity of

O(nxny) in both space and time. However, CTW uses

CCA to accommodate the feature difference by solving

a generalized eigen-decomposition of two (dx + dy)-by-

(dx + dy) matrices. CTW has fewer variables than IMW

and thus is less likely to overfit the data. Compared to CTW,

GCTW has the same complexity for computing the spatial

embedding. The main advantage of GCTW is its Gauss-

Newton component, which optimizes a small-scale QP with

2k variables for the time warping.

In the second case, given m sequences, {Xi ∈
R

di×ni}mi=1, a direct generalization of the DTW is in-

feasible due to the combinatorial explosion of possible

warpings, incurring a complexity of O(
∏m

i=1 ni). In the

experiment, mDTW is used as an approximation of the ex-

act DTW optimization. However, mDTW and other DTW-

based methods (mDDTW, mIMW and mCTW) still have

quadratic complexity. Instead, GCTW approximates the

combinatorial problem of time warping as a continuous

optimization that can be more efficiently optimized by

solving a small-scale QP with mk variables.

B. Evaluation metrics

The alignment result of m sequences will be denoted by

a set of time warping paths, Palg = [palg
1 , · · · ,palg

m ] ∈

Method
Degree-of-Freedom Complexity O(·)

Embedding Warping Embedding Warping

Two-sequence

alignment

X ∈ R
dx×nx

Y ∈ R
dy×ny

DTW − 2l − nxny

DTW-SC − 2l − βnxny

DTW-IP − 2l − βnxny

DDTW − 2l − nxny

IMW 2dnx 2l dLS(2nx) nxny

CTW d(dx + dy) 2l eig(dx + dy) nxny

GCTW d(dx + dy) 2k eig(dx + dy) QP (2k)

Multi-sequence

alignment

{Xi ∈ R
di×ni}i

DTW − ml − Πini

mDTW − ml − l
∑

i
ni

mDDTW − ml − l
∑

i
ni

mIMW 2l
∑

i
di ml

∑
i
diLS(2l) l

∑
i
ni

mCTW d
∑

i
di ml eig(

∑
i
di) l

∑
i
ni

GCTW d
∑

i
di mk eig(

∑
i
di) QP (mk)

Fig. 6. Comparison of temporal alignment algorithms as a function of
degrees-of-freedom (number of free variables) and complexity. l is the
length of warping path computed by the algorithm. LS(n), QP (n) and
eig(n) denote the complexity of solving a least-squares of n variables, a
QP of n variables and a generalized eigenvalue problem with two n-by-n
matrices, respectively.

R
lalg×m, where p

alg
i ∈ R

lalg is the time warping path for
the ith sequence. To evaluate the error of the time warping
paths given by different methods, we computed its differ-
ence from the ground-truth, Ptru = [ptru

1 , · · · ,ptru
m ] ∈

R
ltru×m, where the number of warping steps (lalg and

ltru) could be different. To better understand the error,
let us consider each warping path P ∈ R

l×m as a curve
in R

m with l points (rows of P). For instance, Fig. 7c
and Fig. 7g compare the warping paths as 2-D and 3-D
curves respectively. The error can be hence defined as the
normalized distance between the curves Palg and Ptru, i.e.,

error =
dist(Palg,Ptru) + dist(Ptru,Palg)

lalg + ltru
, (18)

where dist(P1,P2) =

l1∑

i=1

l2

min
j=1

‖p
(i)
1 − p

(j)
2 ‖2.

The term, minl2j=1 ‖p
(i)
1 − p

(j)
2 ‖2, measures the shortest

distance between the point p
(i)
1 and any point on the curve

P2, where p
(i)
1 ∈ R

1×m and p
(j)
2 ∈ R

1×m are the ith row

of P1 and jth row of P2 respectively.

C. Aligning synthetic sequences

In the first experiment, we synthetically generated spatio-
temporal signals (3-D in space and 1-D in time) to evaluate
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the performance of CTW, mCTW and GCTW. As shown
in Fig. 7a, the signals were a randomly generated by
spatially and temporally transforming a latent 2-D spiral,
Z ∈ R

2×l, l = 300 as follows:

X =

[
UT (Z+ b1T )M

eT

]

∈ R
3×n

,

where U ∈ R
2×2 and b ∈ R

2 were randomly generated

projection matrix and translation vector respectively. To

synthesize the temporal distortion, a binary selection matrix

M ∈ {0, 1}l×n was generated by randomly choosing

n ≤ l columns from the identity matrix Il. The third

spatial dimension e ∈ R
n was added with a zero-mean

Gaussian noise. In this experiment, we considered two types

of alignment problems. In the first setting, we compared

CTW and GCTW with DTW, DDTW and IMW for aligning

two time series, while in the second one, mCTW and

GCTW were compared with mDTW, mDDTW and mIMW

for aligning three time series. In both settings, the ground-

truth alignment was known and the performance of each

method was evaluated in terms of the alignment errors

defined in Eq. 18. We repeated the above process 100
times with random numbers. In each trial, we initialized

all iterative methods by uniformly aligning the sequences,

i.e., the initial warping path for X was computed as p0 =
round(linspace(1, n, l))′, where round(·) and linspace(·)
are MATLAB functions. For CTW, mCTW and GCTW, d

was selected to preserve 90% of the total correlation and

the regularization weight λ was set to zero. For GCTW,

we selected three hyperbolic tangent and three polynomial

functions as monotonic bases (the last column in Fig. 7f)

and we set η = 1.

Figs. 7a-d compare the methods for aliging two time se-

ries. Fig. 7b shows the spatial-temporal warping estimated

by each algorithm. More specifically, the five columns

in Fig. 7b plot XW for DTW, XFTW for DDTW,

(X◦A+B)W for IMW, and VTXW for both CTW and

GCTW, respectively. Fig. 7c compares the alignment paths

computed by different methods and Fig. 7d shows the av-

erage error for 100 generated time series. DDTW performs

poorly with this example because the feature derivatives

are not able to sufficiently capture the structure of the

sequence. IMW warps one sequence towards the other by

translating and re-scaling each frame in each dimension. As

summarized in Fig. 6, IMW has more parameters (2dnx)

than CTW (d(dx + dy)) for feature weighting, and hence

IMW is more prone to overfitting. Furthermore, IMW

tries to fit the third noisy dimension, biasing alignment in

time, whereas CTW has a feature selection mechanism that

effectively cancels the third dimension. In aligning the two

time series, CTW achieved better performance than GCTW

because GCTW employed an approximation of DTW in the

temporal alignment step.

Figs. 7e-h illustrate the comparison of previous methods

for aligning multiple time series. Fig. 7f shows the spatio-
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temporal warping estimated mDTW, mDDTW, mIMW,

mCTW and GCTW, respectively. Fig. 7g compares the

warping paths computed by different methods as 3-D

curves. Fig. 7h shows the error for 100 randomly generated

time series. Both mDTW and mDDTW performed poorly in

this case since they do not have a feature weight mechanism

to adapt the spatial transformation of the sequences. mIMW

warps sequences towards others by translating and re-

scaling each frame in each dimension. Moreover, mIMW

has more parameters (2l
∑

i di) than mCTW and GCTW

(d
∑

i di), and hence mIMW is more prone to over-fitting.

Furthermore, mIMW tries to fit the noisy dimension (3rd

spatial component) biasing alignment in time, whereas both

mCTW and GCTW had a feature selection mechanism that

effectively cancels out the third dimension. Compared to

mCTW, GCTW achieves better performance aligning more

than two sequences because GCTW jointly optimizes over

all the possible time warpings for each time series, while

mCTW takes a greedy approach by warping each sequence

towards the mean sequence independently. In addition,

GCTW can be more efficiently optimized than other DTW-

based approaches in large-scale cases.

D. Aligning videos with different features

In the second experiment, we used CTW, mCTW and

GCTW to align video sequences of different people per-

forming a similar action. Each video was encoded using

different visual features. The video sequences were taken

from the Weizmann database [48], which contains nine peo-

ple performing ten actions. To represent dynamic videos,

we subtracted the background (the top rows in Fig. 8a

and Fig. 8e) and computed three popular shape features

(the bottom rows of Fig. 8a and Fig. 8e) for each 70-

by-35 re-scaled mask image, including (1) binary image,

(2) Euclidean distance transform [49], and (3) solution of

Poisson equation [50]. In order to reduce the dimension of

the feature space (2450), we picked the top 123 principal

components that preserved 99% of the total energy. We split

this experiment into two settings so that we could evalu-

ate the performance of aligning two and three sequences

separately. In the first setting, we randomly selected two

walking sequences, each of which was manually cropped

into two cycles of human walking. The ground-truth align-

ment was approximated by using DTW using the same

feature (Euclidean distance transform), and it provided an

accurate visual temporal alignment. In the second setting,

we randomly selected three sequences and estimated the

ground-truth using mDTW for aligning the sequences with

same feature. In both settings, GCTW was initialized with

uniform alignment, and we set λ = 0.1. We used five

hyperbolic tangent and five polynomial functions as the

monotonic bases (Fig. 8b upper-top).

Fig. 8d and Fig. 8h show the error for 10 randomly

generated sets of videos in the first and second setting

respectively. Note that neither DTW, and DDTW were able

to align the videos because they are not able to handle

alignment of signals of different dimensions. Their multiple

sequence counterparts, mDTW and mDDTW failed simi-

larly. IMW and mIMW register the top three components

well in space; however, both overfit and compute a biased

time warping path. In contrast, CTW, mCTW and GCTW

warp the sequences accurately in both space and time.

E. Aligning facial expression sequences

In the third experiment, we compared CTW and GCTW

in the task of aligning unscripted facial expression se-

quences. The facial videos were taken from the RU-FACS

database [51], which consists of digitized videos of 29
young adults. They were recorded during an interview

(approximately two-minutes long) in which they either

lied or told the truth in response to an interviewer’s

questions. Pose orientation was mostly frontal with small

to moderate out-of-plane head motion. The action units

(AUs) in this database have been manually coded, and

we randomly cropped video segments containing AU12

(smiling) to run our experiments. Each event of AU12 is

coded at its peak position. We used a person-specific active

appearance model [52] to track 66 landmarks on the face.

For the alignment of AU12, we used only 18 landmarks

that correspond to the outline of the mouth. See Fig. 9a

for example frames aligned by GCTW where the mouth

outlines are plotted.

The performance of CTW and GCTW were compared

with DTW, DDTW and IMW. We initialized IMW, CTW

and GCTW using the same uniform warping. Fig. 9b shows

the alignment result obtained by different methods, where

the three dimensions correspond to the first three principal

components of the original signals. As an approximate

ground-truth, the position of the peak frame of each AU12

event is indicated as the red and blue points on the curves

in Fig. 9b and the intersection of the two dotted lines in

Fig. 9c. As we can observe from Fig. 9b-c, the two peaks in

the low-dimensional projection found by CTW and GCTW

are closer to the manually labeled peak than the ones in

the original space used for DTW and DDTW. Finally, the

distance between the peak point and the warping path

is computed to quantitatively measure the performance.

Fig. 9d shows the average error as the distance normalized

by the sequence lengths over 20 random repetitions. Here,

CTW and GCTW achieved better performance than other

state-of-the-art methods.

F. Aligning large-scale motion capture sequences

This experiment illustrates the benefits of using GCTW

for aligning two large-scale motion capture sequences. The

two sequences were taken from the CMU-Multimodal Ac-

tivity Dataset [53], which contains multi-sensor recordings

(video, audio, motion capture data and accelerometers) of

naturalistic behavior of 40 subjects cooking five different

recipes. The two sequences used in this experiment contain

44387 and 48724 frames of two subjects cooking brownies.

See Fig. 10c for several key-frames of these two sequences.

For each motion capture frame, we computed the quater-

nions for the four joints on the right hand, resulting in a 12-

D feature vector that describes the body configuration. In
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this experiment, we only tested the performance of GCTW

on aligning large-scale sequences, and we did not optimize

GCTW over its spatial component. We used five polynomial

functions and five tanh(·) functions as monotonic bases for

the time warping function (upper-right corner in Fig. 10b).

To avoid local minima in the alignment, we used a

temporal coarse-to-fine strategy for the Gauss-Newton op-

timization in GCTW. As shown in Fig. 10a, the coarse-to-

fine strategy proceeds in two steps: (1) In the pre-processing

step, we obtained a three-level pyramid for each time series

by recursively applying Gaussian smoothing with σ = 200.

For instance, the first row of Fig. 10b illustrates the two

sequences in three levels, where the ones in the first level

correspond to the original signals, while the ones in the

third level contain less detailed but much smoother signals.

(2) In the optimization step, GCTW was first used to align

the two sequences on the third level instead of the first

level. The computed time warping result was then used to

initialize GCTW on the second level. We repeated the same

procedure to compute the final time warping result of the

original sequences on the first level.

For this large-scale example, DTW is too slow and ex-
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pensive to compute. However, GCTW is able to efficiently

find the temporal correspondence between the sequences in

just a few seconds using Matlab on a regular laptop with

a 2.5GHz Intel CPU. Since the ground-truth is unknown,

we qualitatively evaluate the performance of GCTW by

showing the aligned key frames in Fig. 10c. Although the

two subjects spent different amounts of time and followed

different procedures to cook the same recipe, GCTW was

able to align similar body poses.

G. Detection and alignment of similar sub-sequences

A major problem of DTW-type of techniques for aligning

long sequences is that they require an exact matching

between the first frame and the last one, see boundary

conditions (Eq. 5). These boundary conditions are imprac-

tical and very restrictive when only a subset of the input

sequence is similar to the sequence to be aligned. The

first row of Fig. 11 illustrates this problem: how can we

align four motion capture signals composed by different

walking cycles? This problem is related to sub-sequence

DTW [54], the longest common sub-sequence [14] and

temporal commonality discovery [55]. A major limitation

of these methods is that they are not computationally

feasible when handling more than two sequences. This

experiment shows how can we used GTW for multiple

sub-sequence alignment in the context of aligning motion

capture data.

We selected four walking and running sequences from

the CMU motion capture database4. For each motion cap-

ture frame, we computed the quaternions for 14 joints on

the body, resulting in a 42-D feature vector that describes

the human pose. The first and second row of Fig. 11a illus-

trate the first three principal components of the walking and

running sequences respectively. To allow for sub-sequence

alignment, the warping path in GCTW is represented by a

combination of a constant function and a linear one as the

monotonic bases (see upper-left corner of Fig. 11c). Both

GCTW and the baseline mDTW method are initialized by

uniformly aligning the sequences.

A visual comparison between mDTW and GCTW is

illustrated in Fig. 11. Without any manual cropping, most

of the conventional DTW-based methods, such as mDTW,

aligned the sequences by matching the first and the last

frame, which results in incorrect alignments, see Fig. 11b.

Some parts (noted by arrows) of the sequences with fewer

cycles have to be stretched into flat lines in order to match

the other sequences with more cycles. Unlike conven-

tional DTW-based methods built on dynamic programming,

GCTW uses the Gauss-Newton method, which allows for

a more flexible time warping. By incorporating a constant

function in the set of bases, GCTW can naturally be gen-

eralized to deal with the sub-sequence alignment problem

across multiple sequences. As shown in Fig. 11c-d, GCTW

is not only able to align the sequences in time, but also

locate the boundaries of the sub-sequences that contain

similar motions. This experiment demonstrates the benefits

4http://mocap.cs.cmu.edu

of GCTW in controlling the warping path when using a

specific time warping bases.

H. Aligning multi-modal sequences

This experiment uses GCTW to align sequences of

different people performing a similar activity recorded

with different sensors. We selected one motion capture

sequence (Subject 12, Trial 29) from the CMU motion cap-

ture database, one video sequence (Eli_jacking.avi)

from the Weizmann database [48], and we collected the

accelerometer signal of a subject performing jumping jacks.

Some instances of the multi-modal data can be seen in

Fig. 12d. Note that to make the problem more challenging,

the two subjects in the mocap (top row) and video (middle

row) are performing the same activity, but in the accelerom-

eter sequence (bottom row) the subject only moves one

hand and not the legs. Even in this challenging scenario,

GCTW is able to solve for the temporal correspondence

that maximizes the correlation between signals.

For the mocap data, we computed the quaternions for

the 20 joints, resulting in a 60 dimensional feature vector

that describes the body configuration. In the case of the

Weizmann dataset, we computed the Euclidean distance

transform as described earlier. The X, Y and Z axis ac-

celerometer data was collected using an X6-2 mini USB

accelerometer (Fig. 12a) at a rate of 40Hz. GCTW was

initialized by uniformly aligning the three sequences. We

used five hyperbolic tangent and five polynomial functions

as monotonic bases. Fig. 12b shows the first components

of the three sequences projected separately by PCA. As

shown in Fig. 12c, GCTW found an accurate temporal cor-

respondence between the three sequences. Unfortunately,

we do not have ground-truth for this experiment. However,

visual inspection of the video suggests that the results are

consistent with human labeling. Fig. 12d shows several

frames that have been put in correspondence by GCTW.

VI. CONCLUSIONS

This paper proposes CTW and GCTW, two new tech-

niques for spatio-temporal alignment of multiple multi-

modal time series. CTW extends DTW by adding a fea-

ture selection mechanism and enabling alignment of sig-

nals with different dimensionality. CTW extends CCA by

adding temporal alignment and allowing temporally local

projections. To improve the efficiency of CTW, allow a

more flexible time-warping, and align multiple sequences,

GCTW extends CTW by parameterizing the warping path

as a combination of monotonic functions. Inspired by

existing work on image alignment, GCTW is optimized

using a coarse-to-fine Gauss-Newton updates, which allows

for efficient alignment of long sequences.

Although CTW and GCTW have shown promising pre-

liminary results, there are still unresolved issues. First, the

Gauss-Newton algorithm used in GCTW for time warping

converges poorly in the area where the objective function is

non-smooth. Second, both CTW and GCTW are subject to

local minima. The effect of local minima can be partially
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Fig. 10. Example of aligning two large-scale motion capture sequences using GCTW. (a) A coarse-to-fine strategy for improving the optimization
performance of GCTW. (b) The first row shows the first principal components of the original sequences for three levels of the temporal pyramids. The
second row corresponds to the aligned sequences using GCTW. (c) Key frames of similar body poses aligned by GCTW.
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Original features of four mocap walking sequences. (b) Alignment achieved by mDTW. mDTW tries to align the sequences end-to-end and stretch
some parts of the sequences (flat lines indicated by arrows). (c) Alignment by GCTW. GCTW efficiently aligns the sub-sequences and also finds the
boundaries of the sub-sequences containing similar motions. (d) Key frames aligned by GCTW.
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alleviated using a temporal coarse-to-fine approach as in

the case of image alignment. In future work, we plan to

explore better initialization strategies. Third, although the

experiments show good results using manually designed

bases, we plan to learn a set of monotonic bases that are

adapted to the particular alignment problem.
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