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Summary
The goal of mediation analysis is to assess direct and indirect effects of a treatment or exposure on
an outcome. More generally, we may be interested in the context of a causal model as
characterized by a directed acyclic graph (DAG), where mediation via a specific path from
exposure to outcome may involve an arbitrary number of links (or ‘stages’). Methods for
estimating mediation (or pathway) effects are available for a continuous outcome and a continuous
mediator related via a linear model, while for a categorical outcome or categorical mediator,
methods are usually limited to two-stage mediation. We present a method applicable to multiple
stages of mediation and mixed variable types using generalized linear models. We define pathway
effects using a potential outcomes framework and present a general formula that provides the
effect of exposure through any specified pathway. Some pathway effects are nonidentifiable and
their estimation requires an assumption regarding the correlation between counterfactuals. We
provide a sensitivity analysis to assess of the impact of this assumption. Confidence intervals for
pathway effect estimates are obtained via a bootstrap method. The method is applied to a cohort
study of dental caries in very low birth weight adolescents. A simulation study demonstrates low
bias of pathway effect estimators and close-to-nominal coverage rates of confidence intervals. We
also find low sensitivity to the counterfactual correlation in most scenarios.
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1. Introduction
Mediation analysis has been of increasing interest in health and medical research as a tool
for illuminating the mechanisms by which a treatment or exposure leads to a disease or
health outcome. The starting point of a mediation analysis is a causal or path model. In
applications, such models often include multiple stages (that is, where a path between the
exposure and the final outcome, also referred to as a ‘pathway’, has more than two links)
and involve variables of multiple types - for example, continuous, count, and dichotomous.
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The objective in this more general context is to determine the relative contribution of
different paths to the overall exposure effect.

A motivating example is provided by a cohort study investigating very low birth weight
(VLBW, possibly with bronchopulmonary dysplasia) to dental caries in adolescence (Nelson
et al., 2010). The study involved 224 infants (139 VLBW, 85 normal term) who were part of
an ongoing longitudinal study of family and psychosocial measures assessed from birth until
14 years of age (Singer et al., 1997). The normal term (control) group was selected in order
to obtain similar distributions to the VLBW group for race, SES, and sex. The dental
outcomes (including enamel defects, oral health behavior, and dental caries) were assessed
at around age 14 years. The exposure variable in this example is the binary variable referred
to as ‘birth group’, namely, VLBW (birth group = 1) versus normal term (birth group = 0).
Originally, it was expected that VLBW would result in more adolescent dental caries, as
measured by the number of decayed, filled or missing teeth (DMFT), and that this effect
would be mediated by multiple pathways, including a biological mechanism (via the effect
of birth group on enamel defects) and psychosocial mechanisms (for example, via the effect
of birth group on oral health behavior or access to dental care). The primary study found,
however, that the VLBW group had a lower mean DMFT than the term group. This result
led to a revised hypothesis that while some (in particular, biological) pathways might favor
the normal term children, other pathways might favor the VLBW group. In particular, it was
supposed that the VLBW children might be receiving more extensive dental care, as
indicated, for example, by the use of dental sealants. To provide an initial assessment of the
contribution of such pathways, as well as a starting point for the development of our new
method, we proposed the relatively simple path model presented in Figure 1. This model,
described further in Section 4, includes a biological pathway (through enamel defects) and a
dental access pathway (through use of sealants). As the occurrence of enamel defects would
temporally precede decisions regarding use of sealants, we allowed for the possibility of a
three-stage pathway (birth group → enamel defects → sealants → DMFT) in which enamel
defects caused by VLBW induce an increased use of sealants which in turns reduces DMFT.
The problem presented by this study thus involves the assessment of multiple mediators of
different types, possibly occurring in multiple stages.

A classical method of mediation analysis for two stages (Baron and Kenny, 1986) involves
the fitting of a succession of linear regression models. Structural equations model (SEM)
based methods have also been proposed for mediation analysis (Ditlevsen et al., 2005).
These methods have focused on the case of a linear model, typically leading to an estimator
of the mediation (or indirect) effect in the form of a ‘product of coefficients’ (MacKinnon et
al., 2002). In the linear case, it is straightforward to estimate mediation effects in the context
of multiple stages via the product of coefficients approach (Taylor et al., 2008).

Some recent research has focused on mediation for binary or mixed types of variables.
Huang et al. (2004) and Schluchter (2008) addressed two-stage mediation for a binary
outcome based on a logistic regression model. Li et al. (2007) studied the two-stage case
with a binary mediator. Eskima et al. (2001) addressed a general path model involving all
binary variables, although their definition of a mediation effect was still confined to two
stages.

Recently, researchers (Robins and Greenland, 1992; Rubin, 2004; Ten Have et al., 2007;
Albert, 2008; Imai, Keele, and Yamamoto, 2010) have addressed mediation analysis using
the potential outcomes framework. This framework allows clear definitions of mediation
effects in causal terms and the explication of assumptions required for causal inference.
These papers, however, were confined to two-stage mediation. Pearl (2001) presented
definitions that extended direct and indirect effects (‘path effects’) to the case of a
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nonparametric directed acyclic graph (DAG, see Pearl, 2000). In a further extension, Avin,
Shpitser, and Pearl (2005) provided criteria for identifiability of path effects, as well as
expressions for identifiable effects, in the nonparametric context. However, the latter papers
did not consider possible regression relationships and did not provide methods for inference.
In addition, there is a need for a practical approach for assessing path effects that are not
nonparametrically identified. In sum, there has been little previous work on methods for
mediation analysis in complex causal models involving mixed types of variables and
multiple stages. The present paper seeks to extend the potential outcome approach to allow
the assessment of mediation or path effects for such general causal models.

The remainder of the paper proceeds as follows. Section 2 provides the potential outcome
framework and notation, Section 3 presents the general method, Section 4 describes the
application to the dental data, Section 5 presents a simulation study, and Section 6 provides
a summary and discussion.

2. Framework and Notation
2.1 A Causal (Manipulation) Approach to Path Models

This section and the next provide the framework and notation for deriving specific path
effects for general causal models. In particular, we develop a potential outcomes-based
approach to mediation analysis in the context of a DAG (or path) model. The approach thus
extends the standard two-stage mediation analysis to allow for multiple stages of mediation.
To simplify the situation somewhat, we focus on a causally ordered set of variables for
which the exposure or treatment variable is the first and the outcome variable is the last in
the causal order. All variables in between are referred to as intermediate variables or
mediators. Note also that all of these variables, aside from the exposure, are endogenous
variables (as they are caused by preceding variables) as well as response variables.

Besides the multiple stages, a generalized aspect of our model is to allow a link function, as
in the generalized linear model, to relate the mean of each response variable to its directly
causally preceding variables (‘parents’). A primary goal will then be to partition the overall
exposure effect on the final outcome among the specific paths through which the overall
effect is hypothesized to occur. Note that we use the term ‘pathway’ for a path going from
exposure to the final response. For simplicity, we focus on the case of two levels of the
exposure variable, which we will refer to as ‘exposed’ and ‘not exposed’.

Our main focus will be the path model shown at the top of Figure 1. This is a saturated
model in that all possible pathways are allowed; that is, the variables may be ordered in a
way so that all preceding variables are considered as parents. In this case of four variables
(thus, involving as many as three stages) there are four possible pathways. More generally,
in a saturated model with m mediators, there are p = 2m possible pathways. To see this, note
that a specific pathway is obtained by selecting a subset of the m mediators (of which there
are 2m possibilities) through which the exposure effect will occur. The pathway involving
none of the mediators represents the direct effect of exposure on the final response variable.
The possible specific pathways in the saturated three-stage model are displayed at the
bottom of Figure 1.

Although we focus on the saturated case, our method is applicable as well to unsaturated
models. Thus the method can accommodate ‘contemporaneous’ mediators and/or multiple
endpoints, in which case the set of model variables will be partially, as opposed to strictly,
causally ordered. An example would be obtained from the model displayed in Figure 1 if the
direct link from Z1 to Z2 were removed. In this case, Z1 and Z2 are not causally ordered (thus
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contemporaneous), and Z1 and Z2 can be written in either order in the (partially) ordered
vector of model variables.

In either the structural model (Pearl, 2000) or potential outcomes framework (for example,
Albert, 2008), causal effects are conceived as resulting from possible (or imagined)
experimental manipulations. Mediation or path effects may be defined as a function of a
type of manipulation referred to as a ‘path-deactivation process’ (Pearl, 2001). This process
was defined in terms of structural models by Pearl (2001), and is elucidated using a potential
outcome framework below. Informally, a path-deactivation process can be described as a
sequence of actions applied to the endogenous variables in a causal model (in causal order)
in which each variable is set to the value it would have if it and each of its parents (and their
parents, and so on) were subject to a specified combination of exposure levels. For example,
starting with the simplest case, if the response variable Z1 were set to the value it would
have if the individual were exposed (X = 1), we say that the path (or ‘link’ in this case) from
X to Z1 is ‘activated’; alternatively, if Z1 were set to the value it would have if the individual
were not exposed (X = 0) we say that the path from X to Z1 is ‘deactivated’. Next, suppose
that response variable Z2 (causally subsequent to Z1) were set to the value it would have
were the individual exposed (affecting Z2 directly) but Z1 set to the value it would have were
the individual not exposed. In this case, the path X → Z2 is activated but the path X → Z1 →
Z2 is deactivated. Note that the latter manipulation effectively isolates the direct effect of X
on Z2. The process becomes cumbersome to describe when more than two links are
involved, but can be characterized precisely using the nested potential outcomes notation
(Albert, 2008) as illustrated below. Note that the above definition of path activation/
deactivation corresponds to natural (as opposed to controlled) direct and indirect effects,
whereby manipulations dictate the exposure rather than the specific level of each mediator.

2.2 Notation and Potential Outcomes Framework
We next set up notation leading to a potential outcomes characterization of specific path
effects. We let X ≡ Z0 denote the exposure (with X = 1 if exposed, X = 0 if non-exposed); Z1,
…, Zm are the causally ordered mediators, and Y ≡ Zm+1 is the outcome variable. We further
let  represent the set of manipulations (path activations) corresponding to the possible
specific pathways. A particular realization D of  will be represented by listing involved
mediators as subscripts; for example, D1 represents the manipulation activating the pathway
through Z1 alone, and D0 represents the direct pathway. For the three-stage model of Figure
1, we thus have  = {D0, D1, D2, D1,2}. We will augment  by including D = 0 and D = 1
for the no exposure and exposure ‘manipulations’ (that is, the two naturally observed
conditions), respectively. We also define corresponding manipulation indicator variables, for
example d0 = 1 if the manipulation activates the direct pathway only (d0 = 0, otherwise), d1
= 1 if the pathway through Z1 alone is activated (d1 = 0, otherwise), and so on. Thus, for
each specific pathway exactly one of the d’s is equal to 1 and the others are equal to 0. Other
manipulations are possible that activate multiple pathways simultaneously. Such
manipulations (corresponding to setting more than one of the d’s equal to 1) are easily
handled by our approach but are not the present focus.

We can consider the value of some response variable Y for individual i, if subject to
manipulation D, as a potential outcome, written as Yi(D). (Hereon in we drop the subscript i,
indexing the subjects, in the notation.) Note that the standard notation for a potential
outcome (for example, Y (0)) can be considered as consistent with the above notation (where
the argument is a manipulation) if we consider the number in the argument as representing a
manipulation where all the d’s are equal to that number. For example Y (0) represents the
potential outcome with all the d’s equal to 0.
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The potential outcome of response Y for a given manipulation can be written using nested
potential outcomes as in Albert (2008). In the case of a single mediator (Z1), the (nested)
potential outcome of Y under manipulation D is written as Y (D) ≡ Y (X=d0, Z1(X=d1)). A
nested potential outcome can be read in a sequential manner to define the manipulation (path
activation/deactivation). For example, Y (X=1, Z1(X=0)) indicates the potential outcome for
Y were X set to 1 (that is, all paths activated) and then Z1 set to the value it would have were
X set to 0. The latter action deactivates the path X → Z1 → Y, thus leaving only the path X
→ Y (the direct effect) activated. Similarly, Y (X=0, Z1(X=1)) represents the potential
outcome of Y were X set to 0 (all paths deactivated) and then Z1 set to the value it would
have were X set to 1. This manipulation corresponds to the activation of the indirect path X
→ Z1 → Y.

In the case of four variables (two mediators), as in the model shown in Figure 1, the
potential outcome of Y given manipulation D, with corresponding indicator variables d=(d0,
d1, d2, d1,2), can be written as Y (D) ≡ Y (X=d0, Z1(X=d1), Z2(X=d2, Z1(X=d1,2))) or Y (d0,
Z1(d1), Z2(d2, Z1(d12))) for brief. Thus, the potential outcomes for the four possible
pathways may be written as follows: Y (D0) = Y (1, Z1(0), Z2(0, Z1(0))); Y (D1) = Y (0, Z1(1),
Z2(0, Z1(0))); Y (D2) = Y (0, Z1(0), Z2(1, Z1(0))); and Y (D12) = Y (0, Z1(0), Z2(0, Z1(1))). For
example, the manipulation D1 can be described (from the expression above for Y (D1)) as
the following three step process: (1) X is set to 0 (all paths from X to Y are deactivated); (2)
Z1 is set to the value it would take were X set to 1 (that is, the paths through Z1, namely, X
→ Z1 → Y and X → Z1 → Z2 → Y, are activated); and (3) Z2 is set to the value it would take
were X set to 0 and Z1 set to the value it would take were X set to 0 (that is, the paths X → Z2
→ Y and X → Z1 → Z2 → Y are deactivated). This manipulation leaves only the path X →
Z1 → Y as activated. The above explication of a nested potential outcome reveals that the
activation of a given pathway may involve a rather elaborate manipulation. Indicating the
pathway activated thus provides a useful shorthand for the manipulation (Avin et al., 2005).

It will be convenient to write potential outcomes of intermediate variables as a function of
the manipulation (D) even though not all the actions in the manipulation may be relevant to
those variables. Such potential outcomes are easily found according to the nested values in
the expression for Y. For example, for manipulation D12 with Y (D12) = Y (0, Z1(0), Z2(0,
Z1(1))), we have Z2(D12) = Z2(0, Z1(1)) and Z1(D12) = Z1(0). Note that the latter is with
respect to response Y ; however, Z1(D12) = Z1(1) with respect to response Z2. We will also
use the expression X(D) (where X is a control variable rather than response variable) to
indicate the initial set value for X in a given manipulation; for example, X(D12) = 0 with
respect to response Y. Furthermore, for a vector Z = (Z1, …, ZM) we define Z(D) ≡ (Z1(D),
…, ZM(D)). We denote the expected value of Y (D) as E{Y (D)}. Other estimands of interest
will be the pathway effects relative to no exposure, that is, R(D) ≡ E{Y (D)} − E{Y (0)}, and
the proportions of exposure effect due to (that is, mediated by the intermediate variables in)
each pathway, defined as P(D) ≡ R(D)/T where T ≡  R(D).

3. Inference for Pathway Effects
3.1 A General Formula for Pathway Effects

We next derive specific pathway effects in the context of a system of generalized linear
structural models. This system of models corresponding to our DAG may be written as

(1)
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where μj ≡ E{Zj(D)|Zpj(D)}; hj is an invertible link function relating the expected value of Zj
to its parents; Zpj = (1, Zpj1, …, Zpjaj)′ is a vector containing the aj parents of response Zj;
and βj is the corresponding vector of unknown regression parameters. We also let gj ≡ hj

−1.
The complete model also specifies the conditional probability distribution (or density)
function for Zj(D) given Zpj(D), denoted as Cj{Zj(D), θj} ≡ fZj(D)|Zpj(D)(zj|zpj; θj), for each j
and D. The vector θj contains the fixed unknown parameters involved in the conditional
model for Zj(D); it will be dropped from the notation hereon in.

Note that the mediators (that is, the endogenous variables) in Zpj(D) are random variables,
whereas the control variable (X) given D is fixed for each individual. Therefore, to obtain
the marginal expected value of ZM(D) ≡ Y (D), namely, E{Y (D)}, will require that we
integrate over the endogenous (random) parents of Y. Let ZRM = (ZRM1, …, ZRMb) represent
the subvector of ZpM containing these b non-control variables (b ≤ aM) in causal order. This
leads to the formula

(2)

where fZRM(D)(zRM) is the joint density function for the random vector ZRM (D). Note that
the joint density of ZRM (D) may be factored as

where Z̄RM,k−1 ≡ (ZRM1, …, ZRM,k−1), and Z̄RM,0 ≡ 0. The integration in (2) will be
interpreted as summation in the case of discrete mediators. Expression (2) may be seen as a
variation of the G-computation algorithm (Robins, 1986). While the latter was proposed for
repeated measures where the manipulation involves sequential treatments, the present
formula is for a causal path model where the manipulation represents a path-deactivation
process as described above. The present context has special implications and will require
different methods of implementation. In causal inference terms, the above model and
notation imply the stable unit-treatment value assumption (SUTVA, Rubin, 1990) and
sequential ignorability (Ten Have et al., 2007).

One consequence of moving from the two-stage to the three-stage mediation problem is that
not all pathway effects will be identifiable without additional assumptions. In particular, as
shown by Avin et al. (2005), the effect of a path from X to Y is nonidentifiable if and only if
and there is a path from some mediator Z to Y that is activated while another path from Z to
Y is deactivated, and the path from X to Z is activated. Applying this criterion to the model
in Figure 1, we find that (the effect of) pathway D1 is nonidentifiable because the path X →
Z1 → Y is activated but the path X → Z1 → Z2 → Y is deactivated. The reverse is true for
pathway D12, so it is also nonidentifiable. However, the effects of the other two pathways
(D0 and D2) are identifiable. Below, we introduce an assumption to allow identification of
the otherwise nonidentifiable pathways and also propose a sensitivity analysis.

We next illustrate the use of formula (2) and show the correspondence of our method with
the standard approach in the case of two-stage mediation with continuous response
variables. With a single mediator (Z) and the link function h for each equation as the identity
function, the system of models in (1) would be written as: E{Y (D)|Z(D)} = βY I+βY 0X(D)
+βY 1Z(D) and E{Z(D)} = βZI+βZ0X(D). In this case, there are two possible pathways: 1) D =
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D0 (the direct pathway) giving X(D0) = 1 and Z(D0) = Z(0) for response Y ; and 2) D = D1
(the indirect pathway) giving X(D1) = 0 and Z(D1) = Z(1). Then by formula (2) (in this case,
simply integrating out Z(D)) we have, E{Y (D0)} = ∫ z(βY I + βY 0X(D0) + βY 1z)fZ(0)(z)dz =
βY I + βY 0 + βY 1βZI, since E{Z(D0)} = βZI with X(D0) = 0 for response Z; similarly, E{Y
(D1)} = ∫z(βY I+βY 0X(D1)+βY 1z)fZ(1)(z)dz = βY I+βY 1(βZI +βZ0), since E{Z(D1)} = βZI + βZ0
with X(D1) = 1 for response Z. Subtracting the expected value for no exposure (E{Y (0)} =
βY I + βY 1βZI), we obtain the direct effect as E{Y (D0)} − E{Y (0)} = βY 0 and the indirect
effect as E{Y (D1)}− E{Y (0)} = βY 1βZ0. These are the well-known expressions for these
respective effects as discussed, for example, by MacKinnon et al. (2002).

3.2 Inference for Pathway Effects
Estimation of pathway expected values, E{Y (D)}, can be conducted using (2), plugging in
estimates for regression parameters and any other parameters involved in the density
functions. Regression parameter estimates can be obtained by fitting the generalized linear
models corresponding to the structural models in (1). In our data application, we fit each
model separately using maximum likelihood estimation.

In addition to the regression coefficients, the pathway effects also involve density (or
probability) functions of mediators, thus, the parameters in the θj’s. For single-parameter
distributions (such as binomial or Poisson) the probability function, P(Zj|Zpj), follows
immediately from the corresponding estimated mean for Zj. For multiple-parameter
distributions (such as negative binomial or normal with unknown variance) additional
parameters may have to be estimated. Further details on estimation of the probability
functions are discussed below. Confidence intervals for the expected values, as well as the
relative pathway effects and pathway (mediation) proportions, can be obtained using a
bootstrap approach (Efron and Tibshirani, 1993).

3.3 Evaluation of Probability Functions
For more than two stages of mediation, as discussed above, not all pathway effects are
identifiable in general. Practically, this means that for a nonidentifiable pathway, the
probability function in (2), and therefore the expected response, cannot be evaluated without
further assumptions. We further consider this issue here, focusing, for simplicity and due to
its relevance to our data example, on the context of a saturated three-stage model (as in
Figure 1) with discrete mediators. In this case applying formula (2) yields

(3)

where p2 = P {Z2(d2, Z1(d12))=z2|Z1(d1)=z1}, p1 = P {Z1(d1)=z1} and the summations are
over the possible values of Z1 and Z2, respectively.

While estimation of p1 is straightforward, the approach to evaluating p2 depends on the case.
When d1 = d12(= 0), that is, the pathway being considered is D0 or D2, we have P{Z2(d2,
Z1(d12))|Z1(d1)} = P {Z2(d2, Z1(d12))|Z1(d12)}. The right hand side of this equality is readily
evaluable and thus p2 and E{Y (D)} are estimable. In the case where d1 ≠ d12 (which occurs
when the pathway is D1 or D12), the above equality does not hold in general. To evaluate p2
in this case we use the identity

Albert and Nelson Page 7

Biometrics. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(4)

where the summation is over the possible values of Z1. Note that when d1 ≠ d12, the term
P{Z1(d12)|Z1(d1)} in (4) involves the relationship between two counterfactuals, namely,
Z1(1) and Z1(0), and thus is not estimable (resulting in the nonidentifiability of E{Y (D)} for
pathways D1 and D12) without further assumptions.

One way to allow estimation to proceed is to supply a value for the conditional probability
P{Z1(d12)|Z1(d1)}. If we assume that Z1(1) and Z1(0) are independent then (4) can be written
as p2 = Σz12 P{Z2(d2, Z1(d12)) = z2|Z1(d12) = z12}P {Z1(d12) = z12} which is estimable.
Below, we discuss the possibility of alternative assumptions regarding P{Z1(d12)|Z1(d1)}
which may be considered as part of a sensitivity analysis.

3.4 Sensitivity Analysis
We may wish to check the sensitivity of the pathway effect estimates to assumptions
regarding the conditional probability P{Z1(d12)|Z1(d1)}. As noted above, this is only an
issue in the three-stage model for pathways for which d1 ≠ d12. We propose a sensitivity
analysis based on a general model for the joint probability of Z1(d1) and Z1(d12). In this
analysis we suppose that each of these variables is ordinal with (the same) K possible values,
and let z1,j denote the jth ordered value. We let P1(z1) ≡ P{Z1(d1) ≤ z1} denote the
probability distribution function of Z1(d1). Similarly, P12(z12) ≡ P{Z1(d12) ≤ z12} will
denote the probability distribution function of Z1(d12). These will generally be based on an
assumed model, for example, Poisson. Of course, for the pathways under consideration, one
variate (Z1(d1) or Z1(d12)) will equal Z1(0) and the other will equal Z1(1). We suppose that
there are, corresponding to Z1(d1) and Z1(d12), latent variables, denoted as  and

, respectively, which are marginally distributed as standard normal and satisfy the
relationships,  and  where Φ is the
standard normal distribution function. In addition,  and  are assumed to have a
bivariate normal distribution with correlation ρ. Due to the assumed bivariate normal
distribution we have the relationship . This model may be seen as
a special case of the Gaussian copula (Song, Li, and Yuan 2009).

In order to properly handle the discrete nature of the distributions of the original variables,
we propose a Monte Carlo approach to compute the conditional distributions P{Z1(d12)|
Z1(d1) = z1} for possible values of z1. The method uses the following algorithm which has as
inputs, the estimated or empirical marginal probability distribution functions, denoted P̂1
and P̂12 for Z1(d1) and Z1(d12), respectively, and a specified value for correlation parameter
ρ; we also let P̂1,j ≡ P̂1(z1,j), P̂12,j ≡ P̂12(z1,j), and P̂1,0 = P̂12,0 ≡ 0:

1. For a given z1, say z1,k, draw a uniform variate (u1, say) from the interval (P̂1,k−1,
P̂1,k]. Let U1 = Φ−1(u1).

2. Draw a variate (U12, say) from N (0, 1) independent of U1.

3. Calculate U12C = ρU1 + (1 − 2)1/2U12. Let u12C = Φ(U12C).

4. Let C12jk = 1 if u12C ∈ (P̂12,j−1, P̂12,j], C12jk = 0, otherwise, for j = 1, …, K (with
the subscript k indicating the conditioning on z1,k).

5. Repeat Steps 1–4 with independent draws a large number of (say, R) times
obtaining C12jkr = C12jk in the rth replication for r = 1, …, R.
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Following the R replications for each z1,k, we estimate the conditional probability P {Z1(d12)
= z1,j|Z1(d1) = z1,k} as Σr C12jkr/R for j, k = 1, …, K. With this substitution we can obtain an
estimate of E{Y (D)} for each specific pathway D using expressions (3) and (4);
consequently we can also estimate R(D) and P(D). These estimates can be recomputed using
the above algorithm over varying values for ρ to provide a sensitivity analysis.

3.5 Adjustment for Covariates
So far, we have addressed the situation where the vector of model variables (Z), consists
only of the (endogenous) mediators and the exogenous exposure variable. However, there
may be covariates (that is, other pre-exposure or otherwise exogenous variables) that affect
two or more endogenous variables in the model. Such variables represent potential
confounders that may be important to control for in the assessment of mediation/pathway
effects. We now show how the above mediation analysis may be extended to allow covariate
adjustment.

The general model (1) expanded to include covariates can be written as

where W is the vector of (exogenous) covariates and γj is the corresponding vector of
regression parameters for the jth outcome variable. The covariates, being exogenous, are
unaffected by the manipulation, D. For simplicity, the above model implies the use of the
same set of covariates for all equations, but this is not necessary.

Our approach is to estimate the marginal expected value of response Y under manipulation D
(that is, E{Y (D)}) as the weighted average (over the joint distribution of the covariates, W)
of the conditional expected responses, E{Y (D)|W}. We thus use the basic identity, E{Y (D)}
= ∫w E{Y (D)|W =w}fW(w)dw where fW is the joint density function of W, and the integral is
interpreted as summation in the case of categorical covariates. The conditional expectation,
E{Y (D)|W=w} is computed as in formula (2) but with gM (βM zpM + γM W) in place of gM
(βM zpM), and the conditional joint density fZRM (D)|W (zRM |W) in place of fZRM (D)(zRM).
With these substitutions, the conditional expected value is estimated in the same manner as
the marginal expectation as described above. To estimate the joint distribution of the
covariates, we use the empirical distribution (which will easily accommodate continuous as
well as categorical covariates). For our application, we use the empirical distribution for the
whole sample, although other applications could differ, for example, by using the
distribution for the exposed group. Essentially, we are then obtaining the estimate of E{Y
(D)} as the average of the estimate E{Y (D)|W = wi} for individual covariate values, wi, over
the sample. Covariate-adjusted estimates of R(D) and P (D) are obtained (based, on the
definitions at the end of Section 2) using the covariate-adjusted estimates of E{Y (D)} and
E{Y (0)}. The bootstrap method for estimating standard errors and confidence intervals and
the sensitivity analysis are applied, in a parallel manner to that described above, to the
covariate-adjusted estimates.

4. Application to Dental Data
The dental study that we consider was briefly described in the introduction. The proposed
causal model (represented in Figure 1) is a saturated model involving, in order, the exposure
variable, ‘birth group’ (X), coded as 1 for VLBW, 0 for normal term; ‘enamel defects’,
specifically, the number of teeth with any demarcation (ZE); ‘sealants’, a binary indicator of
the use of sealants (ZS), coded as 1 if the individual received any sealant, 0 otherwise; and
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DMFT (Y), the number of decayed, missing, and filled permanent teeth. The enamel defect
and DMFT counts used in the present analysis were confined to incisors and first molars as
these were anticipated to be more vulnerable than other teeth to problems due to
prematurity. We begin by specifying the model and deriving mediation effects. Following
the methodological setup we present the results for the data.

4.1 Model and Formulae for Pathway Effects
To begin, we assumed that the count variables (DMFT and enamel defects) are distributed as
Poisson and that sealant use is Bernoulli. We used the following system of generalized
structural linear models with canonical links (log for Poisson and logit for Bernoulli); here
we use subscripts “E” (for enamel defects), “S” (for sealant), and “Y” (for the final response,
DMFT) in place of subscripts 1, 2, and 3 (or M), respectively:

(5)

In this two-mediator model there are four possible pathways from the exposure (birth group)
to the outcome (dental caries). These pathways (corresponding to alternative explanations of
the effect of birth group on dental caries) are represented graphically in Figure 1 and
described as follows: D0 - effect is due to the direct effect of birth group on dental caries; DE
- effect is through enamel defects only; DS - effect is through sealants only; DES - effect is
through the chain of enamel defects followed by sealants.

Our goal was to determine the contribution of each of the four possible pathways in
explaining the association between birth group and DMFT. For computational ease we used
an upper bound of 9 for enamel defects counts. In fact, 12 is the biological upper bound
(corresponding to the 8 permanent incisors and 4 permanent first molar teeth), but the
probability of a count higher than 9 (which in fact did not occur in our data) was considered
as negligible.

For the present model, we apply formula (3) with the appropriate change in notation. We use
 where μE ≡ E{ZE(DE)} = exp(βEI + βE0dE) and

. Similarly,  where μES =

exp(βEI + βE0dES) and . For pathways D0 and DS we have pS = zSμS
+ (1 − zS)(1 − μS) where μS = [1 + exp{− (βSI + βS0dS + βS1zE)}]−1. For the pathways DE
and DES we made the working assumption of independence of ZE(0) and ZE(1), equivalently
ρ = 0 in the latent variable model described in Section 3.4. This assumption yields pS
=ΣzES{zSμSC + (1 − zS)(1 − μSC)}P{ZE(dES)=zES} where μSC = [1 + exp{− (βSI + βS0dS +
βS1zES)}]−1.

In addition, we fit the above model controlling for covariates, namely, sex, race (African
American or white), and socioeconomic status (low or high). All three of these variables
were added to each model in (5) and the method of Section 3.5 used to estimate pathway
effects. Finally, we considered the negative binomial distribution as an alternative to the
Poisson for the two count variables. The model is the same as above (that is, (5) with added
covariates) but here the mediator probabilities in (3) are determined using the negative
binomial rather than Poisson distribution (truncating above a count of 9 as before). Model
parameters were estimated via maximum likelihood estimation and the Akaike information
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criterion (AIC) was calculated for each model to allow comparisons of model fit to the
dental data.

For each of the above models we obtained the estimated pathway effects, that is, E{Y (D)},
R(D), and P(D), for each specified D. For each estimand, upper and lower bounds for a 95%
confidence interval were obtained, respectively, as the 2.5th and 97.5th percentiles of the
distribution of the corresponding estimate over 1000 bootstrap samples. In addition, we used
the method of Section 3.4 to assess the sensitivity of these estimates to the choice of ρ.

4.2 Results of Dental Data Analysis
The dental data provided a sample size of 203 using complete cases on the model variables
(and one other variable considered but not included in the present analysis, namely, the oral
hygiene score, which provides an alternative candidate as a mediator). For later reference we
note that the observed average DMFT (and standard deviation) was 1.54 (1.75) for the
normal birth weight group (n=78) and 1.04 (1.58) for the VLBW group (n=125). Table 1
provides maximum likelihood estimates of the regression parameters (along with standard
errors) for the three models examined: 1) Model (5) assuming Poisson-distributed counts, 2)
the same model but including three covariates (sex, race, and SES) in each response model,
and 3) Model (5) with covariates and assuming negative binomial distributed counts. Table
1 also has AIC values for each response model. The lower AIC for each response variable in
Model 2 relative to the same response variable in Model 1 indicates that adding the three
covariates improves model fit. In addition, comparing Models 2 and 3, we find lower AICs
using a negative binomial distribution for the count variables (ZE and Y) relative to using a
Poisson distribution. The model with negative binomial counts generally provides larger
estimated standard errors, presumably reflecting the fact that this distribution is able to
account for extra-Poisson variation. An examination of the regression parameter estimates
(focusing on Model 3 results) reveals marginally statistically significant direct effects of
birth group (X) and sealant use (ZS) on DMFT (Y). However, birth group (X) does not appear
to significantly affect enamel defects (ZE) or use of sealants (ZS) directly. Also, there do not
appear to be significant effects of enamel defects on sealant use or on DMFT.

Estimates of expected DMFT (E{Y (D)}), the pathway effect relative to no exposure (R(D)),
and the mediation proportion (P(D)), for each pathway, are provided in Table 2. From this
table, we see that estimated pathway effects are similar in the three models and the
conclusions are substantially the same. The estimated expected response for the direct
pathway between birth group and DMFT is around 1.0 for each model. This value is
interpreted as the expected DMFT for the VLBW group were the birth group effect through
enamel defects and through sealant use to be blocked. We also see that the expected DMFT
for the other three pathways is around 1.5. The estimated mediation proportions (from
Models 2 and 3) are around 1.04 for the direct effect, −0.07 for the pathway through enamel
defects alone, 0.03 for the pathway though sealants alone, and close to 0 for the pathway
though enamel defects and sealants. It thus appears that the effect of birth group on DMFT is
primarily due to the direct effect. Note, of course, that this effect will include effects of
pathways through any unobserved mediators. The fact that the estimated proportion for the
direct effect is greater than 1 indicates that the assessed mediating factors (enamel defects
and sealant use) together actually slightly favor the normal birth group; that is, were the
birth group effects through these mediators to be blocked, the expected birth group effect
(favoring the VLBW group) would be even greater (by an estimated 4 percent) than that
observed. The positive mediation proportion for the pathway through sealants alone (in the
models that adjust for covariates) indicates that this pathway explains some (3 percent) of
the observed association between birth group and DMFT, while the negative proportion for
the pathway through enamel defects alone indicates that this pathway actually favors the
normal birth group. However, none of these mediation proportions (aside from that of the
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direct effect) are significantly different from 0. Note that negative values for P(D), as well as
values greater than 1, are interpretable due to the possibility of ‘negative’ mediation, as
discussed in Albert (2008).

The expected effects for the DE and DES pathways were estimated under the assumption of
independence between ZE(0) and ZE(1). We checked the impact of this assumption by
applying the sensitivity analysis described in Section 3.4. For pathways DE and DES, we re-
estimated E{Y (D)} over varying values of the correlation parameter ρ, namely, from −1 to 1
in increments of 0.1. The number of replicates used in the Monte Carlo simulations to
estimate each conditional probability was R=1000. We found that the re-estimates, both for
E{Y (DE)} and E{Y (DES)}, estimated under ρ = 0 as 1.54 and 1.50 respectively (for Model
3), were within 0.001 over the range of ρ. The results thus appear to be quite insensitive to
assumptions regarding ρ.

5. Simulation Study
We conducted a simulation study to examine our proposed estimators in terms of bias and
efficiency. Seven different scenarios, each representing a set of selected values of the
regression parameters (β’s) in Model (5) possibly including covariates, were considered. The
scenarios may be characterized as follows: (1) ‘Dental Data’ - parameter values
approximately equal to the estimates obtained from the analysis of the dental data in Section
4; (2) ‘All D1’ -entire exposure effect due to pathway X → Z1 → Y;(3) ‘All D2’ - entire
exposure effect though pathway X → Z2 → Y; (4) ‘All D12’ - entire exposure effect though
pathway X → Z1 → Z2 → Y; (5) ‘All D0’ - entire exposure effect though direct pathway (X
→ Y);(6) ‘Equal’ - approximately equal mediation proportions though the four possible
pathways; (7) ‘Equal + Covariate’ - approximately equal mediation proportions as in
Scenario (6) but where a covariate (W) is included that affects two of the responses (namely,
Z1 and Y). For Scenario 7 we fit two models, one with and one without the covariate; the
latter was intended to allow us to study the impact on estimates of an omitted confounder.
The regression coefficient values used for each scenario are given in Table 3.

Simulated data sets for each scenario were obtained with a sample size of 200, similar to the
dental dataset. For each individual (observational unit), X, Z1, Z2, and Y were generated
sequentially, with the mean for each variable calculated as a function of its predictors
(parents) as given by model (5) (with the subscripts “E” and “S” exchanged with “1” and
“2”, respectively). The exposure group, X, coded as 0 (non-exposed) or 1 (exposed) was
assigned via constrained randomization to provide 100 individuals per group; Z2 was
generated as a Bernoulli random variable; and Z1 and Y were generated as truncated Poisson
with an upper bound of 9. Poisson was chosen rather than negative binomial - although the
latter provided a better fit to the dental data - to allow greater computational speed and
because the estimated pathway effects in the dental data were not greatly affected by the
choice of model. Realizations of this set of four variates were generated independently
across individuals. For each dataset, the method of Section 3, under the specific
implementation of Section 4.1, was used to estimate E{Y (D)}, R(D), and P(D) for each
pathway (D). One thousand bootstrap samples were drawn for each dataset to obtain
confidence intervals. For each scenario 500 replications were performed.

The main statistics of interest for each set of replications were the mean of the estimates, the
coverage (percent of replications for which the 95% confidence interval covered the true
value of the estimand), and, for R(D) and P(D), the power (percent of replications for which
the 95% confidence interval excluded zero).
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The true values for the estimands were obtained by applying the formula for the expected
values (3) using the true values for the regression parameters (β’s) in model (5). As in the
analysis of actual data, this approach requires a specification of P{Z1(d1)|Z1(d12)} for
otherwise nonidentifiable pathways. For the simulated data, we assumed independence,
equivalent to using ρ = 0 in the model describe in Section 3.4.

The simulation results are shown in Table 4. We see that for all scenarios average estimates
for E{Y (D)} and R(D) were close to the true values for each of the four pathways (D’s).
This was also the case for P(D) for Scenario 1, but not always for the other scenarios. In
particular, in Scenario 4, and to a lesser extent in the other scenarios, the average estimate of
P(D) was sometimes rather far off from the true value. This may be explained by the fact
that that the total exposure effect was relatively small in these scenarios, so that that the
estimate of P(D) could be rather unstable. If we include only datasets where the estimated
total exposure effect is at least 0.005 in absolute value, then the estimates of P(D) for
Scenario 4 become more reasonable (0.022, 0.057, −0.069, and 0.99, for pathways D0, D1,
D2, and D12, respectively). The coverage of 95% confidence intervals for R(D) was close to
the nominal rate (plus or minus two percent) in most cases, though sometime conservative or
anti-conservative. The 95% confidence intervals for P(D) tended to be conservative,
presumably due to the frequent instability of this measure as noted above. The results for
power reflect the effect sizes and indicate that rather large effects (corresponding to
mediation proportions near 1) are needed for high power for our studied sample size. The
results for Scenario 7 (Web Table 1) show that the method for covariate adjustment could
provide reasonable estimates of pathway effects in the presence of a confounder. We find
that estimated pathway effects are somewhat but not very far off when the covariate is
omitted.

In addition, some of the scenarios had a lack of convergence or questionable convergence
due to a non-positive definite negative Hessian for some of the simulated datasets. This
occurred in a few of the bootstrap-generated datasets for Scenarios 4, 6 and 7, and also in a
small number of the originally-generated datasets in Scenario 4. These datasets were
excluded from the results. Such computational difficulties appeared to be more likely in
cases, such as Scenario 4, where there is a substantial effect of Z1 on Z2, presumably
because this situation will tend to induce multicollinearity when both Z1 and Z2 are included
in the model for Y. Nevertheless even in these cases, our simulations showed low bias in
estimated pathway effects.

Additionally, we examined the effect on true estimand values of varying the counterfactual
correlation ρ from −1 to 1 in increments of 0.1. As expected, there was no effect of ρ on the
estimands for pathways D0 or D2 (for which the derived formulae do not involve ρ.) For D1
and D12 there was no effect of ρ on the estimands in Scenario 2, 3, and 5. This result could
be expected because there is no effect of Z1 on Z2 in these scenarios. In Scenario 1 (‘Dental
Data’), which has a small effect of Z1 on Z2, the expected values of Y (that is, E{Y (D)})
varied by less than 0.005 over the range of ρ. The other scenarios showed a more
appreciable impact of varying ρ, with a range of around 0.3 for Scenario 4, and up to around
0.5 for Scenarios 6 and 7. The effect of ρ on E{Y (D)} for pathways D1 and D12 is displayed
graphically in Web Figure 1 for Scenario 6 (‘equal’). The more pronounced impact of ρ on
estimand values in these scenarios can be explained by the relatively large effect of Z1 on
Z2. Note, however, that in practice it may often be reasonable to assume a positive
correlation. This would reducing the ranges mentioned above for E{Y (D)} by around half.
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6. Discussion
This paper presents a general method for assessing pathway-specific (or mediation) effects
in the relationship of a treatment or exposure and an outcome. The basic formula presented
(2) is applicable to any DAG where the expected value of the outcome and each mediator
can be expressed as a function of its parents via a generalized linear model. In particular,
this general approach allows for multiple stages of mediation, different types of model
variables, and adjustment for pre-exposure covariates. For concreteness, we focused on the
special case of a saturated three-stage path model with bounded discrete mediators. Our
approach should be readily extendable to unsaturated models (that is, models that assume
the absence of some direct effects) as well as models with more than three stages of
mediation. Because our proposed approach is based on likelihood, it has the advantages of
the availability of likelihood-based methods for model testing and selection, and of allowing
valid inference when data are missing at random. Estimation of model parameters may be
performed using standard statistical packages. We used SAS (Version 9.2), including PROC
GENMOD and SAS/IML, to conduct the data analysis and simulation studies presented in
this paper.

Our approach was successfully applied to data from a study of dental caries in VLBW
versus normal term adolescents. The analysis showed that the effect of VLBW on DMFT
was largely explained by its direct effect, with little contribution of hypothesized pathways
through enamel defects or through use of sealants. Although this data example was intended
to be illustrative, we provide some precautions for interpreting the results. First, we note that
the dental responses (including both the final outcome and the mediators in our model) were
obtained at around the same time, thus placing heavy reliance on assumptions of their causal
order. In addition, using birth weight as an exposure variable implies that it is manipulable;
while arguable, this is a conceptualization that needs further explication. Finally, the model
presented for the dental data represents a considerable simplification of a more
comprehensive model for dental caries which would include additional mediators and
potential confounders.

The implementation of our method may be more difficult if unbounded or continuous
mediators are used; in the latter case, formula (2) involves integration rather than
summation. In cases where a continuous mediator is of interest, numerical or Monte Carlo
methods can be incorporated in the pathway effect estimators.

Our simulation studies showed little if any bias of estimated pathway effects under the
models and good coverage properties of bootstrap confidence intervals. More caution may
be needed for inference regarding mediation proportions which we found to be potentially
unstable for small exposure effects. This observation echoes previous work on the
proportion of treatment effect explained by a surrogate endpoint (Freedman, Graubaud, and
Shatzkin, 1992). An additional concern is the possibility of lack of convergence when fitting
the generalized linear models. The usual precaution of avoiding multicollinearity among
baseline covariates should be taken.

We indicated that some pathways may be nonidentifiable, namely, where their expected
value involves the joint probability among counterfactuals. This problem, which only occurs
when there are more than two stages of mediation, appears to have received little attention
aside from Avin et al. (2005). The assumption of independence of the counterfactuals allows
a straightforward solution, but may not be scientifically plausible. Consequently, we devised
a sensitivity analysis to allow an assessment of the impact of this assumption on the pathway
effect estimates. Our proposed sensitivity parameter is based on a copula model and is
interpreted as the correlation between latent normally distributed variables underlying the
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counterfactuals. This approach has the advantage of being applicable to different types of
variables. A limitation is that, being a correlation of counterfactuals, some may find this
parameter difficult to interpret. Fortunately, our simulation studies, as well as our data
analysis, showed that pathway effect estimates have low sensitivity to the counterfactual
correlation under most scenarios.

A basic limitation of our method is that it assumes a correct specification of the causal
model, implying the assumption of no unmeasured confounders, or equivalently, sequential
ignorability. Specifying adequately elaborate models may allow a better approximation to
this assumption. A sensitivity analysis based on this assumption (Imai et al., 2010) might
also be considered.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Three-stage path model. On top is the overall path model; below are the possible specific
pathways. For the dental data, X = birth group, Z1 = enamel defects, Z2 = sealant use, and Y
= DMFT.
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Table 2

Estimates (and 95% bootstrap confidence intervals) for expected values, E{Y (D)}, relative effects, R(D) =
E{Y (D)} − E{Y (0) }, and proportion of total exposure effect explained, P(D), for each pathway and for each
model fit to the dental data. Absolute values less than 0.001 are indicated by “0.000” (for positive values) or
“−0.000” (for negative values).

Model Pathway(D) E{Y (D)} R(D) P(D)

1 (Poisson Counts, no covs)

D0 1.01 (0.76, 1.30) −0.48 (−0.92, −0.004) 1.11 (0.08, 2.2)

DE 1.53 (1.14, 1.92) 0.040 (−0.022, 0.13) −0.093 (−0.84, 0.54)

DS 1.49 (1.12, 1.86) 0.005 (−0.089, 0.11) −0.012 (−0.59, 0.51)

DES 1.49 (1.11, 1.86) 0.000 (−0.008, 0.010) −0.001 (−0.044, 0.059)

2 (Poisson Counts, with covs)

D0 1.02 (0.77, 1.30) −0.52 (−0.95, −0.029) 1.04 (0.70, 1.69)

DE 1.57 (1.17, 1.95) 0.034 (−0.015, 0.12) −0.068 (−0.49, 0.085)

DS 1.52 (1.16, 1.89) −0.012 (−0.11, 0.075) 0.025 (−0.33, 0.38)

DES 1.54 (1.16, 1.91) −0.000 (−0.010, 0.008) 0.000 (−0.034, 0.035)

3 (Neg Bin Counts, with covs)

D0 1.03 (0.77, 1.32) −0.48 (−1.02, 0.049) 1.04 (0.53, 1.91)

DE 1.54 (1.12, 1.99) 0.030 (−0.022, 0.13) −0.065 (−0.62, 0.27)

DS 1.50 (1.10, 1.94) −0.012 (−0.10, 0.076) 0.026 (−0.42, 0.43)

DES 1.51 (1.10, 1.96) −0.000 (−0.007, 0.007) 0.000 (−0.029, 0.035)
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