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Abstract We give a quiver representation theoretic interpretation of generalized
cluster complexes defined by Fomin and Reading. Using d-cluster categories defined
by Keller as triangulated orbit categories of (bounded) derived categories of repre-
sentations of valued quivers, we define a d-compatibility degree (− ‖ −) on any pair
of “colored” almost positive real Schur roots which generalizes previous definitions
on the noncolored case and call two such roots compatible, provided that their d-
compatibility degree is zero. Associated to the root system Φ corresponding to the
valued quiver, using this compatibility relation, we define a simplicial complex which
has colored almost positive real Schur roots as vertices and d-compatible subsets as
simplices. If the valued quiver is an alternating quiver of a Dynkin diagram, then this
complex is the generalized cluster complex defined by Fomin and Reading.

Keywords Colored almost positive real Schur root · Generalized cluster complex ·
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1 Introduction

Generalized cluster complexes associated to finite root systems are introduced by
Fomin and Reading [12]. They have some nice properties, see [2] and references
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therein. They are a generalization of cluster complexes (so-called generalized asso-
ciahedra) associated to the same root systems introduced in [14, 15]. Cluster com-
plexes describe the combinatorial structure of cluster algebras introduced by Fomin–
Zelevinsky [13] in order to give an algebraic and combinatorial framework for the
canonical basis, see [11] for a nice survey on this combinatorics and also cluster com-
binatorics of root systems. In [22], Marsh, Reineke and Zelevinsky use “decorated”
quiver representations and tilting theory to give a quiver interpretation of cluster com-
plexes. This connection between tilting theory and cluster combinatorics leads Buan,
Marsh, Reineke, Reiten and Todorov [6] to introduce cluster categories for a categori-
cal model for cluster algebras, see also [9] for type An. Cluster categories are the orbit
categories D/τ−1[1] of derived categories of hereditary categories arising from the
action of subgroup 〈τ−1[1]〉 of the automorphism group. They are triangulated cate-
gories [19] and now they have become a successful model for acyclic cluster algebras
[5, 7, 8], see also the surveys [4, 24] and references therein for recent developments
and background of cluster tilting theory.

d-cluster categories D/τ−1[d], as a generalization of cluster categories, were in-
troduced by Keller [19] and Thomas [25] for d ∈ N. They are studied by Keller and
Reiten [20], Palu [1, 23]; see also [3] for a geometric description of d-cluster cate-
gories of type An. d-cluster categories are triangulated categories with Calabi–Yau
dimension d + 1. When d = 1, the cluster categories are recovered.

The aim of this paper is to give not only a quiver representation theoretic interpre-
tation of all key ingredients in defining generalized cluster complexes using d-cluster
categories, but also a generalization of generalized cluster complexes to infinite root
systems (compare Remark 3.13 in [12], where the authors asked whether there was
such an extension). For the simply-laced Dynkin case, Thomas [25] gives a realiza-
tion of generalized cluster complexes by defining the d-cluster categories.

The paper is organized as follows: In the first two parts, we recall the well-known
facts on d-cluster categories and (generalized) cluster complexes of finite root sys-
tems. In particular, we recall and generalize the BGP-reflection functors for cluster
categories [26, 27] to d-cluster categories. In the third part, we prove some properties
of d-cluster tilting objects, including that any basic d-cluster tilting object contains
exactly n indecomposable direct summands. In the final section, for any root system
Φ , using a d-cluster category Cd(H), we define a d-compatibility degree on any pair
of colored almost positive real Schur roots. Using the d-compatibility degree, we de-
fine a generalized cluster complex associated to Φ , which has colored almost positive
real Schur roots as the vertices, and any subset forms a face if and only if any two el-
ements of this subset are d-compatible. This simplicial complex is isomorphic to the
cluster complex of d-cluster category Cd(H). If Φ is a finite root system, and if we
take H0 to be the category of representations of an alternating quiver corresponding
to Φ , then our generalized cluster complex is the usual generalized cluster complex
�d(Φ) defined by Fomin and Reading [12].

2 Basics on d-cluster categories

In this section, we collect some basic materials and fix the notation which we will use
later on.
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A valued graph (Γ,d) is a finite set of vertices 1, . . . , n, together with nonnegative
integers dij for all pairs i, j ∈ Γ such that dii = 0 and there exist positive integers
{εi}i∈Γ satisfying

dij εj = djiεi for all i, j ∈ Γ.

A pair {i, j} of vertices is called an edge of (Γ,d) if dij �= 0. An orientation Ω of
a valued graph (Γ,d) is given by prescribing for each edge {i, j} of (Γ,d) an order
(indicated by an arrow i → j ). For simplicity, we denote a valued graph by Γ and a
valued quiver by (Γ,Ω).

Let (Γ,Ω) be a valued quiver. We always assume that the valued quiver (Γ,Ω)

contains no oriented cycles. Such orientation Ω is called admissible. Let K be a field
and M = (Fi, iMj )i,j∈Γ a reduced K-species of (Γ,Ω); that is, for all i, j ∈ Γ ,
iMj is an Fi−Fj -bimodule, where Fi and Fj are division rings which are finite-
dimensional vector spaces over K and dim(iMj )Fj

= dij and dimKFi = εi . We de-
note by H the category of finite-dimensional representations of (Γ,Ω,M). It is a
hereditary Abelian category [10]. Let Φ be the root system of the Kac–Moody Lie
algebra corresponding to the graph Γ . We assume that P1, . . . ,Pn are nonisomorphic
indecomposable projective representations in H, E1, . . . ,En are simple representa-
tions with dimension vectors α1, . . . , αn, and α1, . . . , αn are simple roots in Φ. We
use D(−) to denote HomK(−,K), which is a duality of H.

Denote by D = Db(H) the bounded derived category of H with shift functor [1].

2.1 d-cluster categories

The derived category D has Auslander–Reiten triangles, and the Auslander–Reiten
translate τ is an automorphism of D. Fix a positive integer d and denote Fd = τ−1[d];
it is an automorphism of D. The d-cluster category of H is defined in [19, 25]:

We denote by D/Fd the corresponding factor category. The objects are by defini-
tion the Fd -orbits of objects in D, and the morphisms are given by

HomD/Fd
(˜X,˜Y ) =

⊕

i∈Z

HomD
(

X,F i
dY

)

.

Here X and Y are objects in D, and ˜X and ˜Y are the corresponding objects in D/Fd

(although we shall sometimes write such objects simply as X and Y ).

Definition 2.1 ([19, 25]) The orbit category D/Fd is called the d-cluster category of
H (or of (Γ,Ω)), which is denoted by Cd(H), sometimes denoted by Cd(Ω).

By [19] the d-cluster category is a triangulated category with shift functor [1]
which is induced by the shift functor in D, the projection π :D −→ D/F is a triangle
functor. When d = 1, this orbit category is called the cluster category of H, denoted
by C(H) (sometimes denoted by C(Ω)).

H is a full subcategory of D consisting of complexes concentrated in degree 0,
then passing to Cd(H) by the projection π , H is a (possibly, not full) subcategory of
Cd(H). For any i ∈ Z, we use (H)[i] to denote the copy of H under the ith shift [i] as
a subcategory of Cd(H). In this way, we have that (indH)[i] = {M[i] | M ∈ indH}.
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For any object M in Cd(H), addM denotes the full subcategory of Cd(H) consisting
of direct summands of direct sums of copies of M .

For X,Y ∈ Cd(H), we will use Hom(X,Y ) to denote the Hom-space
HomCd (H)(X,Y ) in the d-cluster category Cd(H) throughout the paper. Define
Exti (X,Y ) to be Hom(X,Y [i]).

We summarize some known facts about d-cluster categories [6, 19].

Proposition 2.2 (1) Cd(H) has Auslander–Reiten triangles and Serre functor Σ =
τ [1], where τ is the AR-translate in Cd(H), which is induced from AR-translate in D.

(2) Cd(H) is a Calabi–Yau category of CY-dimension d + 1.
(3) Cd(H) is a Krull–Remark–Schmidt category.
(4) indCd(H) = ⋃i=d−1

i=0 (indH)[i] ∪ {Pj [d] | 1 ≤ j ≤ n}.
Proof (1) This is Proposition 1.3 of [6] and Corollary 1 in Sect. 8.4 of [19].

(2) It is proved in Corollary 1 in Sect. 8.4 of [19].
(3) This is proved in Proposition 1.2 of [6].
(4) The proof for d = 1 is given in Proposition 1.6 of [6], which can be modified

for the general d . �

From Proposition 2.2 we define the degree for every indecomposable object in
Cd(H) as follows:

Definition 2.3 For any indecomposable object X ∈ Cd(H), we call the nonnegative
integer min{k ∈ Z≥0 | X ∼= M[k] in Cd(H) for some M ∈ indH} the degree of X,
denoted by degX.

By Definition 2.3 any indecomposable object X of degree k is isomorphic to M[k]
in Cd(H), where M is an indecomposable representation in H; 0 ≤ degX ≤ d , X has
degree d if and only if X ∼= P [d] in Cd(H) for some indecomposable projective
object P ∈ H; and X has degree 0 if and only if X ∼= M[0] in Cd(H) for some
indecomposable object M ∈ H. Here M[0] means regarding the object M of H as a
complex concentrated in degree 0.

2.2 BGP-reflection functors

If T is a tilting object in H, then the endomorphism algebra A = EndH(T ) is
called a tilted algebra. The tilting functor HomH(T ,−) induces the equivalence
RHom(T ,−) : Db(H) → Db(A), where RHom(T ,−) is the derived functor of
HomH(T ,−).

Any standard triangle functor G : Db(H) → Db(H′) induces a well-defined func-
tor G̃ : Cd(H) −→ Cd(H′) with the following commutative diagram [19, 26]:

Db(H)
G−−−−→ Db(H′)

⏐

⏐

�

⏐

⏐

�

Cd(H)
G̃−−−−→ Cd(H′)

The following result is proved in [26, 27].
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Proposition 2.4 If G : Db(H) → Db(H′) is a triangle equivalence, then G̃ is also
an equivalence of triangulated categories.

Let k be a vertex in the valued quiver (Γ,Ω); the reflection of (Γ,Ω) at k is
the valued quiver (Γ, skΩ), where skΩ is the orientation of Γ obtained from Ω by
reversing all arrows starting or ending at k. The corresponding category of repre-
sentations of (Γ, skΩ,M) is denoted simply by skH. If k is a sink in the valued
quiver (Γ,Ω), then k is a source of (Γ, skΩ), and the reflection of (Γ, skΩ) at k

is (Γ,Ω). Let k be a sink in (Γ,Ω). Then Pk is a simple projective representation,
and T = ⊕j �=kPj ⊕ τ−1Pk is a tilting representation in H [24]. The tilting func-
tor S+

k = HomH(T ,−) is a so-called BGP-reflection functor, and its derived functor
RHom(T ,−) is a triangle equivalence from Db(H) to Db(skH), which is also de-
noted by S+

k . Similarly, one has BGP-reflection functors S−
k for sources k.

Definition 2.5 The induced functors ˜S+
k : Cd(H) −→ Cd(skH) for sinks k and ˜S−

k :
Cd(H) −→ Cd(skH) for sources k are called BGP-reflection functors of d-cluster
categories.

Remark 2.6 When d = 1, BGP-reflection functors are discussed in [26].

We remind the reader that H (or H′) is the category of representations of the
valued quiver (Γ,Ω) ((Γ, skΩ), respectively); the Pi (respectively, the P ′

i ) are the
indecomposable projective representations in H (respectively, H′), and the Ei (re-
spectively, the E′

i ) are the corresponding simple representations which are the tops of
the Pi (respectively, the P ′

i ) for i = 1, . . . , n.

We recall from Proposition 2.2 and Definition 2.3 that any indecomposable ob-
ject Y in Cd(H) is isomorphic to X[i], where X ∈ indH, and i is the degree of Y .
Keeping this notation, we have the following proposition which gives the images of
indecomposable objects in Cd(H) under the BGP-reflection functor ˜S+

k .

Proposition 2.7 Let k be a sink of the valued quiver (Γ,Ω) and Y an indecompos-
able object in Cd(H) with degree i. Then Y ∼= X[i] for an indecomposable represen-
tation X in H, and

˜S+
k (X[i]) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

P ′
k[d] if X ∼= Pk(∼= Ek) and i = 0,

E′
k[i − 1] if X ∼= Pk(∼= Ek) and 0 < i ≤ d,

P ′
j [d] if X ∼= Pj � Pk and i = d,

S+
k (X)[i] otherwise.

Proof The statement in the proposition was proved in [26, 27] when d = 1. The proof
for the case d > 1 is the same as there. We give a sketch of the proof for the conve-
nience of readers. The BGP-reflection functor S+

k : H −→ skH induces a triangle
equivalence Db(H) −→ Db(skH), denoted also by S+

k . It induces an equivalence
indDb(H) −→ indDb(skH). For any indecomposable object X[i] ∈ indDb(H), it
is not hard to show that S+

k (X[i]) = S+
k (X)[i] for X � Pk (note that Pk = Ek , since
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k is a sink in (Γ,Ω)), and S+
k (Pk[i]) = E′

k[i −1] for i ∈ Z (cf. [26] or [27]). Since E′
k

is an injective representation in skH, we have τP ′
k[i] = E′

k[i − 1] in Db(skH). Now
passing to the d-cluster category Cd(H) (which is an orbit category of the derived
category Db(H)), we get the images of indecomposable objects of Cd(H) under ˜S+

k

as stated in the proposition. �

3 Cluster combinatorics of root systems

For a valued graph Γ , we denote by Φ = Φ+ ∪Φ− the set of roots of the correspond-
ing Kac–Moody Lie algebra.

Definition 3.1 (1) The set of almost positive roots is

Φ≥−1 = Φ+ ∪ {−αi | i = 1, . . . n}.
(2) Denote by Φre

≥−1 the subset of Φ≥−1 consisting of the positive real roots to-
gether with the negatives of the simple roots.

When Φ is of finite type, Φ≥−1 = Φre
≥−1.

Definition 3.2 Let si be the Coxeter generator of the Weyl group of Φ corresponding
to i ∈ Γ0. We call the following map the “truncated simple reflection” σi of Φ≥−1
[14]:

σi(α) =
{

α, α = −αj , j �= i,

si(α), otherwise.

It is easy to see that σi is an automorphism of Φre
≥−1.

3.1 Cluster complexes of finite root systems

In this first paragraph, we do not assume that Γ is a Dynkin diagram (i.e., of finite
type). Let i1, . . . , in be an admissible ordering of Γ with respect to Ω , i.e., it is a sink
with respect to sit−1 · · · si2si1Ω for any 1 ≤ t ≤ n. Denote RΩ = σin · · ·σi1 . This is an
automorphism of Φ≥−1 and does not depend on the choice of admissible ordering
of Γ with respect to Ω. It is the automorphism induced by the Auslander–Reiten
translation τ in C(H) (cf. [26, 27]).

In the rest of this subsection, we always assume that Γ is a valued Dynkin graph,
which is not necessarily connected. Fomin and Zelevinsky [15] associate a nonnega-
tive integer (α ‖ β), known as the compatibility degree, to each pair α,β of almost
positive roots.

This is defined in the following way: Let Ω0 denote one of the alternating orien-
tations of Γ , and Γ + (respectively, Γ −) the set of sinks (respectively, sources) of
(Γ,Ω0). Define

τ± =
∏

i∈Γ ±
σi.
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Then RΩ0 = τ−τ+, which is simply denoted by R.
Denote by ni(β) the coefficient of αi in the expansion of β in terms of the simple

roots α1, . . . , αn. Then (‖) is uniquely defined by the following two properties:

(∗) (−αi ‖ β) = max
([β : αi],0

)

,

(∗∗) (τ±α ‖ τ±β) = (α ‖ β),

for any α,β ∈ Φ≥−1 and any i ∈ Γ .
Two almost positive roots α, β are called compatible if (α ‖ β) = 0.
The cluster complex �(Φ) associated to the finite root system Φ is defined in [14].

Definition 3.3 The cluster complex �(Φ) is a simplicial complex on the ground set
Φ≥−1. Its faces are mutually compatible subsets of Φ≥−1. The facets of �(Φ) are
called the (root-)clusters associated to Φ.

3.2 Generalized cluster complexes of finite root systems

At the beginning of this subsection, we assume that Γ is an arbitrary valued graph,
which is not necessarily connected, except where we express specifically. As before,
Φ denotes the set of roots of the corresponding Lie algebra, and Φ≥−1 denotes the
set of almost positive roots. Fix a positive integer d ; for any α ∈ Φ+, following [12],
we call α1, . . . , αd the d “colored” copies of α.

Definition 3.4 ([12]) The set of colored almost positive roots is

Φd
≥−1 = {

αi : α ∈ Φ>0, i ∈ {1, . . . , d}} ∪ {

(−αi)
1 : 1 ≤ i ≤ n

}

.

When Γ is a Dynkin graph, the root system Φ of the corresponding Lie algebra is
finite. In this case, the generalized cluster complex �d(Φ) is defined on the ground
set Φd

≥−1 and using the binary compatibility relation on Φd
≥−1. This binary compat-

ibility relation is a natural generalization of binary compatibility relation on Φ≥−1,

which we now recall from [12].
For a root β ∈ Φ≥−1, let t (β) denote the smallest t such that Rt(β) is a negative

root.

Definition 3.5 ([12]) Two colored roots αk,βl ∈ Φd
≥−1 are called compatible if and

only if one of the following conditions is satisfied:

(1) k > l. t (α) ≤ t (β), and the roots R(α) and β are compatible (in the original
“non-colored” sense).

(2) k < l. t (α) ≥ t (β), and the roots α and R(β) are compatible.
(3) k > l. t (α) > t(β), and the roots α and β are compatible.
(4) k < l. t (α) < t(β), and the roots α and β are compatible.
(5) k = l. And the roots α and β are compatible.

Now we are ready to recall the definition of generalized cluster complex �d(Φ)

for a finite root system Φ .
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Definition 3.6 ([12]) �d(Φ) has Φd
≥−1 as the set of vertices, its simplices are mutu-

ally compatible subsets of Φd
≥−1. The subcomplex of �d(Φ) which has Φd

>0 as the

set of vertices is denoted by �d+(Φ)

Now we generalize the definition of Rd [12] for a finite root system to an arbitrary
root system.

Definition 3.7 Let (Γ,Ω) be a valued quiver. For αk ∈ Φd
≥−1, we set

Rd,Ω

(

αk
) =

{

αk+1 if α ∈ Φ>0 and k < d,

(RΩ(α))1 otherwise.

Remark 3.8 If (Γ,Ω0) is a valued Dynkin graph with an alternating orientation, then
the automorphism R of Φ≥−1 defined by Fomin and Zelevinsky [14] is RΩ0; hence,
Rd,Ω0 is the usual one (Rd ) defined by Fomin and Reading [12].

Theorem 3.9 ([12]) Let Φ be a finite root system. The compatibility relation on
Φd

≥−1 has the following properties:

(1) αk is compatible with βl if and only if Rd(αk) is compatible with Rd(βl).

(2) (−αi)
1 is compatible with βl if and only if ni(β) = 0.

Moreover, conditions 1–2 uniquely determine this relation.

Now we generalize the “truncated simple reflections” of Φ≥−1 to the colored al-
most positive roots. Let Φ be an arbitrary root system (not necessarily of finite type).

Definition 3.10 Let sk be the Coxeter generator of the Weyl group of Φ correspond-
ing to k ∈ Γ0. We define the following map σk,d of Φd

≥−1:

σk,d(αi) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

αd
k if i = 1 and α = −αk,

αi−1
k if 1 < i ≤ d and α = αk,

(−αj )
1 if i = 1 and α = −αj , j �= k,

(sk(α))i otherwise.

σk,d is a bijection of Φd
≥−1. We call it a d-truncated simple reflection of Φd

≥−1.

4 d-cluster tilting in d-cluster categories

Let Cd(H) be a d-cluster category of type H, where H is the category of represen-
tations of the valued quiver (Γ,Ω). It is a Calabi–Yau triangulated category with
CY-dimension d + 1.

Definition 4.1 (1) An object X in Cd(H) is called exceptional if Exti (X,X) = 0 for
any 1 ≤ i ≤ d.
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(2) An object X is called a d-cluster tilting object if it satisfies the property:
Y ∈ add(X) if and only if Exti (X,Y ) = 0 for 1 ≤ i ≤ d .

(3) An object X is called almost complete tilting if there is an indecomposable
object Y such that X ⊕Y is a d-cluster tilting object. Such an indecomposable object
Y is called a complement of X.

Proposition 4.2 (1) For an object X in H, X is exceptional in H i.e., Ext1H(X,X) =
0 if and only if X[0] is exceptional in Cd(H).

(2) Any indecomposable exceptional object X in Cd(H) is of the form M[i] with
M being an exceptional representation in H and 0 ≤ i ≤ d − 1 or of the form Pj [d]
for some 1 ≤ j ≤ n. In particular, if Γ is a Dynkin graph, then any indecomposable
object in Cd(H) is exceptional.

(3) Suppose that d > 1. Then EndCd (H)X is a division algebra for any indecom-
posable exceptional object X.

(4) Suppose that d > 1. Let P be a projective representation in H and X a rep-
resentation in H. Then, for any −d ≤ i ≤ d , Ext1(P,X[i]) = 0 except possibly for
i ∈ {−1, d − 1, d}.

Proof (1) Let X ∈ H be exceptional. We will prove that Exti (X,X) = 0 for any i ∈
{1, . . . , d}. By definition we have that Exti (X,X) = ⊕

k∈Z ExtiD(X, τ−kX[kd]) =
ExtiD(X,X) ⊕ ExtiD(X, τX[−d]). In this sum, the first summand ExtiD(X,X) =
0,∀i ≥ 1, while the second summand ExtiD(X, τX[−d]) ∼= HomD(X, τX[i − d]),
which is zero when i < d and is isomorphic to Ext1D(X,X) = 0 when i = d. This
proves that X is exceptional in Cd(H). The proof for the converse directly follows
from the definition.

(2) The statements follow from Proposition 2.2(4) and Definition 4.1, also using
Part 1 and the fact that the shift is an autoequivalence.

(3) Let X be an indecomposable exceptional representation in H, and suppose
that d > 1. From the definition of the orbit category It follows that EndCd (H)X ∼=
⊕

m∈Z HomD(X, τ−mX[dm]) ∼= EndH X. The last isomorphism holds due to the
facts: HomD(X, τmX[−md]) ∼= HomD(X[md], τmX) ∼= Ext1D(τm−1X,X[md]) =
0 for any positive integer m and HomD(X, τ−mX[md]) ∼= HomD(τmX,X[md]),
which is also zero, since md > 1 (we use the assumption d > 1 here) for any positive
integer m. Then EndCd (H) X is a division algebra, since EndH X is a division algebra.
Since any indecomposable exceptional object M in Cd(H) is some shift X[i] of an
indecomposable exceptional representation X in H, EndCd (H) M = EndCd (H) X[i] ∼=
EndCd (H) X is a division algebra.

(4) Suppose that d > 1. Let P be a projective representation in H
and X a representation in H. Then, for any −d ≤ i ≤ d , Ext1(P,X[i]) =
⊕

k∈Z Ext1D(P, τ−kX[dk + i]) ∼= Ext1D(P, τX[−d + i]) ⊕ Ext1D(P,X[i]). Now if
i �= −1, d − 1, d, then Ext1D(P, τX[−d + i]) = 0 = Ext1D(P,X[i]). Then, for any
−d ≤ i ≤ d , Ext1(P,X[i]) = 0 except for i = −1, d − 1, and d . �

Remark 4.3 Any basic (i.e., multiplicity-free) exceptional object contains at most
(d + 1)n nonisomorphic indecomposable direct summands.
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Proof Let X be a basic exceptional object in Cd(H). Then any indecomposable di-
rect summand of X is exceptional; hence, by Proposition 4.2(2), we write M as
M = ⊕k=d

k=0
⊕

i∈Ik
Mi,k[k] with Mi,k being an indecomposable exceptional repre-

sentation. Therefore,
⊕

i∈Ik
Mi,k is an exceptional object in hereditary category H;

hence, the number of direct summands is at most n, i.e., |Ik| ≤ n. Then the number
of indecomposable direct summands of M is at most (d + 1)n. �

For any pair of objects T , X in Cd(H), due to the Calabi–Yau property of Cd(H),
we have that Exti (X,T ) = 0 for 1 ≤ i ≤ d if and only if Exti (T ,X) = 0 for 1 ≤ i ≤ d .
Hence, by Remark 4.3 and Definition 4.1, T is a d-cluster tilting object in Cd(H) if
and only if addT is a maximal d-orthogonal subcategory of Cd(H) in the sense of
[17]: i.e., addT is contravariantly finite and covariantly finite in Cd(H) and satisfies
the following property: X ∈ addT if and only if Exti (X,T ) = 0 for 1 ≤ i ≤ d if and
only if Exti (T ,X) = 0 for 1 ≤ i ≤ d . In the following, we will prove that any basic d-
cluster tilting object contains exactly n indecomposable direct summands. First of all,
we recall some results from [17] which hold in any (d + 1)-Calabi–Yau triangulated
category.

Theorem 4.4 (Iyama) Let X be an almost complete tilting object in Cd(H) and X0
a complement of X. Then there are d + 1 triangles:

(∗) Xi+1
gi−→ Bi

fi−→ Xi
σi−→ Xi+1[1],

where fi is the minimal right addX-approximation of Xi and gi minimal left
addX-approximation of Xi+1, all Xi are indecomposable and complements of X,
i = 0, . . . , d .

For the convenience of readers, we sketch the proof; for details, see [18].

Proof We suppose that d > 1; the same statement for d = 1 was proved in [6]. For
the complement X0 of X, we consider the minimal right addX-approximation f0 :
B0 → X0 of X0, extend f0 to the triangle X1

g0→ B0
f0→ X0

σ0→ X1[1]. It is easy to
see that X1 is indecomposable, g0 is the minimal left addX-approximation of X1,

and X ⊕ X1 is an exceptional object in Cd(H) (cf. [6]). From Theorem 5.1 in [18]
it follows that X ⊕ X1 is a d-cluster tilting object. Continuing this step, one can get

complements X1, . . . ,Xd+1 with triangles Xi+1
gi→ Bi

fi→ Xi
σi→ Xi[1] for 0 ≤ i ≤ d ,

where fi (gi ) is the minimal right (left, resp.) addX-approximation of Xi (Xi+1,

resp.), and X ⊕ Xi is a d-cluster tilting object. �

Corollary 4.5 With the notation of Theorem 4.4, we have that σd [d]σd−1[d − 1] · · ·
σ1[1]σ0 �= 0. In particular, Hom(Xi,Xj [j − i]) �= 0 and Xi � Xj ,∀0 ≤ i < j ≤ d.

Proof From Theorem 4.4 we have that σ0 �= 0, since the triangle (∗) at i = 0
in Theorem 4.4 is nonsplitting. Suppose that σd [d]σd−1[d − 1] · · ·σ1[1]σ0 = 0;
then σd−1[d − 1] · · ·σ1[1]σ0 : X0 → Xd [d] factors through fd [d] : Bd [d] →
Xd [d], since we have a triangle Xd+1[d] gd [d]−→ Bd [d] fd [d]−→ Xd [d] σd [d]−→ Xd+1[d + 1].
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Since Hom(X0,Bd [d]) = Extd(X0,Bd) = 0, σd−1[d − 1] · · ·σ1[1]σ0 = 0. Simi-
larly, σd−2[d − 2] · · ·σ1[1]σ0 = 0 and, finally, σ0 = 0, a contradiction. Now we
prove the final statement: we have that σj−1[j − 1] · · ·σi ∈ Hom(Xi,Xj [j − i]) and
σj−1[j − 1] · · ·σi �= 0. Otherwise σj−1[j − 1] · · ·σi = 0, and hence σd−1[d − 1] · · ·
σ1[1]σ0 = 0, a contradiction. Now suppose that Xi

∼= Xj for some i < j . Then
Extk(Xi,Xj ) = 0 for 1 ≤ k ≤ d , a contradiction. Then Xi � Xj . �

Now we state our main result of this section.

Theorem 4.6 Any basic d-cluster tilting object in Cd(H) contains exactly n inde-
composable direct summands.

To prove the theorem, we need some technical lemmas.

Lemma 4.7 Let d > 1, and let X = M[i], Y = N [j ] be indecomposable objects of
degrees i, j, respectively, in Cd(H). Suppose that Hom(X,Y ) �= 0. Then one of the
following holds:

(1) We have i = j or j − 1 (provided that j ≥ 1).
(2) We have i = 0, i = d (and M = P) or d − 1 (provided that j = 0).

Proof Let d > 1. Firstly we note that, for any indecomposable object X ∈ Cd(H),
0 ≤ degX ≤ d , degX = d if and only if X = Pi[d] for an indecomposable
projective representation Pi . This implies that −d ≤ degY − degX ≤ d for in-
decomposable objects X,Y ∈ Cd(H). Let X = M[i], Y = N [j ] be indecom-
posable objects of degrees i, j, respectively, in Cd(H). We have Hom(X,Y ) ∼=
Hom(M,N [j−i])=⊕

k∈Z HomD(M, τ−kN [j−i+kd])=HomD(M, τN [j−i−d])⊕
HomD(M,N [j − i]) ⊕ HomD(M, τ−1N [j − i + d]). The last equality holds due to
−d ≤ j − i ≤ d , and HomD(M, τ−kN [j − i + kd]) = 0 for k �= −1,0,1. We divide
the calculation of Hom(X,Y ) into three cases:

(1) The case −d < j − i < d. We have that Hom(X,Y ) ∼= HomD(M,N [j − i]) ⊕
HomD(M, τ−1N [j − i +d]). The first summand is zero when j − i �= 0,1, while
the second is zero when d + j − i �= 1 (equivalently, d + j − i > 1, since 0 <

d + j − i < 2d).
(2) The case j − i = −d . Then j = 0, i = d (M = P). Then Hom(X,Y ) =

HomD(P, τ−1N).
(3) The case j − i = d. Then j = d (N = P), i = 0. Then Hom(X,Y ) =

HomD(M, τP ) ⊕ HomD(M,P [d]) ⊕ HomD(M, τ−1P [2d]) = 0.

Therefore, if Hom(X,Y ) �= 0, then Hom(M[0],N[j − i]) �= 0. Proof of (1). Sup-
pose that j ≥ 1. Then combining with Case 3, we have that −d < j − i < d.

We want to prove that if j − i �= 0,1, then Hom(X,Y ) = 0, and this will fin-
ish the proof of (1). Under the condition j − i �= 0,1, from Case 1 we have that
Hom(X,Y ) ∼= HomD(M, τ−1N [j − i + d]), which is zero for d + j − i �= 1. But if
d + j − i=1, i.e., i=d, then M=P and j = 1. Then HomD(M, τ−1N [j − i +d]) =
HomD(P, τ−1N [1]) = 0. We have finished the proof of (1).

Proof of (2) Suppose that j = 0. Then −d ≤ j − i ≤ 0. From Cases 1–2 it follows
that i = 0, i = d (M = P), or i = d − 1. This finishes the proof of (2). �
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Lemma 4.8 If d > 2, then Ext2(M[i],N[i]) = 0 for objects M,N ∈ H and any i.

Proof It is sufficient to prove that Ext2(M[0],N[0]) = 0. From the definition of the
orbit category D/τ−1[d] we have that

Ext2
(

M[0],N [0]) = Hom
(

M[0],N[2]) =
⊕

k∈Z

HomD
(

M,τ−kN [kd + 2]),

where each summand HomD(M, τ−kN [kd + 2]) equals 0, since kd + 2 ≥ 2 or
kd + 2 ≤ −1 by the condition d > 2. Hence, Ext2(M[0],N [0]) = 0. �

Lemma 4.9 Let d > 1 and M,N ∈H. Then Ext1(M[0],N[0]) ∼= Ext1H(M,N). Fur-
thermore, any non-split triangle between M[0] and N [0] in Cd(H) is induced from a
non-split exact sequence between M and N in H.

Proof Under the condition d > 1, it is easy to see that Ext1(M[0],N [0]) =
⊕

k∈Z Ext1D(M, τ−kN [2k]) = Ext1D(M,N) = Ext1H(M,N). This proves the first
statement. Since H ⊂ Cd(H) is a (not necessarily full) embedding and any exact
short sequence in H induces a triangle in Cd(H), the final statement then follows
from the first statement. �

Proof (of Theorem 4.6) We assume that d > 1, since it was proved in [6] for d = 1.
Let M = ⊕

i∈I Mi[ki] be a d-cluster tilting object in Cd(H), where all Mi are in-
decomposable representations in H, 0 ≤ ki ≤ d (when ki = d , Mi is projective).
One can assume that one of ki is 0, otherwise one can replace M by a suitable shift
of M . Denote ν(M) = max{|ki − kj | | ∀i, j}. We prove that |I | = n by induction
on ν(M), where |I | denotes the cardinality of I . If ν(M) = 0, i.e., ki = 0 for all
i, then

⊕

i∈I Mi[0] is a d-cluster tilting object in Cd(H) and hence a tilting object
in H. Then |I | = n. Now assume that ν(M) = m > 0. Without loss of generality,
we assume that k1 = · · · = kt = m and kj < m for j > t . From the complement
X0 = M1[k1] of X = M \M1[k1] (here we use X \X1 to denote a complement of X1
in X for a direct summand X1 of X), by Theorem 4.4, we have at least d + 1 com-
plements Xj , j = 0, . . . , d, which form the triangles (∗) in Theorem 4.4. In these
triangles, it is easy to see that fi = 0 if and only if Bi = 0 if and only if gi = 0.
We will prove that there is at least one of complements Xj with smaller degree than
m. At first, we prove this statement for the special case m = 1. We claim that the
degree of X1 is 0 or 1 in this case. Otherwise X1 = P [d] for some indecomposable
projective representation P or X1 = Y [d − 1] for some indecomposable represen-
tation Y . Write X0 as Z[1], where Z is an indecomposable representation in H.
If X1 = P [d], then Hom(X1,X0[d]) = Hom(P [d],X0[d]) ∼= Hom(P,Z[1]) = 0, a
contradiction to the fact that Hom(X1,X0[d]) ∼= Hom(X0,X1[1]) is not zero by The-
orem 4.4 or Corollary 4.5. If X1 = Y [d − 1], then X1 has degree 1 when d = 2, and
Hom(X1,X0[d]) = Hom(Y [d −1],Z[d +1]) ∼= Ext2(Y,Z) = 0 by Lemma 4.8 when
d > 2, which also contradicts to the fact that Hom(X1,X0[d]) ∼= Hom(X0,X1[1]) is
not zero. This proves the statement that X1 has degree 0 or 1. Now if there are no
complements Xj of X with degree 0, then all Xj have degree 1. We prove that any
three successive complements, say X0,X1,X2, cannot have the same degree. If all
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degrees of Xi, i = 0,1,2, are the same, we can assume that all Xi have degree 0. By
Lemma 4.9, we have non-split short exact sequences in H:

0 −→ X1 −→ B0 −→ X0 −→ 0,

0 −→ X2 −→ B1 −→ X1 −→ 0.

From the first short exact sequence we have Ext1H(X0,X1) � 0. Applying
HomH(X0,−) to the second exact sequence, we have the long exact sequence

· · · → Ext1H(X0,X2) → Ext1H(X0,B1) → Ext1H(X0,X1)

→ Ext2H(X0,X2) → Ext2H(X0,B1).

Since X⊕X0 is a d-cluster tilting object in Cd(H) and B1 ∈ addX, Ext1(X0,B1) = 0.
Hence we have that Ext1H(X0,B1)=0 by Lemma 4.9. It follows that Ext1H(X0,X1)=0,

since Ext2H(X0,X2) = 0 due to H being hereditary. It is a contradiction. This finishes
the proof for m = 1.

Now suppose that m > 1. We will prove that there is at least one of complements
Xj with smaller degree than m. We divide the proof into two cases:

Case 1. All maps fi (equivalently gi ) are nonzero. Now we assume that there are
no complements of X with smaller degree than m. Then by Lemma 4.7 the degrees of
all Xi are m. If d > 2, then Ext2(X0,X2) = 0 by Lemma 4.8, a contradiction to Corol-
lary 4.5. If d = 2, then the same proof as above shows that Ext1(X0,X1) = 0, which
contradicts to Corollary 4.5. Therefore, there is a complement of X with smaller de-
gree than m.

Case 2. There are some i such that fi = 0 (equivalently gi = 0). Then Xi
∼=

Xi+1[1] for such i. It follows that Xi+1 has smaller degree than Xi if Xi has a strictly
positive degree. Therefore, we have a complement of X, say Xs , such that the de-
gree k′

1 of Xs is smaller than m = k1. Now we replace X by X′ = (X \ X0) ⊕ Xs ,
which is, by Theorem 4.4, a d-cluster tilting object in Cd(H) containing |I | inde-
composable direct summands. The number of indecomposable direct summands of
X′ with the (maximal) degree m(= ν(M)) is t − 1. We repeat the step for the com-
plement M2[k2] of almost complete tilting object X′ \ M2[k2], getting a d-cluster
tilting object X′′ containing |I | indecomposable direct summands, and the number
of indecomposable direct summands of X′′ with the (maximal) degree m(= ν(M)) is
t − 2. Repeating such a step t times, one can get a (basic) d-cluster tilting object T

containing |I | indecomposable direct summands and ν(T ) < ν(M). By induction, T

contains exactly n indecomposable direct summands. Then |I | = n. �

Remark 4.10 Theorem 4.6 is proved by Thomas [25] for a simply-laced Dynkin
quiver (Γ,Ω0), using the fact that indDb(K ��) ≈ Z �� for a Dynkin quiver ��. This
fact does not hold for non-Dynkin quivers. Our proof is more categorical.

Denote by E(H) the set of isomorphism classes of indecomposable exceptional
representations in H. The set E(Cd(H)) of isoclasses of indecomposable exceptional
objects in Cd(H) is the (disjoint) union of subsets E(H)[i], i = 0,1, . . . , d − 1,

with {Pj [d]|1 ≤ j ≤ n}. A subset M of E(Cd(H)) is called exceptional if, for any
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X,Y ∈ M, Exti (X,Y ) = 0 for all i = 1, . . . , d . Denote by E+(Cd(H)) the sub-
set of E(Cd(H)) consisting of all indecomposable exceptional objects other than
P1[d], . . . ,Pn[d].

Now we are ready to define a simplicial complex associated to the d-cluster cat-
egory Cd(H), which is a generalization of the classical cluster complexes of cluster
categories [6, 24, 26].

Definition 4.11 The cluster complex �d(H) of Cd(H) is a simplicial complex which
has E(Cd(H)) as the set of vertices and has exceptional subsets in Cd(H) as its
simplices. The positive part �d+(H) is the subcomplex of �d(H) on the subset
E+(Cd(H)).

By the definition, the facets (maximal simplices) are exactly the d-cluster tilting
subsets (i.e., the sets of indecomposable objects of Cd(H) (up to isomorphism) whose
direct sum is a d-cluster tilting object).

Proposition 4.12 (1) �d(H) and �d+(H) are pure of dimension n − 1.

(2) For any sink (or source) k, the BGP-reflection functor S̃+
k (resp. S̃−

k ) induces an
isomorphism between �d(H) and �d(skH). In particular, if Γ is a Dynkin diagram
and Ω and Ω ′ are two orientations of Γ , then �d(H) and �d(H′) are isomorphic.

Proof (1) From Theorem 4.6 it follows that any d-cluster tilting subset contains
exactly n elements. Hence �d(H) is pure of dimension n − 1. Now suppose that
M = ⊕n−1

i=1 Mi is an exceptional object in Cd(H) and that none of the Mi are iso-
morphic to Pj [d] for any j . In the proof of Theorem 4.6, we proved that not all
complements of an almost complete tilting objects have the same degrees. Then M

has a complement in E+(Cd(H)). This proves that �d+(H) is pure of dimension n−1.

(2) Since S̃+
k is a triangle equivalence from the d-cluster category Cd(H) to

Cd(skH), it sends (indecomposable) exceptional objects to (indecomposable) excep-
tional objects. Thus it induces an isomorphism from �d(H) to �d(skH). The second
statement follows from the first statement together with the fact that, for two orien-
tations Ω, Ω ′ of a Dynkin graph Γ , there is a admissible sequence with respect to
sinks i1, . . . , in such that Ω ′ = sin · · · si1Ω. �

5 Cluster combinatorics of d-cluster categories

We now define a map γ d
H from indCd(H) to Φd

≥−1. Note that any indecomposable
object X of degree i in Cd(H) has the form M[i] with M ∈ indH, and if i = d, then
M = Pj , an indecomposable projective representation.

Definition 5.1 Let γ d
H be defined as follows. Let M[i] ∈ indCd(H), where M ∈

indH and i ∈ {1, . . . , d} (note that if i = d, then M = Pj for some j ). We set

γ d
H(M[i]) =

{

(dimM)i+1 if M[i] ∈ indH[i] for some 0 ≤ i ≤ d − 1;
(−αj )

1 if M[i] = Pj [d].
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This map is a kind of extension of correspondence in Gabriel–Kac’s Theorem
between the indecomposable representations of quivers and positive roots of corre-
sponding Lie– Kac–Moody algebras. It is a bijection if Γ is a Dynkin diagram.

We denote by Φsr
>0 the set of real Schur roots of (Γ,Ω), i.e.,

Φsr
>0 = {

dimM M ∈ indE(H)
}

.

Then the map M �→ dimM gives a 1-1 correspondence between E(H) and Φsr
>0 [24].

If we denote by Φ
sr,d
≥−1the set of colored almost positive real Schur roots, which by

definition consists of d copies of the set Φsr
>0, together with one copy of the negative

simple roots, then the map γ d
H gives a bijection from E(Cd(H)) to Φ

sr,d
≥−1. Φ

sr,d
≥−1 con-

tains a subset Φ
sr,d
>0 consisting of all colored positive real Schur roots. The restriction

of γ d
H gives a bijection from E+(Cd(H)) to Φ

sr,d
>0 .

Since E(H) −→ Φsr
>0 : M �→ dimM is a bijection, we use Mβ to denote the

unique indecomposable exceptional representation in H whose dimension vector is
β . From Proposition 4.2 it follows that γ d

H(Mβ [i])) = βi+1 for any 0 ≤ i ≤ d − 1.
We sometimes use Mβi+1 to denote the unique preimage of a colored almost positive

real Schur root βi+1 under γ d
H.

We now prepare to define a simplicial complex �d,H(Φ) associated with any root
system Φ , which turns out to be isomorphic to the cluster complex �d(H) of the
d-cluster category Cd(H). When Γ is a Dynkin graph, taking an alternating orien-
tation Ω0 of Γ , this complex �d,H0(Φ) is the generalized cluster complex �d(Φ)

defined by Fomin and Reading [12].
First of all, we define the “d-compatibility degree” on any pair of colored almost

positive real Schur roots.

Definition 5.2 For any pair of colored almost positive real Schur roots α,β , the
d-compatibility degree of α,β is defined as follows:

(α ‖ β)d,H = dimEndMα

(

Ext1
(

Mα,

i=d−1
⊕

i=0

Mβ [i]
))

,

where dimEndMα(Ext1(Mα,
⊕i=d−1

i=0 Mβ [i])) denotes the length of
Ext1(Mα,

⊕i=d−1
i=0 Mβ [i]) as a right EndMα-module. When d > 1, EndMα is a

division algebra by Proposition 4.2(3), and this length equals the dimension of
Ext1(Mα,

⊕i=d−1
i=0 Mβ [i]) over the division algebra EndMα.

Remark 5.3 When Γ is a Dynkin diagram with trivial valuation and Ω0 is an al-
ternating orientation of Γ , this compatibility degree is defined in [25]. When d = 1
and Γ is a Dynkin diagram, we recover the classical compatibility degree defined in
[6, 27].

Theorem 5.4 (1) For any pair of colored almost positive real Schur roots α, β , we
have:

(a) (α ‖ β)d,H = (σk,d(α) ‖ σk,d(β))d,skH if k is a sink (or a source).
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(b) (α ‖ β)d,H = (Rd,Ω(α) ‖ Rd,Ω(β))d,H.
(c) (α ‖ β)d,H = 0 if and only if (β ‖ α)d,H = 0.

(2) For any almost positive real Schur root β , ((−αi)
1 ‖ (β)l)d,H = 0 if and only

if max{ni(β),0} = 0, where ni(β) is the coefficient of αi in the expansion of β in
terms of the simple roots α1, . . . , αn.

Proof (1) Let α, β be two colored almost positive real Schur roots.
(a) We prove it for the case k is a sink, the proof for source is similar. It is easy to

check that the following diagram is commutative:

indCd(H)

˜S+
k−−−−→ indCd(skH)

γ d
H

⏐

⏐

�

⏐

⏐

�
γ d
skH

Φd
≥−1

σk,d−−−−→ Φd
≥−1

Hence we have that

(

σk,d(α) ‖ σk,d(β)
)

d,skH = dim
End ˜S+

k (Mα)
Ext1

(

S̃+
k (Mα),

i=d−1
⊕

i=0

S̃+
k (Mβ)[i]

)

= dimEndMα Ext1
(

Mα,

i=d−1
⊕

i=0

Mβ [i]
)

= (α ‖ β)d,H.

(b) As we mentioned before, the shift functor [1] of Cd(H) is an auto-equivalence.
We now check that the following diagram commutes:

indCd(H)
[1]−−−−→ indCd(H)

γ d
H

⏐

⏐

�

⏐

⏐

�
γ d
H

Φd
≥−1

Rd,Ω−−−−→ Φd
≥−1

By Proposition 2.2, any indecomposable object in Cd(H) is of the form X[i]
with X an indecomposable representation in H and with 0 ≤ i ≤ d − 1 or of the
form Pj [d]. Denote dimX = α. If i ≤ d − 2, then Rd,Ωγ d

H(X[i]) = Rd,Ω((α)i+1) =
(α)i+2 = γ d

H[1](X[i]). We will prove the equality for other indecomposable objects
in Cd(H). Firstly, we have that Rd,Ωγ d

H(Pj [d − 1]) = Rd,Ω((dimPj )
d) = (−αj )

1

and γ d
H[1](Pj [d − 1]) = (−αj )

1. Hence Rd,Ωγ d
H(Pj [d − 1]) = γ d

H[1](Pj [d − 1]).
Secondly, for any X[d − 1] with X not being projective, we have τX ∈ indH. We
have that Rd,Ωγ d

H(X[d − 1]) = Rd,Ω((α)d) = (RΩ(α))1 and γ d
H[1](X[d − 1]) =

γ d
H(X[d]) = γ d

H(τ−1[d]τX) = γ d
H(τX) = (RΩ(α))1. The last equality holds, since

dimτX = RΩ(dimX) (cf. Sect. 3.1). This proves that Rd,Ωγ d
H(X[d − 1]) =

γ d
H[1](X[d − 1]). For Pj [d], the proof is similar. We finish the proof of the com-

mutativity of the diagram.
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It follows that

(

Rd,Ω(α) ‖ Rd,Ω(β)
)

d,H = dimEndMα[1]Ext1
(

Mα[1],
i=d−1
⊕

i=0

Mβ [1][i]
)

= dimEndMα Ext1
(

Mα,

i=d−1
⊕

i=0

Mβ [i]
)

= (α ‖ β)d,H,

where the second equality follows from the fact that [1] is an equivalence.
(c) Let X,Y ∈ Cd(H) with Exti (X,Y ) = 0 for any 1 ≤ i ≤ d. Then by the

Calabi–Yau property of Cd(H) we have that, for any 1 ≤ j ≤ d, Extj (Y,X) ∼=
Extd−j+1(X,Y ) = 0. This proves (c).

(2) We first prove the necessity: Let β be an almost positive real Schur root
with ((−αi)

1 ‖ (β)l)d,H = 0. If β is a negative simple root and l = 1, we eas-
ily have that max{ni(β),0} = 0. Now we assume that β is a positive real Schur
root. From the condition ((−αi)

1 ‖ (β)l)d,H = 0 we have Extj (Pi[d],Mβl ) = 0,

i.e., Extj (Pi[d],Mβ [l − 1]) = 0 for any 1 ≤ j ≤ d . Since 1 ≤ l ≤ d ,
we have 1 ≤ j ≤ d , where j = d + 1 − l. Now we have that 0 =
Extj (Pi[d],Mβ [l − 1]) ∼= Hom(Pi[d],Mβ [l + j − 1]) ∼= Hom(Pi,Mβ). Hence
ni(β) = dimEndPi

Hom(Pi,Mβ) = 0.

Now we prove the other direction. Suppose that β is an almost positive real Schur
root with max{0, ni(β)} = 0. Firstly, if β is the negative of a simple root, say (−αj )

1,
then

(

(−αi)
1 ‖ (−αj )

1)

d,H = dimEnd(Pi [d])Ext1
(

Pi[d],
k=d−1
⊕

k=0

Pj [d][k]
)

= dimEnd(Pi [d])Ext1
(

Pi,

k=d−1
⊕

k=0

Pj [k]
)

= dimEnd(Pi [d])Ext1
(

Pi,Pj [d − 1]),

the last equality following from Proposition 4.2(4). But Ext1(Pi,Pj [d − 1]) ∼=
Hom(Pi,Pj [−1][d + 1]) ∼= DHom(Pj [−1],Pi) ∼= DExt1(Pj ,Pi) = 0. This proves
that ((−αi)

1 ‖ (−αj )
1)d,H = 0. Now we assume that β is a positive real Schur root

and l is a positive integer not exceeding d . We will prove that ((−αi)
1 ‖ (β)l)d,H = 0

under the condition that ni(β) = 0. We can assume that d > 1, since, for d = 1,
the corresponding result is proved in [26]. From the condition ni(β) = 0 it follows
that HomH(Pi,Mβ) = 0 and then Hom(Pi,Mβ) = 0. Hence Ext1(Pi[d],Mβ [d −
1]) ∼= Hom(Pi,Mβ) = 0. We will prove that Extj (Pi[d],Mβl ) = 0 for 1 ≤ j ≤ d .
Now given such j , Extj (Pi[d],Mβl ) = Extj (Pi[d],Mβ [l − 1]) = Ext1(Pi[d],
Mβ [l + j − 2]) ∼= Ext1(Pi,Mβ [l + j − d − 2]). Since 1 ≤ l ≤ d, 1 ≤ j ≤ d , we
have −d ≤ l + j − d − 2 ≤ d − 2. Then we have that Extj (Pi[d],Mβl ) = 0, which
follows from Proposition 4.2(4) for l + j − d − 2 �= −1 and from the fact that
Ext1(Pi,Mβ [−1]) ∼= Hom(Pi,Mβ) = 0 for l + j − d − 2 = −1. �
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Definition 5.5 Let Φ be the root system corresponding to Γ and H the category of
representations of the valued quiver (Γ,Ω).

(1) Any pair α, β of almost positive real Schur roots is called d-compatible if (α ‖
β)d,H = 0; a subset of Φ

sr,d
≥−1 is called d-compatible if any two elements of this

subset are compatible.
(2) The simplicial complex �d,H(Φ) associated to Φ and H is a complex which

has Φ
sr,d
≥−1 as the set of vertices. Its simplices are d-compatible subsets of Φ

sr,d
≥−1.

The subcomplex of �d,H(Φ) which has Φ
sr,d
>0 as the set of vertices is denoted

by �
d,H
+ (Φ). We call �d,H(Φ) the generalized cluster complex associated to Φ

and H.

Remark 5.6 Given a graph Γ , we have the corresponding root system Φ . Since the
set of real Schur roots of Φ depends on the category indH, equivalently, on the
orientation Ω of Γ , the generalized cluster complexes �d,H(Φ) are possibly noniso-
morphic for different orientations of Γ , but they are isomorphic to each other if Γ is
a Dynkin diagram by Proposition 4.12(2) and the following theorem.

Theorem 5.7 (1) Let Γ be a valued graph and Φ the corresponding root system.
Let Ω be an admissible orientation of Γ . Then γ d

H provides an isomorphism from the
simplicial complex �d(H) to the generalized cluster complex �d,H(Φ), which sends
vertices to vertices and k-faces to k-faces.

(2) The restriction of γ d
H to �d+(H) gives an isomorphism from �d+(H) to

�
d,H
+ (Φ).

(3) If Γ is a Dynkin graph, and Ω0 is an alternating orientation of Γ , then
�d,H0(Φ) is the generalized cluster complex �d(Φ) defined by Fomin and Read-
ing in [12].

Proof (1) γ d
H provides a bijection from the vertices of �d(H) to that of �d,H(Φ).

For any pair of colored almost positive real Schur roots αk, βl , they are d-compatible
if and only if Mαk ⊕ Mβl is an exceptional object, where Mαk and Mβl are the ex-
ceptional objects corresponding to αk, βl respectively under the map γ d

H. Hence γ d
H

is an isomorphism from �d(H) to �d,H(Φ).

(2) This is a direct consequence of (1).
(3) This is a direct consequence of Theorems 3.9 and 5.4. �

From Theorem 5.7 one can translate results from each side. For example, one
gets the number of d-cluster tilting objects in Cd(H) from the number of facets of
generalized cluster complexes of finite root systems [12].

Corollary 5.8 (1) The generalized cluster complex �d,H(Φ) and its subcomplex
�

d,H
+ (Φ) are pure of dimension n − 1.
(2) Let (Γ,Ω) be a connected Dynkin quiver and Φ the root system corresponding

to Γ . Then the number of d-cluster tilting objects of Cd(H) is
∏

i
dh+ei+1

ei+1 , where h

is the Coxeter number of Φ, and e1, . . . , en are the exponents of Φ .
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(3) Let (Γ,Ω) be a connected Dynkin quiver and Φ the corresponding root system.
Then the number of complements of any almost complete tilting object in Cd(H) is
d + 1.

Proof (1) It follows from Proposition 4.12(1) and Theorem 5.7(1).
(2) From Theorem 5.7(1) and Proposition 8.4 in [12] it follows that the state-

ment holds for the d-cluster category Cd(H0) of Ω0. Then by Proposition 4.12(2) the
statement holds for a d-cluster category Cd(H) corresponding to an arbitrary orienta-
tion Ω .

(3) From Theorem 5.7(1) and Proposition 3.10 in [12] it follows that the number
of complements of any almost complete tilting object in Cd(H0) is d + 1. Hence by
Proposition 4.12(2) the number of complements of any almost complete tilting object
in Cd(H) is d + 1. �

Remark 5.9 Corollary 5.8(1) generalizes Theorem 2.9 in [12] to infinite root systems.

Remark 5.10 (1) From Corollary 5.8(2) for d = 1, combining with the result in [6]
(see also [21]), in which the cluster tilting subcategories in D are proved to be in
one-to-one correspondence with the cluster tilting modules in cluster categories by
the projection π, we have an explanation on why the number of cluster tilting sub-
categories (i.e., Ext-configurations in [16]) in D is the same as the number of facets
of �(Φ).

(2) Corollary 5.8(3) is proved by Thomas [25] for an alternating simply-laced
Dynkin quiver (Γ,Ω0), using a different approach.
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