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SUMMARY

There are often two types of correlations in multivariate spatial data: correlations between variables
measured at the same locations, and correlations of each variable across the locations. We hypothesize
that these two types of correlations are caused by a common spatially correlated underlying factor. Under
this hypothesis, we propose a generalized common spatial factor model. The parameters are estimated
using the Bayesian method and a Markov chain Monte Carlo computing technique. Our main goals are
to determine which observed variables share a common underlying spatial factor and also to predict the
common spatial factor. The model is applied to county-level cancer mortality data in Minnesota to find
whether there exists a common spatial factor underlying the cancer mortality throughout the state.

Keywords: Bayesian; Deviance information criterion; Factor analysis; Latent; Markov chain Monte Carlo (MCMC).

1. INTRODUCTION

When several variables are measured at the same locations over a spatial area, they are often correlated
with each other. Each of the variables might also be correlated across the locations due to geographic
similarities of the different locations. This type of multivariate spatially referenced data is commonly
seen in public health or environmental protection research. The literature on multivariate spatial data
analysis has been dominated by methods for predicting the value of an outcome variable at an unobserved
location by borrowing information from not just the outcome variable at known locations, but also all
other variables in the multivariate process: see e.g. Gotway and Hartford (1996) and Leet al. (1997)
for continuous spatial processes, and Desouza (1992) and Kimet al. (2001) for lattice or areal spatial
process. Sometimes, our interest is not in any single variable measured, but in what is behind these
variables. That is, we treat these variables as indicators of a latent variable of interest that is difficult
or impossible to measure directly. We hypothesize that the correlations between variables within locations
and the correlations across locations for each variable are caused by the same latent spatial factor. Our
purpose here is to find which variables share the latent spatial factor and predict the common spatial factor
underlying these variables.

One example of this type of data is the Minnesota mortality data. We find, for example, that if a county
has a high death rate for one kind of cancer, it most likely has high rates for some other kinds of cancers.
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570 F. WANG AND M. M. WALL

Wealso find that neighboring counties have similar cancer rates. Therefore, the disease rates are correlated
both within county and across counties. One reasonable way to explain the two types of correlations in this
multivariate spatial data is to assume that all these disease rates share a spatially correlated common factor.
This common factor might be interpreted as the public health status of Minnesota counties or simply as
the surrogate for unobserved common covariates shared by the specific different cancers.

In this paper we propose the generalized common spatial factor which can be used to explore and
model data as in the examples above. Traditionally, the method of ‘factor analysis’ has been used by
researchers in the psychological and behavioral sciences to explore and model common traits among
individuals. The generalized common spatial factor model is an extension of the traditional factor analysis
model in two ways. First, unlike the traditional common factor model which assumes the factors are
independent between observations, we assume the common factors are spatially correlated. Thus, the
common factors are used to explain both the correlations within and across locations often seen in different
types of multivariate spatial data. Second, the traditional common factor model is applied to normally
distributed outcome data, whereas the generalized common spatial factor model extends to handle more
types of observed data from an exponential family, in particular Poisson and binomial data.

Recently, other authors have proposed models similar to the generalized common spatial factor
model. Christensen and Amemiya (2002) proposed a distribution-free latent variable model to analyze
multivariate spatial data. They assume that the observed variables are linear functions of the latent factors
and parameters are estimated based on a moment method. The distribution-free assumption makes the
model very general, but the applicability of the model is limited by the assumption of linear relationship
between the observed and latent variables which may not hold for Poisson and binomial data. Knorr-Held
and Best (2001) proposed a shared-component model for detecting joint and selective clustering of two
diseases based on Poisson counts. The purpose of their shared-component model is similar to ours, but
we assume a continuous underlying spatial common factor instead of a spatial cluster model and, more
importantly, the method we propose is straightforward forp-dimensional (p � 2) multivariate spatial data
whereas the Knorr-Held and Best model is appealing for only two variables. Furthermore, the generalized
common spatial factor model is specified more generally because it can handle different distributions for
the observed data.

The rest of this paper is structured as follows. Section 2 describes the form of the generalized common
spatial factor model and its specific forms for Poisson and binomial spatial data. Section 3 discusses the
estimation of parameters and prediction of the common spatial factor using the Bayesian method with
MCMC technique. The model selection criterion DIC is also discussed in Section 3 for use with the
generalized common spatial factor model. Section 4 presents an application of the generalized common
spatial factor model for Poisson data. Finally, Section 5 gives some discussion and ideas for model
extensions.

2. GENERALIZED COMMON SPATIAL FACTOR MODEL

2.1 Common spatial factor model

We first introduce the common spatial factor model which extends the traditional factor analysis or
common factor model by allowing spatial structure for the underlying factors. It can be written as

Zi = α + � fi + εi , i = 1, . . . , n, (2.1)

whereZi = (Z1i , . . . , Z pi )
′ is the vector ofp observed variables at each locationsi in region D, fi is

the underlying common spatial factor at locationsi andα and� are p × 1 vectors of intercept and of
coefficients called factor loadings. Thep×1 vectorεi = (ε1i , . . . , εpi )

′ is assumed independent offi and
represents measurement error and any other unmodeled error after modeling each of the observed variables
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Generalized common spatial factor model 571

as a linear combination of one underlying common factorfi . Theεi is assumed to be i.i.d. multivariate
normal with zero mean and diagonal covariance matrix. Further, the common factorf = ( f1, . . . , fn)′ is
assumed multivariate-normally distributed:

f ∼ MV N
(
µ f 1n, C(γ)

)
(2.2)

whereµ f is the mean offi , C(γ) is the covariance matrix representing the spatial structure, andγ is the
vector of parameters in the covariance structure.

There are two common classes of models for the spatial structure that we will consider. One is
geostatistical models in whichf is continuously indexed and the spatial correlations depend on the distance
between two locations. One possible choice of geostatistical model forf is the isotropic exponential model,
i.e. C(γ) = (ci j ), and

ci j = cee−|si −s j |φ, (2.3)

where|si − s j | is the distance between sitesi and sites j , ce is thesill, representing the variance in the
absence of spatial correlations,φ is therange parameter, representing the speed of decrease in correlation
between two locations as the distance increases, andγ=(ce, φ).

The other class of models for spatial structure we consider is lattice models, in whichf is discretely
indexed over a partitioned area, and the spatial correlations depend on the neighborhood structure. The
conditional autoregressive (CAR) model (Besag, 1974) is one such lattice model that is commonly used,
which can be represented as

C(γ) = τ2(In − ρW )−1, (2.4)

whereρ is referred to as the ‘spatial association’ parameter,τ2 is the conditional variance offi | f−i , In

is then × n identity matrix,γ = (ρ, τ2), andW = (wi j ) is a neighborhood matrix of the lattice, where
wi j = 1 if subregioni and j share a common boundary, otherwise 0.

2.2 Generalized common spatial factor model

We now generalize the model in (2.1) to non-normal (say, Poisson or binomial) data commonly seen in
practice.

Let Zi j be thej th ( j = 1, . . . , p) random variable observed at locationsi (i = 1, . . . , n). We assume
Zi j has a distributionF from an exponential family with mean parameterθi j and a possibly separate
variance parameterσ 2

j , i.e.

Zi j |θi j , [σ j ] i id∼ F(θi j , [σ j ]), i = 1, . . . , n, j = 1, . . . , p. (2.5)

We assumeZi j are independent given the parameterθi j (andσ 2
j ). We now put a spatial common factor

model similar to (2.1) on the mean parameter ofθi j with an appropriate link functiong(), that is

g(θi j ) = Oi j + α j + λ j fi , i = 1, . . . , n, j = 1, . . . , p (2.6)

whereOi j is a known offset we might need for some types of data, the interceptα j and the slope or ‘factor
loading’ λ j are fixed unknown parameters that need to be estimated, andfi is spatially distributed as in
(2.2). Note that the link function is actually not linear in the parameters due to the product of unknown
parametersλ j and fi , thus the generalized common spatial factor model differs from the usual generalized
linear model.
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572 F. WANG AND M. M. WALL

Note that there is no measurement error term in (2.6) as in (2.1); actually, the error term is subsumed
in (2.5). In one-parameter distributions such as Poisson and binomial, the error term is not separable
from the mean, and (2.6) models the mean and variance simultaneously. In two-parameter distributions
such as normal and double exponential, (2.6) only models the mean, and the variance parameters must be
estimated separately. In the normal case, with identity link function, (2.5) and (2.6) are equivalent to (2.1).

In the following sections, we discuss in detail the cases whenZi j is a Poisson or binomial variable.

2.2.1 Poisson common spatial factor model. Poisson data are very common in public health research.
Let Zi j be a Poisson random variable with meanθi j , then we have

Zi j |θi j ∼ P O I (θi j ). (2.7)

When using the Poisson distribution to modelp different disease countsj = 1, . . . , p within n regions,
i = 1, . . . , n, wecan express the Poisson meanθi j as the product of the relative risk of dying of diseasej
in regioni times the expected number of cases for diseasej within a regioni based on the age distribution
of region i , (e.g. Clayton and Kaldor (1987) and Carlin and Louis (2000, Section 7.8)). For our spatial
factor model, on the log scale (i.e. with a log link function), we have

log(θi j ) = log(Ei j ) + λ j fi , (2.8)

whereEi j (offset) is the expected number of counts at locationi for variable j , λ j and fi are the same
as in (2.6). Equation (2.8) is equivalent toλ j fi = log(θi j/Ei j ). Therefore,λ j fi can be interpreted as the
log Standardized Mortality Ratio (SMR) at regionsi for the variablej , and fi is the spatially distributed
common risk factor. The coefficientλ j determines how much influence the common risk factorfi has
on the different outcome variablej . Note in (2.8) that theα j is not included in the model because the
expectationEi j is age-adjusted internally.

2.2.2 Binomial common spatial factor model. Binomial observations are another type of data
commonly seen in public health research and can be handled by the generalized common spatial factor
model. LetZi j be the sum ofni j Bernoulli variable at sitei for variable j with parameterθi j . Then we
have

Zi j ∼ BINOMIAL (ni j , θi j ), (2.9)

with the logit link function,

logit(θi j ) = α j + λ j fi , (2.10)

where f = ( f1, . . . , fn)′ is defined as in (2.2). Large (small) values ofα j imply high probability of
the corresponding Bernoulli variable being one (zero). The termfi is the common factor underlying the
observed variables at locationsi , representing the common tendency for all Bernoulli variables to be one
or zero. Parameterλ j determines how much influence the common factor will have on making the specific
Bernoulli variablej be one or zero.

3. BAY ESIAN INFERENCE AND MODEL SELECTION VIAMCMC METHODS

3.1 Model identifiability and priors

As in the usual common factor model, we have identifiability problems in the generalized common spatial
factor model (2.5)–(2.6). Becausefi is latent, it can be fixed to have any scale. That is, letλ∗

j = cλ j and
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Generalized common spatial factor model 573

f ∗
i = 1

c fi for c �= 0, thenα j +λ∗
j f ∗

i = α j +λ j fi : in other words, the model stays the same. To avoid this
arbitrariness, the convention used when thefi are i.i.d., is to letfi have a standard normal distribution.
To see why this constraint removes the indeterminacy, we supposefi has a normal distribution with mean
0 and varianceσ 2 instead of 1, letyi j = α j + λ j fi , and thenE(yi j ) = α j and var(yi j ) = λ2

jσ
2. If

σ 2 increases by a factorc andλ2
j decreases by the factorc, var(yi j ) stays the same. We can see that by

letting σ 2 = 1, the variance ofyi j can be uniquely determined byλ j , thus removing the indeterminacy
caused by the product ofλ2

jσ
2. Thus we will follow this convention to let our spatially correlated factorf

have a multivariate normal distribution with mean0 and a spatial covariance structure with a unit variance
parameter. That is, we letce = 1 in (2.3) orτ2 = 1 in (2.4).

Wealso notice in (2.6) that if we letα∗
j = α j −cλ j and f ∗

i = fi +c, thenα∗
j +λ j f ∗

i = α j +λ j fi and
the model does not change. This indeterminacy can be solved by fixing

∑n
i=1 fi = 0. This constraint does

not cause problems for the model fitting since it is consistent with the assumption thatfi have expected
value zero. Furthermore, by fixing the average of the common spatial factor to be 0, the interpretation
for the fi is straightforward in that positive or negative values offi imply the fi is above or below the
average.

To do the Bayesian inference using the MCMC technique, we need to assign prior distributions to the
parameters to complete the specification of the Bayesian hierarchical model. The general rule is that we
put noninformative priors on the parameters. For the Poisson and binomial common spatial factor models,
we assume the following priors:

• λ j in both models:λ j
iid∼ N(0, τλ), j = 1, . . . , p. The parameterτλ is chosen to be large to make the

prior relatively non-informative.

• α j in binomial model:α j
iid∼ N(0, τα), j = 1, . . . , p. The parameterτα is chosen to be large to make

the prior relatively non-informative.

• φ in the exponential spatial structure: One way is to put uniform prior forφ on (φmin, φmax) (Bestet
al., 2000) where

φmin = (− log 0.5)

dmax

φmax = (− log 0.01)

dmin
.

From the definition, we can see thatφmin corresponds to correlation of 0.5 at the maximum distance
(dmax) between areas in the study region andφmax corresponds to correlation of 0.01 at the minimum
distance (dmin) between areas in the study region.

• ρ in the CAR spatial structure: To ensure the positive definiteness of the CAR model,ρ has to be
ρL = min( 1

emin
, 0) < ρ < 1

emax
= ρU , whereemin andemax are the min and max eigenvalues of

neighborhood matrixW. Therefore, uniform prior forρ on (ρL , ρU ) is often used (Bestet al., 2000).

3.2 Estimation and prediction

In the Bayesian framework, we do not discriminate between estimation and prediction. After putting priors
on the parameters, we can derive the posterior distributions analytically or numerically. All the inferences
then will be based on these posterior distributions.

In most cases, the analytical forms of the posterior distributions are intractable, and numerical methods
have to be used. Standard numerical integration is usually not feasible to get the posterior distribution due
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574 F. WANG AND M. M. WALL

to high dimensionality, so MCMC techniques will be used. One frequently used MCMC technique to get
the empirical posterior distributions is the Gibbs sampler, originally developed by Geman and Geman
(1984) in image reconstruction and introduced into statistics by Gelfand and Smith (1990). To apply the
Gibbs sampler, we need to derive the full conditional likelihood with respect to each parameter.

One advantage of MCMC sampling is that we not only get estimates of the parameters, we also get
empirical estimates of the posterior distributions reconstructed from the MCMC samples and we can do
more analysis based on the posterior distributions.

Due to the constraints we put on the model, no software package was available. FORTRAN 90
programming language was used to implement the MCMC sampling technique. The numerical issues
will be further discussed in the example section.

3.3 Model selection

Bayes factors are often used to do Bayesian model selection, but they can be difficult to compute. The
commonly used Akaike information criterion (AIC) (Akaike, 1973) and Bayesian information criterion
(BIC) (Schwarz, 1978) for model selection are easy to compute but require specification of the number
of parameters in each model. This is not a problem for traditional, nonhierarchical models. In our
hierarchical generalized common spatial factor model, however, the number of parameters is not clearly
defined (Spiegelhalteret al., 2002), the effective number of parameters (or degrees of freedom) could be
much smaller than the number of parameters (Hodges and Sargent, 2001). The AIC and BIC cannot be
directly applied (Gelfand and Dey, 1994). Spiegelhalteret al. (2002) extend the AIC criterion and derive
a Deviance Information Criterion (DIC) for comparing complex hierarchical models in which the number
of parameters is not clearly defined. DIC is given as

DI C = D(θ) + pD (3.1)

whereD(θ) is the average ofD(θ) for all MCMC samples ofθ, and D(θ), which is called ‘Bayesian
Deviance’, can be defined asD(θ) = −2log( f (y|θ)), where f (y|θ) is the likelihood function of the
observed data given the parameterθ. The quantitypD is called ‘effective’ number of parameters, and is
defined aspD = D(θ) − D(θ), whereθ is the average of MCMC samples ofθ.

From the definition ofDI C , we see that only the MCMC samples and the likelihood function of the
observed data are needed to calculateDI C , therefore it is very convenient to getDI C from MCMC
sampling.DI C itself has no well-defined meaning, so when it is used in model selection, the difference
of DI C across models is considered. Similar to AIC and BIC, smallerDI C implies better fit.

4. APPLICATION

In this section, we apply the generalized common spatial factor model to Minnesota cancer data. The
data set contains the number of deaths due to four types of cancers for Minnesota counties.

4.1 The data

We have the complete vital records of Minnesota from 1991 to 1998. In this example, we will focus on
numbers of deaths due to cancers of the lung, pancreas, esophagus, and stomach in the years from 1991
to 1998 at the county level. The numbers of deaths from 1991 to 1998 due to the four cancers in county
i are denoted asZi = (Zi1, Zi2, Zi3, Zi4) respectively. Because these diseases are rare relative to the
population in each county, disease counts are small enough that the Poisson model is appropriate.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/4/4/569/246846 by guest on 16 August 2022



Generalized common spatial factor model 575

Fig. 1. Minnesota maps of raw data standard mortality ratios of four cancers.

Figure 1 is the maps of raw data standard mortality ratios (SMR), i.e.
Zi j
Ei j

, for the 87 Minnesota
counties for each of the diseases. TheEi j is the age-standardized expected number of deaths due to disease
j in countyi . Preliminary analyses of these data using a spatial CAR model fit to each variable separately
indicate that lung, pancreas, and esophageal cancer deaths exhibit positive spatial autocorrelation (with
lung cancer autocorrelation being the strongest) while stomach cancer deaths exhibit slightly negative
spatial autocorrelation. In further preliminary analysis, we consider the correlation between each of
the four cancers by taking the simple Pearson correlation between

Zi j −Ei j√
Ei j

for j = 1, . . . , 4. We find

positive correlation between lung, pancreas, and esophageal cancer, i.e. corr(lung, pancreas) = 0.22,
corr(lung, esophagus) = 0.23, corr(pancreas, esophagus) = 0.24, but very small or negative correlation
between stomach and the others, i.e. corr(stomach, lung) = 0.05, corr(stomach, pancreas) = −0.16,
corr(stomach, esophagus) = −0.15.
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Table 1.Parameter Estimates From Poisson Common Spatial Factor Model

CAR Model (4 var) iid Model (4 var) CAR Model (3 var)
DIC(pD) 46171 (30.73) 46193 (44.19)
Parameter Estimate Std. Error Estimate Std. Error Estimate Std. Error

λ1 0.056 74 0.007 39 0.089 52 0.010 93 0.056 68 0.007 25
λ2 0.026 13 0.009 46 0.038 14 0.015 95 0.025 74 0.009 40
λ3 0.046 30 0.015 29 0.075 63 0.024 96 0.046 43 0.015 70
λ4 0.006 98 0.013 54 −0.001 04 0.023 97 NA NA
ρ 0.174 54 0.003 08 NA NA 0.174 37 0.003 45

Because preliminary data analyses indicate that lung, pancreas, and esophageal cancer exhibit both
positive spatial autocorrelation and correlation between one another, this suggests that the generalized
common spatial factor model might be useful to detect a ‘common factor’ underlying them. Since stomach
cancer does not have strong spatial correlation and is not highly correlated with the other diseases, we
suspect the stomach cancer might not share a common spatial factor with the other three diseases. Recall
that one of our goals is to use the model to determine which variables ‘stick together’ to share a common
spatial factor. We will keep the ‘stomach’ variable and apply our Poisson common spatial factor model
to see whether the model can detect that stomach cancer does not share a common spatial factor with the
other three.

4.2 Parameter estimation and model selection

Consider the Poisson common spatial factor model in (2.7) and (2.8) wherei = 1, . . . , 87 and j =
1, . . . , 4. It is natural to choose a CAR covariance structure for the spatial common factorf, i.e. f ∼
MV N (0, τ2(In − ρW )−1).

As discussed in Section 3.1, we setτ2 = 1 and
∑n

i=1 fi = 0 for identifiability reasons. To complete
the specification of the hierarchical model, we put fairly non-informative priors on other parameters as

λ j
iid∼ N (0, 105), j = 1, . . . , 4 (4.1)

ρ ∼ Uniform(−0.322, 0.178). (4.2)

There are no closed forms for the posterior distribution of the parameters here so the MCMC technique
is used to draw samples from the posterior distributions. The full conditional densities and their first
derivatives are derived in the Appendix. It is possible to show that all the full conditionals are log concave
(see the Appendix). Therefore, the adaptive rejection sampling (ARS) algorithm (Gilks and Wild, 1992)
can be used to do the MCMC sampling.

Two chains with different starting values are run for 4000 iterations and the chains converge very
quickly. The last 3000 iterations are used to do the inference based on the MCMC samples of the posterior
distributions. The posterior means and standard deviations of the parameters are listed in Table 1. With
the model well identified and the relatively non-informative priors, the convergence of these chains is not
sensitive to the starting values.

From Table 1, we see that the parameterρ is significantly different from 0. This indicates the spatial
correlation of the common factor is significant. Ifρ is not significantly different from 0, it would indicate
that the assumption of spatial correlation is not supported by data, and the independence model should be
used. Thus, the generalized common spatial factor model not only model the spatial data, but also test the
strength of the spatial correlation.
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To make sure the spatial model is doing a better job than the independence model, we also run the
model assuming the common factorfi are i.i.d. for comparison. The result is also in Table 1. We use the
DIC to compare the two models. Similar to AIC, the value of DIC itself has no well defined meaning but
when compared across models, smaller DIC indicates better fit. From this criterion, we can see that the
spatial common factor model has smaller DIC, thus fits better than the i.i.d. common factor model.

Theλ j reflect the influence of the common factor on the corresponding outcome variables. Though
the actual value ofλ j depends on the scale we choose for the common factorf, the ratio between the
λ j should remain the same regardless of the scale chosen forf. A ratio of one between two variables
means the common factor has the same influence on the two variables. The bigger the ratio is, the bigger
influence the common factor has on one variable than on the other. In this example, the different values of
λ j imply the different influence of the common risk factor on different cancer mortality ratios. From the
table, we can see that the common factor has the biggest influence on the lung cancer mortality ratio. The
influence on lung cancer is twice as big as on pancreas cancer. From Table 1, we also see thatλ4 is not
significantly different from 0. This means the common spatial risk factor has no significant influence on
the stomach cancer mortality ratio, or in other words, the stomach cancer does not share a common spatial
factor with the other three cancers. Therefore, the hypothesis testing ofλ j = 0 provides a way to detect
which diseases ‘stick together’ and share the common spatial factor.

Sinceλ4 is not significant, stomach cancer will not be included in the model to achieve our second
goal of predicting the common spatial factor. Thus we re-fit the model without stomach cancer; the result
is also in Table 1. From the result, we can see that theλ j from the three-variable model stay almost the
same as those from the four-variable model. This also verifies that the fourth variable is not contributing to
identify the common spatial factor and it does not share a common spatial factor with the other variables.

In this example (and this paper), we focus on finding the one common spatial factor that variables
share. In general, instead of throwing out variables that do not share the common factor, we could fit
a model with multiple factors to fully explore the data. The model with more than one factor contains
identifiability issues that have not yet been worked out and will be mentioned further in the discussion
section.

4.3 The predicted spatial common factor

The final model we use to predict the spatial common factor is the CAR model with three variables.
Figure 2 is the map of the predicted spatial common factor and we can see that there is clear spatial
pattern. North central Minnesota has higher values of the common factor, which implies those counties
tend to have higher rates of deaths due to cancers of lung, pancreas and esophagus. The strong spatial
structure is the result ofρ = 0.174 which is very close to the upper limit 0.178.

Figure 3 is the plot of the sortedfi by county with 95% prediction intervals created from the empirical
posterior distributions. From the plot, we can see that many predictedfi are significantly different from
each other. County 1 has the highest values of the common factor, while county 65 has the lowest.
Counties 27 and 62 have the shortest predictions intervals since they are the two most populated counties
in Minnesota encompassing the Twin Cities of Minneapolis and St Paul.

4.4 Model checking

As the common spatial factor of the three disease rates, we would expect the predictedf to be correlated
with the SMRs of these diseases. Thus as a first model check, we compute the correlation coefficient
between the mean posterior predictedf and

Zi j −Ei j√
Ei j

for lung, pancreas and esophagus and get 0.85, 0.31,

0.30, respectively. Thus the common factor is most highly correlated with lung cancer which can also be
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Fig. 2. Predicted Poisson common spatial factor.
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Fig. 3. Predicted Poisson spatial common factor with prediction intervals.

seen from the high similarity between the lung cancer map in Figure 1 and the predicted map in Figure 2.
Recall from the preliminary data analysis that corr(lung, pancreas) = 0.21, corr(lung, esoph) = 0.23 and
corr(pancreas, esophagus) = 0.24, hence we also see that the common factor is more highly correlated
with pancreas and esophagus than any of the individual variables on their own was.
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Fig. 4. Pearson residuals from the fit of the Poisson generalized common spatial factor model with CAR spatial
structure.

Another model check is performed by examining the Pearson residuals
(Zi j −θ̂i j )√

θ̂i j

whereθ̂i j is the mean

of the posterior forθi j from the common spatial factor model. Figure 4 is the plot of the residuals against
the rank of the fitted countŝθ (the rank is used because the range of the actualθ̂ is too wide for an
informative plot). The plot shows that the residuals are randomly scattered around zero, not increasing
with the fitted countŝθ and not indicating any outliers. The variances of these residuals are 0.99, 1.23,
and 1.27 respectively, close to 1 as expected. Therefore, the plots indicate the model fits the data well.

5. DISCUSSION

The generalized common spatial factor model not only provides a tool to explain the two types of
correlations seen in multivariate spatial data, but also can be used to determine whether a variable included
in the model ‘sticks together’ with other variables to share a common spatial factor by testing whether
λ j = 0.

Several extensions to model (2.5)–(2.6) may be considered. First, in the example presented in this
paper no observed covariates were available for investigation, but, the model can easily be extended to
include observed covariate information into (2.6). Second, even though the residuals from the common
spatial factor model for the Minnesota cancer counts data did not indicate a problem of overdispersion, it is
common to see overdispersion of disease counts data in practice. While the heirarchical structure of (2.7)–
(2.8) has the ability to account for overdispersion, thef in (2.8) must account for both the heterogeneity
across regions and the spatial correlation simultaneously. To add flexibility, we could model the spatial
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correlation and heterogeneity separately by adding another random term in (2.8), i.e.

log(θi j ) = log(Ei j ) + λ j fi + εi j , (5.1)

whereεi j is a disease-specific random effect that accounts for the possible heterogeneity in the counts data.
The extra flexibility also adds extra identifiability and convergence problems to fitting the model. Eberly
and Carlin (2000) investigated the relationship among identifiability, Bayesian learning, and MCMC
convergence rates for a common class of univariate spatial models that include separate random effects
for spatial structure and heterogeneity. In that case it is shown that only the sum of these random effects is
well-identified by the data. Hence, since we are particularly interested in predictingfi this type of model
may be difficult to use.

Another possible extension to the model is that there is more than one ‘common factor’ underlying
the multivariate spatial data. Therefore, one might consider the more general form of (2.6) written as

g(θi j ) = α j +
k∑

m=1

λm
j f m

i , i = 1, . . . , n, j = 1, . . . , p (5.2)

wherek is the number of common factors. One might even imagine treating the number of factorsk as an
unknown variable, and use Bayesian analysis with reversible jump MCMC method to estimate both the
parameters and the number of factors. But, besides the identifiability issues we discussed in Section 3.1,
there is an additional nondeterminacy when we have two or more common factors. We know that for an
independent normal factor analysis model with two or more factors, any orthogonal transformation (factor
rotation) of theλmj leaves the likelihood unchanged (Johnson and Wichern, 1998). This problem carries
over to the generalized spatial factor model. One way to solve this might be to fix certainλ to ensure
identifiability. Bock and Gibbons (1996) discuss similar identifiability issues in detail when the latent
variables are independent. Additional identifiability issues are introduced by the possibility of more than
one factor exhibiting spatial structure as well.

Finally, this model can be naturally extended to model multivariate time series or longitudinal data to
find the latent common temporal factors to explain the correlations seen between variables and across time.
We only need to replace the spatial covariance structure in (2.2) with a time series covariance structure
such as AR(1).
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APPENDIX

Derivation of full conditionals for Poisson common spatial factor model

First, we write down the joint posterior of the parameters as

L = f (Z|λ, f) f (λ) f (f|ρ) f (ρ)

∝ e(− ∑n
i=1

∑m
j=1 Ei j e

λ j fi )
n∏

i=1

m∏
j=1

(Ei j e
λ j fi )Zi j |C−1|1/2e(− 1

2 f′C−1f)e(− 1
2τλ

∑m
j=1 λ2

j ).
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Wetake the log on both sides for convenience, and plug inC−1 = (I −ρW ), weget the log joint posterior
of the parameters,

log L ∝
n∑

i=1

m∑
j=1

(Zi jλ j fi − Ei j e
λ j fi ) + 1

2 log |C−1| − 1
2f′C−1f − 1

2τλ

m∑
j=1

λ2
j

∝
n∑

i=1

m∑
j=1

(Zi jλ j fi − Ei j e
λ j fi ) + 1

2 log |I − ρW | − 1
2f′(I − ρW )f − 1

2τλ

m∑
j=1

λ2
j .

It is more efficient to use the full conditionals with respect to (w.r.t.) each parameter instead of using the
joint each time. Therefore, the log full conditionals w.r.t.λ j , fi andρ are

log L(λ j ) ∝
n∑

i=1

(Zi jλ j fi − Ei j e
λ j fi ) − 1

2τλλ
2
j , j=1,2,3,4

log L( fi ) ∝
m∑

j=1

(Zi jλ j fi − Ei j e
λ j fi ) − 1

2 f 2
i + ρ

2 f′W f, i = 1, . . . , 87

log L(ρ) ∝ 1
2 log |I − ρW | + ρ

2 f′W f.

To use the adaptive rejection sampling, we still need the first derivatives of the full conditionals which can
be easily derived as

∂ log L(λ j )

∂λ j
=

n∑
i=1

(Zi j − θi j ) fi − τλλ j , j = 1, . . . , 4

∂ log L( fi )

∂ fi
=

m∑
j=1

(Zi j − θi j )λ j − fi + ρ[W f]i , i = 1, . . . , 87

∂ log L(ρ)

∂ρ
= −1

2tr ((I − ρW )−1W ) + 1
2f′W f,

whereθi j = Ei j eλ j fi . We now take the second derivatives to show the log concaveness of the full
conditionals.

∂2 log L(λ j )

∂λ2
j

= −
(

n∑
i=1

f 2
i Ei j e

λ j fi + τλ

)
< 0, j = 1, . . . , 4

∂2 log L( fi )

∂ f 2
i

= −
(

m∑
j=1

λ2
j Ei j e

λ j fi + 1 − ρWii

)
< 0, i = 1, . . . , 87

∂2 log L(ρ)

∂ρ2
= −1

2tr[((I − ρW )−1W )2] < 0.

All the second derivatives are less than zero, indicating the log concaveness of the full conditionals.
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