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Abstract

We investigate the average-case complexity of a generalization of the compact knapsack problem to
arbitrary rings: given m (random) ring elements a1, ...,am € R and a (random) target value b € R, find
coefficients z1,...,xm € S (where S is an appropriately chosen subset of R) such that > a;-z; = b. We
consider compact versions of the generalized knapsack where the set S is large and the number of weights
m is small. Most variants of this problem considered in the past (e.g., when R = Z is the ring of the
integers) can be easily solved in polynomial time even in the worst case. We propose a new choice of the
ring R and subset S that yields generalized compact knapsacks that are seemingly very hard to solve on
the average, even for very small values of m. Namely, we prove that for any unbounded function m = w(1)
with arbitrarily slow growth rate, solving our generalized compact knapsack problems on the average is
at least as hard as the worst-case instance of various approximation problems over cyclic lattices. Specific
worst-case lattice problems considered in this paper are the shortest independent vector problem SIVP
and the guaranteed distance decoding problem GDD (a variant of the closest vector problem, CVP) for
approximation factors n'*¢ almost linear in the dimension of the lattice.

Our results yield very efficient and provably secure one-way functions (based on worst-case complexity
assumptions) with key size and time complexity almost linear in the security parameter n. Previous
constructions with similar security guarantees required quadratic key size and computation time. Our
results can also be formulated as a connection between the worst-case and average-case complexity of
various lattice problems over cyclic and quasi-cyclic lattices.
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1 Introduction

Few problems in the theory of computational complexity and its application to the foundations of cryptog-
raphy have been as controversial as the knapsack problem and its many variants, including the notorious
NP-hard subset-sum problem [31]. The initial enthusiasm generated by the subset-sum based cryptosys-
tem of Merkle and Hellman [40] in the late 70’s was immediately followed by intensive cryptanalytic efforts
that culminated in the early 80’s with the total break of the system in its basic [65] and iterated version
[9]. Still, the possibility of building cryptographic functions based on NP-hard problems, and the relatively
high speed at which numbers can be added up (compared to modular multiplication and exponentiation
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the paper. A preliminary version of this work appeared in the Proceedings of the 43rd Annual Symposium on Foundations of
Computer Science - FOCS 2002, IEEE, with the title “Generalized compact knapsacks, cyclic lattices, and efficient one-way
functions from worst-case complexity assumptions”. Research supported in part by NSF grants CCR-0093029 and CCF-0634909,
and a Sloan Research Fellowship. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.



operations required by number theoretic functions), prompted many researchers to suggest variants, fixes,
and improvements (e.g., [22, 11]) to the initial Merkle-Hellman proposal. These efforts, which lasted for
more than a decade, were invariably followed by attacks (e.g., [29, 64, 51, 55]) that seriously questioned the
security of the systems either in theory or in practice. Recently, knapsack-like cryptographic functions have
started attracting again considerable attention after Ajtai’s discovery [2] that the generalized subset-sum
problem (over the additive group Zy of n-dimensional vectors modulo p) is provably hard to solve on the
average based on a worst-case intractability assumption about certain lattice approximation problems for
which no polynomial time solution is known. Following [2], Ajtai and Dwork [3] also proposed a public-key
cryptosystem with similar security properties. But, unfortunately, even this proposal with strong theoretical
security guarantees has been subject to practical attacks [52].

Attacks to subset-sum (or more generally knapsack) problems can be classified into two broad categories:

1. attacks targeted to specific public-key cryptosystems that try to exploit the special structure resulting
from the embedding of a decryption trapdoor (e.g., [65]); and

2. attacks to generic subset-sum or knapsack instances that can be applied regardless of the existence of
a trapdoor (e.g., [33, 12]).

The first class of attacks is usually stronger, meaning that it gives asymptotically good algorithms that
succeed (with high probability) regardless of the value of the security parameter, but only applies to specific
public-key cryptosystems whose underlying knapsack problems are not as hard as the general case. The
second class of attacks is more general but only heuristic: the asymptotic complexity of these attacks is
usually exponential, or their success rate negligible as a function of the security parameter. These methods
are evaluated experimentally by testing them on specific problem instances (e.g., challenges or randomly
generated ciphertexts) for typical values of the security parameter, and attacks can be usually avoided
setting the security parameter to a sufficiently large value. Still, the effectiveness of these attacks, even for
moderately large values of the security parameter, is currently considered the main practical obstacle to the
design of cryptographic functions based on variants of the knapsack problem.

It is important to realize that the second class of attacks dismisses most knapsack cryptographic functions
as practical alternatives to number theory based functions, not on the grounds of their inherent insecurity,
but simply because of the large key sizes required to avoid heuristic attacks. In fact (especially if one drops
the more ambitious goal of designing a public-key cryptosystem, and more modestly attempts to design
cryptographic primitives with no trapdoors, like pseudo-random generators or one-way hash functions, etc.)
there is theoretical evidence [27, 2, 3, 59] that subset-sum can indeed be a good source of computational
hardness, at least from an asymptotic point of view. The main issue affecting the practical security of
knapsack functions is efficiency. In a typical knapsack function, the key (corresponding to security parameter
n) consists of Q(n) numbers, each of which is n bits long. Therefore, the size of the resulting cryptographic
key grows as Q(n?). Even if all known attacks to knapsack have exponential time complexity, one needs
to set n to at least a few hundreds to make heuristic approaches (most notably lattice basis reduction
[35, 63, 30, 53, 54]) ineffective or too costly. As a consequence, the resulting key can easily reach megabit
sizes still without achieving a sufficient degree of security. Even if knapsack functions can still be competitive
from a running time point of view, these huge key sizes are considered too big for most practical applications.

Generalized compact knapsacks. The impact of space efficiency on the practical security of knapsack
based functions has long been recognized, even before the development of ingenious lattice-based attacks. A
simple improvement that comes to mind is to use a so called compact knapsack: instead of using 0—1 combi-
nations of Q(n) input weights (resulting in Q(n?) key size), consider a smaller (constant, or slowly increasing)
number of weights ay, . . ., a,, and combine them with coefficients from a larger set, e.g., {0, ...,2°"} for some
small constant d > 0. Notice that if 6 = 0, then we get the usual subset-sum problem, which can be solved
(for m = O(logn)) in polynomial time using exhaustive search. However, if 6 = (1) then the search space
becomes exponentially large, and exhaustive search is infeasible. Suggestions of this type appear already in
Merkle and Hellman’s original paper [40] and subsequent works as a method to increase the bandwidth of
the scheme. These early attempts to reduce the key size of knapsack based functions were subject to attacks



even more devastating than the general case: in [5] it is observed that the problem easily reduces to an in-
teger programming instance with O(m) variables, and therefore it can be solved in polynomial time for any
constant value of m(n) = O(1), or even any slowly growing function m(n) = O(logn/loglogn). Attempts
to use compact knapsacks to design efficient cryptographic functions persisted during the 90’s [56, 36], but
were always followed by cryptanalytic attacks [60, 13, 34].

In this paper we introduce and study a new class of compact knapsacks which are both very efficient and
provably hard to solve in a strong sense similar to Ajtai’s function [2]. The one-way function proposed in [2]
can be described as a generalization of the integer knapsack problem to arbitrary rings. Specifically, for any
ring R and subset S C R, consider the following problem: given ring elements aq,...,a, € R and a target
value b € R, find coefficients z; € S such that Y .-, a; - #; = b, where all operations are performed in the
ring. In Ajtai’s work, R is the product ring’ Zy of n-dimensional vectors modulo p (for some polynomially

bounded p(n) = n°M) and S = {0,1} consists of the additive and multiplicative identities of the ring.
In particular, S has size 2, and the problem can be solved by exhaustive search in polynomial time when
m = O(logn).

In this paper we study compact versions of the generalized knapsack problem, where the set S has size
much larger than 2, so that exhaustive search is infeasible even for very small values of m. In the case of
the ring Zj, the first idea that comes to mind is to use, as coeflicients the set S = {0,1}™ of all binary
vectors, or, more generally, the set S = {0,...,[p®]}" of n-dimensional vectors with entries much smaller
than p. Unfortunately, as for the case of the integer compact knapsack problem described above, this
straightforward construction admits much faster solutions than exhaustive search: the resulting generalized
compact knapsack is equivalent to n independent instances of the knapsack problem modulo p, which can
be efficiently solved in the worst case for any polynomially bounded p(n) = n®®) by dynamic programming,
and on the average for p(n) = n©1°¢™) using the methods in [17, 37].

Our contribution. The main contribution of this paper is the study of a new class of compact knapsack
functions fa(x) =Y, a;-x; that are provably hard to invert in a very strong sense, even when the number m
of weights is very small. In particular, we prove that, for appropriate choice of ring R and subset S C R, and
for any unbounded function m(n) = w(1) (with arbitrarily slow growth rate) the compact knapsack function
is at least as hard to invert on the average (even with non-negligible probability) as the worst-case instance
of various lattice problems (for the special class of cyclic lattices, i.e., lattices that are invariant under cyclic
rotations of the coordinates) for which no polynomial time algorithm is known.

Our generalized knapsack problems are defined by the ring R = Z;; of n-dimensional vectors modulo a
prime p with the componentwise addition and convolution product operations. As in the previously discussed
compact variant of Ajtai’s function, the set S = {0, ..., [p?|}™ consists of all n-dimensional vectors with small
entries. Remarkably, using the convolution product operation (as opposed to componentwise multiplication)
makes the problem considerably harder: solving random instances of our generalized compact knapsacks
with non-negligible probability is as hard as approximating the shortest independent vector problem (as well
as various other lattice problems) on cyclic lattices in the worst case within factors n'*¢ (for any ¢ > 0)
almost linear in the dimension of the lattice.

This results in strong one-way functions with average-case security guarantees based on a worst-case
intractability assumption similar to Ajtai’s function [2] (and subsequent improvements [10, 46, 48],) but with
a much smaller key size O(mlogp™) = w(1l) - nlogn, where w(1) is an unbounded function with arbitrarily
slow growth rate. (For comparison, [2, 10, 46, 48] require m(n) = Q(nlogn), and key size Q(n?log®n).)

Our compact knapsack functions are also extremely fast, as, for appropriate choice of the parameters, they
can be computed in almost linear time O(nlog®n) using the fast Fourier transform (FFT) in the evaluation
of the convolution products. Specifically, the cost of evaluating our functions is equivalent to computing an
almost constant number w(1) of FFT operations on n-dimensional vectors modulo a small prime p = nOW,
The almost linear time evaluation algorithm together with the substantially smaller key size, make our
generalized compact knapsack function even much faster than the already attractive subset-sum function.

1The product ring R™ is the set of n-tuples with entries in R, with the componentwise addition and multiplication operations.



In the process of establishing our hardness result, we prove various properties of our knapsack functions
that might be of independent interest. In particular, we prove that our compact knapsack function fa(x)
has very small collision probability, when the input is chosen uniformly at random. By a result of Rackoff
(reported in [28]), this is enough to guarantee that the value f,(x) (for randomly chosen a and x) is almost
uniformly distributed over Z; and independent from a = (a1,...,a,;,). Moreover, this is true for arbitrary
small values of m(n) = w(1). Previous results of this kind for the subset-sum function relied on the additive
structure of Z alone, and required m = Q(nlogp). Our proof makes substantial use of the multiplicative
structure of the ring Z; (with the convolution product operation) and the characterization of its ideals as
polynomial quotient rings.

Beside the technical contribution of a very efficient and provably secure one-way function based on a
worst-case complexity assumption, we view the following as additional contributions of this paper: the
introduction of the class of cyclic lattices as a source of interesting computational problems; casting a new
light on the complexity of the compact knapsack problem showing that if the ring is appropriately chosen the
problem can be substantially harder than the integer case; and demonstrating that the techniques initially
developed in [2, 48] can be useful to study seemingly different problems, and still produce the same kind of
strong worst-case/average-case security guarantees. In our view all these contributions are important steps
toward the development of cryptographic functions that are both efficient and provably secure in a very
strong sense. Finally, we remark that the problem of inverting our generalized compact knapsack function
can be equivalently formulated as the problem of finding a lattice point (in a quasi-cyclic? lattice) close
to a given target. (See Section 5 for details.) Therefore, our main result is interesting also from a purely
complexity theoretic perspective, since it establishes a connection between the worst-case and average-case
complexity of solving various lattice problems on (quasi-)cyclic lattices. This is analogous to previous results
[2, 10, 19, 46, 48] connecting the worst-case and average-case complexity of problems on arbitrary lattices,
but adapted to the special class of lattices with (quasi-)cyclic structure.

Related work. The first construction of one-way function that is provably secure based on a worst-case
complexity assumption was given by Ajtai in [2]. Subsequent work [10, 46, 48] focused on weakening the
required worst-case complexity assumption. In this paper, the goal is to improve the efficiency of the one-way
function.

This paper is an almost complete rewriting and substantial improvement of an extended abstract [44]
presented at FOCS 2002. In particular, in [44] the author proved that solving the generalized compact
knapsack on the average when m = O(logn) is at least as hard as approximating various lattice problems in
the worst case within a factor n3+¢. Here, we prove a new regularity theorem for compact knapsack functions
(Theorem 4.2) and incorporate the recently developed Gaussian distribution techniques of [48] to obtain an
improved result that holds for any function m = w(1) with arbitrarily slow growth rate, and worst-case
approximation factors n'*¢, almost linear in the dimension of the lattice.

Following the writing of this paper, it has been shown [38, 57] that variants of our generalized compact
knapsack function are not only one way, but also collision resistant, a stronger and very useful cryptographic
property. These improvements and related open problems are discussed in Section 5.

From a theoretical point of view, the main difference between our one-way functions and those studied in
previous work (e.g., [2, 48] and related papers,) is that our functions are based on the worst-case intractability
of lattice problems on a class of lattices with a special cyclic structure. Many lattice problems are known to
be NP-hard even in their approximation versions for sufficiently small approximation factors. For example,
the shortest vector problem (SVP) is NP-hard (under randomized reductions) to approximate within any
constant factor [1, 43, 32], while the closest vector problem (CVP) is NP-hard to approximate even within
quasi polynomial factors n©(1/leglogn) [67, 6, 15]. These results support the conjecture that lattice problems
are hard to solve in the worst case, at least for arbitrary lattices. It is natural to ask whether lattice problems
remain hard even when the input lattice is cyclic.

Very little is known about the computational complexity of lattice problems on cyclic lattices. In fact, as

2A lattice it is called quasi-cyclic if it is invariant under rotations of the coordinates by a number of positions possibly greater
than 1.



far as we know, cyclic lattices have received little or no attention so far. From an algorithmic point of view, it
is not clear how to exploit the cyclic structure of the lattice in state of the art lattice algorithms, e.g., lattice
basis reduction. The only algorithmic results related to cyclic lattices we are aware of are [39, 26, 66, 18].
The first paper [39] shows how the solution of certain lattice problems can be speeded up by a factor n
when the lattice is cyclic of dimension n. This is a quite modest improvement since the running time of
the best algorithms to solve these problems over general lattices is exponential in n. A more interesting
algorithmic result is given in [26, 66, 18]. The problem considered in [26] (and solved building on previous
algorithms from [66, 18]) is the following: given the autocorrelation® of a vector x, retrieve x. This problem
(which arises from applications in n-dimensional crystallography) is related to cyclic lattices by the fact that
the autocorrelation of x can be expressed as a vector in the cyclic lattice generated by x. This problem is
quite different from the worst-case computational problems on cyclic lattices considered in this paper, and
it is not clear if the techniques of [26, 66, 18] can be used to speed up the solution of other problems, like
SVP, CVP or their variants STVP (shortest independent vector problem) and GDD (generalized distance
decoding) over cyclic lattices. Based on the current state of knowledge, it seems reasonable to conjecture
that approximation problems on cyclic lattices are computationally hard, at least in the worst case and for
small polynomial approximation factors. In order to further support this conjecture, it would be nice to
prove NP-hardness results for lattice problems when restricted to cyclic lattices.

We remark that our definition of cyclic lattices is analogous to the definition of cyclic codes, one of the
most useful and widely studied classes of codes in coding theory. Still, no polynomial time algorithm is known
for many computational problems on cyclic codes (or lattices). A very recent result somehow suggesting
that no such polynomial time algorithm may exist is the proof in [23] that the nearest codeword problem
(the coding analogue of the closest vector problem for lattices) for appropriately shortened Reed-Solomon
codes is NP-hard. Reed-Solomon codes are a well known class of cyclic codes, so the result in [23] seems to
suggest that the nearest codeword problem is hard even when the code is cyclic. Unfortunately, shortening
the Reed-Solomon code (as done in [23]) destroys the cyclic structure of the code, so, the results in [23]
do not imply the NP-hardness of the nearest codeword problem over cyclic codes. We leave, as an open
problem, to prove hardness results for any lattice or coding problem over cyclic lattices or codes. Is the
shortest vector problem on cyclic lattices NP-hard? Is the shortest independent vector problem on cyclic
lattices NP-hard? What about the closest vector problem on cyclic lattices? Is the closest vector problem
NP-hard even for fixed families of cyclic lattices as shown (for arbitrary lattices) in [41, 16, 58]?

Organization The rest of the paper is organized as follows. In Section 2 we recall basic notation, definitions
and results needed in this paper. In Section 3 we prove two preliminary lemmas about cyclic lattices that
will be used in the proof of our main result. In Section 4 we present the main technical result of the paper:
we formally define our generalized compact knapsack function, and prove that inverting the function on
the average is at least as hard as the worst-case instance of various lattice problems on cyclic lattices. In
the process, we also establish various other properties of our compact knapsack function that might be of
independent interest, e.g., we bound the collision probability of the function, and prove that the function is
almost regular. Section 5 concludes with a discussion additional related results and open problems.

2 Preliminaries

In this section we introduce some notational conventions, and recall basic definitions and results about the
statistical distance, hash functions, lattices and Gaussian probability distributions.

For any real r > 0, [r] denotes the set {0,...,[r]} of all non-negative integers not greater than r. The
uniform probability distribution over a set S is denoted U(S). We use the standard asymptotic notation f =
O(g) (or g = Q(f)) when limsup,,_, |f(n)/g(n)| < oo, f =o0(g) (or g = w(f)) when lim, o |f(n)/g(n)| =
0, and f = ©(g) when f = O(g) and f = Q(g). A function f(n) is negligible (denoted f(n) = n=“M)) if for
every c there exists an ng such that |f(n)| < 1/n¢ for all n > ng.

3The autocorrelation of a vector x is the convolution of x with itself x ® x. See Section 2 for a definition of the convolution
product ®.



2.1 Statistical distance

The statistical distance is a measure of how two probability distributions are far apart from each other, and
it is a convenient tool in the analysis of randomized algorithms and reductions. In this subsection we define
the statistical distance and state some simple facts that will be used in the analysis of the reductions in this
paper. All the properties of the statistical distance stated in this subsection are easily verified. For more
details the reader is referred to [47, Chapter 8].

Definition 2.1 Let X and Y be two discrete random variables over a (countable) set A. The statistical
distance between X and Y is the quantity

A(X,Y) = % > IPr{X =a} - Pr{Y =a}|.
acA

In the case of continuous random variables, the statistical distance between X and Y is

1
AXY) =3 [ 16x(@) - by (@da,
A
where §x and dy are the probability density functions of X and Y respectively.

We say that two random variables X,Y are identically distributed (written X = Y) if and only if
Pr{X € S} = Pr{Y € S} for every S C A. The reader can easily check that the statistical distance
satisfies the usual properties of distance functions, i.e., A(X,Y) > 0 (with equality if and only if X =Y,
AX,Y)=A,X),and A(X,Z) < A(X,Y)+ A(Y, Z).

The following proposition shows that applying a (possibly randomized) function to two distributions does
not increase the statistical distance.

Proposition 2.2 Let X, Y be two random variables taking values in a common set A. For any (possibly
randomized) function f with domain A, the statistical distance between f(X) and f(Y) is at most

A(f(X), f(Y)) < AX,Y). (2.1)
As a corollary, we easily obtain the following.
Corollary 2.3 If X and Y are random variables over set A and p: A — {0, 1} is a predicate, then
[Pr{p(X) =1} = Pr{p(Y) = 1}| < A(X,Y). (2.2)
Another useful property of the statistical distance is the following.

Proposition 2.4 Let X1,..., Xy and Y1,...,Ys be two lists of totally independent random variables. Then

k
i=1

2.2 One-way hash function families

A function family {f,: X — R}a.c4 is a collection of functions (indexed by a set of keys A) with a common
domain X and range R. A (polynomial) function ensemble is a sequence {f,: X;, — Rp}taca, of function
families (indexed by a security parameter n € N) such that log |A,|,log| X, | and log|R,| are all polynomial
in n. We assume that the elements of the sets A,, X,, and R,, can be efficiently represented with log, |A, |,
log, | X, | and log, |R,,| bits respectively, membership in the sets can be decided in polynomial time, and there
is a probabilistic polynomial time algorithm to sample from those sets with (almost) uniform distribution.
It is also common to assume that the functions f, are efficiently computable, in the sense that there is a



polynomial time algorithm that on input n,a € A, and z € X,,, outputs f,(z). All function ensembles
considered in this paper have these properties, namely the sets A,,, X,,, R, have efficient representations and
the functions f, are efficiently computable.

A function (ensemble) is one-way if it is (easy to compute, but) computationally hard to invert, i.e., no
algorithm can efficiently solve the following function inversion problem: given a pair (a,r) € A, X R,, find
an z € X, such that f,(x) = r. One-wayness is an average-case complexity property, i.e., it requires that the
function inversion problem is computationally hard when the input (a,r) € A, X R, is selected at random.
The exact definition, for the case of function ensembles, is given below.

Definition 2.5 A function ensemble {f, : X, — Rp}taca, is one-way if for any probabilistic polynomial
time algorithm A, the probability that fo(A(n,a, fo(z))) = fo(z) (when a € A, and z € X,, are selected
uniformly at random) is negligible in n.

Notice that the input distribution underlying the definition of one-way function is not the uniform dis-
tribution over A,, X R,, but rather it corresponds to choosing the target value r € R,, as the image of a
uniformly random solution z € X. For any function ensemble H = {f, : X — R}qca, we write OWF(H)
to denote the probability distribution {(a, fo(z)) : @ € An,z € X,,} underlying the definition of one-way
function, and U(A x R) to denote the uniform probability distribution over A x R. We remark that Defini-
tion 2.5 corresponds to the notion of strong one-way function, i.e., it is required that the success probability
of any probabilistic polynomial time algorithm in solving the function inversion problem (when the input is
chosen according to distribution OWF(H)) is negligible.

The function families H = {f, : X — R},c considered in this paper have the property that the input
size log|X]| is strictly bigger than the output size log|R|, i.e., the functions “compress” the size of the
input by a factor log | X|/log |R|. Such functions have many important applications in computer science and
cryptography, and are generically called hash functions. In order to be useful, hash functions must satisfy
some additional properties. A typical requirement is that if ¢ € A and x € X are chosen uniformly at
random, the distribution of f,(x) € R is almost uniform and independent from a. In other words, OWF(H)
is statistically close to the uniform distribution U(A x R).

Definition 2.6 Let H = {f, : X — R}aca be a hash function family. We say that H is e-reqular if the
statistical distance between OWF(H) and the uniform distribution U(A x R) is at most €. A hash function
ensemble {H,} is called almost regular if there exists a negligible function e(n) = n=“M) such that H, is
e(n)-regular for every n.

We remark that if a function is e-regular for € = 0, then the function maps the uniform input distribution
to the uniform output distribution. So, Definition 2.6 is a generalization of the standard notion of regular
function.

2.3 Lattices

Throughout the paper, we use column notation for all vectors, and use (-)” to denote the matrix transposition
operation. For example, x = (z1,...,2,)7 is the n-dimensional column vector with entries z1,...,z,, and
[X,...,x] is the n X n matrix with all columns equal to x.

An n-dimensional lattice is the set of all integer combinations {> " | z;b;:z; € Z} of n linearly inde-
pendent vectors by,...,b, in R™. The set of vectors by, ..., b, is called a basis for the lattice, and can be
compactly represented by the matrix B = [by,...,b,] € R™*™ having the basis vectors as columns. The lat-
tice generated by B is denoted £(B). Notice that £(B) = {Bx:x € Z"}, where Bx is the usual matrix-vector
multiplication. For any basis B, we define the fundamental parallelepiped P(B) = {Bx:Vi.0 < z; < 1}.
The following lemma shows how to sample lattice points uniformly at random from the fundamental paral-
lelepiped associated to a given sublattice.

4For simplicity, is this paper we restrict all definitions to full dimensional lattices.



Lemma 2.7 ([47, Proposition 8.2]) There is a probabilistic polynomial time algorithm that on input a
lattice basis B and a full rank sublattice S C L(B), outputs a lattice point x € L(B)NP(S) chosen uniformly
at random.

The dual of a lattice £(B) (denoted £(B)*) is the lattice generated by the matrix (B~1)7, and consists
of all vectors that have integer scalar product with all lattice vectors.

For any vector x = (z1,...,2,)7, define the cyclic rotation rot(x) = (v, 21,...,2,_1)", and the cor-
responding circulant matrix Rot(x) = [x,rot(x),r0t?(x), ..., rot" (x)]. (Notice that x, and rot’(x) are all
column vectors, and Rot(x) is the matrix whose columns are the cyclic rotations of x by construction. It is
easy to see that also the rows of Rot(x) are all rotations of the same vector but with the entries in reverse
order. For example, the last row of Rot(x) is (zn,...,21).) A lattice £(B) is cyclic if it is closed under the
rotation operation, i.e., if x € £(B) implies rot(x) € L(B). It is easy to see that a lattice is cyclic if and
only if £L(B) = rot(L(B)).

The convolution product of two vectors x and y is the vector

X®y = Rot(x) -y =x-y; +rot(x) -yz +---+rot" H(x) - yn

with entries defined by the equation

x@yk= Y, @y,

i+j=k+1 mod n

e.g., (XQY)n = Tpy1+Tn_1Y2+- - -+21yn. It can be easily verified that the convolution product is associative
and commutative, i.e., it satisfies the equational axioms x® (y®z) = (xQy)®z, and XQy =y ® X.
Moreover, it distributes over the vector addition operation: (x+y)®z = x®z+y®z. Therefore, (R", 4+, ®)
is a commutative ring with identity e; = (1,0,...,0)7.

The Euclidean norm of a vector x is the quantity ||x|| = />, z7. Other norms used in this paper are
the ¢; norm |x|[; = ), |«;| and the max norm ||x||o = max; |z;|. These norms and the convolution product
are related by the following inequalities, valid for any n-dimensional vectors x,y € R™:

Ixl <l < Valx| (2.4)

Ixlloo < Xl < Vnlxl (2.5)

[x@yllee < Il Ilyll (2.6)

[x@ylleo < Xl ¥l (2.7)

For any matrix or set of vectors S, we denote by ||S|| = max; ||s;|| the norm of the longest (column) vector
in S.

The minimum distance of a lattice £(B), denoted A1 (£(B)), is the minimum distance between any two
(distinct) lattice points and equals the length of the shortest nonzero lattice vector:

M (£(B)) = min{dist(x,y) : x #y € £(B)} = min{||x|| : x € £(B) \ {0}}.

The notion of minimum distance can be generalized to define the ith successive minimum A; as the smallest
radius r such that the closed sphere B(r) = {x: ||x|| < r} contains 7 linearly independent lattice points:

Ai(£(B)) = min{r : dim(span(£(B) N B(r))) > i}

Another important constant associated to a lattice is the covering radius. The covering radius p(£(B)) of a
lattice is the maximum distance dist(x, £(B)) when x ranges over the entire space R™:

p(L£(B)) = max{dist(x, £L(B)) : x € R"}.

A sublattice of £(B) is a (full rank) lattice £(S) such that £(S) C £L(B).



In many algorithmic problems on point lattices the quality of a solution is measured with respect to some
specific lattice parameter, e.g., the length A; of the shortest nonzero vector, or the radius A, of the smallest
sphere containing n linearly independent lattice vectors. For example, the v(n)-approximate shortest vector
problem asks to find a nonzero vector in a lattice £(B) of length at most y(n) - A1(£L(B)), where n is the
rank of the lattice. For technical reasons, in this paper we consider generalized versions of various lattice
problems where the quality of the solution is measured with respect to an arbitrary function of the lattice
¢(L(B)). The first of these problems is the following generalization of the shortest independent vector
problem introduced in [46].

Definition 2.8 The generalized shortest independent vectors problem® SIVP?, given an n-dimensional
lattice B, asks for a set of n linearly independent lattice vectors S C L(B) such that ||S|| < v(n) - ¢(L(B)).

The shortest independent vectors problem SIVP,, (studied in [8] and used in [2, 10, 46, 48] as a source of
computational hardness) corresponds to SIVP?Y5 with ¢ = \,,. Another problem that will play a fundamental
role in this paper is the following.

Definition 2.9 The guaranteed distance decoding problem (GDDf), gwen a lattice B and a target point
t € span(B), asks for a lattice point x € L(B) such that dist(t,x) < y(n) - ¢(L(B)), where n is the rank of
the lattice.

This time it is natural to set ¢ = p to the covering radius of the lattice, because for any lattice basis
B and target t € R™, there is always a lattice point within distance p(£(B)) from t. When ¢ = p,
we omit the superscript, and simply write GDD,. GDD, is an interesting variant of the closest vector
problem (CVP), where the quality of the solution is measured with respect to the worst possible distance
maxtern dist(t, £(B)) rather then the distance of the given target dist(t, £(B)).

No polynomial time algorithm to solve SIVP, or GDD,, within polynomial approximation factors y(n) =
n®® is known. A well known polynomial time algorithm for approximating SIVP is the basis reduction
algorithm of Lentra, Lentra, and Lovész [35], which on input a lattice B, computes a so-called LLL-reduced
basis S for the same lattice. The exact definition of LLL-reduced basis is not important here. All we need in
this paper is that the LLL-reduced basis satisfies ||S|| < 2"\, (L(B)), i.e., it solves SIVP,, for approximation
factors y(n) = 2™. A well known method to find lattice points close to a given target is Babai’s nearest plane
algorithm [7]. This is a polynomial time algorithm that on input a lattice S and a target point t, finds a
lattice vector x € L£(S) within distance ||x — t|| < (v/n/2)]|S|| from the target. Notice that the quality of the
solution depends on ||S||. For example, when used in conjunction with the LLL basis reduction algorithm, the
nearest plane algorithm returns a lattice point within distance /n2" !\, (£(B)) < v/n2"p(L(B)) from the
target, i.e., it solves GDD,, for approximation factor v(n) = /n2". Slightly better approximations (namely,
for slightly subexponential factors 20(n1oglogn/1ogn)) can be computed in (probabilistic) polynomial time
using more complex algorithms [62, 4], but they offer no advantages in the context of our paper.

2.4 Gaussian distributions

We use the Gaussian distribution techniques recently introduced in [48] to simplify and improve the results
described in a preliminary version of this paper [44]. In this subsection we recall all the required definitions
and results from [48]. For any vectors ¢, x and any s > 0, let

Ps.e(X) = e ll(x—e)/s|?
be a Gaussian function centered in c scaled by a factor of s. The total measure associated to ps is

Jern Ps.c(x)dx = 5" S0, [ p.(psc(x)/s")dx =1 and psc/s™ is a probability density function. As noted
in [48], ps,c/s™ can be expressed as the sum of n orthogonal 1-dimensional Gaussian distributions, and

5In previous papers, this problem was denoted GIVP. Here we use the standard notation for the shortest independent vector
problem SIVP, annotated with the superscript ¢.



each of them can be efficiently approximated with arbitrary precision using standard techniques. So, the
distribution ps.c/s™ can be efficiently approximated. For simplicity, in this paper we work with real numbers
and assume we can sample from ps o/s™ exactly. In practice, when only finite precision is available, ps ¢/s"
can be approximated by picking a fine grid, and selecting points from the grid with probability approximately
proportional to psc/s™. All our arguments can be made rigorous by selecting a sufficiently fine grid.

Functions are extended to sets in the usual way; e.g., ps.c(A) = >, c 4 ps,c(x) for any countable set A.
For any s, c and lattice A, define the discrete probability distribution (over the lattice A)

psc(x)
Dy s e(x) = : ,
As.e(X) PN

where x € A. Intuitively, D s is the conditional probability® that a random variable with probability
density function (psc/s™) takes the value x given that the value of the random variable belongs to the
lattice A. For brevity, we sometimes omit s or ¢ from the notation ps; and Dy s.. When ¢ or s are not
specified, we assume that they are the origin and 1 respectively.

In [48] Gaussian distributions are used to define a new lattice invariant, called the smoothing parameter,
defined as follows.

Definition 2.10 For an n-dimensional lattice A, and positive real € > 0, the smoothing parameter n.(A) is
the smallest s such that py,s(A*\ {0}) <e.

In [48] many important properties of the smoothing parameter are established. Here we only need the
following three bounds. The first one shows that the smoothing parameter is the amount of Gaussian noise
that needs to be added to a lattice in order to get an almost uniform distribution.

Lemma 2.11 ([48, Lemma 4.1]) Let p;/s™ mod B be the distribution obtained by sampling a point accord-
ing to the probability density function ps/s™ and reducing the result modulo B. For any lattice L(B), the sta-
tistical distance between p,/s™ mod B and the uniform distribution over P(B) is at most 3py,s(L(B)*\{0}).
In particular, if s > n.(L(B)), then the distance A(ps/s™ mod B,U(P(B))) is at most €/2.

The second property shows that if s is sufficiently large, then the central second moment of the distribution
Dy s.c is essentially the same as the one of the continuous Gaussian distribution p s/s™.

Lemma 2.12 ([48, Lemma 4.2]) For any n-dimensional lattice A, point ¢ € R™, unit vector u, and reals
0<e<l,s>2n(A)

s2

’ExNDA,S,C [<x —C, u>2] - %

682

1—¢€

The last property bounds the smoothing parameter in terms of \,.

Lemma 2.13 ([48, Lemma 3.3]) For any n-dimensional lattice A and positive real € > 0,

In(2n(1+1/¢))

s

ne(A) < “An(A).

In particular, for any super-logarithmic function w(logn) there is a negligible function e(n) such that n.(A) <
Vw(logn) - A,.

6We are conditioning on an event that has probability 0; this can be made rigorous by standard techniques.
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3 Two lemmas about cyclic lattices

In this section we prove two preliminary lemmas about cyclic lattices that will be used in the proof of
our main results in the next section. The results are presented here because their formulation is largely
independent from the specific reduction in which they are used, and might be of independent interest.

The first lemma gives an efficient algorithm to select a (full rank) cyclic lattice generated by a single short
vector ¢ from an arbitrary input lattice S. We remark that the lemma below will be used in settings where
the vectors in S belong to a cyclic lattice £(B), so that the cyclic lattice L(Rot(c)) generated by ¢ € L(S)
is a sublattice of £(B). However, it is not generally the case that L(Rot(c)) is a sublattice of £(S) because
L(S) may not be cyclic.

Lemma 3.1 There exists a polynomial time algorithm that on input a full rank n-dimensional lattice S,
computes a vector ¢ € L(S) such that ||c|l1 < 2n - ||S|| and Rot(c) has full rank.

Proof: Let S = ||S||. We use Babai’s nearest plane algorithm [7] to find a vector ¢ € £(S) within Euclidean
distance (y/n/2) - S from nSe;. Notice that the ¢1 norm of ¢ is at most

[(nS - e1)ll1 + [[(c = nSei)|lr
nS + v/n|jc — nSey||
1.5-nS.

lelly

VANRVANRVA

It remains to show that Rot(c) is non-singular, or equivalently, the n-dimensional volume of P(Rot(c)) is
nonzero. Notice that P(Rot(c)) is an almost cubic parallelepiped obtained by perturbing the main vertexes
of a hypercube of size | = nS by at most € = (1/n/2)S. In [45] it is shown that, for all e < /1 —1/n-1/\/n,
the minimal volume of any such parallelepiped is (1 — €)"I". In particular the volume is nonzero.” Since

_Vn \/ 1\/ T
e= VRS- =y l-

the volume of P(Rot(c)) is nonzero, and the matrix Rot(c) has full rank. O

In [48], Lemma 2.12 is used to prove that the expected squared norm ||d—c||? (when d is chosen according
to distribution Dy s ) is at most s? - n. In this paper we will need a bound on the expected value of the
convolution product [|(d — ¢) ® x||?. It immediately follows from the result in [48] and inequality (2.6) that
for any vector x, the expectation of ||(d — c¢) ® x||? is at most s? - n? - || x||?. Below, we use Lemma 2.12 to
directly prove a stronger bound.

Lemma 3.2 For any n-dimensional lattice A, positive reals € < 1/3, s > 2n.(A) and vectors ¢,x € R",
Eawpy,. [I(d—c)@x|?] <s*n- x|

Proof: Let eq,...,e, be the standard basis of R™. Notice that (d —¢c)®x =x® (d —c) = Rot(x) - (d —¢),

and el - Rot(x) = (rot'(x))?, where X = (z,,...,21)7 is the reverse of x. By linearity of expectation, we
have
EdNDA,s,c [H(d - C) ® X||2] = Z EdNDA,s,c [<eiu (d - C) ® X>2] .
i=1
For every i =1,...,n,
(ei,(d—c)®x) = el Rot(x)-(d—c)
= (rot'(x),d —c)
= [[x[|{us,d —c)

“The minimal volume (1 —¢)™I™ is achieved by the intuitive solution that shortens each edge by e. Interestingly, as shown in
[45], when € = I /+/n there are better ways to choose the perturbations that result in a singular parallelepiped with zero volume.

11



where u; = rot'(%)/||x| is a unit vector. So,

Eawp, .. [(d—c)ox|’] = [x|*- Z Ed~p, .. [(wi,d —c)?].

=1

Using the assumption s > 27n.(A) and applying Lemma 2.12, we get that for all i =1,...,n,

1 € 1 1/3
d~Dae [(W, )] <s (27T+1_6)—8 27r+1—1/3 =

Adding up for all ¢ and substituting in the previous equation we get

Ea~py .o [I(d =) @ x|?] < s%||x|*n.

4 Generalized compact knapsacks

The hash function families considered in this paper, as well as in previous works [2, 10, 46, 48], are all special
cases of the following general definition.

Definition 4.1 For any ring R, subset S C R and integer m > 1, the generalized knapsack function family
H(R,S,m) ={fa:S™ — R}lacrm is defined by

fa(x) =Y @i a;,
=1

foralla € R™ andx € 8™, where )", x;-a; is computed using the ring addition and multiplication operations.

In this paper we consider the ring R = (FZ(n)v +,®) of n-dimensional vectors over the finite field I,

with p(n) = n®M) elements, with the usual vector addition operation and convolution product @. For brevity,
we will denote this ring simply as FZ(n)' We remark that for any prime p, the field F, is isomorphic to the
ring Zj, of integers modulo p. Here we use notation F) instead of Zj both because some of our results are
valid even when p is not a prime, and also to emphasize that IF}} is the ring of vectors with the convolution
product operation, rather than the componentwise multiplication of the product ring Zj.

As for S, we consider the set S = D" C F); of vectors with entries in an appropriately selected subset of
[Fp. We want to study the hash function family H(F};, D™, m), and prove that it is both almost regular and
one-way.

The rest of the section is organized as follows. In Subsection 4.1 we prove that H(Fy, D", m) is almost
regular. In Subsection 4.2 we introduce and start studying a new worst-case lattice problem that will be
instrumental to prove our main result. In Subsection 4.3 we give a reduction from solving this problem in
the worst case to the problem of inverting functions H(FZ, D™, m) on the average. Finally, in Subsection 4.4,
we use reductions among worst-case problems to establish the hardness of inverting H(IF;‘, D™, m) on the
average based on the worst-case intractability of various standard problems (like SIVP and GDD) on cyclic
lattices.

4.1 Regularity lemma

For any ring R of size |R| > 2", a necessary condition for the hash function family H(R, {0,1},m) to be
almost regular is m > Q(log|R|) > Q(n), because when m < o(log|R|), at most a tiny fraction of the
elements of R can be expressed as the sum of a subset of {aq,...,a,}. In this subsection we prove that the
hash function family H(IF};, D™, m) is almost regular already when m = w(1) is an unbounded function with
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arbitrarily slow growth rate. Our proof is quite different from the standard proof for the subset-sum function
H(R,{0,1},m). In particular, while the proof for H(R, {0,1}, m) only relies on the additive structure of R,
our proof makes full use of the ring properties of F}) and the characterization of its ideals as quotients of
polynomial rings.

Theorem 4.2 For any finite field F, subset D C F, and integers n, m, the hash function family H(F™, D™, m)
is e-reqular for

e = oV + F/IDT — 1

In particular, for any p(n) = n®W | |D| = nM) and m(n) = w(1), the function ensemble H(Fy
is almost regular.

D, m(n))

n)’

The proof of the theorem is based on the following lemma attributed to Rackoff by Impagliazzo and
Zuckerman.

Lemma 4.3 ([28, Claim 2]) Let V,V’ be independent and identically distributed random variables taking
values in a finite set S. If V,V' have collision probability Pr{V = V'} < (1 + 4€%)/|S|, then the statistical
distance between V' and the uniform distribution over S is at most €.

Proof: For completeness, we give a sketch of the proof. Using the second inequality in (2.4), the statistical
distance between V' and U(S) can be bounded by

o>

seS

Pr{V =s}— I_;'I‘ < %\/E S T(Pr{V = s} - 1/|8))2.

ses

Expanding the square and adding up for all s € S, the last expression can be rewritten as

1

1 2 1
=/ Pr{Vv=Vv1- " 4+ —= Pr{iv=V1_1
5 |S], | Pr{V =V"} 9] + 5] 2\/|S| {V =V}

which is at most € under the assumption that Pr{V = V'} < (1 +4¢2)/|S|. O

We also need the following simple lemma.

Lemma 4.4 Let R be a finite ring, and 21, . .., zm € R a sequence of arbitrary ring elements. If ay,...,an €
R are independently and uniformly distributed ring elements, then >  a; - z; is uniformly distributed over the
ideal (z1,...,2m) generated by z1,...,2zm. In particular, for any z1,...,zm € R and randomly chosen

ai,...,am € R, the probability that > a; - z; = 0 is exactly 1/[{z1, ..., zm)|.

Proof: Let 21,...,2, € R be arbitrary ring elements, and, for any b € R, define A, = {(a1,...,am) €
R™ : 3 a; - z; = b}. Notice that the probability that >, a; - z; = b (over the random choice of ay, ..., am)
equals |Ap|/|R|™. If b ¢ (21,...,2m), then A, =0 and Pr{} a;-2z; = b} = 0. It remains to prove that all
b € (z1,...,2m) have the same probability. Let b = > a; - z; be an arbitrary element of (z1,...,zy,). We
claim that |Ap| = |Ao|. It is easy to see that a’ € Ay if and only if a’ —a € Ap. Since a’ — &' —aisa
bijection between A, and Ay, it follows that |Ap| = |Ao|. This proves that all b € (z1, ..., z,) have the same
probability |Ap|/|R|™ = |Ao|/|R|™, and completes the proof of the lemma. O

We are now ready to prove the theorem.

Proof [of Theorem 4.2]: We want to prove that owr(H(F™, D™, m)) is very close to the uniform distribu-
tion over (F™)™ xF™. We first bound the collision probability of two independent copies of OWF(H (F™, D™, m)).
Let ((a1,...,am), y_;a;®x;) and ((al,...,a},),> ; a;®x;) be two independent samples chosen according to
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the distribution owr(H(F", D™, m)). By definition, the elements a;,a; € F™ and x;,x, € D™ are all chosen
independently and uniformly at random from their respective sets. Therefore, the collision probability is

m m
Pr {Vi.al- =aj A Zai ®x; = Za'i ®X/Z-} = Pr{Vi.a, =a}}
i=1

i=1
-Pr{ YA ®@x; =y 0, a; X} | Vi.a; = aj }

= IFI’”"' {Za i —x5) 0}.

By Lemma 4.4, the probability (over the random choice of ai, ..., a,,) that ), a; ® (x; —x}) = 0 equals
1/|I] where I = (x1 —X},...,Xm — X,,,) is the ideal generated by x; — x,..., X — X,,. Let Z be the set of
all ideals of (F™, +, ®). Conditioning on the ideal I, the collision probability can be expressed as

Pr{(x1 —x{,....xm — %) =1}
7 T =0 - m
Pr{ X —X,) C T}
< C
< Z Bl

m

[E["
|]F|nm+1) Z 1] HP{ )€}

In the rest of the proof, we regard F™ as the ring of univariate polynomials F[a] modulo o™ — 1. Since F is
a field, Fla] is a principal ideal domain, i.e., all ideals in F[a] are of the form (Q(«)) for some polynomial
Q(«) € Fla]. It follows that all ideals I € Z of the quotient ring F[a]/(a™ — 1) are of the form (Q(«)) where
Q(«) is a factor of o™ — 1. (To see this, given an ideal I € Z, select a representative for each element of I,
and let Q(«) be the greatest common divisor of all these representatives and the polynomial @™ — 1.) Let
(" =1) = Q1() - Q2() - - - - - Qr () be the factorization of (a™ — 1) into irreducible polynomials over F,
and for any subset S C {1,...,7}, let Qg(a) = IL;csQi(). The ideals of R are T = {(Qgs): S C {1,...,r}}.
For any ideal (Qs) € Z, we have |(Qg)| = |F|*~9°&(@s) and

1

D@ 4

Pr{(x; —x}) € (Qs)} = Pr{x; =} mod Qg} < maxPr{x; mod Qs = x} <

where X ranges over all polynomials of degree deg(x) < deg(Qs), and the last inequality follows from the
fact that, for any fixed value of the (n — deg(Qs)) higher order coefficients of x, the function x — x mod Qg
is a bijection between sets of size |D|4°8(@s), Using the bound (4.8), we get

|]F|n m [F L \"_ (B
HPI" <QS>}—|F|n7dcg(Qs) | D|des(@s) |D|m

and, adding up over all ideals,

F" 1 FL
> LIP3 (i

(Qs)ET
r |F| )ng(Qi)
| ( Dp

r |F| deg(Q:)
1+ —)
L1(++ o

>d0g(QS)

IN
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This proves that the collision probability is at most

(1 + |F|/|D™)"
|F|7(m+1)

Now observe that random variable OWF(H(F™, D™, m)) takes values in the set (F")" x F", which has size
|F|"(m+1)_ Therefore, by Lemma 4.3, the statistical distance between owr(H(F", D™, m)) and the uniform

distribution over (F")™ x F™ is at most
1 El\"
=414+ ——==] —1
6 M (++ o)

4.2 The worst case problems

We want to show that inverting our generalized compact knapsack function H(F"™, D™, m) (on the average
and with non-negligible probability) is at least as hard as solving GDD., (as well as various other related
problems) over cyclic lattices in the worst case. Following [46], this is done in two steps. First, all relevant
worst-case lattice problems are reduced to an intermediate worst-case problem, and then the intermediate
problem is reduced to the problem of inverting functions in H(F™, D™, m) on the average. In [46], the goal
was to reduce the worst-case problem SIVP, to the problem of inverting® H(Zy,{0,1},m) on the average,
and the intermediate problem was an incremental version of SIVP, where given a lattice basis B, a set of
sufficiently long linearly independent lattice vectors S, and a hyperplane H, the goal is to find a lattice
vector not in H shorter than ||S|| by some constant factor.

Here we consider a different intermediate problem, which is an incremental version of GDD, where one
is given a GDD instance (B,t), a set of n linearly independent vectors S C £(B), and a sufficiently large
real parameter 7, and the goal is to find a lattice vector whose distance from the target is at most ||S||/c+r
for some constant c.

Definition 4.5 The incremental guaranteed distance decoding problem (INCGDDiJ, gien an n-dimensional
lattice B, a set of n linearly independent vectors S C L(B), a target t € R™, and a real r > v(n) - ¢(L(B)),
asks for a lattice vector s € L(B) such that ||s — t|| < (||S||/¢) + r.

In the rest of this subsection we show that many standard lattice problems reduce (via lattice-preserving
reductions) to INCGDD. A reduction (say, from SIVP to INCGDD) is lattice-preserving if all calls to the
INcGDD oracle are of the form (B, S, t,r) where B is the SIVP input lattice. Lattice-preserving reductions
are particularly useful in the context of our paper because they allow to reduce a (worst-case) lattice problem
over a given class of lattices (e.g., cyclic lattices) to another (worst-case) lattice problem over the same class
of lattices. For example, the next lemma shows that SIVP on cyclic lattices can be solved in polynomial
time given oracle access to a procedure that solves INCGDD on cyclic lattices.

Lemma 4.6 For any v(n) > 1 and any ¢, there exists a lattice-preserving reduction from SIVPZ{Y to
INcGDD? ;.

Proof: Given a basis B, our goal is to construct a set of n linearly independent vectors S of length
[IS]| < 4v(n)p(B). We do this by an iterative process. Initially, we set S to the result of applying the
LLL basis reduction algorithm [35] to B, so that S is a basis for £(B) satisfying [|S| < 2"\, (L£(B)).
At each step, we identify the longest vector in S, say s;. We then take t to be a vector orthogonal to
S1,-.+38i—1,Si4+1,.--,Sp of length ||S]|/2. We call the INCGDD oracle with the instance (B,S,t,||S|/4).

81n fact, [46] only requires an algorithm that finds collisions fa(x) = fa(x’), an easier problem than inverting the function

Jfa.
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If it fails, we terminate and output S. Otherwise, we obtain a lattice vector s within distance at most
(IISll/5) + |IS|l/4 = (9/20)||S|| from t. Notice that ||s|| < ||t]| 4+ [ls — t|| < (19/20)||S||. Moreover, s is linearly
independent from {si,...,8;-1,Sit+1,...,Sn} because it is at distance |[t|| — ||s — t|| > ||S]|/20 > 0 from the
hyperplane spanned by those vectors. So, we can replace s; with s and repeat the process.

Notice that when the oracle call fails, it must be the case that ||S||/4 < v(n)¢(B), and hence ||S|| <
4v(n)$(B), as required. It remains to bound the running time of the reduction. Every iteration takes time
polynomial in the size of B and S, which is polynomial in the size of the original input B because S is initially
equal to a polynomial time computable function of B and ||S|| can only get smaller from one iteration to
the next. Finally, consider the quantity log ][, [|s;||. We know that initially [|s;]] < 2"\,(£(B)) for all i.
Moreover, log ], ||si|| decreases by a constant (namely, log 19/20) at each iteration, and it is always at least
as large as log [ [, min{|s;||, (10/11)A,(£(B))}. (To see this, observe that the vector selected for replacement
at every iteration must satisfy ||s;|| = max; [|si|| > A\ (£(B)).) Therefore, the procedure terminates after at
most O(log [1,(11/10)2") = O(n?) iterations. O

Next, we show how to use an INCGDD oracle to solve GDD.

Lemma 4.7 For any y(n) > 1 and any ¢, there exists a lattice-preserving reduction from GDDg’W to
INcGDD? ;.

Proof: Given a basis B and a vector t, our goal is to find a lattice vector within distance 2y(n)¢(B) of t.
First, we apply the reduction in Lemma 4.6 to obtain a set S C £(B) of n linearly independent vectors of
length at most ||S|| < 4v(n)é#(B). Then, we apply the LLL basis reduction algorithm [35] to B to obtain
a basis for the same lattice such that ||B’|| < 2"\,(B). Define r = (y/n/4)||B’|| and call the INCGDD
oracle on input (B, S,t,r). If the oracle returns an invalid answer,” it must be that » < v(n)¢(B), and we
can efficiently find a lattice vector s within distance (y/n/2)||B’|| = 2r < 2v(n)¢(B) from the target t using
Babai’s nearest plane algorithm [7]. So, assume the oracle call INCGDD(B, S, t, r') succeeds. We keep calling
the INCGDD oracle with smaller and smaller values of r, until either a call returns an invalid answer or r
gets too small. Specifically, at each iteration we decrease r by a factor 10/11, as long as r > ||S||/4. Notice
that if r < ||S||/4 and the oracle INCGDD(B, S, t,r) returns a valid answer s, then we can terminate with
output s because
Is =l <7+ |[S[l/5 < (1/4 + 1/5)|[S[| < [IS[[/2 < 2v(n)H(B).

Finally, assume that the oracle succeeds for some value of r, but fails in the next iteration. Since the oracle
fails on input (10/11)r, it must be that (10/11)r < y(n)-¢(L(B)), or, equivalently, r < (11/10)y(n)-¢(L(B)).
Therefore, the vector s returned by the oracle on input r satisfies

S| _ 11

2L < T 0(L(B) + £2(0) - (L(B)) < () - H(L(B))

dist(s,t) < r + g

as required.

This concludes the description of the reduction. The reduction is correct because in every case, it
terminates with a lattice vector within distance 2v(n)¢(L(B)) from the target. Moreover, it is clear that
each iteration can be implemented in time polynomial in the size of the original B. In order to complete
the proof we only need to make sure that the number of iterations is also polynomial. Notice that since
S]] > An(B) (by definition of A,) and ||B’|| < 2"\, (B) (by the properties of LLL reduced basis), the
number of iterations is at most logy; j10(v/7[|B'[|/[[S]]) < logyq,10(v/72") = O(n), which is polynomial in the
size of B. O

4.3 The main reduction

In this section we reduce the worst-case problem INCGDDZ
the generalized compact knapsack functions H(F

. on cyclic lattices to the problem of inverting

(ny» D™ m(n)) on the average.

9We remark that the validity of the answer s returned by the oracle can be easily checked by verifying that s € £(B) and
s —tll <r+ISll/5.
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Our reduction is closely related to Micciancio and Regev’s variant [48] of Ajtai’s original worst-case
average-case connection [2] for arbitrary lattices. The average-case problem considered in [2, 48] is that of
finding a small integer linear dependency among randomly chosen elements of the additive group Z;. This
problem is shown to be at least as hard as finding short vectors in an arbitrary lattice B roughly!® as follows:

1. First, the group Zj is embedded into the space spanned by the lattice B by dividing each side of the
fundamental parallelepiped P(B) into p equal parts, yielding p™ subregions naturally corresponding to
the group elements.

2. Next, samples from the group Z; are chosen by selecting (almost) uniformly distributed vectors y; €
P(B), and rounding them to the corners a; of the corresponding subregions of P(B). The fundamental
idea of [48] (also used in this paper) is that random points y; € P(B) can be efficiently generated
together with nearby lattice vectors by choosing a relatively short random vector y; (with Gaussian
distribution), and reducing it modulo the lattice. This yields a point y; = y; mod B distributed almost
uniformly at random within P(B), together with a nearby lattice point (y; —y;) € £(B).

3. Since the vectors y} are (almost) uniformly distributed over P(B), the associated rounded vectors a;
correspond to (almost) uniformly chosen group elements in Zy . So, one can use the average-case oracle
to find a small integer linear dependency relation (a1, ..., Z;,) modulo p among the group elements. It
is easy to see that ) . a; - x; € £(B) for any such linear dependency relation (z1,...,2,,). Moreover,
approximating each rounded vector a; with nearby lattice point (y; — y;), yields another lattice vector
>yl — i) -z, € L(B) not far from ), a; - x;. So, one can compute a short vector in the original
lattice £(B) by taking the difference )" (a; — y; + yi) - «; between these two lattice points.

The main novelty in our reduction is that we need to embed (into the space spanned by the lattice),
not just the additive group Zjy, but rather the more sophisticated ring structure (Z;}, +,®) of n-dimensional
vectors with the usual modular addition and new convolution product operation. Remarkably, our reduction
achieves this by exploiting the rotational symmetry of cyclic lattices. Technically, the above reduction is
modified by replacing the parallelepiped P(B) (used to embed Zj) with the region P(C) associated to an
appropriately chosen sublattice. Namely, C = Rot(c) is a matrix obtained by taking the cyclic rotations
of a single vector c. The reason why this small modification makes the reduction work is mostly algebraic,
rather than purely geometric as in [2, 48]. Still, our embedding inherits some of the geometric intuition of
Ajtai’s proof [2], making the Gaussian techniques of Micciancio and Regev [48] applicable.

Another difference between the reductions of [2, 48] and ours, is that (for technical reasons) here we need
to work with inhomogeneous variants of both the average-case and worst-case problems. For example, instead
of considering the problem of finding a linear dependency among ring elements (i.e., a linear combination
that adds up to zero), we consider the problem of inverting the generalized knapsack function (i.e., finding
a linear combination of the knapsack weights that adds up to a given random target value). Again, the
reason why this change is necessary to make our reduction work is mostly algebraic, not geometric.'! So,
while the geometric intuition behind Ajtai’s proof (as described above) can be useful to achieve a superficial
understanding of our proof as well, we warn the reader that part of the proof is algebraic in nature and it is
best understood by putting the geometric interpretation aside.

Theorem 4.8 For any constants ¢ > 1 and 6 > 0, negligible function e(n) = n=“W) | polynomially bounded
integers m(n) = n°M) and primes p(n) = n°W if m(n) = w(1) and p(n) > (3c-m(n)-n>>)/ =9 then there
is a probabilistic polynomial time reduction from solving INCGDDZG(W)’c within a factor y(n) = 3-m(n)-n-p(n)°
in the worst case over cyclic lattices (with high probability), to inverting the generalized compact knapsack
function H(FZ(n)’ [p(n)°]", m(n)) on the average (with non-negligible probability).

10Many important technical details are omitted in our informal description. The reader is referred to the original paper [48]
for a more accurate description.

1Tt has been recently shown [38, 57] that the problem of adapting our reduction to the homogeneous setting is intimately
related to the factorization of (a™ — 1) into irreducible polynomials over Z[a]. The reader is referred to [38, 57] for details.
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Proof: For any instance Q = [qu, ..., Qpn); o] € IE‘Z(;”)(") x 7 p(n) of the generalized compact knapsack
function inversion problem, let

m(n)

F(Q) =¢X= [X17 v 7xm(n)] Vi. X; € [P A Z q; R X; = qo mod p(n)

be the corresponding set of solutions. Let F be an oracle that on input an instance Q selected at random ac-

cording to distribution OWF(H(F},,,, [p(n)°]", m(n))), outputs a solution F(Q) € T'(Q) with non-negligible
probability. Let $(n) be the probability that F(Q) € T'(Q) when Q is selected uniformly at random from
Fm) F} - Since p(n) = n®W [p(n)?])] > p(n)? = n*") and m(n) = w(1), by Theorem 4.2 the proba-

p(n)
bility dlstrlbutlon owF (H(E} ), [p(n)°]", m(n))) is statistically close to the uniform one U (F (g(n) X Fn)-

Therefore, 5(n) is non-negligible too. We use F to solve problem INCGDD%C over cyclic lattices in the worst

case, with non-negligible probability 2(3(n)). Since we are solving INCGDD? . in the worst case, the success
probability of the reduction can be made exponentially close to 1 using standard repetition techniques.

Let (B, S,t,7) be a valid INCGDDY  instance such that the lattice £(B) is cyclic. We know that £(S) is

a (not necessarily cyclic) full rank sublattlce of L(B), and r > v(n) - nen) (L£(B)) for some negligible function

e(n) = n=<(). The goal of the reduction is to find a lattice vector s € £(B) within distance r + ||S|| /¢ from
the target t. The reduction works as follows:

1. Use Lemma 3.1 to find a vector ¢ € L(S) C £(B) of length ||c||s < 2-n-||S]|| such that Rot(c) has full
rank.

2. For i =0,...,m(n), do the following

(a) Use Lemma 2.7 to generate a uniformly random lattice vector v; € £L(B) NP (Rot(c)):

(b) Generate a random noise vector y,; with probability density y; ~ ps/s™ for s = 2r/y(n), and let
y; =y; mod B.

(c) Compute a; = [p(n) - Rot(c) " (vi +y})].
3. Compute b = |p(n) - Rot(c)~'t].

4. Define the generalized compact knapsack problem instance

Q = [a; mod p(n), ..., ) mod p(n); ag + b mod p(n)] (4.9)
and invoke F(Q) to find a potential solution X = [x1,...,X;mmn)] € I'(Q).
5. Let xg = —eq, and return the vector

m(n)
_ Ly _c®a L c®b
S—g(wm p(n) yl)‘g’xl*p(n)'

The correctness of the reduction is based on the following two lemmas. The first lemma shows that if the
oracle F successfully outputs a solution X € I'(Q), then the reduction outputs a lattice vector s € £(B).

Lemma 4.9 If X € I'(Q), then s € L(B) is a lattice vector.

Proof: Let X € I'(Q) be a valid solution to knapsack instance (4.9). In particular, assume!? X =
(X1, s Xm(n)) satisfies

Z a; ® x; = (ag + b) mod p(n). (4.10)

121n fact, this is the only property of X required in this lemma. The other property Vi.x; € [p(n)‘s]" is not used in the proof.
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Using the distributive and associative properties of ®, vector s can be rewritten as the sum

i— a; ®Xx; —b
S = E (Vi-f—YQ—Yi)@Xi—C@Z_O o) .
=0

We claim that all terms in the summation belong to the lattice £(B). First of all notice that for any i > 0,
the vector v; +y; —y; belongs to the lattice L(B) because v; € £(B) and y; = y; modulo £(B). Using the
cyclicity of £L(B), we get that all columns of Rot(v; +y; — y;) belong to the lattice, and

(vi+y:—yi) ®x; = Rot(v; +y; —yi) - x; € L(B)

because x; has integer entries. For the last term, we use equalities (4.10) and ag ® xo = —ay, yielding

Zai(X)xi—b:Zai@xi—(ao—i—b)EOmodp(n).

i>0 i>1
Therefore (3,.,a; ® x; — b)/p(n) is an integer vector, and

ZiZO a;, ®%x; — b
p(n)

ZiZO a, ®x; — b

¢ p(n)

= Rot(c) - € L(Rot(c)) C L(B)

belongs to the lattice. O

The second lemma shows that the input Q to the oracle F is almost uniformly distributed, and therefore
F(Q) is successful with probability very close to §(n).

Lemma 4.10 For any s > 1c,)(L(B)), the statistical distance of Q (as defined in (4.9)) from the uniform
distribution is at most

%(m(n) +1)-¢e(n).

In particular, for any polynomially bounded m(n) = n®M), and negligible function e(n) = n=*W, the distri-

bution of Q is within negligible distance from the uniform distribution U(IFZ('?)(W) X Fg(n)).

Proof: We first bound the distance of each a; mod p(n) from the uniform distribution over Fpny- Notice
that

aimodp(n) = [p(n) - Rot(c) ™ (vi + 1) mod p(n)
|p(n) - Rot(c)™*((vi +y:) mod Rot(c))].

So, if y. were distributed uniformly at random over P(B), then (v; + y;) mod Rot(c) would be uniform
over P(Rot(c)), and a; mod p(n) would also have perfectly uniform distribution over F3 - Consider a; mod

p(n) as a randomized function of y%, i.e., define the randomized function g(y’) = |p(n) - Rot(c)™ (v +
v')] mod p(n) where v € £L(B)NP(Rot(c)) is chosen uniformly at random. Notice that ¢g(y;) = a; mod p(n).
We observed that g maps the uniform distribution over P(B) to the uniform distribution over Fg(n), ie.,

g(U(P(B))) = U(Fg(n)). Therefore, by Proposition 2.2 the statistical distance between a; mod p(n) and the
uniform distribution over IFZ(”) is at most

A(a; mod p(n), U(Fp,))) = Alg(ys), 9(U(P(B))))
< Ay, U(P(B))).

Notice that y; has distribution ps/s™ mod P(B). Using the assumption s > n.(£(B)) and Lemma 2.11, we
get that
Afas mod p(n), U(F™)) < Ay, U(P(B))) < e(n)/2.
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Now consider the knapsack instance Q defined in (4.9). Since the elements of Q are independently
distributed, by Proposition 2.4 we have

AQUEL™ x T ,1)) < > Ala; mod p(n), U(Fy,))) + Alag + b mod p(n), U(Fp,)).
1=1

The last term satisfies

A(ag + b mod p(n), U(Fy,))) = A(ag mod p(n), (U (Fy,)) —b) mod p(n)) = A(ag mod p(n), U(Fy,)))-

Therefore,
- m(n)
AQUF) N xFp,y)) < Z A(a; mod p(n),U(Fp,))) < (m(n) +1) - €(n)/2.
i=0
O

We are now ready to prove the correctness of the reduction. Namely, we want to prove that for any
n-dimensional cyclic lattice basis B, full rank subset S C L£(B), target t, and r > v(n) - n.(£(B)), the
reduction outputs a lattice vector s € £(B) such that ||s — t|| < r + ||S||/c with non-negligible probability
Q(B(n)). By Lemma 4.9, s € £(B) is satisfied whenever oracle F returns a valid solution X = F(Q) € I'(Q).
Therefore, the success probability of the reduction is at least

C C

Pr{s € L(B).[s—t| <r+ ”S'} > pr{x ET(Q). s —t] <7+ ”S'}

PriX eT(@Q}-Pr{ s—t| <r+ Bl |xXer@ }@i

Let Q € U (IFZ&T(M x I} ,,)) be an instance distributed uniformly at random. Notice that s = 2r/v(n) >

21e(n) (L(B)) > Ne(n)(L(B)). So, by Lemma 4.10, A(Q, Q) is negligible. Therefore, the first probability in
(4.11) satisfies

Pr{XeT(Q)} = Pr{F(Q) eTl(Q)}
> Pr{FQer@}-2Q.Q)
= B(n) —n=W > Q(5(n))
We bound the second probability in (4.11) using Markov’s inequality:
Pr{fs—t|<r+Bl|xer@ } = 1-Pr{ |s—t|>r+ 8 |xXeT(Q }
E[|ls—t][XeT(Q) ]
> 1- TSI/ (4.12)

We will prove that the conditional expectation E [ |ls —t|| | X € T(Q) ] is at most (2/3)(1+2/m(n))- (r+

IS]|/¢c), so that (4.12) is at least
2 2 1 4
-2 (1= )= _—9().
3 ( + m(n)) 3 3m(n) (n)

This proves that (4.11) (and therefore also the success probability of the reduction) is at least Q(5(n))-Q(1) =
Q(B(n)). It remains to bound the expected length of s — t. By the triangle inequality,

ls—6l < >

=0

c® a;
P —— + Yy @il +
1=0

(VZ' YT S > .

20

(4.13)

o~



We will show that the first and third term can be made arbitrarily small by using a sufficiently large value
for p(n). (Here is where we use the assumption p(n) > (3em(n)n?°)/(1-9) ) The second term requires the
most effort and it is bounded using the properties of Gaussian distributions. Notice that

c®a;  c®(w—|w|)

p(n) p(n)

vity;—

where w = p(n) Rot(c)~!(v; +y.). Since |[c[1 < 2n||S|| by construction and ||w — |w]||s < 1 for any vector
w, we have
c®a;

el - Ilw = [wlll,, _ 2n|S||
p(n) = '

o p(n) ~ p(n)

\'g +y£ — (4.14)

Similarly, we have

Ht 3 c®bH < 2n||S|| (4.15)

p(n) | = pn)
Multiplying (4.14) by x; and using [|x;|1 < n-p(n)?, we get
c®a; 2”2”3”
vi+yi— >®Xz‘ Xl < -
I( o) Pl = s

Substituting (4.15) and (4.16) in (4.13), and using the second inequality in (2.5)

(4.16)

o0

2n2°|S| 15IISH S
[s =t < (m(n)+1)- ()= o) +Z|\yz®lel

m(n)

25||SH
< 2( ()+2 +ZH z®sz

Using the assumption p(n) > (3¢ - m(n) - n2'5)1/(1_5) the first term in the last expression is at most

n25
2(m(n) +2) - o )HlsL <3 <1+ m?n)) . ”iCH

We want to prove that the conditional expectation of the second term satisfies

2 2
B[ s exl | xer@ ] <3 (1425 n (.17)
so that the expectation of ||s — t|| is at most (2/3)(1 4+ 2/m(n))(r + ||S||/c) as claimed.

In order to prove (4.17) we fix the value of X, Q and Y’ = [yg, ...y}, ], and consider the conditional
expectation of ||s — t|| given all these values. We will show that for any fized Q, X and Y’ (satisfying
X € T'(Q)), the conditional expectation of ||s —t|| satisfies the bound in (4.17). Equation (4.17) immediately
follows by averaging over all possible values of Q, X and Y’ such that X € T'(Q). So, in the rest of the proof,
we fix the value of Q, X and Y’, and consider the conditional distribution of the vectors y;. Notice that,
given y;, vector y; must necessarily belong to the set y; + £(B), but it is otherwise random and independent
from Q, X, Y’ and all other y;’s. So, the conditional distribution of y; € y; + £(B) is

) / _ ) / . ps(Yi) _ ps,—yg(yi _YQ)
Pl"{ Yi | Y, QX }_Pl"{ Yi | Yi }_ sy + L(B)) = ps,fy;(ﬁ(B)) .

In other words, the conditional distribution of (y; —y;) € £(B) is Dg(B),s,—y,- Recall that s = 2r/y(n) >
2n€(n)(£(B)). So, by Lemma 3.2,

Ellyviox|?|yi] = Blyi—y)~Decoyary, 1((yi =y = (=y1) @ x4]%]
5% [|xil*n

827’L2 p( )26

IAIA
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By convexity, we get
El lyi@oxill |y} ] <n-s-pn).

Finally, adding up for all values of i and using the definition of s = 2r/v(n) and vy(n) = 3m(n) -n-p(n)?, we
get

Z El llyioxi |y} |

1=0

IN
=
2
+
N
S
»
=
2
>

1+ ! Zr < 2 1+ 2 T
m(n)) 3 ~ 3 m(n))
This concludes the proof that the conditional expectation E [ [|s —t| | X € ['(Q) | is at most (2/3)(1 +
2/m(n))(r + ||S||/c), and the reduction succeeds with non-negligible probability Q(5(n)). O

By choosing a small enough § > 0 in the previous theorem, we obtain the following corollary.

Corollary 4.11 For every o > 0 there is a § > 0 such that for every constant ¢ > 1, negligible function
e(n) > 0, primes p(n) = ©(n?), and subpolynomial integers m(n) = n°Y) satisfying m(n) = w(1), there is
a probabilistic polynomial time reduction from solving INCGDszC in the worst case within a factor y(n) =
n!te to inverting HE () [p(n)?]™,m(n)) on the average with non-negligible probability.

Proof: Assume without loss of generality that a < 1/2, and take for example § = «/6. Notice that
p(n)'=% > ©(n?/2) is asymptotically bigger than 3cm(n)n?5 < O(n~%). Therefore, for all sufficiently
large n, p(n) satisfies the hypothesis of Theorem 4.8, and inverting H(F},,,, [p(n)°]",m(n)) on the average
is at least as hard as solving INCGDD? . in the worst case, for

(1) = 3m(n)np(n)® < plre@+a/2 < it

4.4 Other lattice problems

In Subsection 4.3 we have shown that inverting the generalized compact knapsack functions H(F2, [p°]™, w(1))
on the average is at least as hard as solving the INCGDD problem over cyclic lattices in the worst case. In this
subsection we relate the complexity of inverting the compact knapsack functions to well known worst-case
lattice problems restricted to cyclic lattices.

Corollary 4.12 For any « > 0 there is a § > 0 such that for all primes p(n) = ©(n®) and integers
m(n) = n°W satisfying m(n) = w(1), inverting H(F, ) [p(n)?]",m(n)) on the average with non-negligible
probability is at least as hard as solving any of the }ollowmg problems in the worst case within a factor
y(n) =nite:

e the guaranteed distance decoding problem GDDZ over cyclic lattices
e the generalized independent vector problem SIVPz over cyclic lattices.

Proof: Both reductions easily follow by combining Corollary 4.11 with Lemmas 4.6 and 4.7. O

Finally, using known relations between n and )\, (see Lemma 2.13) and \,, < 2p (see [47, Theorem 7.9]),
we can relate the hardness of breaking one-way function H(F}, [P°]",w(1)) to the standard version of the
lattice problems GDD and SIVP.
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Corollary 4.13 For any o > 0 there is a 6 > 0 such that for any primes p(n) = O(n3) and integers
m(n) = n°WY satisfying m(n) = w(1), inverting H( ()’ [p(n)?]™,m(n)) on the average with non-negligible
probability is at least as hard as solving any of the following problems in the worst case for y(n) = ntte:

o the guaranteed distance decoding problem GDD.,, over cyclic lattices

o the shortest independent vector problem SIVP., over cyclic lattices.

5 Remarks and open problems

We have introduced a new class of very efficient one-way functions with strong security guarantees. Namely,
our functions are provably hard to invert (on the average), based on a worst-case intractability assumption.
The assumption is that no polynomial time algorithm can approximate SIVP, GDD, or other related lattice
problems, in the worst case over cyclic lattices within a factor n'*¢ almost linear in the dimension of the
lattice.

Similarly to the case of general lattices [2, 10, 19, 46, 48], our results too can be interpreted as a connection
between the worst-case and average-case complexity of various lattice problems. In [2, 10, 19, 46, 48] it is
shown that finding small nonzero integer solutions to a random linear equation Ax = 0 mod p on the average
is at least as hard as solving SIVP and other lattice problems in the worst case. Since the integer solutions
to the equation

A(A) = {x: Ax = 0 mod p}

form a lattice, the results in [2, 10, 19, 46, 48] can be formulated as a reduction from solving SIVP in the
worst case to solving SVP on the average.

In this paper we have shown that inverting our generalized compact knapsack functions on the average
is at least as hard as the worst case instance of GDD, as well as other lattices problems, over cyclic lattices.
We now show how inverting the compact knapsack function can also be formulated as a lattice problem. A

compact knapsack function ay, ..., a,, implicitly defines a lattice in dimension O(m - n) given by the set of
all (y¥,...,yI)T such that Y- a; ® y; = 0. In fact, using matrix notation, one can consider the weights
aj,...,a,, as a compact representation of an n X m - n matrix

A = [Rot(a;)|...|Rot(ay,)]

which defines a lattice A(A) = {x: Ax = 0 mod p} in the usual way. Up to a permutation of the coordinates,
it is immediate to see that the lattice associated to matrix A above is quasi-cyclic of order m, i.e., it is
invariant under shifts rot™ by m positions. Inverting the subset-sum function can be formulated as a closest
vector problem instance as follows. Given ay,...,a,,, and knapsack target b, we first compute an arbitrary
solution z = (2z1,...,%m) to the equation Y a; ® z; = b. (These vectors z; are not required to belong to
S = D™, and can be efficiently found.) Then, finding small vectors x = (x1,...,X,,) such that > a; ®x; = b
is equivalent to finding lattice vectors (z1 — X1,...,Zm — Xm) € A(A) close to (z1,...,2Zm).

So, our result can be interpreted as follows: if GDD on n-dimensional cyclic lattices is hard to approximate
within n'*¢ factors in the worst case, then CVP on w(n) dimensional w(1)-cyclic lattices is hard to solve on
the average.

Many open problems remain. First and foremost, since the security of the cryptographic function pro-
posed in this paper relies on the hardness of lattice problems on cyclic lattices, it would be very interesting
to investigate the worst case complexity of computational problems on cyclic lattices, as discussed in the
introduction. In the rest of this section we describe other open problems (and recent results) concerning the
construction of various cryptographic primitives and improvement of the worst-case inapproximability factor
required by the proof of security.

Cryptographic applications. From a practical point of view, it would be nice to prove that our function
satisfies stronger security guarantees than one-wayness. For the case of general lattices, it is known [19, 48]
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that under the assumption that SIVP is hard to approximate in the worst case within almost linear factors
w(nlogn), the generalized subset-sum function over Z,, is not only one-way, but also collision resistant.
Unfortunately, technical differences between our proof and the one in [48] make it hard to establish the same
result for the compact knapsack function. At the time this paper was written, we left as an open problem
to prove or disprove that our generalized compact knapsack function is collision resistant. This problem
has been independently settled in [38] and [57], where it is shown that the generalized compact knapsack
function proposed in this paper is not collision resistant (in fact, it is not even a universal one-way hash
function), but it can be turned into a collision resistant hash function (under essentially the same worst-case
complexity assumption) by suitably restricting its domain or modifying the underlying ring. In [57, 38] it is
also shown that the function is secure even when the number of weights m(n) = O(1) is constant, improving
over the almost constant bound m(n) = w(1) used in this paper.

It would be interesting to use the techniques developed in this paper to build (very efficient) cryptographic
primitives other than one-way functions and collision resistant hash functions. One-way functions are known
to be sufficient to build many other useful cryptographic primitives, like pseudo-random generators [21,
24], one-way hash functions [50], commitment schemes [49], digital signatures schemes [61], or private key
encryption schemes [20]. However, these generic constructions are rather inefficient, so with their use most
of the efficiency benefits of our compact knapsack function would be lost. We leave as an open problem the
construction of any such provably secure cryptographic primitive with efficiency comparable to our one-way
function, and based on similar worst-case intractability assumptions. As already mentioned above, for the
case of hash functions, this problem has been recently solved in [38, 57], where it is shown that a simple
variant of the function proposed in this paper is collision resistant, and therefore also a one-way hash function.
We also observe that by standard reductions [50, 14], the collision resistant hash function of [57, 38] also
yields efficient constructions of (statistically hiding) commitment schemes based on the worst-case hardness
of cyclic lattices.

Finally, and probably the hardest of the open problems concerning the cryptographic applicability of our
techniques, is to build a public-key encryption scheme (or a trapdoor function) with efficiency and security
guarantees similar to our compact knapsack function. Building public-key encryption schemes seems a much
harder problem than building one-way functions or private key encryptions. Still, we believe that designing
public-key encryption schemes with efficiency and security properties similar to our one-way function may
not be so out of reach. We remark that the class of cyclic lattices used in this paper is related to (although
different from) the class of “convolutional modular lattices” used by NTRU [25], a commercial public-key
cryptosystem based on lattices. Specifically, the lattices used by NTRU can be described as quasi-cyclic
lattices of order 2, i.e., lattices that are invariant under cyclic shifts by 2 positions. Unfortunately, no proof
of security is known for NTRU (even based on nontrivial average-case complexity assumptions). Still, based
on the similarities between NTRU and other lattice-based cryptosystems [42], we hope that, as Ajtai’s one-
way function [2] inspired the design of public-key cryptosystems [3, 59], our work will provide a starting point
for the design of efficient and provably secure public-key cryptosystems based on cyclic lattices. Proving the
security of NTRU, or finding alternative ways to build public-key cryptosystems with efficiency and security
properties similar to our one-way function is left as an open problem.

Improving the connection factor. The worst-case inapproximability factor for SIVP and GDD required
by our one-way function is n'*¢, for arbitrarily small ¢ > 0. A modest improvement has been recently
achieved in [57, 38], who proved that (a variant of) the generalized compact knapsack proposed in this paper
is as hard to invert on the average (in fact, even collision resistant) as approximating SIVP (on cyclic lattices)
within a factor nlogo(l) n, essentially matching similar results for general lattices [48]. An interesting open
question is whether it is possible to do even better than that. We remark that the worst-case problems
solved by our reduction are somehow harder than SIVP and GDD. Our reduction allows to solve SIVP"
and GDD" within almost linear factors, and then uses known relations between the smoothing parameter 7
and standard lattice parameters like A,, and p. An interesting question is whether better relations between
7, An and p can be proved in the case of cyclic lattices.

For the case of GDD, we showed how to solve GDD* within almost linear factors n'*¢, and then used

24



the inequality p > A, /2 to express our result in terms of GDD = GDD?”. Since p can be larger than A,
by /n/2 (even for the case of cyclic lattices), our reduction may approximate GDD within factors much
smaller than n'*¢, potentially as low as n%*¢, depending on the input lattice. We leave as an open problem
to prove that the generalized compact knapsack function is as hard to invert as approximating GDD over
cyclic lattices in the worst case within factors y(n) = n%5+¢,
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