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Abstract—Efficient defect classification is one of the most 

important preconditions to achieve online quality inspection for 

hot-rolled strip steels. It is extremely challenging owing to various 

defect appearances, large intra-class variation, ambiguous 

inter-class distance, and unstable gray values. In this paper, a 

generalized completed local binary patterns (GCLBP) framework 

is proposed. Two variants of improved completed local binary 

patterns (ICLBP) and improved completed noise-invariant 

local-structure patterns (ICNLP) under the GCLBP framework 

are developed for steel surface defect classification. Different from 

conventional LBP variants, descriptive information hidden in 

nonuniform patterns is innovatively excavated for better defect 

representation. This work focuses on the following aspects: First, 

a lightweight searching algorithm is established for exploiting the 

dominant nonuniform patterns (DNUPs). Second, a hybrid 

pattern code mapping mechanism is proposed to encode all the 

uniform patterns and DNUPs. Third, feature extraction is carried 

out under the GCLBP framework. Finally, histogram matching is 

efficiently accomplished by simple nearest neighbor classifier 

(NNC). The classification accuracy and time-efficiency are 

verified on a widely recognized texture database (Outex) and a 

real-world steel surface defect database (NEU). The experimental 

results promise that the proposed method can be widely applied in 

online AOI instruments for hot-rolled strip steel. 

 
Index Terms—Surface defects, image classification, hot-rolled 

strips, local binary patterns (LBP), automatic optical inspection 

(AOI) instrument. 

 

I. INTRODUCTION 

OT-ROLLED strip steel occupies more than 50% of all 
the products in iron and steel industry. It is not only the 

essential raw material of cold-rolled steel, but also acts as vital 
material in architecture, machinery and automobile industries. 

Any untimely solved defect would lead to huge economic and 
reputation losses to steel manufacturers. Online surface defect 
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inspection of hot-rolled strip steel is thus extremely significant. 
It is mainly handled by an automatic optical inspection (AOI) 
instrument. In general, defect detection and defect 
classification are two main functions of AOI instruments 
[1]-[8]. The former is merely to detect defective regions from 
massive surface images. It is the foundation of the “quality 
problem close loop”, as early defect inspection will result in 
fewer losses. The latter is to identify the defect categories. It is 
used for grading and distributing end products. The detailed 
flow chart is illustrated in Fig. 1. Consequently, defect 
detection and classification with high time-effectiveness are the 
essential preconditions of online quality control.  

Defect detection based on supervised or unsupervised 
learning methods becomes mature as the rapid development of 
computer vision and pattern recognition. Ghorai et al. proposed 
a typical supervised learning algorithm- VVRKFA [6]. It was 
then successfully applied to the AOI instrument for hot-rolled 
flat steel. A true positive rate (TPR) of 93.8% with an upper 
limit of 5 m/s rolling speed was achieved [3]. Luo et al. 
developed a cost-effective hot-rolled steel AOI instrument. It 
was driven by hardware acceleration technique and the upper 
limit of rolling speed was elevated to 20 m/s [4]. Liu et al. 
constructed an unsupervised Haar-Weibull-variance (HWV) 
model, and a higher TPR of 96.2% was achieved [7].  

Although defect detection and defect classification are 
inseparable in AOI instrument, the room for defect 
classification improvement is large. The following are 
challenges which defect classification has to handle: 

1) Large intra-class variation and ambiguous inter-class 
distance. For example, the outlines of patches shown in Fig. 
11(b) are diverse, while the crazing in Fig. 11(c) and pitted 
surface in Fig. 11(d) have similar appearance. 

2) Unstable gray values. The gray value is sensitive to 
cooling water [4], uneven illumination [5], multiple material 
types [8] and mechanical vibration [3], [9]. As shown in Fig. 11, 
the gray values have giant difference in the 6 defect classes.  

3) Limited image classification time. Time-efficient defect 
classification is of benefit to online quality control and effective 
production increase. 

Accordingly, it is difficult to classify these defects simply by 
gray statistics or threshold judgments. Various algorithms such 
as MGA [10], Bayes theorem [11], SVM [12], the 
aforementioned VVRKFA [6] and the latest CNN [13] can be 
used for feature extraction and matching. However, compared 
with time-efficiency, most of algorithms pay more attention to 
classification accuracy, while time-efficiency is a key 
performance indicator which determines whether new methods 
could be applied in industrial manufacture. 
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Fig. 1.  Brief technical routes of AOI instrument. Two closed loops (marked 
green and red) jointly support achieving online surface quality control. 

This paper investigated that the local binary patterns (LBP) 
descriptor is lightweight and efficient for texture representation 
[14]-[16]. This descriptor and its various variants, such as 
completed LBP (CLBP) [24], completed noise-invariant 
local-structure pattern (CNLP) [25] and dominant LBP (DLBP) 
[26], have been successfully applied to face recognition 
[17]-[19], texture classification [20], [21] and visual tracking 
[22]. Some literature on surface defect inspection based on LBP 
are reported [8], [23].  

This paper focuses on defect classification (closed loop 2 in 
Fig. 1). A generalized CLBP (GCLBP) framework is proposed 
for further developing image-based AOI measurements. LBP 
pattern information and frequency information are considered 
simultaneously, and the noise robustness is promoted implicitly 
during the dominant nonuniform pattern pursuing process. The 
contributions are as follows: 

1) A concealed yet objective fact that nonuniform patterns 
contain useful descriptive information is discovered. The 
number of nonuniform patterns is less than that of uniform 
patterns, but nonuniform patterns are not negligible in 
improving classification accuracy. 

2) A novel GCLBP framework is proposed to innovatively 
excavate the implicit descriptive information from nonuniform 
patterns. The overall performance of CLBP-like descriptors 
(CLBP and CNLP for case study) is further strengthened. 

3) The classification accuracy and time-efficiency of two 
typical GCLPB-based variants, i.e., ICLBP and ICNLP, have 
been successfully verified on both a widely used texture 
database (Outex [28]) and an actual steel surface defect 
database (NEU [29]). 

The rest of this paper is organized as follows. Section II 
includes the related theory preliminaries and the initial research 
motivation. Section III elaborates the proposed GCLBP 
framework in detail. Section IV highlights the novelty and 
advantages of GCLBP. Extensive experiments and related 
discussions are demonstrated in Section V. Finally, Section VI 
concludes this research. 

II. PRELIMINARIES AND MOTIVATION 

The proposed GCLBP framework is basically generalized 
from CLBP. Here, the LBP, CLBP, and CNLP (a CLBP-based 
variant) are reviewed briefly. 

A. Review of LBP 

Given a central pixel gc and its P circularly spaced neighbors 
gp with radius R, there exits positional index array p, p=0, ..., 
P-1. The original LBP code of gc can be simply calculated by  

1

, 0
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P P

P R p p p cp
LBP s d d g g
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where s(t)=(t  0)?1:0, it is a simple sign function. The gray 
values corresponding to out-of-center coordinates are solved by 
bilinear interpolation [27]. An evaluation criterion of pattern 
uniformity U( ) which reflects the spatial transitions between 
bitwise '0' and '1' has been defined as 
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where Uh2t( ) and Uintrm( ) respectively stand for the head-to-tail 
and intermediate spatial transitions of the raw LBP codes. Then, 
uniform patterns and rotation invariant uniform patterns are 
defined as 
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Hence, the pattern labels based on LBP
 u2 

P,R  or LBP
 riu2 

P,R  are 
decreased to P×(P-1)+3 and P+2 from the previous 2P. The 
transformations between these different pattern codes can be 
realized flexibly through simple lookup tables. 

B. Review of CLBP 

The dp in (1) is decomposed into sp and mp in CLBP. 
, ( ) | |

p p p p p p p
d s m s sign d and m d     (5) 

where sp is the sign of dp and its expression is sp=(dp  0)?1:-1, 
and mp is the magnitude of dp. Three CLBP operators -sign, 
magnitude, and centre pixel operator- are defined as 

1

, 0
_ ( ,0)2

P P

P R pp
CLBP S s s
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1

, 0
_ ( , )2

P P

P R p mp
CLBP M s m c
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,_ ( , )
P R c I

CLBP C s g c  (8) 

where s(t,c)= (t  c)?1:0, it is a combinatorial sign function, cm 
is the mean value of mp taken over the entire image, and cI is the 
average gray level of the entire image. In fact, CLBP_SP,R (6) is 
exactly LBPP,R (1). Two rotation invariant variants are defined 

  
, ,_ min _ , | [0, 1]

P R

ri

P R
CLBP S ROR CLBP S i i P    (9) 

  
, ,_ min _ , | [0, 1]

P R

ri

P R
CLBP M ROR CLBM S i i P    (10) 

where ROR(x, i) is a bitwise cyclic right shift operator. Finally, 
the pattern dimensions of CLBP_S

 ri 

P,R and CLBP_M
 ri 

P,R (jointly 
denoted as CLBP

 ri 

P,R) are much smaller than CLBP_SP,R and 
CLBP_MP,R (jointly denoted as CLBPP,R). 

According to [24], the histograms obtained from CLBP_S, 
CLBP_M and CLBP_C can be combined to 3-D or 2-D, joint or 
hybrid histograms, producing sub-variants of CLBP_M/C, 
CLBP_S/C, CLBP_S/M, CLBP_S_M/C and CLBP_S/M/C. 
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C. Review of CNLP 

To improve noise-robustness, some CLBP variants such as 
AECLBP [8], CRLBP [36] and CNLP [25] are proposed 
successively. The key idea of these descriptors is to replace the 
noise-sensitive threshold of centre pixel value with a more 
robust compositional variable. The latest CNLP is reviewed 
here as it is chosen as one of improved cases under the GCLBP 
framework. The threshold of the sign component is redefined as 

1
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g g
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Then the CNLP_S, CNLP_M and CNLP_C are updated as 
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where gp, gc and s(t) have been defined in (1), and gi,j is the 
pixel gray value at ith row and jth column of the image with size 
of r×c. Notably, CNLP extract features from centre pixel gray, 
local intensity and image contrast simultaneously. 

D. Initial Observation and Study Motivation 

Ojala et al. [14], [15] claimed that most of the nonuniform 
patterns made little contribution to texture representation 
statistically, since uniform patterns always dominate the prior 
knowledge of texture images. However, we found a certain 
quantity of nonuniform patterns have high probability of 
occurrence in practice. For example, the nonuniform patterns 
"01000100" and "01000001" appear frequently in LBP

riu2 

8,1 . In 
view of this, as shown in Fig. 2, massive statistical tests are 
conducted on Outex [28] and NEU database [29] to obtain the 
pattern distribution rule. The proportions of uniform patterns 
decline significantly with the increment of P and R. 
Furthermore, the LBP

 riu2 

8,1  with the lowest proportion of 
nonuniform patterns is selected for intuitive presentation in Fig. 
3. It can be observed that the boundary of defect (longitudinal 
entrapped slag) is clearly visible in the right subfigure of Fig. 
3(a). Besides, the representation effect of some nonuniform 
patterns with high probability is even better than that of certain 
uniform patterns. For instance, the subfigure (Top 20) in Fig. 
3(b) shows slightly better representation effect than that of the 
subfigure (Label=0) in Fig. 3(c). 

Traditional LBP variants emphasize only (uniform) pattern 
information while DLBP only consider frequency information 
instead of pattern information. These seemingly contradictory 
viewpoints prompt us to search compelling answers (at least 
part of them) for the following questions: What kinds of useful 
descriptive information are implicitly included in nonuniform 
patterns? How to efficiently exploit the missed information in 
these nearly ignored nonuniform patterns? And how to 
maintain high classification accuracy when encountering 
various textures with loose pattern uniformity degree? 

This correspondence attempts to address the above questions 
by innovatively excavating the dominant nonuniform patterns 
(DNUPs). A novel defect (also texture) description framework, 
GCLBP, is thus proposed for efficient image classification.  
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(a) Outex database                             (b) NEU database 

Fig. 2.  Proportions of the uniform patterns for texture and defective images. 

 
(a) From left to right: raw image, uniform patterns, and nonuniform patterns. 

 
(b) From left to right: Top 10*, Top 20, and Top 30 nonuniform patterns. 

 
(c) Uniform patterns with 9 distinct pattern labels. 

Fig. 3.  Representation effects of different LBP
 riu2 

8,1  patterns. 
* Note: Top 10 indicates the nonuniform patterns with the highest probability of occurrence 
and the sum of the probability is 10 %. Analogously for Top 20 and Top 30. 

III. GENERALIZED CLBP (GCLBP) 

A. Dominant Nonuniform Features Pursuing 

The detailed training procedure for excavating dominant 
nonuniform patterns is presented in Fig. 4. First, given a 
training set T {ti[r×c] | i=1,2,...,Nt} which is constituted of Nt 
images with a size of r×c pixel, the pattern label of each center 
pixel in each image is calculated by using a certain CLBP 
operator (i.e., (6), or (7), or (8)). Second, the calculated pattern 
labels are discriminatively kept in the buffer pools according to 
the pattern uniformity defined in (2). Closely after that the 
pattern label of the last center pixel is obtained, the nonuniform 
histogram of each image is calculated. The above two steps are 
carried out for N times to enhance the generalization ability of 
trained DNUPs. Finally, pattern labels with higher occurrence 
frequency are selected as DNUPs for the next feature extraction. 
After repeating test and continuous verification, the range of  
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is recommended to 20% - 60%. 

Update the selected pattern labels 
into the dominant nonuniform 
label array

Store the total number of selected  
dominant nonuniform patternsUpdate nonuniform pattern matrix

U(Li,(jr,jc))>2

Y

( , ) ( , )i i
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Fig. 4. Training procedure of the dominant nonuniform patterns for GCLBP. 

B. Hybrid Pattern Encoding 

Uniform CLBP
u2 

P,R, rotation invariant CLBP
ri 

P,R and rotation 
invariant uniform CLBP

riu2 

P,R  are built for code mapping for the 
classical CLBP. Here, a novel mapping scheme, GCLBP

hriu2 

P,R , is 
established for GCLBP. The superscript reflects the hybrid 
rotation invariant uniform patterns classified by judging the 
uniformity criterion (2) with 2. The expression is given as 
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(15) 

where the Kri 

σ  ≤ Kσ is the total number of the rotation invariant 
pattern codes of the selected DNUPs label set, LBdnu[1,…, Kσ]. 
The specific coding process is introduced as follows: 
1. The exactly P+1 rotation invariant uniform patterns defined 

in the CLBPP,R are completely kept in the GCLBP
hriu2 

P,R , the 
code indexes are from 0 to P.  

2. The Kσ DNUPs are labeled with Kri 

σ  rotation invariant codes 
using (9) (or (10)), the code indexes are from P+1 to P+K

ri 

σ .  
3. The non-DNUPs are grouped with a miscellaneous code 

index: P+1+K
ri 

σ .  
In summary, the hybrid look-up table fulfills the label 

mapping from 2P raw binary codes to P+2+K
ri 

σ  output codes of 
GCLBP

hriu2 

P,R . A detailed example is presented for the ease of 
understanding. As shown in Fig. 5, suppose P=8, R=1, and the 
returned results are: Kσ= 9, LBdnu= {5, 17, 20, 68, 92, 116, 187, 
197, 245}. The output labels applying GCLBP

hriu2 

P,R  are then 
composed of uniform part {0, 1, 2, 3, 4, 5, 6, 7, 8}, dominant 
nonuniform part {9, 10, 11, 12, 13, 14}, and the miscellaneous 

nonuniform part {15}, where elements {5, 20} in LBdnu with the 
rotation invariant characteristic are jointly mapped to label 9, 
analogously for elements {17, 68} and {92, 197}. Notably, Kri 

σ  
in this simple example decreases to 6 from the former 9. 

Uniform 
patterns

DNUPs

         [5, 17, 20, 68, 92, 116, 187, 197, 245]

     Hybrid look-up table
2

8,1
hriu

GCLBP

Non-DNUPs

[0, 1, 2 , 3, 4, 5, 6, 7, 8,  9, 10, 11, 12, 13, 14, 15]

dnu
LB

 

Fig. 5.  Illustrative example of hybrid pattern code mapping mechanism. 
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Fig. 6.  Feature extraction procedure under GCLBP
hriu2 

P,R  framework. 

C. Feature Extraction 

Fig. 6 shows the feature extraction procedure of GCLBP
hriu2 

P,R  
framework in detail. First, an array buffer with a size of 
1×(P+2+K

ri 

σ ) is initialized for keeping the hybrid pattern 
histogram. Then, for every image in the testing set, a pattern 
label matrix with a size of (r-2R)×(c-2R) is calculated for each 
center pixel, the hybrid histogram is calculated after all center 
pixels are traversed. Finally, the updated histogram GCPHI is 
returned as the GCLBP feature values of this image sample. 

D. Feature Matching 

Focusing on time efficiency, the simple nearest-neighbor 
classifier (NNC) is used to identify LBP-like histograms. The 
Chi-square distance continues to be used in this work. A test 
sample T={Ti} to be matched will be appointed to the class 
model M={Mi} if it occupies the minimum Chi-square distance 

 2

2 ( , ) i i

i i i

T M

T M





T M  (16) 

where i=1,2,..., P+2+K
ri 

σ , which has been defined in (15). 
In addition, the multiresolution histogram matching by using 

multiple LBP operators with distinct (P,R) is also involved in 
this work. 
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IV. THEORY VERIFICATION 

A. Characteristics of GCLBP-series Descriptors 

Two generalized properties of the GCLBP framework are 
outlined briefly. First, the used descriptor in Fig. 4 is not limited 
to original CLBP (its improved version names ICLBP). Any 
other CLBP-like variant such as CRLBP [36] or CNLP [25] can 
be strengthened to ICRLBP or ICNLP, respectively. Second, 
GCLBP-series descriptors completely maintain the original 
functions. For instance, the ICLBP

hriu2 

P,R  transmute themselves 
into CLBP

riu2 

P,R  or CLBP
ri 

P,R when  is set to 0 or 1, respectively. 
Compared with DLBP, two major differences are declared 

here. First, GCLBP-series descriptors completely keep pattern 
information, i.e., only frequencies of specified patterns are 
extracted in ICLBP and ICNLP, while DLBP neglect pattern 
information. Second, GCLBP-series descriptors consider more 
on time-efficiency. The cyclic sorting is triggered only once 
under GCLBP framework but required repeatedly during the 
entire feature extracting process for DLBP.  

B. Effectiveness Verification 

Our GCLPB framework focuses on how to develop more 
reliable yet lightweight descriptors for feature extraction. In 
order to prove the effectiveness of GCLBP-series descriptors, 
we take a set of results (marked red in TABLE II) from the 
extensive tests to illustrate why the GCLBP-based descriptor, 
ICLBP

hriu2 

P,R , can obtain outstanding performance.  
In several false positives triggered by CLBP

riu2 

P,R  and CLBP
ri 

P,R, 
we randomly choose the classification process of Class16 for a 
detailed illustration. As shown in Fig. 7, CLBP

riu2 

P,R  and CLBP
ri 

P,R 
always assign TeS1129 (belongs to Class16) to Class12 incorrectly, 
while our ICLBP

hriu2 

P,R  rarely make this kind of mistakes. And 
indeed, the intra-class and inter-class challenges among Class16 
and Class12 are quite evident. 

Fig. 8 presents the histogram distributions and the specific 
classification results of the TeS1129 by using CLBP

riu2 

8,3 , CLBP
ri 

8,3, 

and ICLBP
hriu2 

8,3 . For CLBP
riu2 

8,3 , mainly based on uniform patterns 
(bar 0~8 in Fig. 8(a)), the minimum Chi-square distance of 
TeS1129 to those of 480 training samples among all 24 classes 
falls to the erroneous Class12 (refer to Fig. 8(d)). The reason can 
be clearly observed in Fig. 8(a) that the histogram bins of 
TeS1129 (blue) are more similar to those of TrS243 (green) than to 
those of TrS330 (red). CLBP

ri 

8,3 can suppress this drawback to 
some extent by adding all the rotation invariant nonuniform 
patterns for feature matching (refer to Fig. 8(b)), the average 
classification rate is then promoted from 85.21% of CLBP

riu2 

8,3  to 
92.92% (refer to TABLE II). However, as shown in Fig. 8(e), 
since the rotation invariance of nonuniform patterns (especially 
of non-DNUPs) is dramatically degenerated, CLBP

ri 

8,3 still can 
inexplicitly recognize the fuzzy appearances in Fig. 7. In 
addition, the extra feature matching on non-DNUPs in CLBP

ri 

8,3 
are inefficient and expensive. In the training procedure in Fig. 4, 
the extremely noisy non-DNUPs are decisively discarded as 
early as they are in raw pattern codes. Thus, although the 
feature dimension is more lightweight than that of CLBP

ri 

8,3 (29 

vs. 36), our ICLBP
hriu2 

8,3  can correctly identify the TeS1129 to 
Class16 (refer to Fig. 8(f)). It is demonstrated clearly in Fig. 8(c) 
that the histogram similarity of intra-class samples have been 
reliably compensated by the statistically trained DNUPs, so 
then, the most intrinsic texture natures get fully respects. 

   
(a) Test Sample1129 
(TeS1129), in Class16 

(b) Training Sample243  
(TrS243), in Class12 

(c) Training Sample330  
(TrS330), in Class16 

Fig. 7.  Test and training image samples, (a), (b), and (c). 
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Fig. 8.  Comparative histograms (a), (b), (c), and Chi-square distances (d), (e), (f) when using CLBP

riu2 

8,3 , CLBP
ri 

8,3 and ICLBP
hriu2 

8,3 . 
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V. EXPERIMENTS AND DISCUSSIONS 

In order to evaluate the proposed GCLBP framework, we 
carried out a series of experiments on two widely recognized 
image databases: one textile surface texture database, Outex 
[28], and one steel surface defect database, NEU [29]. 

A. Results on Outex Database 

1) Experimental Suites and Implementation Details 

Similar to the experiment setups in [15] [24] [26], we select 
two commonly used test suites of Outex_TC_00010 (TC10) 
and Outex_TC_00012 (TC12). They can be downloaded from 
the URL: http://lagis-vi.univ-lille1.fr/datasets/outex.html. As 
illustrated in Table I, these two test suites include the same 24 
classes of textures (refer to Fig. 9), which are captured under 3 
different illuminations ('Inca', 'Horizon', and 'TL84') and 9 
distinct rotation angles (0°, 5°, 10°, 15°, 30°, 45°, 60°, 75°, 90°). 
Intuitively, TC10 and TC12 focus on the rotation invariance 
and illumination robustness, respectively. And similar to CLBP, 
we discuss seven ICLBP sub-schemes in the upcoming tests, 
which involve two fundamental ICLBP_S, ICLBP_M, three 
2-D joint ICLBP_M/C, ICLBP_S/C, ICLBP_S/M, one hybrid  
ICLBP_S_M/C and one 3-D joint ICLBP_S/M/C, analogously 
for ICNLP sub-schemes. 

TABLE I 
TEXTURE TEST SUITES UNDER VARIANT ILLUMINATION CONDITIONS 

Information TC10 TC12 

Illuminants Inca Inca, Horizon, TL84 

Rotations (°) 0, 5, 10, 15, 30, 45, 60, 75, 90 0 

Image resolution 128×128 pixel 128×128 pixel 

Number of images 4320 1440 

Number of classes 24 24 

Number of train images 480 (20×24, 0°, Inca) 480 (20×24, 0°, Inca) 

Number of test images 3840 (8×20×24) 960 (2×20×24) 

 

      

      

      

      
Fig. 9.  The 24 classes (Class 0 - Class23) of textures on test suites TC10 and 
TC12. 

2) Results and analysis 

We discuss our experimental results in six diverse respects.  
a) Ratio Threshold Learning. Considering the practical fact 

that surface defect inspection for hot-rolled strip steel pays 

more attention to illumination robustness than rotation 
invariance, we selected TC12 for the threshold learning tests. 
TABLE II lists the classification scores of the 7 ICLBP 
sub-schemes (column direction) under 11 evenly spaced ratio 
thresholds (row direction). We employed the original CLBP

riu2 

P,R  
and CLBP

ri 

P,R  on both sides for baselines. From TABLE II, 
regardless of the value of , the ICLBP

hriu2 

P,R  variants win higher 
scores than both CLBP

riu2 

P,R  and CLBP
ri 

P,R. For a certain group (row) 
of tests, the TPR starts from the score of CLBP

riu2 

P,R , then 
experiences stable increase to a maximum value, finally falls 
back to the score of CLBP

ri 

P,R. It also proves that the CLBP
 riu2 

P,R  
and CLBP

 ri 

P,R are two special cases of the proposed ICLBP
hriu2 

P,R . 
This trend can also be observed from TABLE III (ICNLP

hriu2 

P,R ). 
Notably, before the arrival of the maximum, bigger  brings 
higher score, but triggers more DNUPs (refer to TABLE IV). 
While the results on the right side of table degrade gradually, 
which illustrates that non-DNUPs are hard to estimate reliably. 
Under GCLBP framework, setting  to 0.4-0.6 (recommend 0.5 
in practice) would cover more than 90% of pattern proportion, 
which is also consistent with that in DLBP. 

b) Classification Accuracy. For objective evaluation, we 
verify both the average true positive rate (TPR) and the false 
positive rate (FPR) for 24 classes. As illustrated in TABLE II, 
our ICLBP

hriu2 

8,1  scheme consistently exhibits higher TPRs and 
lower FPRs than CLBP

 riu2 

8,1  and CLBP
 ri 

8,1, the upward trend of 
TPR and the decrease trend of FPR are quite consistent. When 
=0.5, the basic ILBP

hriu2 

8,3  respectively shows 12.08 and 4.37 
percent better than LBP

 riu2 

8,3  and LBP
 ri 

8,3 on TPR, and its FPR is 
much lower. Further, the score of the ICLBP_S

hriu2 

8,3 /C achieved 
99.17%, which is higher than both 93.85% of CLBP_S

riu2 

8,3 /C and 
98.33% of CLBP_S

 ri 

8,3/C. The results of ICNLP
hriu2 

8,3  in TABLE III 
(FPRs are omitted for space saving) are more significant than 
those of ICLBP

hriu2 

8,3 . These figures verify our observations 
claimed in Section II.D that several useful information indeed 
hide in the nonuniform patterns. 

c) Runtime Overhead. The surface defect classification for 
strip steels is required to be rapid enough to satisfy the high 
speed hot-rolling. To simplify the table layout, we only present 
one representative set of tests for ICLBP

hriu2 

8,3  in TABLE IV, and 
all the results are normalized to average time per image. These 
measuring results are done over an Intel CPU (E3-1230-v5, 3.4 
GHz), with 8G RAM under Matlab R2010a platform. It is fairly 
clear from TABLE IV that the training time costs for DNUPs 
pursuing are within 45 ms and are needed only once, while 
runtime overheads for feature extraction and matching are 
much less. In particular, given =0.5, the classification time of 
ICLBP_S

hriu2 

8,3 /C is only 2.56ms (2.29 ms for feature extraction, 
and 0.27 ms for feature matching), which is better than CLBP_S
 ri 

8,3/C (3.56 ms) and slightly worse than CLBP_S
 riu2 

8,3 /C (1.49 ms). 
However, such tiny time increase of 1.07 ms obtains 5.32% 
TPR increase over CLBP_S

 riu2 

8,3 /C (from 93.85% to 99.17%). 
The time-saving effect will be more pronounced with bigger P 
and R. Take ICLBP

hriu2 

16,2  for an example, the total pattern 
dimension dramatically drops from 3166 to 212, bringing 
nearly 3 times and 25 times acceleration on feature extraction 
and feature matching, respectively. Due to space limitation, this 
set of tests are omitted here. The achieved time-efficiency 
could be applicable for many online surface quality control 
applications in various manufacturing industries. 
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d) Noise Robustness Performance. We continue to verify 
the noise robustness by adding 'Gaussian' noise artificially. A 
degradation metric, ηPSNR ≤ 1, is introduced to evaluate image 
quality. It is the ratio of the average Peak Signal to Noise Ratio 

(PSNR) of degraded images to that of their standard (noise-free) 
training images. Fig. 10 exhibits images with different ηPSNR, 
and TABLE V lists the results of CLBP_S/C, CNLP_S/C, 
ICLBP_S/C and ICNLP_S/C with determined parameters of 
P=8, R=3 and =0.5. From TABLE V, the noise robustness of 
ICNLP_S/C ranks first, followed by the ICLBP_S/C. When 
ηPSNR is no less than 0.85,  the  TPRs  of  our  sub-schemes  are  

ηPSNR=1 ηPSNR=0.95 ηPSNR=0.90

ηPSNR=0.85 ηPSNR=0.80 ηPSNR=0.75

 
Fig. 10.  The TrS1439 suffered with different degradations on PSNR. 

TABLE II 

AVERAGE TRUE POSITIVE RATE (TPR, %) AND FALSE POSITIVE RATE (FPR, %) OF ICLBP ON TC12 WHEN USING NNC WITH DIFFERENT  

CLBP Operators (P=8,R=3) CLBP
 riu2 

P,R  =0 =0.1 =0.2 =0.3 =0.4 =0.5 =0.6 =0.7 =0.8 =0.9 =1.0 CLBP
 ri 

P,R 

Average 
TPR 
(%) 

ICLBP_S(ILBP) a  85.21 85.21 91.25 93.13 96.25 97.29 97.29 b 96.46 95.52 94.58 92.92 92.92 92.92 
ICLBP_M  80.83 80.83 85.21 87.71 91.25 91.46 91.56 90.52 90.31 91.25 91.04 90.52 90.52 
ICLBP_M/C  90.94 90.94 92.81 93.44 95.83 96.98 96.67 95.52 95.42 95.73 96.04 95.63 95.63 
ICLBP_S/C  93.85 93.85 96.88 97.60 98.75 99.17 99.17 99.17 98.85 98.65 98.33 98.33 98.33 
ICLBP_S_M/C  95.00 95.00 97.08 98.13 98.75 99.17 99.06 98.44 98.23 98.33 98.54 98.33 98.33 
ICLBP_S/M  96.15 96.15 98.13 98.33 98.75 99.06 99.17 99.06 99.17 99.06 99.06 99.06 99.06 
ICLBP_S/M/C  97.60 97.60 99.06 99.27 99.38 99.48 99.48 99.48 99.48 99.58 99.58 99.48 99.48 

Average 
FPR 
(%) 

ICLBP_S(ILBP) a  0.6430 0.6430 0.3804 0.2987 0.1630 0.1178 0.1178 0.1539 0.1948 0.2357 0.3078 0.3078 0.3078 
ICLBP_M  0.8335 0.8335 0.6430 0.5343 0.3804 0.3713 0.3670 0.4122 0.4213 0.3804 0.3896 0.4122 0.4122 
ICLBP_M/C  0.3939 0.3939 0.3126 0.2852 0.1813 0.1313 0.1448 0.1948 0.1991 0.1857 0.1722 0.1900 0.1900 
ICLBP_S/C  0.2674 0.2674 0.1357 0.1043 0.0543 0.0361 0.0361 0.0361 0.0500 0.0587 0.0726 0.0726 0.0726 
ICLBP_S_M/C  0.2174 0.2174 0.1270 0.0813 0.0543 0.0361 0.0409 0.0678 0.0770 0.0726 0.0635 0.0726 0.0726 
ICLBP_S/M  0.1674 0.1674 0.0813 0.0726 0.0543 0.0409 0.0361 0.0409 0.0361 0.0409 0.0409 0.0409 0.0409 
ICLBP_S/M/C  0.1043 0.1043 0.0409 0.0317 0.0270 0.0226 0.0226 0.0226 0.0226 0.0183 0.0183 0.0226 0.0226 

TABLE III 

AVERAGE TRUE POSITIVE RATE (TPR, %) OF ICNLP ON TC12 WHEN USING NNC WITH DIFFERENT  

CNLP Operators (P=8,R=3) CNLP
 riu2 

P,R  =0 =0.1 =0.2 =0.3 =0.4 =0.5 =0.6 =0.7 =0.8 =0.9 =1.0 CNLP
 ri 

P,R 

Average 
TPR 
(%) 

ICNLP_S  90.00 90.00 91.35 96.04 96.77 96.77 97.60 98.13 97.71 96.35 95.73 95.73 95.73 
ICNLP_M  83.96 83.96 92.40 94.69 95.73 95.63 96.46 96.88 97.29 96.98 95.31 95.31 95.31 
ICNLP_M/C  95.00 95.00 96.35 97.50 98.13 98.54 98.85 98.75 98.85 98.54 98.23 98.33 98.33 
ICNLP_S/C  95.83 95.83 98.65 99.48 99.48 99.58 99.58 99.58 99.69 99.69 99.69 99.48 99.48 
ICNLP_S_M/C  95.94 95.94 97.81 98.65 98.65 98.96 99.38 99.48 99.48 99.17 98.96 98.85 98.85 
ICNLP_S/M  94.90 94.90 98.02 98.54 98.65 98.75 99.06 99.17 99.27 99.17 98.85 98.85 98.85 
ICNLP_S/M/C  97.50 97.50 99.06 99.27 99.38 99.48 99.58 99.79 99.79 99.69 99.27 99.27 99.27 

TABLE IV 
RUNTIME OVERHEADS OF ICLBP ON TC12 WHEN USING NNC WITH DIFFERENT  

Items (P, R)=(8, 3) =0 =0.1 =0.2 =0.3 =0.4 =0.5 =0.6 =0.7 =0.8 =0.9 =1.0 

Number of DNUPs 0 8 20 33 48 65 83 103 125 151 198 
Total number of the dominant patterns 10 14 21 25 27 29 31 32 32 34 37 
Average time for dominant patterns pursuing, ms 0.00 42.36 41.46 42.27 42.72 42.18 41.82 41.90 41.57 43.27 43.01 
Average time for feature extraction, ms 1.41 1.55 1.64 1.79 2.09 2.29 2.34 2.44 2.52 2.58 3.02 

Average time for 
feature matching, ms 

ICLBP_S(ILBP) a  0.07 0.07 0.08 0.09 0.14 0.15 0.15 0.16 0.16 0.16 0.19 
ICLBP_M  0.06 0.07 0.07 0.09 0.13 0.14 0.14 0.15 0.15 0.15 0.19 
ICLBP_M/C  0.08 0.13 0.14 0.16 0.21 0.33 0.34 0.32 0.26 0.34 0.44 
ICLBP_S/C  0.08 0.13 0.14 0.16 0.21 0.27 0.26 0.26 0.26 0.29 0.54 
ICLBP_S_M/C  0.14 0.16 0.17 0.23 0.28 0.36 0.33 0.34 0.34 0.35 0.75 
ICLBP_S/M  0.35 1.22 1.99 4.10 7.72 8.85 9.72 10.32 10.62 11.75 15.92 
ICLBP_S/M/C  1.17 3.68 5.08 9.81 17.33 20.91 23.44 23.60 25.59 28.17 35.77 

Average classification time (ICLBP_S/C), ms 1.49 1.67 1.78 1.95 2.30 2.56 2.61 2.70 2.78 2.87 3.56 

TABLE V 
AVERAGE TRUE POSITIVE RATE (TPR, %) ON TC12 WHEN SUFFERING WITH VARIANT NOISE 

Instrument State Normal Early Warning Serious Alarm 
ηPSNR 1.00 0.95 0.90 0.85 0.80 0.75 <0.75 

CLBP_S
 riu2 

8,3 /C 93.85 93.75 89.69 76.04 64.27 39.69 - 
CNLP_S

 riu2 

8,3 /C 95.83 93.02 89.90 79.48 71.52 51.35 - 
ICLBP_S

 hriu2 

8,3 /C 99.17 97.71 96.46 90.21 72.15 54.58 - 
ICNLP_S

 hriu2 

8,3 /C 99.58 98.96 97.71 91.35 79.13 60.67 - 

a CLBP_S is essentially the original LBP operator, then ICLBP_S is the fundamental ILBP operator. 
b The maximum classification accuracy rate of the row is emphasized with boldface. 
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stably over 90%, which show significant superiorities than both 
CNLP_S/C and CLBP_S/C. Further, three states, normal state 
(0.9<ηPSNR≤1), early-warning state (0.8≤ηPSNR≤0.9), and serious 
alarm state (ηPSNR<0.8) are recommended to be defined to 
enhance the reliability of steel surface inspection. Then AOI 
instruments will continuously send out early-warning signals in 
the second state, reminding operators to check and remove 
potential failures of related equipments (i.e., optical devices, 
image acquisition cards, rollers, optical-fiber cables, etc.). The 
last state is not allowed at any time, emergency alarm will be 
immediately triggered in such situation. 

e) Multiresolution Configuration. As illustrated in TABLE 
VI, among the four single-resolution configurations, the 
descriptors with (P, R)=(8,3) win more balanced performance, 
achieving competitive scores (98.42% for ICLBP_S

 hriu2 

8,3 /C) and 
requiring nearly the smallest feature dimensions (58 for 
ICLBP_S

 hriu2 

8,3 /C). As for the multiresolution groups, although 
the scores of ICLBP_S

hriu2 

(8,1)+(8,3)+(16,2)+(16,4)/C are slightly higher than 
those of ICLBP_S

hriu2 

(8,1)+(8,3)+(16,2)/C, the feature dimension is nearly 
doubled. The parameter settings of (P,R) = (8,3) and (P,R) = 
(8,1)+(8,3)+(16,2) are thus recommended for single-resolution 
and multiresolution configuration, respectively. 

f) Comparative Evaluation. TABLE VII presents the 
comparative classification performance with those of other 
eleven recent state-of-the-art LBP variants on TC10 and TC12. 
All participant results of ICLBP are directly taken from 
TABLE VI (marked gray) for fair comparison. And all the 
subscripts and superscripts are omitted in text for simple 
expression. From these results, even the fundamental ILBP 
descriptor has effortlessly defeated the other six methods. For 
the rest five winners, the feature dimensions of CLBP_S/M/C, 
CNLP_S/M/C and dis(S+M) are far larger than our ILBP. 
Although the recently developed COV-LBPD and MRELBP 
have smaller feature dimensions, our method still holds 
advantage in this aspect. It also can be clearly observed that 
ICLBP_S/C applying multiresolution scheme performs better 
than the first ten methods on classification scores, while the 
feature dimension is highly competitive to others at most of the 
time. Notably, our ICNLP_S/C with multiresolution scheme 
outperforms all other eleven LBP variants consistently, with a 
TPR of 99.77% and feature dimension of 726. To the best of our 

knowledge, the overall performance of classification accuracy, 

time-efficiency and application flexibility is the best report on 

Outex_TC10 and Outex_TC12. 

TABLE VI 
ACHIEVED AVERAGE TRUE POSITIVE RATE (TPR, %) OF ICLBP ON TC10 AND TC12 WITH =0.5 

Single-resolution (P,R) (8,1) (8,3) (16,2) (16,4) 

Method (=0.5) TC10 
TC12 

Mean TC10 
TC12 

Mean TC10 
TC12 

Mean TC10 
TC12 

Mean 
tl84 horizon tl84 horizon tl84 horizon tl84 horizon 

CLBP_S [15] 84.81 72.34 70.36 75.84 86.12 85.74 84.68 85.51 88.96  84.32 80.88 84.72 96.46  87.52 86.02 90.00 
CLBP_S/C [24] 92.53 94.12 92.54 93.06 94.52 94.45 93.25 94.07 96.93  92.65 91.11 93.56 98.85  93.53 92.73 95.04 
ICLBP_S(ILBP) 85.03  88.11 86.05 86.40 86.22  97.66  96.92  93.60  92.27  91.12 90.32 91.24 94.84  97.38 96.38 96.20 

ICLBP_S/C 96.22  96.16 95.50 95.96 96.93 99.09 99.25 98.42 97.50  96.58 95.37 96.48 98.83  99.29 99.05 99.06 
Total number of the 
dominant patterns 

23 29 212 299 

Multiresolution (P,R) (8,1) + (8,3) (8,1) + (8,3) + (16,2) (8,1) + (8,3)+ (16,4) (8,1) + (8,3)+ (16,2) +(16,4) 

Method (=0.5) TC10 
TC12 

Mean TC10 
TC12 

Mean TC10 
TC12 

Mean TC10 
TC12 

Mean 
tl84 horizon tl84 horizon tl84 horizon tl84 horizon 

CLBP_S [15] 86.05 72.08 71.44 76.52 86.27 86.28 84.62 85.72 96.24 87.43 86.48 90.05 97.52 87.60 86.16 90.43 
CLBP_S/C [24] 93.11 95.69 93.40 94.07 94.53 94.37 93.16 94.02 98.93 94.21 92.58 95.24 99.75 93.66 92.55 95.32 
ICLBP_S(ILBP)  86.30 88.57 86.47 87.11 86.68 97.91 97.14 93.91 95.61 96.68 95.86 96.05 95.22 98.27 96.57 96.69 
ICLBP_S/C  97.43 95.81 95.25 96.16 96.85 99.52 99.51 98.63 99.59 99.33 99.21 99.38 99.47 99.83 99.33 99.54 

Total number of the 
dominant patterns 

52 264 351 563 

TABLE VII 
COMPARATIVE PERFORMANCE OF ICLBP, ICNLP AND SOME STATE-OF-THE-ART METHODS ON OUTEX 

Method TC10 
TC12 

Mean Reference 
Feature 

dimension tl84 horizon 
ICLBP_S

hriu2 

8,3  (ILBP
hriu2 

8,3 ) 86.22  97.66  96.92  93.60  This paper 29 

ICLBP_S
hriu2 

8,1+8,3+16,4 (ILBP
 hriu2 

8,1+8,3+16,4) 95.61 96.68 95.86 96.05 This paper 351 
ICLBP_S

hriu2 

8,3 /C 96.93 99.09 99.25 98.42 This paper 58 
ICLBP_S

hriu2 

8,1+8,3+16,4 /C 99.59 99.33 99.21 99.38 This paper 702 
ICNLP_S

hriu2 

8,3 /C 97.26 99.69 99.47 98.81 This paper 60 

ICNLP_S
hriu2 

8,1+8,3+16,4 /C 99.51 99.93 99.87 99.77 This paper 726 
LBP

 riu2 

8,1+16,2+24,3 /VAR8,1+16,2+24,3 [15] 97.87 a 88.42 a 86.79 a 91.02 a TPAMI 2002 864 
DLBP

riu2 

8,1+16,2+24,3 [26] 98.52 a 93.65 a 91.47 a 94.55 a TIP 2009 37 
CLBP_S

 riu2 

8,1+16,2+24,3 /M
 riu2 

8,1+16,2+24,3 /C [24] 99.14 b 97.60 b 98.98 b 98.57 b TIP 2010 5832 
LTP

 riu2 

8,1+16,2+24,3 [30] 98.62 a 92.05 a 91.59 a 94.09 a TIP 2010 108 
CNLP_S

 riu2 

8,1+16,2+24,3/M
 riu2 

8,1+16,2+24,3/C [25] 99.12 a 98.92 a 99.08 a 99.04 a MTA2016 5832 
dis(S+M)

 riu2 

P,R  [31] 98.93 97.00 96.50 97.48 PR 2012 2668 
NRLBP

riu2 

P,R  [32] 93.44 96.13 87.38 88.98 TIP 2013 30 
MSJLBP [33] 96.67 95.21 95.74 95.87 BMVC 2013 3540 
PRICoLBPg [34] 94.48 92.57 92.50 93.18 TPAMI 2014 3540 
COV-LBPD [35] 98.78 95.72 97.62 97.37 TIP 2014 289 
MRELBP

 num 

P,R  [21] 99.87 99.49 99.75 99.70 TIP 2016 800 

For the comparative methods, except those (a) which are obtained from our own implementation and those (b) which are obtained from our implementation but by 
using the open codes from the authors, others are directly taken from the work by L. Liu et al. [21]. 
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B. Results on NEU Database 

1) Compared Methods and Evaluation Setup 

In this section, we evaluate the classification accuracy rate 
and runtime overhead of two GCLBP-series descriptors on a 
real-world steel surface defect database, NEU. The LBP/VAR, 
DLBP, CLBP, LTP, CNLP, and AECLBP are selected for 
comparison. For fair evaluation, we adopt the identical NNC 
and the same encoding scheme. Also, we select the best-fit 
configurations suggested by their authors, i.e., LBP

 riu2 

8,1+16,2+24,3 

/VAR8,1+16,2+24,3, DLBP
 riu2 

24,3  with 80% dominant pattern occurrence, 
CLBP_S

 riu2 

8,1+16,2+24,3/M
 riu2 

8,1+16,2+24,3/C, LTP
 riu2 

8,1+16,2+24,3, CNLP_S
 riu2 

8,1+16,2+24,3/M
 riu2 

8,1+16,2+24,3/C, AECLBP_S
 riu2 

8,1+16,2+24,3/M
 riu2 

8,1+16,2+24,3/C, and the proposed 
ICLBP_S

hriu2 

8,1+8,3+16,4 /C, ICLBP_S
hriu2 

8,3 /M
hriu2 

8,3 /C, ICNLP_S
hriu2 

8,1+8,3+16,4 /C, 
ICNLP_S

hriu2 

8,3 /M
hriu2 

8,3 /C with =0.5. Our improved descriptors 
employ a smaller scope of multiresolution scheme. Even so, 
ours show better performance than others. 

The NEU database is a recently released public database for 
surface defect classification of real-world hot-rolled strips. As 
shown in Fig. 11, the NEU database covers 6 distinct classes of 
typical steel surface defects, i.e., rolled-in scale (RS), patches 
(Pa), crazing (Cr), pitted surface (PS), inclusion (In), and 
scratches (Sc). There are 300 non-overlapping grayscale 
images in each class, and the resolution of each image is 
200×200 pixel. These image samples involve the first two 
challenges mentioned in Section I, i.e., unstable illuminations 
and material changes. During the evaluation, 150 samples per 
class are randomly selected for classifier training and the 
remainder ones for testing. 

      

      

      

(a) RS (b) Pa (c) Cr (d) PS (e) In (f) Sc 

Fig. 11.  The 6 classes of steel surface defects on NEU database: (a) rolled-in 
scale, (b) patch, (c) crazing, (d) pitted surface, (e) inclusion, and (f) scratch. 

2) Results and Discussion 

The average classification accuracy rates and runtime 

overheads carried out on NEU database are listed in TABLE 
VIII. Intuitively, the lightweight DLBP and LTP perform faster 
than others due to their compact feature dimensions, but exhibit 
lower classification scores. With a comparable time cost to 
DLBP and LTP, our ICLBP_S/C and ICNLP_S/C achieved 
better classification scores. Benefiting from the compensation 
effects from trained DNUPs, their scores are then comparable 
with that of CLBP (97.09%, 98.56% vs. 97.21%) with quite 
competitive runtime overheads (76.70 ms, 90.24 ms vs. 499.25 
ms). The noise robust AECLBP and CNLP promote the 
classification score of CLBP from 97.21% to 98.11% and 
98.33%, respectively. However, the time costs are slightly 
higher than its original CLBP since they need to pay extra time 

on threshold re-evaluation. Further, our ICLBP_S/M/C and 
ICNLP_S/M/C with single-resolution respectively yield scores 
of 98.81% and 99.11%, with average classification time no 
more than 0.3 s. Consequently, the GCLBP-series descriptors 
achieve balanced performance between classification accuracy 
and time-efficiency. In addition, multiresolution scheme 
involving bigger P and R could obtain higher classification 
scores, but triggers more computational expense. The relatively 
high time costs of CLBP_S/M/C, CNLP_S/M/C and 
AECLBP_S/M/C mainly result from the multiresolution scheme 
with a wide scale of (8,1)+(16,2)+(24,3). For more insight 
understanding, we present the confusion matrix of the 
ICNLP_S

hriu2 

8,3 /M
hriu2 

8,3 /C in TABLE IX. It can be observed that the 
RS and Cr defects yields the best result with TPR of 100%. 
Furthermore, the TPR and FPR for a certain defect type can be 
easily calculated from this confusion matrix. 

TABLE VIII 

COMPARATIVE PERFORMANCE OF ICLBP, ICNLP AND SOME 

STATE-OF-THE-ART METHODS ON NEU 

LBP descriptors 
Accuracy Overheads 

TPR (%) FPR (%) 
Classification 

time (ms) 
Feature 

dimension 

ICLBP_S
hriu2 

P,R /C 97.09 0.58  76.70 702 

ICLBP_S
hriu2 

P,R /M
hriu2 

P,R /C 98.81 0.24  180.02 1682 

ICNLP_S
hriu2 

P,R /C 98.56 0.29 90.24 726 

ICNLP_S
hriu2 

P,R /M
hriu2 

P,R /C 99.11 0.19 266.74 1800 

LBP
 riu2 

P,R /VARP,R [15] 95.21 a 0.96 a  105.59 a 864 

DLBP
 riu2 

P,R  [26] 94.32 a 1.12 a  17.27a 43 

CLBP_S
 riu2 

P,R M
 riu2 

P,R /C [24] 97.21 b 0.56 b  499.25 b 5832 

LTP
 riu2 

P,R  [30] 95.89 a 0.82 a  43.39 a 108 

CNLP_S
 riu2 

P,R /M
 riu2 

P,R /C [25] 98.33 a 0.33 a 510.54 a 5832 

AECLBP_S
 riu2 

P,R M
 riu2 

P,R /C [8] 98.11 b 0.38 b  524.48 b 5832 

a Obtained from our own implementation. 
b Obtained from our implementation by using the open codes from authors. 

TABLE IX 
CONFUSION MATRIX OF ICNLP_S

hriu2 

8,3 /M
hriu2 

8,3 /C TAKEN FROM TABLE VIII 

 RS Pa Cr PS In Sc 

RS 150 0 0 0 0 0 

Pa 0 148 2 0 0 0 

Cr 0 0 150 0 0 0 

PS 1 0 1 147 1 0 

In 1 0 0 1 148 0 

Sc 0 0 0 0 1 149 

In summary, these preliminary results verify our initial 
conjecture that the descriptive information implicitly existing 
among the nonuniform patterns are indeed beneficial to texture 
classification. Our proposed GCLBP framework is precisely 
produced for such consideration. 

3) Time-efficiency Evaluation 

The GCLBP framework yields considerable classification 
scores. However, due to the 3-D joint scheme of histograms, the 
feature dimensions increase to some extent, so the runtime 
overheads increase accordingly. As for our AOI instrument 
developed in [4], the average permitted classification time per 
image sample (256×256 pixel) can be estimated as  
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where tce is the ceiling of estimated time, Tbusy and Tidle are 
respectively the busy and idle time slot on hot-rolling line, λ1 is 
the acceleration factor during defect detection process, λ2 is the 
ratio of uploaded image frames to total image frames, the size 
of each image frame is 1048×4096 pixel, L is the average length 
of hot-rolled steel strip, himage is actual steel strip length 
corresponding to the height of image frame, and ndps is the 
average estimated suspicious defect image sample among each 
image frame. This conservative evaluation method was 
formulated in long-time discussions with applied steel mills, 
i.e., Valin LY Steel, Baowu Steel, etc. Evidently, our developed 
GCLBP-based variants discussed in TABLE VIII can reliably 
meet this time-limited requirement. In addition, our GCLBP 
framework provides various options for different applications. 

VI. CONCLUSION 

A novel GCLBP framework is proposed to innovatively 
excavate the implicit descriptive information from nonuniform 
patterns. Outstanding performance is achieved by the 
GCLBP-based descriptors on a widely used texture database. 
An average TPR of 99.77% is obtained by using a feature 
dimension of 726. Meanwhile, an average TPR of 99.11% is 
obtained by the ICNLP_S/M/C on a real-world steel surface 
defect database within average classification time of 0.3 s. In 
addition, the GCLBP framework has dual anti-noise measures: 
First, the noisy and phantom non-DNUPs are discarded 
completely. Second, GCLBP-based descriptors (such as ICNLP) 
perfectly inherit the noise robustness of the improved 
descriptors (such as CNLP). These preliminary results show 
that the GCLBP framework can be widely applied in the related 
manufacturing industries similar to hot-rolling steel 
productions. 

However, noise suppression and algorithm acceleration are 
interacted and systemic issues in real-world AOI instruments. 
And they are also related to many other factors, for example, 
database integrity, hardware configurations, etc. Future work 
will focus on the transplantation and parallel optimization of 
the GCLBP framework into our previous developed AOI 
instrument. Besides, a test suite of steel defect database is 
expected to be released in the near future. 
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