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Abstract

Generalized complex geometry encompasses complex and symplectic geometry as its ex-
tremal special cases. We explore the basic properties of this geometry, including its enhanced
symmetry group, elliptic deformation theory, relation to Poisson geometry, and local struc-
ture theory. We also define and study generalized complex branes, which interpolate between
flat bundles on Lagrangian submanifolds and holomorphic bundles on complex submanifolds.
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Introduction

Generalized complex geometry arose from the work of Hitchin [18] on geometries defined by
stable differential forms of mixed degree. Algebraically, it interpolates between a symplectic
form ω and a complex structure J by viewing each as a complex (or equivalently, symplectic)
structure J on the direct sum of the tangent and cotangent bundles T ⊕ T ∗, compatible
with the natural split-signature metric which exists on this bundle. Remarkably, there is an
integrability condition on such generalized complex structures which specializes to the closure
of the symplectic form on one hand, and the vanishing of the Nijenhuis tensor of J on the other.
This is simply that J must be integrable with respect to the Courant bracket, an extension of
the Lie bracket of vector fields to smooth sections of T ⊕T ∗ which was introduced by Courant
and Weinstein [11],[12] in their study of Dirac structures. Dirac structures interpolate between
Poisson bivector fields and closed 2-forms; in this sense, generalized complex geometry is a
complex analogue of Dirac geometry.

We begin, in parts 1 and 2, with a study of the natural split-signature orthogonal structure
on T ⊕ T ∗ and its associated spin bundle ∧•T ∗, the bundle of differential forms. Viewing
forms as spinors then leads to a natural definition of the Courant bracket, and we study two
remarkable properties of this bracket; first, its symmetry group is an extension of the group of
diffeomorphisms by the abelian group of closed 2-forms (B-field transformations), and second,
it can be “twisted” by a real closed 3-form H. We describe what this means in the language
of gerbes and exact Courant algebroids. We also provide a brief review of Dirac geometry
and introduce the notion of tensor product of Dirac structures, obtained independently by
Alekseev-Bursztyn-Meinrenken in [3].

In part 3, we treat the basic properties of generalized complex structures. We show that
any generalized complex manifold admits almost complex structures, and has two natural
sets of Chern classes c±k . We also show that a generalized complex structure is determined
by a complex pure spinor line subbundle K ⊂ ∧•T ∗ ⊗C, the canonical bundle, which can be
seen as the minimal degree component of an induced Z-grading on the (usually Z/2Z-graded)
twisted de Rham complex (Ω•(M), dH), where dH = d+H ∧ ·. For a complex structure, K
is the usual canonical bundle, wheras for a symplectic structure it is generated by the mixed-
degree form eiω. We also describe a real Poisson structure P naturally associated to any
generalized complex structure and discuss its modular class. We conclude with an example
of a family of generalized complex structures which interpolates between the complex and
symplectic structure on a holomorphic symplectic manifold.

In part 4, we prove a local structure theorem for generalized complex manifolds, analogous
to the Darboux theorem in symplectic geometry and the Newlander-Nirenberg theorem in
complex geometry. We show that near any regular point for the Poisson structure P , the
generalized complex manifold is equivalent, via a diffeomorphism and a B-field transformation,
to a product of a complex space of dimension k (called the type) with a symplectic space.
Finally, we provide an example of a generalized complex manifold whose type is constant
outside of a submanifold, along which it jumps to a higher value.

In part 5, we develop the deformation theory of generalized complex manifolds. It is gov-
erned by a differential Gerstenhaber algebra (C∞(∧kL∗), dL, [·, ·]) constructed from the +i-
eigenbundle L of J . This differential complex is elliptic, and therefore has finite-dimensional
cohomology groups Hk(M,L) over a compact manifold M . Integrable deformations corre-
spond to sections ε ∈ C∞(∧2L∗) satisfying the Maurer-Cartan equation

dLε+ 1
2 [ε, ε] = 0.

Similarly to the case of deformations of complex structure, there is an analytic obstruction
map Φ : H2(M,L) → H3(M,L), and if this vanishes then there is a locally complete family
of deformations parametrized by an open set in H2(M,L). In the case that we are deforming
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a complex structure, this cohomology group turns out to be

H0(M,∧2T )⊕H1(M, T )⊕H2(M,O).

This is familiar as the “extended deformation space” of Barannikov and Kontsevich [4], for
which a geometrical interpretation has been sought for some time. Here it appears naturally
as the deformation space of a complex structure in the generalized setting.

Finally, in part 6, we introduce generalized complex branes, which are vector bundles sup-
ported on submanifolds for which the pullback of the ambient gerbe is trivializable, together
with a natural requirement of compatibility with the generalized complex structure. The de-
finition is similar to that of a D-brane in physics; indeed, we show that for a usual symplectic
manifold, generalized complex branes consist not only of flat vector bundles supported on
Lagrangian submanifolds, but also certain bundles over a class of coisotropic submanifolds
equipped with a holomorphic symplectic structure transverse to their characteristic foliation.
These are precisely the co-isotropic A-branes discovered by Kapustin and Orlov [22].

This article is largely based upon the author’s doctoral thesis [17], supported by the
Rhodes Trust. Thanks are due especially to Nigel Hitchin for his guidance and insight. Many
thanks as well to Henrique Bursztyn, Gil Cavalcanti, Jacques Hurtubise, Anton Kapustin,
and Alan Weinstein for helpful conversations.

1 Linear geometry of T ⊕ T ∗

Let V be a real vector space of dimension m, and let V ∗ be its dual space. Then V ⊕ V ∗ is
endowed with a natural symmetric bilinear form

〈X + ξ, Y + η〉 = 1
2 (ξ(Y ) + η(X)).

This non-degenerate inner product has signature (m,m) and therefore has symmetry group
O(V ⊕V ∗) ∼= O(m,m), a non-compact orthogonal group. In addition, V ⊕V ∗ has a canonical
orientation, since det(V ⊕ V ∗) = detV ⊗ detV ∗ = R.

1.1 Symmetries of V ⊕ V ∗

The Lie algebra of the special orthogonal group SO(V ⊕ V ∗) is defined as usual:

so(V ⊕ V ∗) =
{
R

∣∣ 〈Tx, y〉+ 〈x, Ty〉 = 0 ∀ x, y ∈ V ⊕ V ∗} .
Using the splitting V ⊕ V ∗ we can decompose as follows:

T =
(
A β
B −A∗

)
, (1.1)

where A ∈ End(V ), B : V −→ V ∗, β : V ∗ −→ V , and where B and β are skew, i.e. B∗ = −B
and β∗ = −β. Therefore we may view B as a 2-form in ∧2V ∗ via B(X) = iXB and similarly
we may regard β as an element of ∧2V , i.e. a bivector. This corresponds to the observation
that so(V ⊕ V ∗) = ∧2(V ⊕ V ∗) = End(V )⊕ ∧2V ∗ ⊕ ∧2V .

By exponentiation, we obtain certain important orthogonal symmetries of T ⊕ T ∗ in the
identity component of SO(V ⊕ V ∗).

Example 1.1 (B-transform). First let B be as above, and consider

exp(B) =
(

1
B 1

)
, (1.2)

an orthogonal transformation sending X+ ξ 7→ X+ ξ+ iXB. It is useful to think of exp(B) a
shear transformation, which fixes projections to V and acts by shearing in the V ∗ direction.
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Example 1.2 (β-transform). Similarly, let β be as above, and consider

exp(β) =
(

1 β
1

)
, (1.3)

an orthogonal transformation sending X + ξ 7→ X + ξ + iξβ. Again, it is useful to think of
exp(β) a shear transformation, which fixes projections to T ∗ and acts by shearing in the T
direction.

Example 1.3. If we choose A ∈ End(V ) as above, then since

exp(A) =
(

expA
(expA∗)−1

)
, (1.4)

we have a distinguished embedding of GL+(V ) into the identity component of SO(V ⊕ V ∗).

1.2 Maximal isotropic subspaces

A subspace L ⊂ V ⊕ V ∗ is isotropic when 〈x, y〉 = 0 for all x, y ∈ L. Since we are in
signature (m,m), the maximal dimension of such a subspace is m, and if this is the case, L is
called maximal isotropic. Maximal isotropic subspaces of V ⊕ V ∗ are also called linear Dirac
structures (see [11]). Note that V and V ∗ are examples of maximal isotropics. The space
of maximal isotropics has two connected components, and elements of these are said to have
even or odd parity, depending on whether they share their connected component with V or
not, respectively. This situation becomes more transparent after studying the following two
examples.

Example 1.4. Let ∆ ⊂ V be any subspace. Then the subspace

∆⊕Ann(∆) ⊂ V ⊕ V ∗,

where Ann(∆) is the annihilator of ∆ in V ∗, is maximally isotropic.

Example 1.5. Let i : ∆ ↪→ V be a subspace inclusion, and let ε ∈ ∧2∆∗. Then the subspace

L(∆, ε) = {X + ξ ∈ ∆⊕ V ∗ : i∗ξ = iXε} ⊂ V ⊕ V ∗

is an extension of the form

0 // Ann(∆) // L(∆, ε) // ∆ // 0 ,

and satisfies 〈X+ξ, Y +η〉 = 1
2 (ε(Y,X)+ε(X,Y )) = 0 for all X+ξ, Y +η ∈ L(∆, ε), showing

that L(∆, ε) is a maximal isotropic subspace.

Note that the second example specializes to the first by taking ε = 0. Furthermore note
that L(V, 0) = V and L({0}, 0) = V ∗. It is not difficult to see that every maximal isotropic
is of this form:

Proposition 1.6. Every maximal isotropic in V ⊕ V ∗ is of the form L(∆, ε).

Proof. Let L be a maximal isotropic and define ∆ = πV L, where πV is the canonical projection
V ⊕ V ∗ −→ V . Then since L is maximal isotropic, L ∩ V ∗ = Ann(∆). Finally note that
∆∗ = V ∗/Ann(∆), and define ε : ∆ → ∆∗ via ε : x 7→ πV ∗(π−1

V (x) ∩ L) ∈ V ∗/Ann(∆). Then
L = L(∆, ε).

The integer k = dim Ann(∆) = m−dimπV (L) is a useful invariant associated to a maximal
isotropic in V ⊕ V ∗, and determines the parity as we now explain.
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Definition 1.7. The type of a maximal isotropic L ⊂ V ⊕ V ∗ is the codimension k of its
projection onto V .

Since a B-transform preserves projections to V , it does not affect ∆:

expB(L(∆, ε)) = L(∆, ε+ i∗B),

where i : ∆ ↪→ V is the inclusion. Hence B-transforms do not change the type of the maximal
isotropic. In fact, we see that by choosing B and ∆ accordingly, we can obtain any maximal
isotropic as a B-transform of L(∆, 0).

On the other hand, β-transforms do modify projections to V , and therefore may change
the dimension of ∆. To see how this occurs, we express the maximal isotropic as a generalized
graph from V ∗ → V , i.e. define F = πV ∗L and γ ∈ ∧2F ∗ given by γ(y) = πV (π−1

V ∗(y) ∩ L)
modulo Ann(F ). As before, define

L(F, γ) = {X + ξ ∈ V ⊕ F : j∗X = iξγ} , (1.5)

where j : F ↪→ V ∗ is the inclusion. Now, the projection ∆ = πV L(F, γ) always contains
L ∩ V = Ann(F ), and if we take the quotient of ∆ by this subspace we obtain the image of
γ in F ∗ = V/Ann(F ):

∆
L ∩ V

=
∆

Ann(F )
= Im(γ).

Therefore, we obtain the dimension of ∆ as a function of γ:

dim ∆ = dimL ∩ V + rk γ.

Because γ is a skew form, its rank is even. A β-transform sends γ 7→ γ + j∗β, which also
has even rank, and therefore we see that a β-transform, which is in the identity component
of SO(V ⊕V ∗), can be used to change the dimension of ∆, and hence the type of L(∆, ε), by
an even number, yielding the following result.

Proposition 1.8. The space of maximal isotropics in V ⊕V ∗ has two connected components,
distinguished by the parity of the type; maximal isotropics have even parity if and only if they
share a connected component with V .

1.3 Spinors for V ⊕ V ∗: exterior forms

Let CL(V ⊕ V ∗) be the Clifford algebra defined by the relation

v2 = 〈v, v〉, ∀v ∈ V ⊕ V ∗, (1.6)

The Clifford algebra has a natural representation on S = ∧•V ∗ given by

(X + ξ) · ϕ = iXϕ+ ξ ∧ ϕ, (1.7)

where X + ξ ∈ V ⊕ V ∗ and ϕ ∈ ∧•V ∗. We verify that this defines an algebra representation:

(X + ξ)2 · ϕ = iX(iXϕ+ ξ ∧ ϕ) + ξ ∧ (iXϕ+ ξ ∧ ϕ)
= (iXξ)ϕ
= 〈X + ξ,X + ξ〉ϕ,

as required. This representation is the standard spin representation, so that CL(V ⊕ V ∗) =
End(∧•V ∗). Since in signature (m,m) the volume element ω of a Clifford algebra satisfies
ω2 = 1, the spin representation decomposes into the ±1 eigenspaces of ω (the positive and
negative helicity spinors):

S = S+ ⊕ S−,

5



corresponding to the decomposition

∧•V ∗ = ∧evV ∗ ⊕ ∧odV ∗

according to parity. While the splitting S = S+ ⊕ S− is not preserved by the whole Clifford
algebra, S± are irreducible representations of the spin group, which sits in the Clifford algebra
as

Spin(V ⊕ V ∗) = {v1 · · · vr : vi ∈ V ⊕ V ∗, 〈vi, vi〉 = ±1 and r even},
and which is a double cover of SO(V ⊕ V ∗) via the homomorphism

ρ : Spin(V ⊕ V ∗) −→ SO(V ⊕ V ∗)

ρ(x)(v) = xvx−1, x ∈ Spin(V ⊕ V ∗), v ∈ V ⊕ V ∗. (1.8)

We now describe the action of so(V ⊕V ∗) in the spin representation. Recall that so(V ⊕V ∗) =
∧2(V ⊕ V ∗) sits naturally inside the Clifford algebra, and that the derivative of ρ, given by

dρx(v) = xv − vx = [x, v], x ∈ so(V ⊕ V ∗), v ∈ V ⊕ V ∗,

defines the usual representation of so(V ⊕ V ∗) on V ⊕ V ∗. In the following we take {ei} to
be a basis for V and {ei} the dual basis.

Example 1.9 (B-transform). A 2-formB = 1
2Bije

i∧ej , Bij = −Bji, has image in the Clifford
algebra given by 1

2Bije
jei, and hence its spinorial action on an exterior form ϕ ∈ ∧•V ∗ is

B · ϕ =
1
2
Bije

j ∧ (ei ∧ ϕ) = −B ∧ ϕ.

Exponentiating, we obtain

e−Bϕ = (1−B + 1
2B ∧B + · · · ) ∧ ϕ. (1.9)

Example 1.10 (β-transform). A bivector β = 1
2β

ijei ∧ ej , βij = −βji, has image in the
Clifford algebra given by 1

2β
ijejei. Its spinorial action on a form ϕ is

β · ϕ =
1
2
βijiej (ieiϕ) = iβϕ.

Exponentiating, we obtain
eβϕ = (1 + iβ + 1

2 i
2
β + · · · )ϕ. (1.10)

Example 1.11 (GL+(V ) action). An endomorphism A = Aj
ie

i⊗ej has image in the Clifford
algebra given by 1

2A
j
i (eje

i − eiej), and has spinorial action

A · ϕ = 1
2A

j
i (iej

(ei ∧ ϕ)− ei ∧ iej
ϕ)

= 1
2A

j
i δ

i
jϕ−Aj

ie
i ∧ iej

ϕ

= −A∗ϕ+ 1
2Tr(A)ϕ,

where ϕ 7→ −A∗ϕ = −Aj
ie

i ∧ iej
ϕ is the usual action of End(V ) on ∧•V ∗. Hence, by

exponentiation, the spinorial action of GL+(V ) on ∧•V ∗ is by

g · ϕ =
√

det g(g∗)−1ϕ,

i.e. as a GL+(V ) representation the spinor representation decomposes as

S = ∧•V ∗ ⊗ (detV )1/2. (1.11)

In fact, as we shall see in the following sections, tensoring with the half densities as
in (1.11) renders S independent of polarization, i.e. if N,N ′ are maximal isotropic subspaces
such that V ⊕V ∗ = N +N ′, then the inner product gives an identification N ′ = N∗, and one
obtains a canonical isomorphism ∧•V ∗ ⊗ (detV )1/2 = ∧•N∗ ⊗ (detN)1/2.
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1.4 The Mukai pairing

There is an invariant bilinear form on spinors, which we now describe, following the treatment
of Chevalley [10]. For V ⊕V ∗ this bilinear form coincides with the Mukai pairing of forms [31].

Since we have the splitting V ⊕ V ∗ into maximal isotropics, the exterior algebras ∧•V
and ∧•V ∗ are subalgebras of CL(V ⊕ V ∗). In particular, detV is a distinguished line inside
CL(V ⊕ V ∗), and it generates a left ideal with the property that upon choosing a generator
f ∈ detV , every element of the ideal has a unique representation as sf , s ∈ ∧•V ∗. This
defines an action of the Clifford algebra on ∧•V ∗ by

(x · s)f = xsf ∀x ∈ CL(V ⊕ V ∗),

which is the same action as that defined by (1.7).
Let x 7→ x> denote the main antiautomorphism of the Clifford algebra, i.e. that deter-

mined by the tensor map v1 ⊗ · · · ⊗ vk 7→ vk ⊗ · · · ⊗ v1. Now let s, t ∈ ∧•V ∗ and consider the
Mukai pairing (·, ·) : ∧•V ∗ ⊗ ∧•V ∗ // detV ∗ given by

(s, t) = [s> ∧ t]m,

where [·]m indicates projection to the component of degree m = dimV . We can express (, )
in the following way, using any generator f ∈ detV :

(if (s, t))f = (if (s> ∧ t))f = (f> · (s>t))f = (sf)>tf. (1.12)

From this description, we see immediately that

(x · s, t) = (s, x> · t), ∀x ∈ CL(V ⊕ V ∗). (1.13)

In particular (g · s, g · t) = ±(s, t) for any g ∈ Spin(V ⊕ V ∗), yielding the following result.

Proposition 1.12. The Mukai pairing is invariant under the identity component of Spin:

(g · s, g · t) = (s, t) ∀ g ∈ Spin0(V ⊕ V ∗).

Therefore it determines a Spin0-invariant bilinear form on S = ∧•V ∗ ⊗ (detV )1/2.

For example, we have (expB · s, expB · s) = (s, t), for any B ∈ ∧2V ∗. The pairing is
non-degenerate, and is symmetric or skew-symmetric depending on the dimension of V , since

(s, t) = (−1)m(m−1)/2(t, s).

We also see from degree considerations that for m even, (S+, S−) = 0.

Example 1.13. Suppose V is 4-dimensional; then the Mukai pairing is symmetric, and the
even spinors are orthogonal to the odd spinors. The inner product of even spinors ρ =
ρ0 + ρ2 + ρ4 and σ = σ0 + σ2 + σ4 is given by

(ρ, σ) = [(ρ0 − ρ2 + ρ4) ∧ (σ0 + σ2 + σ4)]4
= ρ0 ∧ σ4 − ρ2 ∧ σ2 + ρ4 ∧ σ0.

The inner product of odd spinors ρ = ρ1 + ρ3 and σ = σ1 + σ3 is given by

(ρ, σ) = [(ρ1 − ρ3) ∧ (σ1 + σ3)]4
= ρ1 ∧ σ3 − ρ3 ∧ σ1.
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1.5 Pure spinors and polarizations

Let ϕ ∈ ∧•V ∗ be a nonzero spinor. We define its null space Lϕ < V ⊕ V ∗, as follows:

Lϕ = {v ∈ V ⊕ V ∗ : v · ϕ = 0},

and it is clear from (1.8) that Lϕ depends equivariantly on ϕ, i.e.:

Lg·ϕ = ρ(g)Lϕ ∀ g ∈ Spin(V ⊕ V ∗).

The key property of null spaces is that they are isotropic: if v, w ∈ Lϕ, we have

〈v, w〉ϕ = 1
2 (vw + wv) · ϕ = 0.

Definition 1.14. A spinor ϕ is called pure when Lϕ is maximal isotropic.

Every maximal isotropic subspace L ⊂ V ⊕V ∗ is represented by a unique line KL ⊂ ∧•V ∗

of pure spinors, as we now describe. As we saw in section 1.2, any maximal isotropic L(∆, ε)
may be expressed as the B-transform of L(∆, 0) for B chosen such that i∗B = −ε. The pure
spinor line with null space L(∆, 0) = ∆ + Ann(∆) is precisely det(Ann(∆)) ⊂ ∧kV ∗, for k
the codimension of ∆ ⊂ V . Hence we obtain the following result.

Proposition 1.15 ([10], III.1.9.). Let L(∆, ε) ⊂ V ⊕V ∗ be maximal isotropic, let (θ1, . . . , θk)
be a basis for Ann(∆), and let B ∈ ∧2V ∗ be a 2-form such that i∗B = −ε, where i : ∆ ↪→ V
is the inclusion. Then the pure spinor line KL representing L(∆, ε) is generated by

ϕ = exp(B)θ1 ∧ · · · ∧ θk. (1.14)

Note that ϕ is of even or odd degree according as L is of even or odd parity.

L may also be described as a generalized graph on V ∗ via (1.5), expressing it as a β-
transform of L(F, 0), which has associated pure spinor line det(L∩V ). As a result we obtain
the following complement to Proposition 1.15.

Proposition 1.16. Given a subspace inclusion i : ∆ ↪→ V and a 2-form B ∈ ∧2V ∗, there
exists a bivector β ∈ ∧2V , such that

eB det(Ann(∆)) = eβ det(Ann(L ∩ V ))

is an equality of pure spinor lines, where L = L(∆,−i∗B). Note that the image of β in
∧2(V/(L ∩ V )) is unique.

The pure spinor line KL determined by L forms the beginning of an induced filtration on
the spinors, as we now describe. Recall that the Clifford algebra is a Z/2Z-graded, Z-filtered
algebra with

CL(V ⊕ V ∗) = CL2m ⊃ CL2m−1 ⊃ · · · ⊃ CL0 = R

where CLk is spanned by products of ≤ k generators. By the Clifford action on KL, we
obtain a filtration of the spinors:

KL = F0 ⊂ F1 ⊂ · · · ⊂ Fm = S (1.15)

where Fk is defined as CLk ·KL. Note that CLk ·KL = CLm ·KL for k > m since L annihilates
KL. Also, using the inner product, we have the canonical isomorphism L∗ = (V ⊕ V ∗)/L,
and so Fk/Fk−1 is isomorphic to ∧kL∗ ⊗KL.

The filtration just described becomes a grading when a maximal isotropic L′ ⊂ V ⊕ V ∗

complementary to L is chosen. Then we obtain a Z-grading on S = ∧•V ∗ of the form (for
dimV even, i.e. m = 2n)

S = U−n ⊕ · · · ⊕ Un, (1.16)
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where U−n = KL and Uk = (∧k+nL′) · KL, using the inclusion as a subalgebra ∧•L′ ⊂
CL(V ⊕V ∗). Using the inner product to identify L′ = L∗, we obtain the natural isomorphism
Uk = ∧k+nL∗ ⊗KL and, summing over k,

∧• V ∗ = ∧•L∗ ⊗KL. (1.17)

The line Un = detL′ ·U−n is the pure spinor line determining L′ and since L∩L′ = {0}, the
Mukai pairing gives an isomorphism

U−n ⊗ Un = detV ∗, (1.18)

as can be seen from the nondegenerate pairing between ∧0V ∗ and detV ∗ and the Spin-
invariance of the Mukai pairing. This is an example of how the Mukai pairing determines the
intersection properties of maximal isotropics, and it can be phrased as follows:

Proposition 1.17 ([10], III.2.4.). Maximal isotropics L,L′ satisfy L ∩ L′ = {0} if and only
if their pure spinor representatives ϕ,ϕ′ satisfy (ϕ,ϕ′) 6= 0.

Furthermore, applying (1.13), we see that the Mukai pairing provides a nondegenerate
pairing for all k:

U−k ⊗ Uk −→ detV ∗

Finally, rewriting (1.18), we have the isomorphism KL ⊗ detL∗ ⊗ KL = detV ∗, which,
combined with (1.17), yields the canonical isomorphism

∧•V ∗ ⊗ (detV )1/2 = ∧•L∗ ⊗ (detL)1/2,

showing that tensoring with the half densities renders S independent of polarization.

1.6 The spin bundle for T ⊕ T ∗

Consider the direct sum of the tangent and cotangent bundles T ⊕T ∗ of a real m-dimensional
smooth manifold M . This bundle is endowed with the same canonical bilinear form and
orientation we described on V ⊕ V ∗. Therefore, while T ⊕ T ∗ is associated to a GL(m)
principal bundle, we may view it as having natural structure group SO(m,m).

It is well-known that an oriented bundle with Euclidean structure group SO(n) admits
spin structure if and only if the second Stiefel-Whitney class vanishes, i.e. w2(E) = 0. For
oriented bundles with metrics of indefinite signature, we find the appropriate generalization
in [23], which we now summarize.

If an orientable bundle E has structure group SO(p, q), we can always reduce the structure
group to its maximal compact subgroup S(O(p)×O(q)). This reduction is equivalent to the
choice of a maximal positive definite subbundle C+ < E, which allows us to write E as the
direct sum E = C+ ⊕ C−, where C− = (C+)⊥ is negative definite.

Proposition 1.18 ([23], 1.1.26). The SO(p, q) bundle E admits Spin(p, q) structure if and
only if w2(C+) = w2(C−).

In the special case of T⊕T ∗, which has signature (m,m), the positive and negative definite
bundles C± project isomorphically via πT : T ⊕ T ∗ → T onto the tangent bundle. Hence the
condition w2(C+) = w2(C−) is always satisfied for T ⊕ T ∗, yielding the following result.

Proposition 1.19. The SO(m,m) bundle T ⊕ T ∗ always admits Spin(m,m) structure.

By the action defined in (1.7), the differential forms ∧•T ∗ are a Clifford module for T⊕T ∗;
indeed, for an orientable manifold, we see immediately from the decomposition (1.11) of the
spin representation under GL+(m) that there is a natural choice of spin bundle, namely

S = ∧•T ∗ ⊗ (detT )1/2.
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The Mukai pairing may then either be viewed as a nondegenerate pairing

∧•T ∗ ⊗ ∧•T ∗ −→ detT ∗,

or as a bilinear form on the spinors S. In the rest of the paper we will make frequent use of
the correspondence between maximal isotropics in T ⊕ T ∗ and pure spinor lines in ∧•T ∗ to
describe structures on T ⊕ T ∗ in terms of differential forms.

2 The Courant bracket

The Courant bracket, introduced in [11],[12], is an extension of the Lie bracket of vector fields
to smooth sections of T ⊕ T ∗. It differs from the Lie bracket in certain important respects.
Firstly, its skew-symmetrization does not satisfy the Jacobi identity; as shown in [34] it
defines instead a Lie algebra up to homotopy. Secondly, it has an extended symmetry group;
besides the diffeomorphism symmetry it shares with the Lie bracket, it admits B-field gauge
transformations. Finally, as shown in [35], the bracket may be ‘twisted’ by a closed 3-form
H, and so may be viewed as naturally associated to an S1-gerbe.

Like the Lie bracket, the Courant bracket may be defined as a derived bracket; we describe
this following the treatment in [24]. We also present, following [33], certain characteristic
properties of the Courant bracket as formalized by [28] in the notion of Courant algebroid, a
generalization of Lie algebroid.

2.1 Derived brackets

The interior product of vector fields X 7→ iX defines an effective action of vector fields on
differential forms by derivations of degree −1. Taking supercommutator with the exterior
derivative, we obtain a derivation of degree 0, the Lie derivative:

LX = [d, iX ] = diX + iXd.

Taking commutator with another interior product, we obtain an expression for the Lie bracket:

i[X,Y ] = [LX , iY ].

In this sense, the Lie bracket on vector fields is ‘derived’ from the Lie algebra of endomor-
phisms of Ω•(M). Using the spinorial action (1.7) of T ⊕ T ∗ on forms, we may define the
Courant bracket of sections ei ∈ C∞(T ⊕ T ∗) in the same way:

[e1, e2] · ϕ = [[d, e1·], e2·]ϕ ∀ϕ ∈ Ω•(M). (2.1)

Although this bracket is not skew-symmetric, it follows from the fact that d2 = 0 that the
following Jacobi identity holds:

[[e1, e2], e3] = [e1, [e2, e3]]− [e2, [e1, e3]]. (2.2)

As observed in [35], one may replace the exterior derivative in (2.1) by the twisted operator
dHϕ = dϕ+H ∧ϕ for a real 3-form H ∈ Ω3(M). The resulting derived bracket then satisfies

[[e1, e2], e3] = [e1, [e2, e3]]− [e2, [e1, e3]] + iπe3iπe2iπe1dH,

where π : T ⊕ T ∗ −→ T is the first projection. When the last term vanishes, the bracket is
called a Courant bracket:
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Definition 2.1. Let e1, e2 ∈ C∞(T ⊕T ∗). Then their H-twisted Courant bracket [e1, e2]H ∈
C∞(T ⊕ T ∗) is defined by the expression

[e1, e2]H · ϕ = [[dH , e1·], e2·]ϕ ∀ϕ ∈ Ω•(M),

where dHϕ = dϕ+H ∧ ϕ for H a real closed 3-form.

Expanding this expression for e1 = X + ξ and e2 = Y + η, we obtain

[X + ξ, Y + η]H = [X,Y ] + LXη − iY dξ + iX iY H. (2.3)

The Courant bracket, for any closed 3-form H, satisfies the following conditions [33]:

C1) [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]],

C2) π([e1, e2]) = [π(e1), π(e2)],

C3) [e1, fe2] = f [e1, e2] + (π(e1)f)e2, f ∈ C∞(M),

C4) π(e1)〈e2, e3〉 = 〈[e1, e2], e3〉+ 〈e2, [e1, e3]〉,
C5) [e1, e1] = π∗d〈e1, e1〉.
In [28], these properties were promoted to axioms defining the notion of Courant algebroid,
which is a real vector bundle E equipped with a bracket [·, ·], nondegenerate inner product
〈·, ·〉, and bundle map π : E −→ T (called the anchor) satisfying the conditions C1)–C5)
above.

Note that if the bracket were skew-symmetric, then axioms C1)–C3) would define the
notion of Lie algebroid ; axiom C5) indicates that the failure to be a Lie algebroid is measured
by the inner product, which itself is invariant under the adjoint action by axiom C4).

The Courant algebroid structure on T ⊕ T ∗ has surjective anchor with isotropic kernel
given by T ∗; such Courant algebroids are called exact.

Definition 2.2. A Courant algebroid E is exact when the following sequence is exact:

0 // T ∗
π∗ // E

π // T // 0 , (2.4)

where E is identified with E∗ using the inner product.

Exactness at the middle place forces π∗(T ∗) to be isotropic and therefore the inner product
on E must be of split signature. It is then always possible to choose an isotropic splitting
s : T −→ E for π, yielding an isomorphism E ∼= T ⊕ T ∗ taking the Courant bracket to that
given by (2.3), where H is the curvature of the splitting, i.e.

iX iY H = s∗[s(X), s(Y )], X, Y ∈ T. (2.5)

Isotropic splittings of (2.4) are acted on transitively by the 2-forms B ∈ Ω2(M) via transfor-
mations of the form X + ξ 7→ X + ξ + iXB, or more invariantly,

e 7→ e+ π∗iπeB, e ∈ E.

Such a change of splitting modifies the curvature H by the exact form dB. Hence the co-
homology class [H] ∈ H3(M,R), called the Ševera class, is independent of the splitting and
determines the exact Courant algebroid structure on E completely.
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2.2 Symmetries of the Courant bracket

The Lie bracket of smooth vector fields is invariant under diffeomorphisms; in fact, there are
no other symmetries of the tangent bundle preserving the Lie bracket.

Proposition 2.3. Let F be an automorphism of the tangent bundle covering the diffeomor-
phism ϕ : M −→M . If F preserves the Lie bracket, then F = ϕ∗, the derivative of ϕ.

Proof. Let G = ϕ−1
∗ ◦F , so that it is an automorphism of the Lie bracket covering the identity

map. Then, for any vector fields X,Y and f ∈ C∞(M) we have G([fX, Y ]) = [G(fX), G(Y )].
Expanding, we see that Y (f)G(X) = G(Y )(f)G(X) for all X,Y, f . This can only hold when
G(Y ) = Y for all vector fields Y , i.e. G = Id, yielding finally that F = ϕ∗.

Since the Courant bracket on T ⊕T ∗ depends on a 3-form H, it may appear at first glance
to have a smaller symmetry group than the Lie bracket. However, as was observed in [35],
the spinorial action of 2-forms (1.9) satisfies

e−BdHe
B = dH+dB ,

and therefore we obtain the following action on derived brackets:

eB [e−B ·, e−B ·]H = [·, ·]H+dB . (2.6)

We see immediately from (2.6) that closed 2-forms act as symmetries of any exact Courant
algebroid.

Definition 2.4. A B-field transformation is the automorphism of an exact Courant algebroid
E defined by a closed 2-form B via

e 7→ e+ π∗iπeB.

A diffeomorphism ϕ : M −→M lifts to an orthogonal automorphism of T ⊕ T ∗ given by(
ϕ∗ 0
0 ϕ∗−1

)
,

which we will denote by ϕ∗. It acts on the Courant bracket via

ϕ∗[ϕ−1
∗ ·, ϕ−1

∗ ·]H = [·, ·]ϕ∗−1H . (2.7)

Combining (2.7) with (2.6), we see that the composition F = ϕ∗e
B is a symmetry of the H-

twisted Courant bracket if and only if ϕ∗H −H = dB. We now show that such symmetries
exhaust the automorphism group.

Proposition 2.5. Let F be an orthogonal automorphism of T ⊕ T ∗, covering the diffeomor-
phism ϕ : M −→ M , and preserving the H-twisted Courant bracket. Then F = ϕ∗e

B for a
unique 2-form B ∈ Ω2(M) satisfying ϕ∗H −H = dB.

Proof. Let G = ϕ−1
∗ ◦ F , so that it is an automorphism of T ⊕ T ∗ covering the identity

satisfying G[G−1·, G−1·]H = [·, ·]ϕ∗H . In particular, for any sections x, y ∈ C∞(T ⊕ T ∗) and
f ∈ C∞(M) we have G[x, fy]H = [Gx,Gfy]ϕ∗H , which, using axiom C3), implies

π(x)(f)Gy = π(Gx)(f)Gy.

Therefore, πG = π, and so G is an orthogonal map preserving projections to T . This forces
it to be of the form G = eB , for B a uniquely determined 2-form. By (2.6), B must satisfy
ϕ∗H −H = dB. Hence we have F = ϕ∗e

B , as required.
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An immediate corollary of this result is that the automorphism group of an exact Courant
algebroid E is an extension of the diffeomorphisms preserving the cohomology class [H] by
the abelian group of closed 2-forms:

0 // Ω2
cl(M) // Aut(E) // Diff [H](M) // 0 .

Derivations of a Courant algebroid E are linear first order differential operators DX on
C∞(E), covering vector fields X and satisfying

X〈·, ·〉 = 〈DX ·, ·〉+ 〈·, DX ·〉,
DX [·, ·] = [DX ·, ·] + [·, DX ·].

Differentiating a 1-parameter family of automorphisms Ft = ϕt
∗e

Bt , F0 = Id, and using the
convention for Lie derivative

LX = − d
dt

∣∣
t=0

ϕt
∗,

we see that the Lie algebra of derivations of the H-twisted Courant bracket consists of pairs
(X, b) ∈ C∞(T )⊕ Ω2(M) such that LXH = db, which act via

(X, b) · (Y + η) = LX(Y + η)− iY b. (2.8)

Therefore the algebra of derivations of an exact Courant algebroid algebroid E is an abelian
extension of the smooth vector fields by the closed 2-forms:

0 // Ω2
cl(M) // Der(E) // C∞(T ) // 0 .

It is clear from axioms C1),C4) that the left adjoint action adv : w 7→ [v, w] defines a
derivation of the Courant algebroid. However, ad is neither surjective nor injective; rather,
for E exact, it induces the following exact sequence:

0 // Ω1
cl(M) π∗ // C∞(E) ad // Der(E)

χ // H2(M,R) // 0 , (2.9)

where Ω1
cl(M) denotes the closed 1-forms and we define χ(DX) = [iXH − b] ∈ H2(M,R) for

DX = (X, b) as above.
The image of ad in sequence (2.9) defines a Lie subalgebra of Der(E), and so suggests

the definition of a subgroup of the automorphism group of E analogous to the subgroup of
Hamiltonian symplectomorphisms.

Proposition 2.6. Let DXt
= (Xt, bt) ∈ C∞(T ) ⊕ Ω2(M) be a (possibly time-dependent)

derivation of the H-twisted Courant bracket on a compact manifold, so that it satisfies LXt
H =

dbt and acts via (2.8). Then it generates a 1-parameter subgroup of Courant automorphisms

F t
DX

= ϕt
∗e

Bt , t ∈ R, (2.10)

where ϕt denotes the flow of the vector field Xt for a time t and

Bt =
∫ t

0

ϕ∗sbs ds. (2.11)

Proof. First we see that F t
DX

is indeed an automorphism, since

dBt =
∫ t

0

ϕ∗s(LXs
H) ds = d

du

∣∣
u=0

∫ t

0

ϕ∗sϕ
∗
uH ds

= d
du

∣∣
u=0

∫ t+u

u

ϕ∗s′H ds′

= ϕ∗tH −H,
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which proves the result by Proposition 2.5. To see that it is a 1-parameter subgroup, observe
that eBϕ∗ = ϕ∗e

ϕ∗B for any ϕ ∈ Diff(M) and B ∈ Ω2(M), so that

ϕt1
∗ e

Bt1ϕt2
∗ e

Bt2 = ϕt1+t2
∗ eϕ∗t2Bt1+Bt2 = ϕt1+t2

∗ eBt1+t2 ,

where we use the expression (2.11) for the final equality.

Certain derivations (X, b) are in the kernel of χ in (2.9), namely those for which b =
iXH + dξ for a 1-form ξ; we call these exact derivations. A smooth 1-parameter family of
automorphisms Ft = ϕt

∗e
Bt from F0 = id to F1 = F is called an exact isotopy when it is

generated by a smooth time-dependent family of exact derivations.

Definition 2.7. An automorphism F ∈ Aut(E) is called exact if there is an exact isotopy
Ft from F0 = id to F1 = F . This defines a subgroup of exact automorphisms of any Courant
algebroid:

Autex(E) ⊂ Aut(E).

If ad(vt) generates the exact isotopy Ft and F is any automorphism, then the conjugation
FFtF

−1 is also an exact isotopy, generated by the family of derivations

ad(F (vt)).

Therefore we have the result that Autex(E) is a normal subgroup, in analogy with the group
of Hamiltonian symplectomorphisms.

2.3 Relation to S1-gerbes

The Courant bracket is part of a hierarchy of brackets on the bundles T ⊕∧pT ∗, p = 0, 1, . . .,
defined by the same formula

[X + σ, Y + τ ] = [X,Y ] + LXτ − iY dσ + iX iY F,

where now σ, τ ∈ C∞(∧pT ∗) and F is a closed form of degree p+ 2.
For p = 0, the Courant bracket on T ⊕ 1 is given by

[X + f, Y + g] = [X,Y ] +Xg − Y f + iX iY F. (2.12)

When F/2π is integral, we recognize this bracket as coming from the Atiyah Lie algebroid
A = TP/S1 associated to a principal S1 bundle π : P −→M , i.e.

0 // 1 // A
π∗ // TM // 0 , (2.13)

where 1 = ∧0T ∗M denotes the trivial line bundle overM . A splitting of this sequence provides
a connection 1-form θ ∈ Ω1(P ) with curvature dθ = π∗F , and we see that the natural Lie
bracket on S1-invariant vector fields may be written, in horizontal and vertical components,
as

[Xh + f∂t, Yh + g∂t] = [X,Y ]h + (Xg − Y f + iX iY F )∂t,

where X 7→ Xh denotes horizontal lift and ∂t is the vector field generating the principal
S1 action. In this way we recover the expression (2.12). The symmetries of A covering
the identity consist of closed 1-forms A acting via X + f 7→ X + f + iXA, which may
be interpreted as the action of tensoring with a trivialization of a flat unitary line bundle.
When [A] ∈ H1(M,Z), then it represents the action of a gauge transformation on P , modulo
constant gauge transformations.

Just as a Lie algebroid of the form (2.13) may be associated with a S1 bundle when [F ]/2π
is integral, an exact Courant algebroid may be associated with a S1 gerbe when [H]/2π is

14



integral. A S1 gerbe may be specified, given an open cover {Ui}, by complex line bundles
Lij on Ui ∩ Uj with isomorphisms Lji

∼= L∗ij , and trivializations θijk of Lij ⊗ Ljk ⊗ Lki such
that δθ = 1 in the Čech complex. A 0-connection [9] on a gerbe is then specified by choosing
connections ∇ij on Lij such that the induced connection on threefold intersections obeys
∇θ = 0. Letting Fij be the curvature 2-forms of ∇ij , this implies that δF = 0, i.e.:

Fij + Fjk + Fki = 0. (2.14)

As explained in [18], we may then construct an exact Courant algebroid E as follows: glue
T ⊕ T ∗ over Ui with T ⊕ T ∗ over Uj using the transition function Φij given by the B-field
transform

Φij = eFij .

By the cocycle condition (2.14), we see that δΦ = 1 and therefore it defines a bundle E. Since
Φij preserves projections to T , we see that E is an extension of T by T ∗, as required. Finally,
equipping E|Ui

with the standard Courant bracket (H = 0) and inner product, we observe
that since Φij is orthogonal and preserves the Courant bracket, E inherits the structure of
an exact Courant algebroid. Choosing a splitting of the exact sequence then corresponds to
the choice of 1-connection for the gerbe, i.e. the choice of local 2-forms Bi such that F = δB.
This then determines the global curvature 3-form of the gerbe H = dBi, for which H/2π is
integral. In this sense, an exact Courant algebroid with integral curvature may be viewed as
the generalized Atiyah sequence of a S1 gerbe.

Similarly to the case of p = 0, the symmetries of E covering the identity consist of closed
2-forms B acting via B-field transforms, and these may be interpreted as trivializations of a
flat gerbe. The difference of two such trivializations, a line bundle with connection, acts as a
gauge transformation (integral B-field).

In the case that F/2π is not integral, the Lie algebroid (2.13) may be interpreted as the
Atiyah sequence of a trivialization of a S1 gerbe with flat connection; similarly, a general
exact Courant algebroid may be associated with a trivialization of a S1 2-gerbe with flat
connection. The fact that such trivializations may be tensored together accounts for the Baer
sum operation [5] on exact Courant algebroids.

2.4 Dirac structures

The Courant bracket fails to be a Lie algebroid due to exact terms involving the inner product
〈, 〉. Therefore, upon restriction to a subbundle L ⊂ T ⊕ T ∗ which is involutive (closed under
the Courant bracket) as well as being isotropic, the anomalous terms vanish, and (L, [, ], π)
defines a Lie algebroid, with associated differential graded algebra (∧•L∗, dL) just as the de
Rham complex is associated to the canonical Lie algebroid structure on the tangent bundle.

In fact, the Courant bracket itself places a tight constraint on which proper subbundles
may be involutive a priori:

Proposition 2.8. If L ⊂ E is an involutive subbundle of an exact Courant algebroid, then
L must be isotropic, or of the form π−1(∆), for ∆ an integrable distribution in T .

Proof. Suppose that L ⊂ E is involutive, but not isotropic, i.e. there exists v ∈ C∞(L) such
that 〈v, v〉 6= 0 at some point m ∈M . Then for any f ∈ C∞(M),

[fv, v] = f [v, v]− (π(v)f)v + 2〈v, v〉df,

implying that df |m ∈ L|m for all f , i.e. T ∗|m ⊂ L|m. Since T ∗|m is isotropic, this inclusion
must be proper, i.e. L|m = π−1(∆|m), where ∆ = π(L) is nontrivial at m. Hence the
rank of L must exceed the maximal dimension of an isotropic subbundle. This implies that
T ∗|m < L|m at every point m, and hence that ∆ is a smooth subbundle of T , which must
itself be involutive. Hence L = π−1(∆), as required.
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Definition 2.9 (Dirac structure). A maximal isotropic subbundle L ⊂ E of an exact Courant
algebroid is called an almost Dirac structure. If L is involutive, then the almost Dirac
structure is said to be integrable, or simply a Dirac structure.

The integrability of an almost Dirac structure L may be expressed, following [11], as the
vanishing of the operator TL(e1, e2, e3) = 〈[e1, e2], e3〉 on sections of L. Using the Clifford
action we see that, for ϕ a local generator of the pure spinor line KL ⊂ ∧∗T ∗ representing L,
and sections ei ∈ C∞(L),

〈[e1, e2]H , e3〉ϕ = [[[dH , e1], e2], e3]ϕ
= e1 · e2 · e3 · dHϕ.

(2.15)

Therefore, as shown by Courant, integrability of a Dirac structure is determined by the
vanishing of a tensor TL ∈ C∞(∧3L∗).

We see from Proposition 1.6 that at a point p, a Dirac structure L ⊂ T ⊕ T ∗ has a
unique description as a generalized graph L(∆, ε), where ∆ = π(L) is the projection to T and
ε ∈ ∧2∆∗. Assuming that L is regular near p in the sense that ∆ has constant rank near p,
we have the following description of the integrability condition:

Proposition 2.10. Let ∆ ⊂ T be a subbundle and ε ∈ C∞(∧2∆∗). Then the almost Dirac
structure L(∆, ε) is integrable for the H-twisted Courant bracket if and only if ∆ integrates
to a foliation and d∆ε = i∗H, where d∆ is the leafwise exterior derivative.

Proof. Let i : ∆ ↪→ T be the inclusion. Then d∆ : C∞(∧k∆∗) → C∞(∧k+1∆∗) is defined by
i∗ ◦ d = d∆ ◦ i∗. Suppose that X + ξ, Y + η ∈ C∞(L), i.e. i∗ξ = iXε and i∗η = iY ε. Consider
the bracket Z + ζ = [X + ξ, Y + η]; if L is Courant involutive, then Z = [X,Y ] ∈ C∞(∆),
showing ∆ is involutive, and the difference

i∗ζ − iZε = i∗(LXη − iY dξ + iX iY H)− i[X,Y ]ε

= d∆iX iY ε+ iXd∆iY ε− iY d∆iXε+ iX iY i
∗H − [[d∆, iX ], iY ]ε

= iY iX(d∆ε− i∗H)

must vanish for all X + ξ, Y + η ∈ C∞(L), showing that d∆ε = i∗H. Reversing the argument
we see that the converse holds as well.

A consequence of this is that in a regular neighbourhood, a dH -closed generator for the
canonical line bundle may always be chosen:

Corollary 2.11. Let (∆, ε) be as above and assume L(∆, ε) is integrable; then for B ∈
C∞(∧2T ∗) such that i∗B = −ε, there exists a basis of sections (θ1, . . . , θk) for Ann(∆) such
that

ϕ = eBθ1 ∧ · · · ∧ θk

is a dH-closed generator for the pure spinor line KL.

Proof. Let Ω = θ1 ∧ . . . ∧ θk. By Proposition 2.10, ∆ is integrable, so (θ1, . . . , θk) can be
chosen such that dΩ = 0. Then we have

dH(eBΩ) = (dB +H) ∧ eBΩ = 0,

where the last equality holds since i∗(dB +H) = −d∆ε+ i∗H = 0.

In neighbourhoods where ∆ is not regular, one may not find dH -closed generators for KL;
nevertheless, one has the following useful description of the integrability condition. Recall
that an almost Dirac structure L ⊂ T ⊕ T ∗ determines a filtration (1.15) of the forms ∧•T ∗.
By (2.15), we see that dH takes C∞(F0) into C∞(F3). The integrability of L, however,
requires that dH take C∞(F0) into C∞(F1), as we now show.
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Theorem 2.12. The almost Dirac structure L ⊂ T ⊕ T ∗ is involutive for the H-twisted
Courant bracket if and only if

dH(C∞(F0)) ⊂ C∞(F1), (2.16)

i.e. for any local trivialization ϕ of KL, there exists a section X + ξ ∈ C∞(T ⊕T ∗) such that

dHϕ = iXϕ+ ξ ∧ ϕ.

Furthermore, condition (2.16) implies that

dH(C∞(Fk)) ⊂ C∞(Fk+1) (2.17)

for all k.

Proof. Let ϕ be a local generator for KL = F0. Then for e1, e2 ∈ C∞(L), we have

[e1, e2]H · ϕ = [[dH , e1], e2]ϕ
= e1 · e2 · dHϕ,

and therefore L is involutive if and only if dHϕ is annihilated by all products e1e2, ei ∈ C∞(L).
Since Fk is precisely the subbundle annihilated by products of k + 1 sections of L, we obtain
dHϕ ∈ F1. The subbundle F1 decomposes in even and odd degree parts as F1 = F0 ⊕ (T ⊕
T ∗) · F0, and since dH is of odd degree, we see that dHϕ ∈ (T ⊕ T ∗) ·KL, as required. To
prove (2.17), we proceed by induction on k; let ψ ∈ Fk, then since [e1, e2]H ·ψ = [[dH , e1], e2]ψ,
we have

e1 · e2 · dHψ = dH(e1 · e2 · ψ) + e1 · dH(e2 · ψ)− e2 · dH(e1 · ψ)− [e1, e2]H · ψ.

All terms on the right hand side are in Fk−1 by induction, implying that dHψ ∈ Fk+1, as
required.

Since the inner product provides a natural identification (T ⊕ T ∗) ·KL = L∗ ⊗KL, the
previous result shows that the pure spinor line generating a Dirac structure is equipped with
an operator

dH : C∞(KL) −→ C∞(L∗ ⊗KL), (2.18)

which satisfies d2
H = 0 upon extension to C∞(∧kL∗ ⊗KL). This makes KL a Lie algebroid

module for L, i.e. a module over the differential graded Lie algebra (∧•L∗, dL) associated to
the Lie algebroid L (see [15] for discussion of Lie algebroid modules).

Example 2.13. The cotangent bundle T ∗ ⊂ T ⊕ T ∗ is a Dirac structure for any twist
H ∈ Ω3

cl(M).

Example 2.14. The tangent bundle T ⊂ T ⊕ T ∗ is itself maximal isotropic and involutive
for the Courant bracket with H = 0, hence defines a Dirac structure. Applying any 2-form
B ∈ Ω2(M), we obtain

ΓB = eB(T ) = {X + iXB : X ∈ T},

which is a Dirac structure for the dB-twisted Courant bracket. Indeed, T ∗ has no comple-
mentary Dirac structure unless [H] = 0.

Example 2.15 (Twisted Poisson geometry). Applying a bivector field β ∈ C∞(∧2T ) as in
Example 1.2 to the Dirac structure T ∗, we obtain

Γβ = eβ(T ∗) = {iξβ + ξ : ξ ∈ T ∗}. (2.19)
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As shown in [35], this almost Dirac structure is integrable with respect to the H-twisted
Courant bracket if and only if

[β, β] = ∧3β∗(H),

where the bracket denotes the Schouten bracket of bivector fields. Such a structure is called
a twisted Poisson structure, and becomes a usual Poisson structure when ∧3β∗(H) = 0.

Example 2.16 (Foliations). Let ∆ ⊂ T be a smooth distribution of constant rank. Then
the maximal isotropic subbundle

∆⊕Ann(∆) ⊂ T ⊕ T ∗

is Courant involutive if and only if ∆ is integrable and H|∆ = 0.

Example 2.17 (Complex geometry). An almost complex structure J ∈ End(T ) determines
a complex distribution, given by the −i-eigenbundle T0,1 < T ⊗C of J . Forming the maximal
isotropic subbundle

LJ = T0,1 ⊕Ann(T0,1) = T0,1 ⊕ T ∗1,0,

we see from Proposition 2.10 that LJ is integrable if and only if T0,1 is involutive and i∗H = 0
for the inclusion i : T 0,1 ↪→ T ⊗ C, i.e. H is of type (1, 2) + (2, 1). Viewing H as the
curvature of a gerbe, this means that the gerbe inherits a holomorphic structure compatible
with the underlying complex manifold. In this way, integrable complex structures equipped
with holomorphic gerbes can be described by (complex) Dirac structures.

We may apply Theorem 2.12 to give a simple description of the modular vector field of
a Poisson structure (we follow [14]; for the case of twisted Poisson structures, see [25]). The
Dirac structure (2.19) associated to a Poisson structure β has corresponding pure spinor line
generated by ϕ = eβ · v, where v ∈ C∞(detT ∗) is a volume form on the manifold, which
we assume to be orientable. By Theorem 2.12, there exists X + ξ ∈ C∞(T ⊕ T ∗) such that
dϕ = (X + ξ) · ϕ. Since Lβ annihilates ϕ, there is a unique Xv ∈ C∞(T ), called the modular
vector field associated to (β, v), such that

dϕ = Xv · ϕ. (2.20)

We see from applying d to (2.20) that

LXv
ϕ = d(Xv · ϕ) +Xv ·Xv · ϕ = 0,

implying immediately thatXv is a Poisson vector field (i.e. [β,Xv] = 0) preserving the volume
form v. Of course the modular vector field is not an invariant of the Poisson structure alone;
for f ∈ C∞(M,R), one obtains

X(ef v) = Xv + [β, f ].

As a result we see, following Weinstein [37], that Xv defines a class [Xv] in the first Lie
algebroid cohomology of Γβ , called the modular class of β:

[Xv] ∈ H1(M,Γβ).

2.5 Tensor product of Dirac structures

We alluded in section 2.3 to a Baer sum operation on Courant algebroids; in this section
we elaborate on the idea, and introduce an associated tensor product operation on Dirac
structures, which will be used in Section 3.4. This operation was noticed independently by
the authors of [3], who use it to describe some remarkable properties of Dirac structures on
Lie groups.
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Like gerbes, exact Courant algebroids may be pulled back to submanifolds ι : S ↪→ M .
Following [7], we provide a proof in the Appendix. It is shown there that if E is an exact
Courant algebroid on M , then

ι∗E := K⊥/K,

where K = Ann(TS) and K⊥ is the orthogonal complement in E, inherits an exact Courant
algebroid structure over S, with Ševera class given simply by the pullback along the inclusion.
Furthermore, any Dirac structure L ⊂ E may be pulled back to S via

ι∗LS :=
L ∩K⊥ +K

K
⊂ ι∗E, (2.21)

which is an integrable Dirac structure whenever it is smooth as a subbundle of ι∗E, e.g. if
L ∩K⊥ has constant rank on S (see the Appendix, Proposition 7.2, for a proof).

Let E,F be exact Courant algebroids over the same manifold M . Then E×F is naturally
an exact Courant algebroid over M ×M , and may be pulled back by the diagonal embedding
d : M ↪→M ×M . The result coincides with the Baer sum of E and F as defined in [5], and
we denote it as follows.

Definition 2.18. Let E1, E2 be exact Courant algebroids over the same manifold M , and
let d : M −→ M ×M be the diagonal embedding. Then we define the Baer sum or tensor
product of E1 with E2 to be the exact Courant algebroid (over M)

E1 � E2 = d∗(E1 × E2),

which can be written simply as

E1 � E2 = {(e1, e2) ∈ E1 × E2 : π1(e1) = π2(e2)}/{(−π∗1ξ, π∗2ξ) : ξ ∈ T ∗},

and has Ševera class equal to the sum [H1] + [H2].

The standard Courant algebroid (T ⊕ T ∗, [·, ·]0) acts as an identity element for this oper-
ation, and every exact Courant algebroid E has a natural inverse, denoted by E>, defined as
the same Courant algebroid with 〈·, ·〉 replaced with its negative −〈·, ·〉:

E> = (E, [·, ·],−〈·, ·〉, π). (2.22)

Note that this sign reversal changes the sign of π∗ : T ∗ −→ E and hence of the curvature H
of any splitting (2.5), and finally therefore of the Ševera class.

Proposition 2.19. Let E> be as above. Then we have a canonical isomorphism

E> � E = (T ⊕ T ∗, [·, ·]0).

Proof. E> � E has a well-defined, bracket-preserving splitting s : T −→ E> � E given by
X 7→ [(eX , eX)] for any eX ∈ E such that π(eX) = X.

We may now use the Dirac pullback (2.21) to define the tensor product of Dirac structures;
an equivalent definition appears in [3].

Definition 2.20. Let L1 ⊂ E1, L2 ⊂ E2 be Dirac structures and E1, E2 as above. We define
the tensor product

L1 � L2 = d∗(L1 × L2) ⊂ E1 � E2,

where d∗ denotes the Dirac pullback (2.21) by the diagonal embedding. Explicitly, we have

L1 � L2 = ({(x1, x2) ∈ L1 × L2 : π1(x1) = π2(x2)}+K)/K, (2.23)

where K = {(−π∗1ξ, π∗2ξ) : ξ ∈ T ∗}. This forms a Dirac structure whenever it is smooth as
a bundle.
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Example 2.21. The canonical Dirac structure T ∗ ⊂ E acts as a zero element: for any other
Dirac structure L ⊂ F ,

T ∗ � L = T ∗ ⊂ E � F.

Example 2.22. The Dirac structure ∆ + Ann(∆) ⊂ T ⊕ T ∗ associated to an integrable
distribution ∆ ⊂ T is idempotent:

(∆ + Ann(∆)) � (∆ + Ann(∆)) = ∆ + Ann(∆).

Example 2.23. The tensor product of Dirac structures is compatible with B-field transfor-
mations:

eB1L1 � eB2L2 = eB1+B2(L1 � L2).

Combining this with the previous example, taking ∆ = T , we see that Dirac structures
transverse to T ∗ remain so after tensor product. Finally we provide an example where smooth-
ness is not guaranteed.

Example 2.24. Let L ⊂ E be any Dirac structure, with L> ⊂ E> defined by the inclusion
L ⊂ E. Then

L> � L = ∆ + Ann(∆) ⊂ T ⊕ T ∗,

where ∆ = π(L). Hence L>�L is a Dirac structure when ∆+Ann(∆) is a smooth subbundle,
i.e. when ∆ has constant rank.

Assuming we choose splittings for E1, E2, the tensor product of Dirac structures L1 ⊂
E1, L2 ⊂ E2 annihilates the wedge product K1 ∧K2 of the pure spinor lines representing L1

and L2. For reasons of skew-symmetry, K1 ∧K2 is nonzero only when L1 ∩ L2 ∩ T ∗ = {0}.
This result also appears in [3]:

Proposition 2.25. Let L1, L2 be Dirac structures in T ⊕ T ∗, and let ϕ1 ∈ K1, ϕ2 ∈ K2 be
(local) generators for their corresponding pure spinor lines in ∧•T ∗. Then

L1 � L2 · (ϕ1 ∧ ϕ2) = 0,

and therefore ϕ1 ∧ ϕ2 is a pure spinor for L1 � L2 as long as L1 ∩ L2 ∩ T ∗ = {0}.

Proof. From expression (2.23), we obtain the following simple expression:

L1 � L2 = {X + ξ + η : X + ξ ∈ L1 and X + η ∈ L2}. (2.24)

Then for X + ξ + η ∈ L1 � L2, we have

(X + ξ + η) · (ϕ1 ∧ ϕ2) = (iXϕ1 + ξ ∧ ϕ1) ∧ ϕ2 + (−1)|ϕ1|ϕ1 ∧ (iXϕ2 + η ∧ ϕ2) = 0.

There is an anti-orthogonal map T ⊕ T ∗ −→ T ⊕ T ∗ given by

X + ξ 7→ (X + ξ)> = X − ξ

which satisfies
[(X + ξ)>, (Y + η)>]>H = [X + ξ, Y + η]−H ,

so that it takes the Courant algebroid to its inverse (2.22). This operation intertwines with
the Clifford reversal, in the sense that

((X + ξ) · ϕ)> = (−1)|ϕ|+1(X + ξ)> · ϕ>,
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for any ϕ ∈ ∧•T ∗, where |ϕ| denotes the degree. As a result, we see that reversal operation
on forms corresponds to the reversal L 7→ L> of Dirac structures in T ⊕ T ∗. Since the Mukai
pairing of pure spinors ϕ,ψ, is given by the top degree component of ϕ> ∧ ψ, we conclude
from Propositions 1.17 and 1.16 that for transverse Dirac structures L1, L2 ⊂ E the tensor
product L>1 � L2 ⊂ T ⊕ T ∗ has zero intersection with T and hence is the graph of a Poisson
bivector β. This result was first observed in its general form in [3], and is consistent with the
appearance of a Poisson structure associated to any Lie bialgebroid in [29].

Proposition 2.26 (Alekseev-Bursztyn-Meinrenken [3]). Let E be any exact Courant algebroid
and L1, L2 ⊂ E be transverse Dirac structures. Then

L>1 � L2 = Γβ ⊂ T ⊕ T ∗,

where β ∈ C∞(∧2T ) is a Poisson structure.

3 Generalized complex structures

Just as a complex structure may be defined as an endomorphism J : T −→ T satisfying
J2 = −1 and which is integrable with respect to the Lie bracket, we have the following
definition, due to Hitchin [18]:

Definition 3.1. A generalized complex structure on an exact Courant algebroid E ∼= T ⊕T ∗
is an endomorphism J : E −→ E satisfying J 2 = −1 and which is integrable with respect to
the Courant bracket, i.e. its +i eigenbundle L ⊂ E ⊗ C is involutive.

An immediate consequence of Proposition 2.8 is that the +i eigenbundle of a generalized
complex structure must be isotropic, implying that J must be orthogonal with respect to the
natural pairing on E:

Proposition 3.2. A generalized complex structure J must be orthogonal, and hence defines
a symplectic form 〈J ·, ·〉 on E.

Proof. Let x, y ∈ C∞(E) and decompose x = a+ ā, y = b+ b̄ according to the polarization
E ⊗ C = L⊕ L. Since L must be isotropic by Proposition 2.8,

〈J x,J y〉 = 〈a, b̄〉+ 〈ā, b〉 = 〈x, y〉.

Hence J is orthogonal and 〈J ·, ·〉 is symplectic, as required.

This equivalence between complex and symplectic structures on E compatible with the
inner product is illustrated most clearly by examining two extremal cases of generalized
complex structures on T ⊕ T ∗. First, consider the endomorphism of T ⊕ T ∗:

JJ =
(
−J 0
0 J∗

)
, (3.1)

where J is a usual complex structure on V . Then we see that J 2
J = −1 and J ∗

J = −JJ . Its
+i eigenbundle LJ = T0,1 ⊕ T ∗1,0 is, by Example 2.17, integrable if and only if J is integrable
and H(3,0) = 0.

At the other extreme, consider the endomorphism

Jω =
(

0 −ω−1

ω 0

)
, (3.2)

where ω is a usual symplectic structure. Again, we observe that J 2
ω = −1 and the +i

eigenbundle
Lω = {X − iω(X) : X ∈ T ⊗ C}
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is integrable, by Example 2.14, if and only if H = 0 and dω = 0.
Therefore we see that diagonal and anti-diagonal generalized complex structures corre-

spond to complex and symplectic structures, respectively. We now make some elementary
observations concerning the general case.

Proposition 3.3. Generalized complex manifolds must be even-dimensional.

Proof. Let p ∈ M be any point and Ep the fibre of the exact Courant algebroid at p. Let
x ∈ Ep be null, i.e. 〈x, x〉 = 0. Then J x is also null and is orthogonal to x. Therefore
{x,J x} span an isotropic subspace N ⊂ Ep. We may iteratively enlarge the spanning set by
adding a pair {x′,J x′} for x′ ∈ N⊥, until N⊥ = N and dimM = dimN is even.

At any point p ∈ M , the orthogonal group O(Ep) ∼= O(2n, 2n) acts transitively on
the space of generalized complex structures at p by conjugation, with stabilizer U(n, n) =
O(2n, 2n) ∩ GL(2n,C). Therefore the space of generalized complex structures at p is given
by the coset space

O(2n, 2n)
U(n, n)

. (3.3)

In this sense, a generalized complex structure on an even-dimensional manifold is an integrable
reduction of the structure group of E from O(2n, 2n) to U(n, n). Since U(n, n) is homotopic to
U(n)×U(n), the U(n, n) structure may be further reduced to U(n)×U(n), which corresponds
geometrically to the choice of a positive definite subbundle C+ ⊂ E which is complex with
respect to J . The orthogonal complement C− = C⊥+ is negative-definite and also complex,
and so we obtain the orthogonal decomposition

E = C+ ⊕ C−. (3.4)

Note that since C± are definite and T ∗ ⊂ E is isotropic, the projection π : C± → T is an
isomorphism. Hence we can transport the complex structures on C± to T , obtaining two
almost complex structures J+, J− on T . Thus we see that a generalized complex manifold
must admit an almost complex structure. Furthermore it has two canonically associated sets
of Chern classes c±i = ci(T, J±) ∈ H2i(M,Z). Summarizing, and using (3.4), we obtain the
following.

Proposition 3.4. A generalized complex manifold must admit almost complex structures,
and has two sets of canonical classes c±i ∈ H2i(M,Z) such that the total Chern class

c(E,J ) = c+ ∪ c−,

where c± =
∑

i c
±
i .

3.1 Type and the canonical line bundle

Any exact Courant algebroid has a canonical Dirac structure T ∗ ⊂ E, and a generalized
complex structure J may be characterized by its action on this Dirac structure, as we now
describe.

If J T ∗ = T ∗, then J determines a usual complex structure on the manifold, and a splitting
may be chosen for E so that J is of the form (3.1). On the other hand, if J T ∗ ∩ T ∗ = {0},
then we have the canonical splitting E = J T ∗ ⊕ T ∗, and J takes the form (3.2), i.e. a
symplectic structure.

In general, the subbundle J T ∗ ⊂ E projects to a distribution

∆ = π(J T ∗) ⊂ T (3.5)

22



which may vary in dimension along the manifold. Defining

E∆ =
T ∗ + J T ∗

Ann(∆)
,

we see that E∆ is an extension of the form

0 // ∆∗ // E∆
π // ∆ // 0 ,

and since Ann(∆) = T ∗ ∩ J T ∗ is complex, we see that J induces a complex structure on
E∆ such that J∆∗ ∩∆∗ = {0}. Therefore, at each point, ∆ inherits a generalized complex
structure of symplectic type. Furthermore,

E

T ∗ + J T ∗
= T/∆,

showing that, at each point, T/∆ inherits a complex structure. Ignoring integrability, which
we address in the next section, we may therefore conclude that a generalized complex manifold
carries a canonical symplectic distribution (of variable dimension) with transverse complex
structure.

The invariant of J measuring the number of transverse complex directions at each point
is called the type of the generalized complex structure, and may range from 0, in the case of
a symplectic structure, to n = 1

2 dimR M for a complex structure.

Definition 3.5. The type of the generalized complex structure J is the upper semi-continuous
function

type(J ) = 1
2 dimR T

∗ ∩ J T ∗,
with possible values {0, 1, . . . , n}, where n = 1

2 dimR M .

The terminology is chosen to coincide with the notion of type for Dirac structures (see
Definition 1.7), since it is indeed the type of the Dirac structure L ⊂ E ⊗ C defining J :

Proposition 3.6. The type of J coincides with the type of its +i eigenbundle L ⊂ E ⊗ C,
and hence is of fixed parity throughout the manifold.

Proof. At any point, the subspace T ∗ ∩ J T ∗ is complex, and hence

(T ∗ ∩ J T ∗)⊗ C = A⊕A,

where A = L ∩ (T ∗ ⊗ C). Since type(L) = dimC L ∩ (T ∗ ⊗ C), we see that type(J ) =
type(L), as required. By Proposition 1.8, the parity of type(J ) must be fixed throughout the
manifold.

As a result, we see that in real dimension 2, connected generalized complex manifolds
must be of constant type 0 or 1, i.e. of symplectic or complex type, whereas in dimension 4,
they may be of types 0, 1, or 2, with possible jumping from 0 (symplectic) to 2 (complex)
along closed subsets of the manifold; we shall encounter such examples in sections 4.1 and 5.3.

It also follows from our work on Dirac structures that a generalized complex structure is
completely characterized by the pure spinor line K ⊂ S ⊗ C corresponding to the maximal
isotropic subbundle L. When a splitting for E is chosen, we obtain an identification S =
∧•T ∗⊗(detT )1/2, and hence K may be viewed as a line subbundle of the complex differential
forms. For a symplectic structure, Lω = e−iω(T ), and so

Kω = e−iω · ∧0T ∗ = C · eiω,

whereas for a complex structure LJ = T0,1 + T ∗1,0, so that

KJ = ∧nT ∗1,0,

leading to the following definition.
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Definition 3.7. The canonical line bundle of a generalized complex structure on T ⊕ T ∗ is
the complex pure spinor line subbundle K ⊂ ∧•T ∗ ⊗ C annihilated by the +i eigenbundle L
of J .

Proposition 1.15 states that a generator ϕ ∈ Kx for the canonical line bundle at the point
x ∈M must have the form

ϕ = eB+iωΩ, (3.6)

where Ω = θ1 ∧ · · · ∧ θk for (θ1, . . . , θk) a basis for L ∩ (T ∗ ⊗ C), and B,ω are the real and
imaginary components of a complex 2-form. As a result we can read off the type of J at p
directly as the least nonzero degree (k) of the differential form ϕ. The generalized complex
structure defines a polarization

E ⊗ C = L⊕ L, (3.7)

and therefore by Proposition 1.17,
〈ϕ,ϕ〉 6= 0. (3.8)

Using (3.6), we obtain

0 6= (eB+iωΩ, eB−iωΩ) = (e2iωΩ,Ω)

= (−1)2n−k(2i)n−k

(n−k)! ωn−k ∧ Ω ∧ Ω,

which expresses the fact that ω pulls back to the symplectic form on ∆ = kerΩ∧Ω described
earlier, and Ω defines the complex structure transverse to ∆. We also see that 〈ϕ,ϕ〉 ∈ detT ∗

defines an orientation independent of the choice of ϕ, giving a global orientation on the
manifold. This orientation, together with the parity of the type, defines a pair of invariants
which distinguish the four connected components of the coset space (3.3).

In the following result, we show that at any point, a splitting for E may be chosen so that
the generalized complex structure is a product of a complex and a symplectic structure of
lesser dimension.

Theorem 3.8. At any point, a generalized complex structure of type k is equivalent, by a
choice of splitting for E, to the direct sum of a complex structure of complex dimension k and
a symplectic structure of real dimension 2n− 2k.

Proof. Fixing a splitting for E at x ∈ M , the generalized complex structure is defined, as
in (3.6), by the pure spinor

ϕ = eB+iωΩ,

where ωn−k ∧ Ω ∧ Ω 6= 0. Choose a subspace N ⊂ Tx transverse to ∆ = kerΩ ∧ Ω. Then ∆
carries a symplectic structure ω0 = ω|∆ and N inherits a complex structure determined by
Ω|N . The 2-forms then decompose as

∧2T ∗x =
⊕

p+q+r=2

∧p∆∗ ⊗ ∧qN∗
1,0 ⊗ ∧rN∗

0,1,

so that forms have tri-degree (p, q, r). While Ω is purely of type (0, k, 0), the complex 2-form
A = B + iω decomposes into six components:

A200

A110 A101

A020 A011 A002

Only the components A200, A101, A002 act nontrivially on Ω in the expression eAΩ. Hence we
are free to modify the other three components at will. Note that ω0 = − i

2 (A200−A200). Now
define the real 2-form

B̃ = 1
2 (A200 +A200) +A101 +A101 +A002 +A002,
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and observe that eB̃+iω0Ω = eB+iωΩ, demonstrating that ϕ = eB̃+iω0Ω, i.e. ϕ is a B-field
transform of eiω0Ω, which is a direct sum of a symplectic structure on ∆ and complex structure
on N , as required.

The canonical line bundle K introduced in this section, along with its complex conjugate
K, are the extremal line bundles of a Z-grading on spinors induced by the generalized complex
structure. As described in (1.16), a polarization induces a Z-grading on spinors; therefore a
generalized complex structure on T ⊕ T ∗, since it determines a polarization (T ⊕ T ∗)⊗ C =
L⊕ L, induces an alternative Z-grading on differential forms

∧•T ∗ ⊗ C = U−n ⊕ · · · ⊕ Un,

where Un = K is the canonical line bundle and Un−k = ∧kL · Un. Since L annihilates U−n,
we see that U−n = Un is the canonical line of −J . We therefore have the following convenient
description of this Z-grading.

Proposition 3.9. A generalized complex structure J on E = T⊕T ∗ gives rise to a Z-grading

∧•T ∗ ⊗ C = U−n ⊕ · · · ⊕ Un,

where Uk is the ik-eigenbundle of J acting in the spin representation, and Un = K, the
canonical line bundle.

In the case of a usual complex structure JJ , then the graded components correspond to
the well-known (p, q)-decomposition of forms as follows:

Uk
J =

⊕
p−q=k

Ωp,q(M,C), (3.9)

since JJ acts via the spin representation as J∗, which has eigenvalue i(p− q) on Ωp,q.
The fact that U−n = detL · Un, combined with our previous remark (3.8), implies that

Un ⊗ detL∗ ⊗ Un ∼= detT ∗ ⊗ C.

Since the complex bundle L is isomorphic to (E,J ), we obtain the following.

Corollary 3.10. The canonical line bundle of a generalized complex manifold has first Chern
class satisfying

2c1(K) = c+1 + c−1 .

3.2 Courant integrability

The notion of type and the Z-grading on spinors introduced in the last section do not depend
on the Courant integrability of the generalized complex structure; they may be associated to
any generalized almost complex structure:

Definition 3.11. A generalized almost complex structure is a complex structure J on an
exact Courant algebroid which is orthogonal with respect to the natural inner product.

Naturally, a generalized almost complex structure J is said to be integrable when its +i
eigenbundle L ⊂ E ⊗ C is involutive for the Courant bracket, i.e. L is a Dirac structure.

Proposition 3.12. A generalized complex structure is equivalent to a complex Dirac structure
L ⊂ E ⊗ C such that L ∩ L = {0}.
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As a result, (L, [, ], π), where π : L −→ T ⊗ C is the projection, defines the structure of a
Lie algebroid, and therefore we obtain a differential complex

C∞(∧kL∗)
dL // C∞(∧k+1L∗) , (3.10)

where dL is the Lie algebroid de Rham differential, which satisfies d2
L = 0 due to the Jacobi

identity for the Courant bracket restricted to L. The operator dL has principal symbol
s(dL) : T ∗ ⊗ ∧kL∗ → ∧k+1L∗ given by π∗ : T ∗ → L∗ composed with wedge product, i.e.

sξ(dL) = π∗(ξ) ∧ · ,

where ξ ∈ T ∗. We now observe that the complex (3.10) is elliptic for a generalized complex
structure.

Proposition 3.13. The Lie algebroid complex of a generalized complex structure is elliptic.

Proof. Given a real, nonzero covector ξ ∈ T ∗, write ξ = α+ α for α ∈ L. For v ∈ L, we have
π∗ξ(v) = ξ(π(v)) = 〈ξ, v〉 = 〈α, v〉. Using the inner product to identify L∗ = L, we therefore
have π∗ξ = α, which is clearly nonzero if and only if ξ is. As a result, the symbol sequence is
exact for any nonzero real covector, as required.

This provides us with our first invariants associated to a generalized complex structure:

Corollary 3.14. The cohomology of the complex (3.10), called the Lie algebroid cohomology
H•(M,L), is a finite dimensional graded ring associated to any compact generalized complex
manifold.

In the case of a complex structure, L = T0,1⊕T ∗1,0, while dL = ∂, and so the Lie algebroid
complex is a sum of usual Dolbeault complexes, yielding

Hk(M,LJ) =
⊕

p+q=k

Hp(M,∧qT1,0).

In the case of a symplectic structure, the Lie algebroid L is the graph of iω, and hence is
isomorphic to T ⊗ C as a Lie algebroid. Hence its Lie algebroid cohomology is simply the
complex de Rham cohomology.

Hk(M,Lω) = Hk(M,C).

We now describe a second invariant, obtained from the Z-grading on differential forms
induced by J . As we saw in the previous section, a generalized complex structure on T ⊕ T ∗
determines an alternative grading for the differential forms

∧•T ∗ ⊗ C = U−n ⊕ · · · ⊕ Un.

This Z-grading may be viewed as the intersection of two complex conjugate filtrations

Fi = ⊕i
k=0U

n−k, Fi = ⊕i
k=0U

−n+k.

More precisely, we have
Uk = Fn−k ∩ Fn+k. (3.11)

By Theorem 2.16, the integrability of J with respect to [·, ·]H is equivalent to the fact that
dH takes C∞(Fi) into C∞(Fi+1). Using (3.11), this happens if and only if dH takes C∞(Uk)
into C∞(Uk−1 ⊕ Uk ⊕ Uk+1), but since dH is odd, we see that J is integrable if and only
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if dH(C∞(Uk)) ⊂ C∞(Uk−1 ⊕ Uk+1). Projecting to these two components, we obtain dH =
∂ + ∂, where

C∞(Uk)
∂ //

C∞(Uk+1)
∂

oo . (3.12)

In greater generality, we may use our calculation in (2.15) to obtain the following.

Theorem 3.15. Let J be a generalized almost complex structure on T ⊕ T ∗, and define

∂ = πk+1 ◦ dH : C∞(Uk) −→ C∞(Uk+1)

∂ = πk−1 ◦ dH : C∞(Uk) −→ C∞(Uk−1),

where πk is the projection onto Uk. Then

dH = ∂ + ∂ + TL + TL, (3.13)

where TL ∈ ∧3L∗ = ∧3L is defined by

TL(e1, e2, e3) = 〈[e1, e2], e3〉,

and acts via the Clifford action in (3.13). J is integrable, therefore, if and only if dH = ∂+∂,
or equivalently, if and only if

dH(C∞(Un)) ⊂ C∞(Un−1). (3.14)

In the integrable case, since dH = ∂ + ∂ and d2
H = 0, we conclude that ∂2 = ∂

2
= 0 and

∂∂ = −∂∂; hence in each direction, (3.12) defines a differential complex.

Remark. Given the above, a generalized complex structure gives rise to a real differential
operator dJ = i(∂ − ∂), which can also be written dJ = [d,J ], and which satisfies (dJ )2 =
0. It is interesting to note that while in the complex case dJ is just the usual dc-operator
dc = i(∂ − ∂), in the symplectic case dJ is equal to the symplectic adjoint of d defined by
Koszul [26] and studied by Brylinski [6] in the context of symplectic harmonic forms.

Using the identification Un−k = ∧kL∗ ⊗K as in (1.16), the operator ∂ can be viewed as
a Lie algebroid connection

∂ : C∞(∧kL∗ ⊗K) → C∞(∧k+1L∗ ⊗K),

extended from dH : C∞(K) → C∞(L∗ ⊗K) via the rule

∂(µ⊗ s) = dLµ⊗ s+ (−1)|µ|µ ∧ ds, (3.15)

for µ ∈ C∞(∧kL∗) and s ∈ C∞(K), and satisfying ∂
2

= 0. Therefore K is a module for the
Lie algebroid L, and we may call it a generalized holomorphic bundle. From the ellipticity
of the Lie algebroid complex for L and the fact that K is a module over L, we immediately
obtain the following.

Proposition 3.16. The cohomology of the complex (U•, ∂), called the generalized Dolbeault
cohomology H•

∂
(M), is a finite dimensional graded module over H•(M,L) associated to any

compact generalized complex manifold.

In the case of a complex structure, Equation (3.9) shows that the generalized Dolbeault
cohomology coincides with the usual Dolbeault cohomology, with grading

Hk
∂
(M) =

⊕
p−q=k

Hp,q

∂
(M).
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A special case occurs when the canonical line bundle is holomorphically trivial, in the sense
that (K, ∂) is isomorphic to the trivial bundle M×C together with the canonical Lie algebroid
connection dL. Then the Lie algebroid complex and the generalized Dolbeault complex (U•, ∂)
are isomorphic and hence H•

∂
(M) ∼= H•(M,L). This holomorphic triviality of K is equivalent

to the existence of a nowhere-vanishing section ρ ∈ C∞(K) satisfying dHρ = 0. In [18],
Hitchin calls these generalized Calabi-Yau structures:

Definition 3.17. A generalized Calabi-Yau structure is a generalized complex structure with
holomorphically trivial canonical bundle, i.e. admitting a nowhere-vanishing dH -closed section
ρ ∈ C∞(K).

An example of a generalized Calabi-Yau structure is of course the complex structure of a
Calabi-Yau manifold, which admits a holomorphic volume form Ω trivializing the canonical
line bundle. On the other hand, a symplectic structure has canonical line bundle generated
by the closed form eiω, so it too is generalized Calabi-Yau.

Assuming that the canonical bundle is trivial as a smooth line bundle, i.e. c1(K) = 0,
we may always choose a non-vanishing section ρ ∈ C∞(K); by Theorem 3.15, integrability
implies that

dHρ = χρ · ρ,

for a uniquely determined χρ ∈ C∞(L) = C∞(L∗). Applying (3.15), we obtain

0 = d2
Hρ = (dLχρ) · ρ− χρ · (χρ · ρ),

implying that dLχρ = 0. Just as for the modular class of a Poisson structure (2.20), χρ defines
a class in the Lie algebroid cohomology

[χρ] ∈ H1(M,L) (3.16)

which is the obstruction to the existence of generalized Calabi-Yau structure.
More generally, we may use standard Čech arguments to show that any generalized holo-

morphic line bundle V is classified up to isomorphism by an element [V ] ∈ H1(Llog) in the
first hypercohomology of the complex Llog, given by

C∞(C∗)
dL log // C∞(L∗)

dL // C∞(∧2L∗)
dL // · · · .

Definition 3.18. The Picard group of isomorphism classes of rank 1 generalized holomorphic
bundles, i.e. modules over L, is Pic(J ) = H1(Llog).

Of course this implies that J is generalized Calabi-Yau if and only if [K] = 0 as a class
in H1(Llog). The usual exponential map induces a long exact sequence of hypercohomology
groups

· · · // H1(M,L) // H1(Llog)
c1 // H2(Z) // · · · ,

and so we recover the observation (3.16) that when c1(K) = 0 the Calabi-Yau obstruction
lies in H1(M,L).

Example 3.19. Suppose that the complex bundle V is generalized holomorphic for a com-
plex structure JJ . Then the differential D : C∞(V ) −→ C∞(L∗ ⊗ V ) may be decomposed
according to L = T0,1 ⊕ T ∗1,0 to yield

D = ∂V + Φ,

where ∂V : C∞(V ) −→ C∞(T ∗0,1 ⊗ V ) is a usual partial connection, Φ : V −→ T1,0 ⊗ V is a
bundle map, and D ◦D = 0 yields the conditions
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• ∂
2

V = 0, i.e. V is a usual holomorphic bundle,

• ∂V (Φ) = 0, i.e. Φ is holomorphic,

• Φ ∧ Φ = 0 in ∧2T1,0 ⊗ End(V ).

In the rank 1 case, therefore, we obtain the result

Pic(JJ) = H1(O∗)⊕H0(T ),

showing that the generalized Picard group contains the usual Picard group of the complex
manifold but also includes its infinitesimal automorphisms.

3.3 Hamiltonian symmetries

The Lie algebra sym(ω) of infinitesimal symmetries of a symplectic manifold consists of
sections X ∈ C∞(T ) such that LXω = 0. The Hamiltonian vector fields ham(ω) are those
infinitesimal symmetries generated by smooth functions, in the sense X = ω−1(df), for f ∈
C∞(M,R). We then have the well-known sequence

0 // ham(ω) // sym(ω) ω−1
// H1(M,R) // 0 .

We now give an analogous description of the symmetries of a generalized complex structure
and examine the manner in which it specializes to the cases of symplectic and complex
geometry.

Definition 3.20. An infinitesimal symmetry v ∈ sym(J ) of a generalized complex structure
J on the Courant algebroid E is defined to be a section v ∈ C∞(E) which preserves J under
the adjoint action, i.e. adv ◦ J = J ◦ adv, or equivalently, [v, C∞(L)] ⊂ C∞(L).

In the presence of a generalized complex structure J , a real section v ∈ C∞(E) may be
decomposed according to the splitting E ⊗ C = L ⊕ L, yielding v = v1,0 + v0,1. Clearly
[v1,0, C∞(L)] ⊂ C∞(L) by the integrability of J . However [v0,1, C∞(L)] ⊂ C∞(L) if
and only if dLv

0,1 = 0, where we use the identification L = L∗. As a result we identify
sym(J ) = ker dL ∩ C∞(L∗), and the differential complex (3.10) provides the following se-
quence, suggesting the definition of generalized Hamiltonian symmetries:

C∞(M,C)
dL // sym(J ) // H1(M,L) // 0 .

Definition 3.21. An infinitesimal symmetry v ∈ sym(J ) is Hamiltonian, i.e. v ∈ ham(J ),
when v = Df for f ∈ C∞(M,C), where

Df = dLf + dLf = d(Ref)− J d(Imf).

As a result we obtain the following exact sequence of complex vector spaces:

0 // ham(J ) // sym(J ) // H1(M,L) // 0 .

In the case of a symplectic structure, a section X + ξ ∈ C∞(T ⊕ T ∗) preserves Jω precisely
when d(ω−1(X) + ξ) = 0, i.e. when LXω = 0 and dξ = 0. On the other hand, computing
Df , we obtain

Df = d(Ref) + ω−1(d(Imf)),

showing that X + ξ is Hamiltonian precisely when X is Hamiltonian and ξ is exact.
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In the complex case, X + ξ preserves JJ exactly when ∂(X1,0 + ξ0,1) = 0, i.e. when X is
a holomorphic vector field and ∂ξ0,1 = 0. We also have

Df = ∂f + ∂f̄ ,

showing that X + ξ is Hamiltonian exactly when X = 0 and ξ = ∂f + ∂f̄ for f ∈ C∞(M,C).
Even for a usual complex manifold, therefore, there are nontrivial Hamiltonian symmetries

ξ = ∂f + ∂f , which integrate to B-field transformations etB , for B = ∂∂(f − f).

3.4 The Poisson structure and its modular class

In this section we describe a natural Poisson structure on a generalized complex manifold
which governs the behaviour of the symplectic distribution ∆ introduced in Section 3.1. A
formulation of the integrability of J which will be of use is the analog of the vanishing of the
Nijenhuis tensor of an almost complex structure.

Definition 3.22. Let J be a generalized almost complex structure. Then we define the
Nijenhuis tensor NJ ∈ C∞(∧2E∗ ⊗ E) as follows:

NJ (e1, e2) = [J e1,J e2]− J [J e1, e2]− J [e1,J e2]− [e1, e2]. (3.17)

As in the case of an almost complex structure, J is integrable if and only if NJ = 0 by
the usual argument, which we omit.

The endomorphism J gives rise to an orthogonal S1-action on the total space of the
Courant algebroid E; indeed we have, for v ∈ E and t ∈ R,

eit · v = etJ (v).

We now show that when J is integrable, the S1 family of almost Dirac structures obtained
by applying the above action to T ∗ is actually integrable for all t.

Proposition 3.23. Let J be a generalized complex structure. Then the family of almost
Dirac structures

Dt = etJ (T ∗)

is integrable for all t.

Proof. Let a, b ∈ R. Then for ξ, η ∈ C∞(T ∗), we use (3.17) to obtain

[(a+ bJ )ξ, (a+ bJ )η] = ab([ξ,J η] + [J ξ, η]) + b2[J ξ,J η]
= b(a+ bJ )([ξ,J η] + [J ξ, η]).

Since ([ξ,J η] + [J ξ, η]) is a 1-form, we see that (a + bJ )T ∗ is involutive. Setting a = cos t
and b = sin t for each t, we obtain the result.

The path of Dirac structures Dt may be differentiated at t = 0 as a path in the Grass-
mannian of maximal isotropic subbundles of E, yielding a bundle map P : T ∗ −→ E/T ∗ = T ,
given by the expression, for ξ, η ∈ T ∗,

P (ξ, η) = d
dtDt(ξ, η) = d

dt 〈e
tJ ξ, η〉 = 〈J ξ, η〉.

As a map T ∗ −→ T , therefore, P = π ◦ J . Therefore we see immediately that ImP = ∆,
defined in Equation (3.5). We now show that P is a Poisson structure.

Proposition 3.24. The bivector field P = π ◦ J |T∗ : T ∗ −→ T is Poisson.
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Proof. Choose a splitting for the Courant algebroid, with curvature H. Then for sufficiently
small t, the Dirac structures Dt may be described as graphs of bivector fields βt : T ∗ −→ T .
Since Dt are integrable, Example 2.15 indicates that βt satisfy

[βt, βt] = ∧3β∗t (H).

Letting t→ 0, we see that the cubic term is negligible and [P, P ] = 0, as required.

Corollary 3.25. The distribution ∆ = π(J T ∗) = ImP integrates to a generalized foliation
by smooth symplectic leaves with codimension 2k, where k = type(J ).

Given an isotropic splitting for the Courant algebroid, J may be written as a block matrix

J =
(
A P
σ −A∗

)
, (3.18)

so that the Poisson tensor P is apparent. For a direct calculation that P is Poisson, as well
as more details concerning the tensors A, σ, see [1],[13].

In the preceding discussion, the Poisson structure P had a natural interpretation as an
infinitesimal deformation of the Dirac structure T ∗ rather than a genuine Dirac structure.
We now use the tensor product of Dirac structures described in Section 2.5 to provide an
alternative, more global, interpretation of P as a Dirac structure in T ⊕ T ∗. In particular,
Proposition 2.26 suggests the following result.

Proposition 3.26. Let J be a generalized complex structure with +i eigenbundle L ⊂ E⊗C.
Then

L> � L = ΓiP/2, (3.19)

i.e. the tensor product of L> with L is the graph of the Poisson structure iP/2 in (T⊕T ∗)⊗C.

Proof. Let ζ ∈ T ∗ ⊗ C, so that ζ − iJ ζ ∈ L, or in any splitting, using (3.18), we have
ζ−iPζ+iA∗ζ ∈ L. Therefore (ζ−iPζ+iA∗ζ)> = (−ζ−iPζ−iA∗ζ) ∈ L> and ζ+iPζ−iA∗ζ ∈
L. Combining these using (2.24), we see that

iPζ + 2ζ ∈ L> � L,

and hence ΓiP/2 ⊂ L>�L. Since both sides are maximal isotropic subbundles, we must have
equality, as required.

Besides the fact that this provides an alternative proof of the fact that P is Poisson, it
also relates the Lie algebroids defined by L and L to that defined by the Poisson structure
P . We now observe that this implies a relation between the Calabi-Yau obstruction class and
the modular class.

Proposition 3.27. Let J be a generalized complex structure such that c1(K) = 0, and let
ρ ∈ C∞(K) be a non-vanishing section with

dHρ = v · ρ, v ∈ C∞(E).

Then −2π(J v) = X is the modular vector field associated to the Poisson structure P and
volume form (ρ, ρ).

Proof. Let dHρ = v0,1 · ρ for uniquely defined v0,1 ∈ C∞(L), so that v = v1,0 + v0,1 for
v1,0 = v0,1. By Equation (3.19) and Proposition 2.25, we have that

ρ> ∧ ρ = e
iP
2 (ρ, ρ) = ϕ.
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Taking the exterior derivative, and using the definition (2.20) of the modular vector field, we
have

dϕ = X̃ · ϕ = (−1)|ρ|((dHρ)> ∧ ρ+ ρ> ∧ (dHρ))

= (−1)|ρ|((v0,1 · ρ)> ∧ ρ+ ρ> ∧ (v1,0 · ρ))
= −π(v0,1 − v1,0) · (ρ> ∧ ρ)
= −iπ(J v) · ϕ,

showing that X̃ = −iπ(J v) is the modular vector field for iP/2. Rescaling the Poisson
structure, we obtain the result.

Corollary 3.28. The Poisson structure P associated to a generalized Calabi-Yau manifold
is unimodular in the sense of Weinstein [37], i.e. it has vanishing modular class.

The map H1(M,L) −→ H1(M,ΓP ) of Lie algebroid cohomology groups implicit in the
above result may be understood from the fact that the projection map T ∗⊗C −→ L obtained
from the splitting E⊗C = L⊕L, is actually a Lie algebroid morphism, when T ∗⊗C is endowed
with the Poisson Lie algebroid structure, as we now explain.

Proposition 3.29. Let L,P be the +i-eigenbundle and Poisson structure associated to a
generalized complex structure. The bundle map a : ΓP −→ L given, for any ξ ∈ T ∗ ⊗ C, by

a : ξ + Pξ 7→ iξ + J ξ, (3.20)

is a Lie algebroid homomorphism.

Proof. The map a commutes with the projections to the tangent bundle, since P = π ◦J |T∗ .
Given 1-forms ξ, η, we have

[a(ξ + Pξ), a(η + Pη)] = i([ξ,J η] + [J ξ, η]) + [J ξ,J η]
= i([ξ, Pη] + [Pξ, η]) + J ([ξ, Pη] + [Pξ, η])
= a([ξ + Pξ, η + Pη]),

as required.

As a final example of the relationship between a generalized complex structure and its
associated Poisson structure, we use the above Lie algebroid homomorphism to relate the
infinitesimal symmetries of each structure.

Proposition 3.30. If J is a generalized complex structure and P its associated Poisson
structure, then the maps E −→ T defined by v 7→ π(v) and v 7→ π(J v) both induce homo-
morphisms

0 // ham(J ) //

��

sym(J ) //

��

H1(M,L)

��

// 0

0 // ham(P ) // sym(P ) // H1(M,ΓP ) // 0

.

from the infinitesimal symmetries of J to the infinitesimal symmetries of P .

Proof. Identifying sym(J ) = ker dL∩C∞(L∗), we see from Proposition 3.29 that a∗ : L∗ −→
ΓP ⊗ C is a morphism of differential complexes. Identifying Γ∗P ∼= T , and taking real and
imaginary parts, we obtain morphisms v 7→ π(v), v 7→ π(J v) as required.
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3.5 Interpolation

As we saw in section 3.1, symplectic structures have type 0 while complex structures have
type n on a manifold of real dimension 2n. Hence complex and symplectic structures have
the same parity in real dimension 4k. We now show that it is possible to interpolate smoothly
between a complex structure and a symplectic structure through integrable generalized com-
plex structures when M is hyperkähler (or, more generally, holomorphic symplectic). This
example is also described in [18], using spinors.

Let M be a real manifold of dimension 4k with complex structure I and holomorphic
symplectic structure σ = ωJ + iωK , so that σ is a nondegenerate closed (2, 0)-form. Since ωJ

is of type (2, 0) + (0, 2), we have ωJI = I∗ωJ , and hence(
−ω−1

J

ωJ

) (
−I

I∗

)
= −

(
−I

I∗

) (
−ω−1

J

ωJ

)
,

that is, the generalized complex structures JωJ
and JI anticommute. Hence we may form

the one-parameter family of generalized almost complex structures

Jt = (sin t)JI + (cos t)JωJ
, t ∈ [0, π

2 ].

Clearly Jt is a generalized almost complex structure; we now check that it is integrable.

Proposition 3.31. Let M be a holomorphic symplectic manifold as above. Then the gener-
alized almost complex structure Jt = (sin t)JI +(cos t)JωJ

is integrable ∀t ∈ [0, π
2 ]. Therefore

it is a family of generalized complex structures interpolating between a symplectic structure
and a complex structure.

Proof. Let B = (tan t)ωK , a closed 2-form which is well defined ∀ t ∈ [0, π
2 ). Noting that

ωKI = I∗ωK = ωJ , we obtain the following expression:

eBJte
−B =

(
0 −((sec t)ωJ)−1

(sec t)ωJ 0

)
.

We conclude from this that for all t ∈ [0, π
2 ), Jt is a B-field transform of the symplectic struc-

ture determined by (sec t)ωJ , and is therefore integrable as a generalized complex structure;
at t = π

2 , Jt is purely complex, and is integrable by assumption, completing the proof.

4 Local structure: the generalized Darboux theorem

The Newlander-Nirenberg theorem informs us that an integrable complex structure on a 2n-
manifold is locally equivalent, via a diffeomorphism, to Cn. Similarly, the Darboux theorem
states that a symplectic structure on a 2n-manifold is locally equivalent, via a diffeomorphism,
to the standard symplectic structure (R2n, ω0), where in coordinates (x1, . . . , xn, p1, . . . , pn),

ω0 = dx1 ∧ dp1 + · · ·+ dxn ∧ dpn.

In this section we prove an analogous theorem for generalized complex manifolds, describing
a local normal form for a regular neighbourhood of a generalized complex manifold.

Definition 4.1. A point p ∈M in a generalized complex manifold is called regular when the
Poisson structure P is regular at p, i.e. type(J ) is locally constant at p.

By Corollary 3.25, a generalized complex structure defines, in a regular neighbourhood U ,
a foliation F by symplectic leaves of codimension 2k = 2 type(J ), integrating the distribution
∆ = π(J T ∗). The complex structure transverse to ∆ described in Section 3.1 defines an
integrable complex structure on the leaf space U/F as we now describe.
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Proposition 4.2. The leaf space U/F of a regular neighbourhood of a generalized complex
manifold inherits a canonical complex structure.

Proof. Let L ⊂ E be the +i-eigenbundle of J and let D = πT⊗C(L) be its projection to
the complex tangent bundle, which is smooth in a regular neighbourhood since type(J ) =
dimL ∩ (T ∗ ⊗C). Then E ⊗C = L⊕L implies that T ⊗C = D+D, while D ∩D = ∆⊗C.
Since the projection π is bracket-preserving, we see that D is an integrable distribution, hence
[∆, D] ⊂ D. This implies that D descends to an integrable subbundle D′ ⊂ T (U/F) ⊗ C
satisfying D′∩D′

= {0}, hence defining an integrable complex structure on U/F , as required.
This coincides with the complex structure induced by J on E/(T ∗ + J T ∗) = T/∆.

We now prove that near a regular point, the symplectic structure on the leaves, together
with the complex structure on the leaf space, completely characterize the generalized complex
structure.

Theorem 4.3 (Generalized Darboux theorem). Any regular point of type k in a generalized
complex manifold has a neighbourhood which is equivalent, via a diffeomorphism and a choice
of splitting of the Courant algebroid E, to the product of an open set in Ck with an open set
in the standard symplectic space (R2n−2k, ω0).

Proof. First choose a local isotropic splitting for the Courant algebroid so that it is isomorphic,
within the neighbourhood U , to (T⊕T ∗, [·, ·]0); this is always possible as long asH3(U,R) = 0.

Proposition 4.2 then guarantees the existence of holomorphic coordinates (z1, . . . , zk)
transverse to the symplectic foliation in the regular neighbourhood; then a local generator
for the canonical bundle may be chosen, as in (3.6), to be

ρ = eB+iωΩ,

where Ω = dz1 ∧ · · · ∧ dzk and B,ω are real 2-forms such that

ωn−k ∧ Ω ∧ Ω 6= 0.

Integrability then implies, via Proposition 2.11, that

dρ = eB+iωd(B + iω) ∧ Ω = 0. (4.1)

The symplectic form ω|∆ along the leaves derives from the Poisson structure P , and hence
by Weinstein’s normal form for regular Poisson structures [36], we can find a leaf-preserving
local diffeomorphism ϕ : R2n−2k × Ck −→ U such that

ϕ∗ω
∣∣
R2n−2k×{pt} = ω0 = dx1 ∧ dp1 + · · ·+ dxn−k ∧ dpn−k.

For convenience, let K = R2n−2k and N = Ck, so that differential forms now have
tri-degree (p, q, r) for components in ∧pK∗ ⊗ ∧qN∗

1,0 ⊗ ∧rN∗
0,1. Furthermore, the exterior

derivative decomposes into a sum of three operators

d = d∆ + ∂ + ∂,

each of degree 1 in the respective component of the tri-grading. While Ω is purely of type
(0, k, 0), the complex 2-form A = ϕ∗B + iϕ∗ω decomposes into six components:

A200

A110 A101

A020 A011 A002
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Note that only the components A200, A101, A002 act nontrivially on Ω in the expression eAΩ.
Hence we are free to modify the other three components at will. Also, note that the imaginary
part of A200 is simply ω0, so that d(A200 −A200) = 0, since ω0 is in constant Darboux form.

From (4.1), we have d(B + iω) ∧ Ω = 0, giving the following four equations:

∂A002 = 0 (4.2)

∂A101 + d∆A
002 = 0 (4.3)

∂A200 + d∆A
101 = 0 (4.4)

d∆A
200 = 0. (4.5)

We will now endeavour to modify A so that ϕ∗ρ = eAΩ is unchanged but A is replaced
with Ã = B̃ + 1

2 (A200 −A200), where B̃ is a real closed 2-form. This would demonstrate that

ϕ∗ρ = eB̃+iω0Ω,

i.e. ρ is equivalent, via a diffeomorphism and B-field symmetry, to the product of a symplectic
with a complex structure. The B-field transform is simply a change in the original splitting
for (T ⊕ T ∗, [·, ·]0).

In order to preserve ϕ∗ρ, the most general form for B̃ is

B̃ = 1
2 (A200 +A200) +A101 +A101 +A002 +A002 + C,

where C is a real 2-form of type (011). Then clearly ϕ∗ρ = eB̃+iω0Ω. Requiring that dB̃ = 0
imposes two constraint equations:

(dB̃)012 = ∂A002 + ∂C = 0. (4.6)

(dB̃)111 = ∂A101 + ∂A101 + d∆C = 0 (4.7)

The question then becomes whether we can find a real (011)-form C such that these equations
are satisfied. The following are all local arguments, making repeated use of the Dolbeault
lemma.

• From equation (4.2) we obtain that A002 = ∂α for some (001)-form α. Then condition
(4.6) is equivalent to ∂(C − ∂α) = 0, whose general solution is

C = ∂α+ ∂α+ i∂∂χ

for any real function χ. We must now check that it is possible to choose χ so that the
second condition (4.7) is satisfied by this C.

• From equation (4.3) we obtain that ∂(A101−d∆α) = 0, implying that A101 = d∆α+∂β
for some (100)-form β. Condition (4.7) then is equivalent to the fact that

−id∆∂∂χ = ∂∂(β − β),

which can be solved (for the unknown χ) if and only if the right hand side is d∆-closed.
From equation (4.4) we see that ∂(A200 − d∆β) = 0, showing that A200 = d∆β + δ,
where δ is a ∂-closed (200)-form. Hence

d∆∂∂(β − β) = ∂∂(A200 −A200),

and the right hand side vanishes precisely because A200 − A200 = 2ω0, which is closed.
Hence χ may be chosen to satisfy condition (4.7), and so we obtain a closed 2-form B̃.

35



4.1 Type jumping

While Theorem 4.3 fully characterizes generalized complex structures in regular neighbour-
hoods, it remains an essential feature of the geometry that the type of the structure may vary
throughout the manifold. The most generic type is zero, when there are only symplectic di-
rections and the Poisson structure P has maximal rank. The type may jump up along closed
subsets, has maximal value n = 1

2 dimR M , and has fixed parity throughout the manifold. We
now present a simple example of a generalized complex structure on R4 which is of symplectic
type (k = 0) outside a codimension 2 hypersurface and jumps up to complex type (k = 2)
along the hypersurface.

Consider the differential form

ρ = z1 + dz1 ∧ dz2, (4.8)

where z1, z2 are the standard coordinates on C2 ∼= R4. Along z1 = 0, we have ρ = dz1 ∧ dz2
and so it generates the pure spinor line corresponding to the standard complex structure.
Whenever z1 6= 0, ρ may be rewritten as follows:

ρ = z1e
dz1∧dz2

z1 .

Therefore away from z1 = 0, ρ generates the canonical line bundle of the B-field transform of
the symplectic form ω, where

B + iω = z−1
1 dz1 ∧ dz2.

Hence, algebraically the form ρ defines a generalized almost complex structure which is gener-
ically of type 0 but jumps to type 2 along z1 = 0.

To verify the integrability of this structure, we take the exterior derivative:

dρ = dz1 = i−∂z2
(z1 + dz1 ∧ dz2) = (−∂z2) · ρ,

showing that ρ indeed satisfies the integrability condition of Theorem 3.15, and defines a
generalized complex structure on all of R4. In this case it is easy to see that although the
canonical line bundle is topologically trivial, it does not admit a closed, nowhere-vanishing
section. Hence the generalized complex structure is not generalized Calabi-Yau.

In the next chapter we will produce more general examples of the jumping phenomenon,
and on compact manifolds as well. However we indicate here that the simple example above
was used in [8] to produce, via a surgery on a symplectic 4-manifold, an example of a com-
pact, simply-connected generalized complex 4-manifold which admits neither complex nor
symplectic structures.

5 Deformation theory

In the deformation theory of complex manifolds developed by Kodaira, Spencer, and Kuran-
ishi, one begins with a compact complex manifold (M,J) with holomorphic tangent bundle
T , and constructs an analytic subvariety Z ⊂ H1(M, T ) (containing 0) which is the base
space of a family of deformations M = {ε(z) : z ∈ Z, ε(0) = 0} of the original complex
structure J . This family is locally complete (also called miniversal), in the sense that any
family of deformations of J can be obtained, up to equivalence, by pulling M back by a map
f to Z, as long as the family is restricted to a sufficiently small open set in its base.

The subvariety Z ⊂ H1(M, T ) is defined as the zero set of a holomorphic map Φ :
H1(M, T ) → H2(M, T ), and so the base of the miniversal family is certainly smooth when
this obstruction map vanishes.

In this section we extend these results to the generalized complex setting, following the
method of Kuranishi [27]. In particular, we construct, for any generalized complex manifold,
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a locally complete family of deformations. We then proceed to produce new examples of
generalized complex structures by deforming known ones.

5.1 Lie bialgebroids and the deformation complex

The generalized complex structure J on the exact Courant algebroid E is determined by its
+i-eigenbundle L ⊂ E⊗C which is isotropic, satisfies L∩L = {0}, and is Courant involutive.
Recall that since E ⊗ C = L⊕ L, we use the natural metric 〈, 〉 to identify L with L∗.

To deform J we will vary L in the Grassmannian of maximal isotropics. Any maximal
isotropic having zero intersection with L (this is an open set containing L) can be uniquely
described as the graph of a homomorphism ε : L −→ L satisfying 〈εX, Y 〉 + 〈X, εY 〉 =
0 ∀X,Y ∈ C∞(L), or equivalently ε ∈ C∞(∧2L∗). Therefore the new isotropic is given by

Lε = (1 + ε)L = {u+ iuε : u ∈ L}.

As the deformed J is to remain real, we must have Lε = (1 + ε)L. Now we observe that Lε

has zero intersection with its conjugate if and only if the endomorphism we have described
on L⊕ L∗, namely

Aε =
(

1 ε
ε 1

)
, (5.1)

is invertible; this is the case for ε in an open set around zero.
So, providing ε is small enough, Jε = AεJA−1

ε is a new generalized almost complex
structure, and all nearby almost structures are obtained in this way. Note that while Aε itself
is not an orthogonal transformation, of course Jε is.

To describe the condition on ε ∈ C∞(∧2L∗) which guarantees that Jε is integrable, we
observe the following. Since L∗ = L, we have not only an elliptic differential complex (by
Proposition 3.13)

(C∞(∧•L∗), dL) ,

but also a Lie algebroid structure on L∗ coming from the Courant bracket on L. In fact,
by a theorem of Liu-Weinstein-Xu [28], the differential is a derivation of the bracket and we
obtain the structure of a Lie bialgebroid in the sense of Mackenzie-Xu [29], also known as a
differential Gerstenhaber algebra.

Theorem 5.1 ([28], Theorem 2.6). Let E be an exact Courant algebroid and E = L ⊕ L′

for Dirac structures L,L′. Then L′ = L∗ using the inner product, and the dual pair of Lie
algebroids (L,L∗) defines a Lie bialgebroid, i.e.

dL[a, b] = [dLa, b] + [a, dLb],

for a, b ∈ C∞(L∗), where [·, ·] is extended in the Schouten sense to C∞(∧•L∗). Therefore the
data

(C∞(∧•L∗), dL, [·, ·])

define a differential Gerstenhaber algebra.

Interpolating between the examples 2.14 and 2.15, Liu-Weinstein-Xu [28] also prove that,
under the assumptions of the previous theorem, the graph Lε of a section ε ∈ C∞(∧2L∗)
defines an integrable Dirac structure if and only if it satisfies the Maurer-Cartan equation.

Theorem 5.2 ([28], Theorem 6.1). The almost Dirac structure Lε, for ε ∈ C∞(∧2L∗), is
integrable if and only if ε satisfies the Maurer-Cartan equation

dLε+ 1
2 [ε, ε] = 0. (5.2)

Here dL : C∞(∧kL∗) → C∞(∧k+1L∗) and [·, ·] is the Lie algebroid bracket on L∗.
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Therefore we conclude that the deformed generalized almost complex structure Jε is in-
tegrable if and only if ε satisfies the Maurer-Cartan equation (5.2). We may finally define a
smooth family of deformations of the generalized complex structure J . We are only interested
in “small” deformations.

Definition 5.3. Let U be an open disk containing the origin of a finite-dimensional vector
space. A smooth family of deformations of J over U is a family of sections ε(u) ∈ C∞(∧2L∗),
smoothly varying in u ∈ U , with ε(0) = 0, such that (5.1) is invertible, and satisfying the
Maurer-Cartan equation (5.2) for each u ∈ U . Two such families ε1(u), ε2(u) are equivalent
if Fu(Lε1(u)) = Lε2(u) for all u ∈ U , where Fu is a smooth family of Courant automorphisms
with F0 = id.

The space of solutions to (5.2) is infinite-dimensional, however due to the action of the
group of Courant automorphisms we are able, as in the case of complex manifolds, to take a
suitable quotient, forming a finite-dimensional locally complete family. To obtain this finite-
dimensional moduli space of deformations, it will suffice to consider equivalences Fu which
are families of exact Courant automorphisms in the sense of Definition 2.7, generated by
time-independent derivations ad(v(u)) given by a smooth family of sections v(u) ∈ C∞(E),
u ∈ U . A similar situation occurs in the case of deformations of complex structure.

Suppose v ∈ C∞(E) and let F 1
v denote its time-1 flow defined by (2.10), so that in a

splitting for E with curvature H, we have v = X + ξ and by (2.11),

F 1
v = ϕ1

∗e
B1 , B1 =

∫ 1

0

ϕ∗s(iXH + dξ) ds, (5.3)

where ϕt
∗ is the flow of the vector field X. The Courant isomorphism F 1

v acts on generalized
complex structures, taking a given deformation Lε to F 1

v (Lε). If v has sufficiently small 1-jet,
then F 1

v (Lε) may be expressed as Lε′ for another section ε′ ∈ C∞(∧2L∗), and we denote it
F 1

v (ε) := ε′. We now determine an approximate formula for F 1
v (ε) in terms of (ε, v).

Proposition 5.4. Let J be a generalized complex structure with +i-eigenbundle L ⊂ E⊗C,
and let ε ∈ C∞(∧2L∗) be such that (5.1) is invertible. Then for v ∈ C∞(E) with sufficiently
small 1-jet, the time-1 flow (5.3) satisfies

F 1
v (ε) = ε+ dLv

0,1 +R(ε, v), (5.4)

where v = v1,0 + v0,1 according to the splitting L⊕ L∗, and R satisfies

R(tε, tv) = t2R̃(ε, v, t),

where R̃(ε,X + ξ, t) is smooth in t for small t.

Proof. Define ε(s, t) for s, t ∈ R by

ε(s, t) = F 1
tv(sε), (5.5)

so that ε = ε(1, 1) and ε(0) = 0. We first compute the derivatives of (5.5) at s = t = 0. The
derivative in s is easily computed:

∂ε(s, t)
∂s

∣∣∣∣
(0,0)

=
∂(sε)
∂s

= ε.

The derivative in t may be computed using the property of flows that F 1
tv = F t

v , together with
the fact that the flow F t

v is generated by the adjoint action ad(v) = [v, ·] of v on the Courant
algebroid. Using the properties of the Courant bracket, we obtain, for y, z ∈ C∞(L),

∂ε(s, t)
∂t

∣∣∣∣
(0,0)

(y, z) =
∂F t

v(0)
∂t

(y, z) = 〈−[v, y], z〉 = dLv
0,1(y, z).
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By Taylor’s theorem we obtain

F 1
tv(sε) = sε+ tdLv

0,1 + r(s, t, ε, v),

where r is smooth of order O(s2, st, t2) at zero. Setting R(ε, v) = r(1, 1, ε, v), we obtain the
result, since clearly r(1, 1, tε, tv) = r(t, t, ε, v) is of order O(t2).

Whereas the Maurer-Cartan equation (5.2) indicates that, infinitesimally, deformations of
generalized complex structure lie in ker dL ⊂ C∞(∧2L∗), the previous Proposition shows us
that, infinitesimally, deformations which differ by sections which lie in the image of dL are
equivalent. Hence we expect the tangent space to the moduli space to lie in the Lie algebroid
cohomology H2(M,L), which by ellipticity is finite-dimensional for M compact. We now
develop the Hodge theory required to prove this assertion.

We follow the usual treatment of Hodge theory as described in [38]. Choose a Hermitian
metric on the complex Lie algebroid L and let |ϕ|k be the L2

k Sobolev norm on sections
ϕ ∈ C∞(∧pL∗) induced by the metric. We then have the elliptic, self-adjoint Laplacian

∆L = dLd
∗
L + d∗LdL.

Let Hp be the space of ∆L-harmonic forms, which is isomorphic to Hp(M,L) by the standard
argument, and let H be the orthogonal projection of C∞(∧pL) onto the closed subspace Hp.
Also, let G be the Green smoothing operator quasi-inverse to ∆L, i.e. G∆ +H = Id and

G : L2
k → L2

k+2.

We will find it useful, as Kuranishi did, to define the once-smoothing operator

Q = d∗LG : L2
k → L2

k+1,

which then satisfies

Id = H + dLQ+QdL, (5.6)

Q2 = d∗LQ = Qd∗L = HQ = QH = 0.

We now have the algebraic and analytical tools required to prove a direct analog of Kuranishi’s
theorem for generalized complex manifolds.

5.2 The deformation theorem

Theorem 5.5. Let (M,J ) be a compact generalized complex manifold. There exists an
open neighbourhood U ⊂ H2(M,L) containing zero, a smooth family M̃ = {ε(u) : u ∈
U, ε(0) = 0} of generalized almost complex deformations of J , and an analytic obstruction
map Φ : U → H3(M,L) with Φ(0) = 0 and dΦ(0) = 0, such that the deformations in the
sub-family M = {ε(z) : z ∈ Z = Φ−1(0)} are precisely the integrable ones. Furthermore,
any sufficiently small deformation ε of J is equivalent to at least one member of the family
M. In the case that the obstruction map vanishes, M is a smooth locally complete family.

Proof. The proof is divided into two parts: first, we construct a smooth family M̃, and show
it contains the family of integrable deformationsM defined by the map Φ; second, we describe
its miniversality property. We follow the paper of Kuranishi [27] closely, where more details
can be found.

Part I: For sufficiently large k, L2
k(M,R) is a Banach algebra (see [32]), and the map

f : ε 7→ ε+ 1
2Q[ε, ε] extends to a smooth map

f : L2
k(∧2L∗) −→ L2

k(∧2L∗),
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whose derivative at the origin is the identity mapping. By the inverse function theorem,
f−1 maps a neighbourhood of the origin in L2

k(∧2L∗) smoothly and bijectively to another
neighbourhood of the origin. Hence, for sufficiently small δ > 0, the finite-dimensional subset
of harmonic sections,

U = {u ∈ H2 < L2
k(∧2L∗) : |u|k < δ},

defines a family of sections as follows:

M̃ = {ε(u) = f−1(u) : u ∈ U},

where ε(u) depends smoothly (in fact, holomorphically) on u, and satisfies f(ε(u)) = u.
Applying the Laplacian to this equation, we obtain

∆Lε(u) + 1
2d

∗
L[ε(u), ε(u)] = 0.

This is a quasi-linear elliptic PDE, and by a result of Morrey [30], we conclude that the
solutions ε(u) of this equation are actually smooth, i.e.

ε(u) ∈ C∞(∧2L∗).

Hence we have constructed a smooth family of generalized almost complex deformations of
J , over an open set U ⊂ H2 ∼= H2(M,L).

We now ask which of these deformations satisfy the Maurer-Cartan equation (5.2). By
definition of ε(u), and using (5.6), we obtain

dLε(u) + 1
2 [ε(u), ε(u)] = − 1

2dLQ[ε(u), ε(u)] + 1
2 [ε(u), ε(u)]

= 1
2 (QdL +H)[ε(u), ε(u)].

Since the images of Q and H are L2-orthogonal, we see that ε(u) is integrable if and only
if H[ε(u), ε(u)] = QdL[ε(u), ε(u)] = 0. We now refer to the argument of Kuranishi [27]
which, using the compatibility between [·, ·] and dL, shows that QdL[ε(u), ε(u)] vanishes when
H[ε(u), ε(u)] does.

Hence, ε(u) is integrable precisely when u lies in the vanishing set of the analytic mapping
Φ : U → H3

L(M) defined by
Φ(u) = H[ε(u), ε(u)]. (5.7)

Note furthermore that Φ(0) = dΦ(0) = 0.
Part II: For the second part of the proof, we give an alternative characterisation of the

family M. We claim that M is actually a neighbourhood around zero in the set

M′ =
{
ε ∈ C∞(∧2L∗) : dLε+ 1

2 [ε, ε] = 0, d∗Lε = 0
}
.

To show this, let ε(u) ∈ M. Then since ε(u) = u − 1
2Q[ε(u), ε(u)] and d∗LQ = 0, we see that

d∗Lε(u) = 0, showing that M ⊂ M′. Conversely, let ε ∈ M′. Then since d∗Lε = 0, applying
d∗L to the equation dLε + 1

2 [ε, ε] = 0 we obtain ∆Lε + 1
2d

∗
L[ε, ε] = 0, and applying Green’s

operator we see that ε + 1
2Q[ε, ε] = Hε, i.e. F (ε) = Hε ∈ H2, proving that a small open set

in M′ is contained in M, completing the argument.
We now show that every sufficiently small deformation of the generalized complex structure

is equivalent to one in our finite-dimensional familyM. Let P ⊂ C∞(L∗) be the L2 orthogonal
complement of ker dL ⊂ C∞(L∗), or in other words, sections in the image of d∗L. We show
that there exist neighbourhoods of the origin V ⊂ C∞(∧2L∗) and W ⊂ P such that for any
ε ∈ V there is a unique v ∈ C∞(E) such that v0,1 ∈W and the time-1 flow F 1

v (ε) satisfies

d∗LF
1
v (ε) = 0. (5.8)
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This would imply that any sufficiently small solution to dLε + 1
2 [ε, ε] = 0 is equivalent to

another solution ε′ such that d∗Lε
′ = 0, i.e. a solution in M′ = M. Extended to smooth

families, this result would prove local completeness.
We see from (5.4) that (5.8) holds if and only if

d∗Lε+ d∗LdLv
0,1 + d∗LR(ε, v) = 0.

Assuming v0,1 ∈ P , we see that d∗Lv
0,1 = Hv0,1 = 0, so that

d∗Lε+ ∆Lv
0,1 + d∗LR(ε, v) = 0. (5.9)

Applying the Green operator G, we obtain

v0,1 +Qε+QR(ε, v) = 0. (5.10)

By the definition (5.4) of R(ε, v), the map

F : (ε, v0,1) 7→ v0,1 +Qε+QR(ε, v)

is continuous from a neighbourhood of the origin V0 ×W0 in C∞(∧2L∗)× P to P , where all
spaces are endowed with the L2

k norm, k sufficiently large. Also, the derivative of F with
respect to v0,1 (at 0) is the identity map. Therefore by the implicit function theorem, there
are neighbourhoods V ⊂ V0,W1 ⊂ Ŵ0 such that given ε ∈ V , equation (5.10), i.e. F = 0,
is satisfied for a unique v0,1 ∈ W1, and which depends smoothly on ε ∈ V . Furthermore,
since ε ∈ V is itself smooth, the unique solution v satisfies the quasi-linear elliptic PDE (5.9),
implying that v is smooth as well, hence v0,1 lies in the neighbourhoodW = W1∩P . Therefore
we have shown that every sufficiently small deformation of the generalized complex structure
is equivalent to one in our finite-dimensional family M.

If the obstruction map Φ vanishes, so that M is a smooth family, then given any other
smooth family MS = {ε(s) : s ∈ S, ε(s0) = 0} with basepoint s0 ∈ S, the above argument
provides, for s in some neighbourhood T of s0, a smooth family of sections v(s) ∈ C∞(E)
whose time-1 flow takes each ε(s) to ε(f(s)), f(s) ∈ U ⊂ H2(M,L). This defines a smooth
map f : T → U , f(s0) = 0, such that f∗M = MS . Thus we establish that M is a locally
complete family of deformations.

Remark. The natural complex structure on H2(M,L) and on the vanishing set of the holo-
morphic obstruction map Φ raises the question of whether there is a notion of holomorphic
family of generalized complex structures. There is: if S is a complex manifold then a holo-
morphic family of generalized complex structures on M is a generalized complex structure on
M × S which can be pushed down, or reduced in the sense of [7], via the projection to yield
the complex structure on S. The family M can be shown to define such a holomorphic family,
since the constructed family ε(u) depends holomorphically on u.

5.3 Examples of deformed structures

Consider deforming a compact complex manifold (M,J) as a generalized complex manifold.
Recall that the associated Lie algebroid is L = T0,1 ⊕ T ∗1,0, so the deformation complex is
simply the holomorphic multivector Dolbeault complex(

Ω0,•(∧•T1,0), ∂
)
.

The base of the Kuranishi family therefore lies in the finite-dimensional vector space

H2(M,L) = ⊕p+q=2H
q(M,∧pT1,0),
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whereas the image of the obstruction map lies in

H3(M,L) = ⊕p+q=3H
q(M,∧pT1,0).

In this way, generalized complex manifolds provide a geometrical interpretation of the “ex-
tended complex deformation space” defined by Kontsevich and Barannikov [4]. Any defor-
mation ε has three components

β ∈ H0(M,∧2T1,0), ϕ ∈ H1(M,T1,0), B ∈ H2(M,O).

The component ϕ is a usual deformation of the complex structure, as described by Kodaira and
Spencer. The component B represents a residual action by cohomologically nontrivial B-field
transforms; these do not affect the type. The component β, however, is a new deformation
for complex manifolds. Setting B = ϕ = 0, the integrability condition reduces to

∂β + 1
2 [β, β] = 0,

which is satisfied if and only if the bivector β is holomorphic and Poisson. Writing β =
−1
4 (Q+ iP ) for Q,P real bivectors of type (0, 2)+(2, 0) such that Q = PJ∗, we may explicitly

determine the deformed generalized complex structure:

Jβ = eβ+βJJe
−(β+β) =

(
J P

−J∗
)
.

In this way, we obtain a new class of generalized complex manifolds with type controlled by
the rank of the holomorphic Poisson bivector β.

Example 5.6 (Deformed generalized complex structure on CP 2). For CP 2, ∧2T1,0 = O(3),
and for dimensional reasons, any holomorphic bivector β ∈ H0(M,O(3)) is automatically
Poisson. Hence any holomorphic section of O(3) defines an integrable deformation of the
complex structure into a generalized complex structure. Since H1(T1,0) = H2(O) = 0, we
may conclude from the arguments above that the locally complete family of deformations is
smooth and of complex dimension 10. However one can also check that the obstruction space
vanishes in this case, by the Bott formulae.

The holomorphic Poisson structure β has maximal rank outside its vanishing locus, which
must be a cubic curve C. Hence the deformed generalized complex structure is of B-symplectic
type (type 0) outside C and of complex type (type 2) along the cubic. The complexified
symplectic form B+iω = β−1 is singular along C. We therefore have an example of a compact
generalized complex manifold exhibiting type change along a codimension 2 subvariety.

Example 5.7. One can of course deform C2 in the same way that we have deformed CP 2;
we choose the holomorphic bivector

β = z1∂z1 ∧ ∂z2 ,

where z1, z2 are the usual complex coordinates. Then applying a β-transform to the usual
complex structure defined by the spinor Ω = dz1 ∧ dz2, we obtain

eβΩ = dz1 ∧ dz2 + z1,

which is precisely the example (4.8). We see now that it is actually a deformation of the usual
complex structure by a holomorphic Poisson structure.

Note that while holomorphic Poisson bivectors may be thought of as infinitesimal non-
commutative deformations in the sense of quantization of Poisson structures, we are viewing
them here as genuine (finite) deformations of the generalized complex structure. For more
details about this distinction and its consequences, see [19],[16].
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6 Generalized complex branes

In this section we introduce the natural “sub-objects” of generalized complex manifolds, gen-
eralizing both holomorphic submanifolds of a complex manifold and Lagrangian submanifolds
in symplectic geometry. In fact, even in the case of a usual symplectic manifold, there are
generalized complex branes besides the Lagrangian ones: we show these are the coisotropic
A-branes discovered by Kapustin and Orlov [22].

As has been emphasized by physicists, a geometric description of a brane in M involves
not only a submanifold ι : S −→M but also a vector bundle supported on it; in cases where a
nontrivial S1-gerbe G is present one replaces the vector bundle by an object (“twisted vector
bundle”) of the pullback gerbe ι∗G. Since the Courant bracket captures the differential
geometry of the gerbe, we obtain a convenient description of branes in terms of generalized
geometry. For simplicity we shall restrict our attention to branes supported on loci where the
pullback gerbe ι∗G is trivializable.

We begin by phrasing the definition of a gerbe trivialization in terms of the Courant
bracket. Recall that ι∗E denotes the pullback of exact Courant algebroids, defined in the
Appendix.

Definition 6.1. Let E be an exact Courant algebroid on M and let ι : S −→ M be a
submanifold. A (Courant) trivialization of E along S consists of a bracket-preserving isotropic
splitting s : TS −→ ι∗E inducing an isomorphism

s+ π∗ : (TS ⊕ T ∗S, [·, ·]0) −→ ι∗E.

If an isotropic splitting s̃ : TM −→ E is chosen, with curvature H ∈ Ω3
cl(M), then ι∗E

inherits a splitting with curvature ι∗H, and any trivialization (ι, s) is characterized by the
difference s− ι∗s̃ = F ∈ Ω2(S), which satisfies

ι∗H = dF. (6.1)

Therefore the gerbe curvature is exact when pulled back to S. Indeed, we obtain a generalized
pullback morphism ρ 7→ eF ∧ ι∗ρ, defining a map from the twisted de Rham complex of M
to the usual de Rham complex of S:

(Ω•(M), dH) eF ι∗ // (Ω•(S), d) .

This may be viewed as the the image under the Chern character of a morphism from the
twisted K-theory of M to the usual K-theory of S.

To avoid confusion, let E|S denote the restriction of the bundle E to S, as opposed to
ι∗E = K⊥/K, for K = Ann(TS), which defines the pullback Courant algebroid over S. The
trivialization (ι, s) defines a maximal isotropic subbundle s(TS) ⊂ ι∗E. Further, the quotient
map q : K⊥ −→ K⊥/K determines a bijection taking maximal isotropic subbundles L ⊂ ι∗E
to maximal isotropic subbundles q−1(L) ⊂ E|S contained in K⊥.

Definition 6.2. The generalized tangent bundle to the trivialization L = (ι, s) of E is the
maximal isotropic subbundle τL ⊂ E|S defined by τL = q−1(s(TS)).

Note that Ann(TS) = N∗S, so that τL is actually an extension of the tangent bundle by
the conormal bundle:

0 // N∗S // τL
π // TS // 0 (6.2)

If a splitting s̃ : TM −→ E is chosen, with s− ι∗s̃ = F ∈ Ω2(S) as in (6.1), then τL has the
explicit form

τL = {X + η ∈ TS ⊕ T ∗M : ι∗η = iXF}. (6.3)
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Comparing this with Proposition 2.10, we obtain the following canonical example of a Courant
trivialization:

Example 6.3. Let L ⊂ (TM ⊕ T ∗M, [·, ·]H) be a Dirac structure and let ι : S ↪→ M be
a maximal integral submanifold for the (generalized) distribution ∆ = π(L) ⊂ TM . Then
along S, we have L = L(∆, ε) for a unique ε ∈ Ω2(S), and by the same argument as in
Proposition 2.10, we obtain

ι∗H = dε.

Therefore we see that a Dirac structure induces a (generalized) foliation of the manifold by
trivializations L = (ι, ε).

Note that in this example, τL = L|S inherits a Lie algebroid structure over S, since any
sections u, v ∈ C∞(S, τL) may be extended to ũ, ṽ ∈ C∞(M,L) and then the expression

[u, v] := [ũ, ṽ]|S

is independent of extension and defines a Lie bracket. For general trivializations, however,
the ambient Dirac structure L is unavailable, and the argument fails.

A complex submanifold S ⊂ M of a complex manifold is defined by the property that
J(TS) = TS. Similarly, we define a compatibility condition between a Courant trivialization
and a generalized complex structure.

Definition 6.4. A Courant trivialization L = (ι, s) is said to be compatible with the gener-
alized complex structure J if and only if

J (τL) = τL,

i.e. its generalized tangent bundle is a complex subbundle of E.

An immediate consequence of the definition is that π(J (N∗S)) ⊂ TS, which by Propo-
sition 3.24 is the statement that P (N∗S) ⊂ TS, i.e. S is a coisotropic submanifold for the
Poisson structure P . Since P is Poisson, ∆ = P (N∗S) integrates to a singular folation called
the characteristic foliation of S.

Decomposing τL ⊗ C into ±i-eigenspaces for J , we obtain

τL ⊗ C = `⊕ `

Note that the isotropic subbundle ` ⊂ (E ⊗C)|S is contained in the ambient +i-eigenbundle
L of J , i.e.

` ⊂ L|S .
Therefore, the argument of Example 6.3 concerning restriction of Courant brackets applies
and we obtain the following result1.

Proposition 6.5. Let J be a generalized complex structure and let L be a compatible Courant
trivialization. Define ` = ker(J −i)∩(τL⊗C). Then the Courant bracket induces a Lie bracket
on C∞(S, `), making (`, [·, ·], π) into a complex Lie algebroid over S.

The associated Lie algebroid complex (C∞(S,∧•`∗), d`) is actually elliptic, by the same
reasoning as in Proposition 3.13, and may be used to study the deformation theory of L,
which we leave for a future work.

The Lie algebroid ` projects to a generalized distribution A = π(`) ⊂ TS ⊗ C, which is
integrable and satisfies A+A = TS ⊗C. The intersection A∩A = ∆⊗C coincides with the
characteristic distribution of the coisotropic submanifold S. Therefore, by the reasoning in
Proposition 4.2, wherever ∆ has constant rank, A defines an invariant integrable holomorphic
structure transverse to the characteristic foliation.

1This Lie algebroid was obtained independently by Kapustin and Li [21], as defining the BRST complex de-
scribing open strings with both ends on L.
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Corollary 6.6. Let L be a compatible trivialization and let ` be the complex Lie algebroid
defined above. In a neighbourhood where the characteristic distribution is of constant rank,
A = π(`) ⊂ TS⊗C defines an integrable holomorphic structure transverse to the characteristic
foliation, which descends to the leaf space.

Since ` is a Lie algebroid, we may associate to any compatible trivialization L the cat-
egory of `-modules, i.e. complex vector bundles V over S, equipped with flat Lie algebroid
connections with respect to `. We call these generalized complex branes on L.

Definition 6.7 (Generalized complex brane). Let J be a generalized complex structure and
L a compatible trivialization. A generalized complex brane supported on L is a module over
the Lie algebroid `.

We now indicate that there is a natural pullback map taking generalized holomorphic
bundles (L-modules) over M to `-modules over S. As a result, any compatible Courant
trivialization immediately supports not only the trivial brane V = C×S but also the canonical
brane ι∗K, where K is the canonical line bundle.

Proposition 6.8. Let L = (ι, s) be a compatible trivialization and V a generalized holomor-
phic bundle over M . Then ι∗V is naturally a `-module, and hence a generalized complex
brane.

Proof. Let j : ` ↪→ L|S denote the inclusion, and let ∂ : C∞(V ) −→ C∞(L∗ ⊗ V ) be the flat
Lie algebroid connection defining the L-module structure. Then for v ∈ C∞(S, ι∗V ), choose
an extension ṽ ∈ C∞(M,V ) and define D : C∞(S, ι∗V ) −→ C∞(S, `∗ ⊗ ι∗V ) by

Dv := j∗(∂ṽ)|S .

This is independent of extension since π(`) ⊂ TS ⊗ C, and is easily seen to be a flat `-
connection.

We now describe the detailed structure of generalized complex branes in the extremal
cases of complex and symplectic geometry.

Example 6.9 (Complex branes). Let L = (ι, F ), for ι : S ↪→ M and F ∈ Ω2(S), be a
generalized complex trivialization in a complex manifold, so that ι∗H = dF and τL, given
by (6.3), is a complex subbundle for

JJ =
(
−J

J∗

)
.

This happenes if and only if

• TS ⊂ TM is a complex subbundle for J , i.e. S is a complex submanifold, and

• J∗iXF + iJXF ∈ N∗S for all X ∈ TS, i.e. F is of type (1, 1).

In this case, the Lie algebroid ` is given by

` = {X + ξ ∈ T0,1S ⊕ T ∗1,0M : ι∗ξ = iXF},

and is therefore isomorphic to T0,1S⊕N∗
1,0S, where N∗

1,0S denotes the holomorphic conormal
bundle of S. As a result, a generalized complex brane supported on L consists of a holomorphic
vector bundle V over S, together with a holomorphic section φ : V −→ N1,0S ⊗ V satisfying

φ ∧ φ = 0 ∈ ∧2N1,0S ⊗ End(V ).

One sees directly from the description in Example 3.19 of generalized holomorphic bundles
that `-modules may be obtained by pullback of L-modules.
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Example 6.10 (Symplectic branes). As in the previous example, let L = (ι, F ) be a com-
patible trivialization, but for a symplectic structure

Jω =
(

−ω−1

ω

)
.

If F = 0, then τL = TS ⊕N∗S, and J (τL) = τL is simply the requirement that ω−1(N∗S) ⊂
TS and ω(TS) ⊂ N∗S, i.e. S is a Lagrangian submanifold. In this particular case, ` =
{X − iω(X) : X ∈ TS}, so that ` is isomorphic as a Lie algebroid to TS itself; hence
`-modules are simply flat vector bundles supported on S.

However, there are symplectic branes beyond the flat bundles over Lagrangians if we allow
F 6= 0; in general, as we saw in Corollary 6.6, S must be coisotropic and the Lie algebroid
` determines a complex distribution A = π(`) defining an invariant holomorphic structure
transverse to the characteristic foliation of S. However for a symplectic trivialization we have
explicitly ` = (τL ⊗ C) ∩ Γ−iω, and hence

` = {X − iω(X) ∈ (TS ⊕ T ∗M)⊗ C : iX(F + iι∗ω) = 0}. (6.4)

Since A = π(`) and ∆ ⊗ C = A ∩ A defines the characteristic foliation, (6.4) implies that
F + iι∗ω is basic with respect to the foliation and defines a closed, nondegenerate (0, 2)-form
on the leaf space. Hence the leaf space inherits a natural holomorphic symplectic structure. In
this way we obtain precisely the structure of coisotropic A-brane, discovered by Kapustin and
Orlov [22] in their search for geometric objects of the Fukaya category beyond the well-known
Lagrangian ones.

For such coisotropic trivializations, ` is isomorphic as a Lie algebroid to the distribution
A = π(`), and so branes are vector bundles equipped with flat partial A-connections. This
implies that they are flat along the characteristic distribution, transversally holomorphic and
invariant along the distribution. Holomorphic bundles pulled back from the leaf space would
provide examples.

Example 6.11 (Space-filling symplectic brane). A special case of the preceding example is
when the submanifold S coincides with M itself; then any brane over L = (id, s) is said to be
space-filling. By the preceding argument, L may be described by a closed 2-form F ∈ Ω2(M)
such that

σ = F + iω

defines a holomorphic symplectic structure on M , with complex structure given by J =
−ω−1F .

If M supports such a space-filling brane, then any complex submanifold ι : S ↪→ M
which is also coisotropic with respect to σ (for example, a complex hypersurface) defines a
compatible trivialization L′ = (ι, ι∗F ) in M , and we may produce examples of branes on L′
by pullback. The holomorphic symplectic structure on its leaf space is also known as the
holomorphic symplectic reduction of L′.

Example 6.12 (General space-filling branes). The existence of a space-filling generalized
complex brane places a strong constraint on the generalized complex structure. Indeed, the
generalized tangent bundle τL determines an integrable isotropic splitting of the Courant
algebroid

E = T ∗ ⊕ τL,

so that the curvature H vanishes. If J is the generalized complex structure, the constraint
J (τL) = τL implies that J must have upper triangular form in this splitting:

J =
(
−J P

J∗

)
.
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Here we use the canonical identification τL = TM . Since J is upper triangular, J is an
integrable complex structure, for which T0,1 = `. The real Poisson structure P is of type
(2, 0) + (0, 2) as can be seen from the fact JP = PJ∗, and the complex bivector β = −1

4 (Q+
iP ), for Q = PJ∗, is such that the +i-eigenbundle of J can be written as

L = T0,1 ⊕ Γβ ,

where β is viewed as a map T ∗1,0 −→ T1,0. Courant integrability then requires that β be a
holomorphic Poisson structure. Therefore we see that space-filling branes only exist when J
is a holomorphic Poisson deformation of a complex manifold.

In fact, one can show using a combination of the above arguments, or as is done in [39]
by developing a theory of brane reduction, that for an arbitrary generalized complex brane,
the Poisson and holomorphic structures transverse to the characteristic foliation (when it is
regular) are compatible, defining an invariant transverse holomorphic Poisson structure.

Interesting relations between the coisotropic branes discussed in this section and noncom-
mutative geometry have appeared in [20],[2] in particular; for more on this connection as well
as the relation between coisotropic branes and generalized Kähler geometry, see [16].

7 Appendix

Proposition 7.1. Let E be an exact Courant algebroid over M with Ševera class [H], and
suppose ι : S ↪→M is a submanifold. Then

ι∗E := K⊥/K,

for K = Ann(TS) ⊂ E|S, inherits the structure of an exact Courant algebroid over S with
Ševera class ι∗[H].

Proof. We first show that ι∗E inherits a bracket. Let u, v ∈ C∞(S,K⊥/K), and choose
representatives u′, v′ ∈ C∞(S,K⊥). Extend these over M as sections ũ, ṽ ∈ C∞(M,E). We
claim that [ũ, ṽ]|S defines a section of ι∗E which is independent of the choices made.

Firstly we observe that [ũ, ṽ]|S ∈ C∞(S,K⊥), since π[ũ, ṽ] = [πũ, πṽ] and if X,Y are
vector fields tangent to S then [X,Y ] is also tangent to S.

Secondly we claim that [ũ, ṽ] +K is independent of the choices made: for p, q ∈ C∞(E)
with p|S , q|S ∈ C∞(S,K), we have

[ũ+ p, ṽ + q]− [ũ, ṽ] = [ũ, q] + [p, ṽ] + [p, q].

Given any x ∈ C∞(E) with π(x)|S ∈ C∞(S, TS), we verify that 〈x, [ũ, q]〉 = π(ũ)〈x, q〉 −
〈[ũ, x], q〉 vanishes upon restriction to S, since 〈x, q〉 vanishes along S and π([ũ, x]) is tangent
to S. Similarly for the other two terms. This shows that [ũ, ṽ] + K is independent of the
choices made. The remainder of the Courant algebroid properties are easily verified.

Proposition 7.2. Let L ⊂ E be a Dirac structure and assume that

ι∗L :=
L ∩K⊥ +K

K

is a smooth subbundle of ι∗E. Then it is a Dirac structure.

Proof. We need only verify that the maximal isotropic subbundle ι∗L is involutive. Let
u, v ∈ C∞(S, (L∩K⊥ +K)/K). By the definition of the Courant bracket in Proposition 7.1,
we may choose representatives u′, v′ ∈ C∞(S,L∩K⊥+K) for u, v and extend these as sections
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of E over M in any way. In a neighbourhood U ⊂ S where L ∩K⊥ has constant rank, write
u′ = x′ + p′, v′ = y′ + q′, where x′, y′ ∈ C∞(U,L ∩K⊥) and p′, q′ ∈ C∞(U,K). Then choose
extensions x, y ∈ C∞(V,L) for x′, y′ and p, q ∈ C∞(V,E) for p′, q′, where V is an open set in
M containing U . Then

[x+ p, y + q] = [x, y] + [x, q] + [p, y] + [p, q].

Since x, y ∈ C∞(V,L) and π(x), π(y) are tangent to S, [x, y]|S ∈ C∞(U,L ∩ K⊥). Also,
[x, q]|S ∈ C∞(U,K) since, for z ∈ C∞(V,E) with π(z) tangent to S,

〈z, [x, q]〉 = π(x)〈z, q〉 − 〈[x, z], q〉,

which vanishes along S since z and [x, z] are both tangent to S. The same argument applies
to show [p, y]|S , [p, q]|S ∈ C∞(S,K). This proves that [x+ p, y + q]|S ∈ C∞(S,L ∩K⊥ +K),
and hence that ι∗L is involutive in U . Since L ∩K⊥ has locally constant rank on an open
dense set in S, this argument shows that ι∗L is involutive, as required.
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