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Generalized composition law from 2X2 matrices
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Many results that are difficult can be found more easily by using a generalization in the complex plane of Einstein’s addition
law of parallel velocities. Such a generalization is a natural way to add quantities that are limited to bounded values. We show
how this generalization directly provides phase factors such as the Wigner angle in special relativity and how this
generalization is related in the simplest case to the composition of 2X2 S-matrices.

I. INTRODUCTION

In special relativity the composition law of parallel veloci-
ties appears to be the natural addition law for quantities
whose values are limited to the closed interval [—1,1], where
we have set the speed of light c=1. It is natural to generalize
the composition law of parallel velocities to the complex
plane as

Al +A,

A=A2@Al= o
1+AA,

(1)

where A; and A, are complex quantities and where the de-
nominator appears as a normalization term (if not otherwise

stated, A denotes the complex conjugation operation). The
physical meaning of this composition law is similar to that of
the composition law of parallel velocities in special relativ-
ity. Equation (1) shows that no matter what real values we
give to A;=v; and A,=v,, subject only to v;<c and v,<c,
the value of the resulting velocity A=w cannot exceed the
speed of light c=1. In the same way, no matter the values of
the complex quantities A; and A, (subject only to |A,|<1
and |A,| < 1), the modulus of the resulting quantity A cannot
exceed unity.

Because it avoids infinities, such a generalization of Ein-
stein’s composition law of velocities appears to be a natural
addition law in a closed interval. As expected, it reduces to
the usual addition of arithmetics when the quantities are
small. As shown in Refs. 1-3, the use of this composition
law quickly leads to important theoretical results and pro-
vides useful algorithms for computer calculations. The use of
Eq. (1) also leads to results that converge more rapidly than
by using transfer matrices.”

II. SOME SIMPLE EXAMPLES

We consider three examples'™ where the use of Eq. (1) is
useful. The examples are the composition of two nonparallel
velocities in special relativity, the reflection coefficient of a
Fabry—Pérot in optics, and the characteristics of a polarizer
resulting from the association of two successive nonperfect
polarizers.

The composition law for two parallel velocities v; and v,
in special relativity is (c=1)

v1+0Uy

(2)

w=v, D v 1+U1v2.
The calculation of the resulting velocity of two parallel ve-
locities is straightforward. However, it is not when the two
velocities are not parallel for which calculations may be te-
dious. They become simple when we consider Eq. (1), which
is the generalization in the complex plane of Eq. (2). As
explained in Ref. 1, we replace each velocity v; by the com-
plex number,

V.= tanh%ei“i, (3)

where the rapidity a; is related to the modulus of o] by
tanh a;=v; and where phase ¢; gives the orientation of vU;
with respect to an arbitrary axis of the reference frame of the
observer in the plane of v} and v3. The modulus and phase «
of the velocity w resulting from the relativistic composition
of U7 and o5 are directly obtained' by using Eq. (1),

a; i a i
tanh—e 1+tanh5e 2

a .
W=tanh—e'“=V, ® V, = .
2 a, _. ap
1 + tanh—¢7"*2 tanh— '
2 2

(4)

The modulus and the phase of Eq. (4) give respectively the
magnitude of the resulting velocity w (because w=tanh a)
and specify the direction « of W in the plane (7,05).

In optics the overall reflection coefficient of a Fabry—Pérot
interferometer can be obtained by taking into account all
virtual paths of light inside the interferometer.” The total
probability amplitude for light to be reflected by the system
can also be directly obtained (for any number of interfaces)
by using Eq. (1). Here

R, =re'? (5)

is the complex reflection coefficient of an incident wave on
interface i, where r; is the Fresnel coefficient of that interface
and ¢; is the phase shift corresponding to the propagation of
light through the same homogeneous layer between two suc-
cessive interfaces. For two interfaces the reflection coeffi-
cient of the whole system can be obtained directly by using
law (1),



re'? + ryel®

R=reé®=R, ® R, = (6)

1+ rze_i¢2rlei¢1 ‘
Again, the modulus and the phase of Eq. (6) give the overall
reflection coefficient and phase of the reflected wave.

Similarly, we can consider the composition of two nonper-
fect polarizers P, and P2.3 The polarizer P resulting from the
combination of polarizers P, and P, (in that order) can also
be obtained from Eq. (1). As explained in Ref. 3, each po-
larizer is characterized by

P;= tanh%eiai, (7)

where 7; is the quality of the polarizer and «; gives the
orientation of the polarizer axis with respect to an arbitrary
reference axis. Typically, y,=1";z, where T’; is the differential
absorption rate of the polarizer and z is the distance traveled
by the light wave inside the polarizer. The case of a perfect
polarizer” corresponds to y;—+. The polarizer’s orienta-
tions and the reference axis are coplanar. The characteristics
of the resulting polarizer P are given by3

tanhﬁe"“l + tanh%e”"z

p= tanh%’eio‘z P,® P, =

| + tanh 2L e=ia1 tanh 22 gics
2 2

(8)

By using the composition law (8) we easily extract the y
factor and its direction a.

The use of the composition law (1) is general and can be
applied to any number of coplanar velocities in special rela-
tivity, to any number of interfaces for the case of multilayers,
and to any number of successive golarizers. In such cases we

. . 3,6
have to iterate Eq. (1) as relation

A =An @ (An—l SRR (A2 D Al)) (9)

The successive iteration of Eq. (1) yields the desired result.
Equation (9) leads to algorithms that are useful for many
problems. It is easy to compute A, @A, and then to compose
the result with A; and so on.

As explained in Refs. 7 and 2, the expression for A in Eq.
(9) can be written down directly by using a complex gener-
alization of the elementary symmetric functions of the vari-
ables A;,A,, ...,A,, which are extensively used in the theory
of polynomials.&9

Our aim in this paper is to show how Eq. (1) is related to
2 X 2 matrices and how it provides a simple way to calculate
the four elements of scattering matrices (S-matrices). We
also show how the use of Eq. (1) leads naturally to a particu-
lar phase, which for the case of the special relativity is re-
lated to the Thomas precession.

III. MATRIX REPRESENTATION
We now explain how the composition law (1) is related to

2 X 2 matrices.

A. Mathematical definitions

Consider a physical system (see Fig. 1) in which two
physical quantities (the inputs) E}, and E;, are linearly related

Fig. 1. Schematic representation of the linear relations between input and
output quantities.

to two other physical quantities (the outputs), E; , and E_,,.
These relations can be written as a 2 X 2 matrix as

+ +
) o)) w
Ein ¢ D Eout
This general representation is, for example, used to describe
a birefringent system with the help of Jones matrices (see,
for example, Ref. 3), or to estimate properties of a multilayer
stack with the Abeles matrices.' It is possible to define using
the 2 X2 matrix in Eq. (10), hereafter called [M], the four
coefficients R*, R~, 7%, and 7~ (this notation is chosen in

analogy to the classical reflection and transmission coeffi-
cients of a multilayer device),

E; C
RYf= =& =—, (11a)
Ei; Equ0 A
E} B
Ro= 2 =-7 (11b)
Eout in:0 A
E! 1
Tr= 2% =—, (11c)
Eiy E; =0 A
E; det[ M
T-= —& = [ ] (11d)
Eout in:0 A
We introduce the variable ® defined by
D
0=— 12
A (12)
If we use Egs. (11) and (12), it is easy to verify that
T* T -R*R =0, (13)

which constitutes a generalization of the Stokes relation,
which is well known in the optics of multilayer devices (see,
for example, Ref. 12). We also introduce the conjugation
operation (denoted by the bar),

— B

Rf=—R =~

1 (14a)

and

R =-R". (14b)
The conjugation operation does not necessarily correspond to
the usual complex conjugation [compare Egs. (11a) and
(14a)]. For Hermitian matrices the correspondence does
hold.

With these definitions the [M]-matrix can be written as



_1<1 R) s
M= e g ) (15)

This form of [M] will be useful in the following derivations.

B. Composition laws of the R and 7 variables

We now focus on the properties of the four coefficients
R3,, Ry, T3 and T3, of a system characterized by its
[M,;]-matrix, resulting from the composition of two sub-
systems characterized by the two [M,]- and [M,]-matrices

defined by
1 RY 1{1 RS
! ) and [M,]= ( : ) .

[M]=< =
BT rH\RY 0, T\ R 0,
(16)

The [ M, ]-matrix is the result of the product of two matrices:
[M,]=[M,][M,]. Equations (12)—(14) allow us to express
the composition laws for R3,, 73,, R, and 75, as

R1O,+R5
Ry =Ry® R =—=", 17a
21 2 1 1+RTR; ( )
_ _ _ Ri{+R;0,
Ry=R,®R|= =, (17b)
1+R|R,
T TS
Th=T T =——2_ (17¢)
1+RIR;
. TIT,
721=Tz®71=?. (17d)
1+RIR,

Equation (14) can be used to show that the denominators in
Eq. (17) are the same, 1+R{R5=1+R|R;.

C. Composition law of the @ variables

Although the ® variable has been introduced in an ad hoc
way in Eq. (12), it is interesting to find its composition law.
We consider two processes characterized by the two vari-
ables O, and ®,. If we start from the generalized Stokes
relation (13) and use Eq. (17), we find

@2] = T;]Tgl - R;IREI (183)

_TiT37,7;-[Ri0;+ RII[R7 + R,0,]
- [1+RIRIP

(18b)

From Eq. (13) we know that 7] 7;=0,+R{R] and

T35 T5=0,+R;R;. Consequently Eq. (18b) becomes
0,0,+RIR}

2= % (19)

1+RIR,

This expression can be considered as the composition law for
®, and O,. In Sec. IV we will give the meaning of O for
various physical contexts.

D. S-matrix

By definition, the four coefficients R*, 7+, R™, and 7~
are the four elements of the S-matrix associated with scatter-
ing,

(7 )
S={ e o) (20)

Equation (17) shows that the composition of two S-matrices
can be written as

RIGRT T;®T;> o)

NERY 2© S 1= ( _ —
T507T] R, ®R;]

The use of the composition laws @ and ® gives the elements

of the S-matrix without resorting to the usual transfer matri-

ces.

IV. THE ® PHASE FACTOR

We now consider conservative systems described by the
unitary matrix [U]. In this context the ® variables are modu-
lus one complex numbers of the form e’¢. Our aim is to show
that the phases associated with the physical modes E* and E~
in Eq. (10) can be written as a sum of phases when the two
modes are not coupled, plus a phase that is simply expressed
with the help of the © law.

A. The composition law in the case of unitary matrices

The general expression of a 2 X2 unitary matrix is

—sin ke .
[U]=< ; )6"P, (22)

iu

cos e

sin Ae™™  cos e

where ¢, N\, u, and v are real numbers. The overall phase ¢
can be omitted without loss of generality and hereafter we set
it equal to zero. As we can see, when the modes are not
coupled, that is, when A=0, the evolution matrix reduces to
the simple diagonal expression,

iu 0
[Ureol =[] = (eo ) 23)

The phase difference between the uncoupled modes E* and
E~ is equal to 2u. When \ # 0, the evolution of the modes are
coupled and the [U]-matrix can be factorized as

[U]=[Uyo0llM] = [u][M]

(ei“ 0 )( cos N —sin Ae‘“”‘”) (24b)
N0 e/ \sin e cos \ '

Such a factorization will help us to estimate the R* and
components of the different matrices. By using Egs. (11a),
(11¢), and (12), we find

(24a)

R:[— — O, T; — e—iu’ ®u — e—2iu’ (25)
so that
1(1 O
_1 26
-7l0 o) &
and



R}, =tan Ne*?), Tt = , 0,=1. 27
p =lan ae M= ooN M (27)
Hence,
1 (1 R
[M]='T+<'R,+ L) (28)
M\ %y

Factorizing the free evolution phases as we did in Eq. (23)
will allow us to point out a new phase expressed with the
help of the & composition law. For this purpose consider the
[U,;]-matrix, which is the product of two unitary matrices
[U1] and [U,],

[U21]=[U2][U1]- (29)

The factorization of the free evolution phases gives

[Ua1] = [uxJIM [, ][M] (30a)
=)y ey 7 (M )y ][] (30b)
=[uy + u J[M () ][M,] (30¢)
=[uy +uJ[M], (30d)

where we have defined the diagonal matrix [u,+u;]=[u,]
X[l/tl] and noted that [le]z[Mz(Ml)][Ml] with

[M,(uy)] = [”Il][Mz][ul]

( cos \, —sin )\ze_i<2“1+”2’”2))
 \sin Nyl cos \,
(31)
If we use definition (12), we easily find
Ou,=04,=0y )= 1. (32)
From the composition law (19), we obtain
+ o+ o+ +
®M1®M2(u])+RM2(u])RM1 1 +RM1RM2(MI)
o= R R TR, Ry
My(uy) "M, M "My (uy)
(33)
or using the composition law definition in Eq. (1),
Rty © Ry
2 l) 1 (34)

M, = .
21 R,LleaR;,z(ul)

It is interesting to note that ®,, comes from the noncom-

mutativity of the composition law @. Although distinct, the
. e + + + +

two composite quantities Ry, ® Ry, () and Ry (, ) &Ry,
have the same modulus, so that ® My, is a pure phase term

Oy, =2, (35)

Finally, the whole phase term U21=e‘2i¢21 associated with
the [U,,]-matrix is

_ =20 _ _ —2i(uy+itr)
®U21 =e 12 = ul+u2®M21 - ®M e 1, (36)

21

which gives the phase

by =u+uy+ . (37)

The noncommutativity of the @& law implies My, * 1 in Eq.

(34) and is responsible for the additional phase ¢ appearing
in Eq. (37).

B. Examples of the physical meaning of the @ variable

In the following we illustrate the meaning of the phase
term ® by three examples from different fields of physics.

1. Special relativity

We first choose the composition of two nonparallel veloci-
ties v and v5. In this case the four elements A, B, C, and D
of matrix (10) are respectively cosh(a;/2), sinh(a;/2)e "%,
sinh(a;/2)e!%, and cosh a;/2, where a; and v;=tanh a; are
respectively the rapidity and the velocity of the reference
frame i for a given observer. Equations (11a) and (14a) then
give V;=R[=tanh(a;/2)e'“ and V,=R!=tanh(a;/2)e"*.
Here phase «; gives the orientation of v; with respect to an
arbitrary axis belonging to the plane defined by the vectors
v and 75 in the observer reference frame. Because ®;=1,
Eqgs. (19), (33), and (34) give

CL+RIRS 14V,
1+RTR§ 1+V1‘72

21

a; —ia a i
1 + tanh—e™**1 tanh—¢'*2
2 2
= . (38)
ay i a —iav
1 + tanh—¢'“! tanh—¢™'*2
2 2

This expression is a pure phase term and can be written as
Oy =, (39)

where 2¢ is Wigner’s angle associated with the Thomas pre-
cession. Note that from Eq. (38) we directly obtain the value
of the Wigner angle. The real part of @, gives immediately
the known result, =

cos 2¢

a a : a a .
1 + tanh—tanh—cos a| —|tanh—tanh—sin «
2 2 2 2

ay a, 2 aj a, . 2’
1 + tanh—tanh—cos a| + | tanh—tanh—sin «
2 2 2 2

(40)

where a=a,—a.

As was shown at the end of Sec. IV A, the Wigner angle
comes from the noncommutativity of the composition law,
which mimics the noncommutativity of the Lorentz boosts.
The ® law can be easily used for the composition of any
number of coplanar velocities. For example, for three refer-
ential frames, we obtain by iterating Eq. (1),

Vi+Vy+ Vi+ ViV, V,
1+ ‘71V2+ ‘71‘/3 + ‘_/2V3 .

W=Vi® (V,8 V)= (41)



2. The optics of stratified media

This example is from the optics of stratified media. If 7;
and t; are the Fresnel reflection and transmission coefficients
of interface i (i=1,2), and ¢; is the phase shift associated
with the propagation of light, the four elements A, B, C, and
D of matrix (10) are respectively 1/t;, (r;/t,)e”'%, (r;/1,)e'%,
and 1/t Equation (11a) gives Ri=re'%, so that Eq. (17a)
gives the overall reflection coefficient ? of the two interfaces
(6). In this case a phase term'” also appears, which is strictly
similar to the Wigner angle in special relativity. Its origin
comes also from the noncommutativity of the @ law, which
is related to the noninvariance of the problem when the two
interfaces are exchanged.

3. Light wave polarization

We consider two nonperfect polarizers as in our last ex-
ample. The quality of the polarizer resultin% from using suc-
cessively two polarizers P, and P, is given’ by Eq. (1). It is
interesting to calculate the value of ®,; in this case. The
noncommutativity of the two quantities that are composed is
expressed by ©,,. In special relativity finding two different
results when calculating the resulting velocity of v; com-
posed with v, and of v, composed with v; might have been
surprising. It is not the case with polarizers. It is well known
that the final polarization of a light wave going through the
polarizer P, and then through the polarizer P, is not the
same as the final polarization of the light wave going first
through polarizer P, and then through polarizer P;. We con-
sider explicitly the noncommutativity of polarizers. From
Egs. (8) and (19) we obtain

1+ tanh%eial tanh%e”'“2
e M0 = : (42)

1 + tanh Lo tanh 22 pica
2 2

In Eq. (42) 20} is the angle between the polarization of light
E 12 when going through the two polarizers in the order P,

and then P, and that of light EZ] when going through the
polarizers in the order P, and P,. For two perfect polarizers
we expect to find 2Q=a,—a;=a. To verify this result, re-
place tanh(y,/2) and tanh(+y,/2) by unity for perfect polar-
izers, and then the corresponding Eq. (42) for polarizers
gives the expected result

cos 20) =cos a. (43)

V. DISCUSSION

From Eq. (28), we observe that there are redundancies of
information in 2 X 2 unitary matrices. All information is con-
tained in the first (or the second) column. Because of this
redundancy, it is easy to understand why the use of the com-
position law (1) is easier and more rapid than using matrix
methods such as transfer matrices. Moreover, as shown in
Ref. 4, calculations converge more rapidly when the compo-
sition law is used. This rapid convergence comes from the
fact that the denominator of the composition law is a normal-
ization factor. Another useful aspect of the composition law
is that it can be easily iterated as

Ry =R, @R, & (R;®RY)). (44)

As mentioned, this property leads to efficient algorithms for
many kinds of problems. Also, Eq. (44) is so simple that its
analytic value can be directly given without any matrix cal-
culations. Equation (44) is a complex generalization of the
elementary symmetric functions of the mathematical theory
of polynomials:I4 the numerator of RZ, is constituted by
all the possible odd ordered products of the different R}
factors such that in each product, the R* and R* factors
appear alternatively, the first factor always being R*. The
denominator of R;] is constituted by all the possible even
ordered products of R;’, such that in each product, the R*
and R* factors appear alternatively, the first always being
R*. If we limit ourselves to two iterations, the value of
R3.. is directly given by

Ri . 1=R;8 (R;®R)) (452)

RY+RE+RE+RIRIRS
1+ RIRI+RIRI+RIRY

(45b)

Such a result can be useful for the case of S-matrices because
the generalization of Eq. (45) allows us to write the S-matrix
simply as

(n;@-.m;@m) T;®~"(T£®TI))
\Tie - (T;0T)) R @ - (R,6R)/)
(46)

It is well known that a number of physical processes are
more adequately described by S-matrices than by T-matrices
(transfer matrices). Unfortunately, whereas T-matrices must
be successively multiplied together, [M, ]=[M,]
X[M,_]---[M,][M,], such is not the case with S-matrices.
The composition law is consequently useful for S-matrices
because our results show how to directly calculate the four
elements of the overall S-matrix by iterating Eq. (17).

VI. CONCLUSION

The composition law of velocities in special relativity ap-
pears to be the natural way to add velocities that are subject
to the condition |v|<c. Its generalization in the complex
plane leads to simple calculations of bounded quantities
which would be otherwise difficult to calculate. We have
shown how, for example, the Wigner angle in special relativ-
ity, the overall reflection coefficient of any multilayer, and
the effect of any number of polarizers can be directly ob-
tained from this general composition law. Also, we have
shown that the generalization of Einstein’s composition law
provides a natural way to compose scattering matrices.
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