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ABSTRACT

The theory of spectral formation in thermal X —ray sources, where the effects of Comp-
tonization and Klein—Nishina corrections are important, is presented. Analytical expres-
sions are obtained for the produced spectrum as a function of such input parameters as the
plasma temperature, the optical depth of the plasma cloud and the injected soft photon
spectrum. The analytical theory developed here takes into account the dependence of the
scattering opacity on the photon energy. It is shown that the plasma temperature as well
as the asymptotic rate of photon escape from the plasma cloud determine the shape of the
upscattered hard tail in the emergent spectra, even in the case of very small optical depths.
The escape distributions of photons are given for any optical depth of the plasma cloud
and their asymptotic dependence for very small and large optical depths are examined.
It is shown that this new generalized approach can fit spectra for a large variety of hard
X—ray sources and determine the plasma temperature in the region of main energy release

in Cyg X—1 and the Seyfert galaxy NGC 4151.

Subject heading: radiation mechanism: thermal — - gamma rays: theory — plasmas

— X-rays:stars



1. INTRODUCTION AND SUMMARY

Three radiation processes have been found to be of prime importance in hot plasmas:
bremsstrahlung, synchroton (cyclotron) radiation, and Compton scattering; in compact
enough plasmas, they are complemented by pair production and annihilation. During
recent years it has become clear that the proper interpretation of the spectra of gamma—ray
sources as well as of the underlying physical processes is impossible without the detailed
accounting for Compton scattering. The latter occurs in a variety of forms (thermal
and nonthermal, upscattering and downscattering) and includes such process as inverse
Compton scattering, Comptonization, reflection, backscattering, etc. For a review of these
topics and some implications, see Brinkmann et al. 1990, Zdziarski et al. 1993, where
references to earlier work are also given. The shape of the radiation spectra generated by
Comptonization in a plasma cloud of finite optical depth was the subject of our previous
papers (Sunyaev & Titarchuk 1980, 1985, 1989; Titarchuk, 1987, 1988).

The main motivation that forced us to return to the problem of Comptonization is a
number of fine recent measurements of the radiation spectra of the X—ray emitting AGN
(Apal’kov et al. 1992; Maisack et al. 1993; Yaqoob, et al. 1993) and Cyg X—1 (Salotti et
al., 1992; Grabelsky et al. 1993). |

The observed spectra agree well with analytically derived radiation spectra due to Comp-
tonization of low frequency photons in isothermal plasma. The previous measurements of
Cyg X—1 showed that the plasma temperature in the cloud is kT, ~ 26.5 keV and the opti-
cal depth of its disk with respect to the electron scattering is 79 ~ 4 (Sunyaev & Triimper,

1979; Sunyaev & Titarchuk, 1980). An attempt to interpret the recent observations of Cyg



X—1 and NGC 4151 yield smaller optical depths (19 < 1 for Cyg X—1, and 79 ~ 3 for NGC
4151) and much higher plasma temperatures kT, > 50 to 150 keV. At high temperatures,
the effectiveness of the Comptonization process increases substantially. As a result even at
moderate 179 one has a Comptonization parameter y ~ %1’02 > 1 . Therefore, in order
to explain the observed spectra, whose overall shape is far from Wien, one concludes that
7o < 1 (e.g. Cyg X—1). In this case the validity of nonrelativistic Comptonization the-
ory, (Sunyaev & Titarchuk 1980; hereafter ST80) in the diffusion approximation is under
some question. Thus spectral formation frc;m disks or plasma cloud of comparatively small
optical depth at the high plasma temperatures should be examined
The present paper deals in detail with the following points: a)the general formulation of
the Comptonization radiative transfer problem and it’s reduction to the diffusion problem
over energy and space, b) the time dependence of photon escape from disk and spherical
geometries; c) the shape of the radiation spectra, taking into account relativistic corrections
in the free electron cross—section and the scattering kernel ; d) the source of low-frequency
photons; and e) the recent high energy observations and their possible interpretation by
thermal Comptonization models.

Comptonization is the problem of energy exchange in the scattering of photons off elec-
trons. The average energy exchange per scattering is determined by the relation between
the photon and electron energies. For a thermal electron distribution with temperature

kT. and nonrelativistic electron energies hv, (hv, kT. < m.c?), we have as follows:

<Av>  4kT.—hv
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When the photon energy hv is much less than the mean electron energy kT., the photon

gains energy due to the Doppler effect, i.e. <822 = 4rIe [j the opposite case, (hv >

v

kT.), the photon loses its energy because of the recoil effect.

In a finite medium (plasma cloud) two processes compete with each other, and influence
the formation of emergent spectra: photon diffusion over space, and photon diffusion over
energy. The photons gain or lose energies in a random walk around the plasma cloud.
The Comptonization parameter y;, = i"—IﬂcO'Tnct determines the photon energy gain due
to the Doppler effect along a random trajectory with time duration ¢ . Here n. is the
electron density and o7 is the Thomson cross—section. The photon distribution over the
random walk time is controlled by the plasma cloud boundary conditions (photons are
not scattered out of plasma cloud, see Eq.(A8)). For a plasma cloud with optical depth
7o > 1, the mean number of scatterings # ~ 7¢ and thus the mean Comptonization
parameter y ~ MTO The most important case is when unsaturated Comptonization
spectra are formed (ST80), 3 < y < 12 (1 < v =~ 1—: < 4). The primary low-frequency
photons with mean energy, hvy (hvy < kT.) are distributed throughout the plasma cloud.
Some of them which suffer a number of scatterings u much less than the average 4, retain
information about the initial spectral, angular and space distribution. In principle, we
can restore this information by analyzing the observed X—ray spectrum. But the photons
which undergo a number of scatterings v much greater than the average #, form specific
spectral and angular distributions which are mainly characterized by the plasma cloud

optical depth 7y and temperature kT., and which are almost independent of the initial

distribution of the low-frequency photons (Sunyaev & Titarchuk 1985; hereafter ST85).



For higher values of y, the Wien spectrum is established as a result of the equiliBrium
between photons and electrons, and therefore, this case is trivial.

In order to solve the Comptonization problem we should distinguish two regimes: I.When
the plasma cloud optical depth 7, is greater than 1 and II. When 7o is less than 1.

The first case is treated in Sections 2, 3a. The radiative problem is reduced to the diffusion
problem in energy space and configuration space. For example, the drift of photons along
the vertical coordinate, H = %, gives rise to the photon trajectory length I = H7o, To
times more than the vertical drift. Also, since there is no preferential direction for photon
propagation in a plasma cloud, the radiation field is almost isotropic. The radiative transfer
equation for the intensity along a certain direction is replaced by the equation for the
intensity averaged over all photon directions. The integral collision term of the radiative
transfer equation, along with the loss term, are transformed into the energy diffusion
term. The intensity space gradient term is transformed into the diffusion space term for
the average intensity, (see details of the reduction of the radiative transfer to the diffusicn
problem in Appendix A). Finally, the emergent spectrum of X—ray radiation is obtained
as a convolution of two functions: One is the diffusion solution for the time evolution
of the initial low-frequency photon spectrum in the infinite medium (1:hef Cauchy problem
solution) which was found by Kompaneets (1956) for the nonrelativistic case (hv € m.c?),
and the second is the photon distribution over the escape time u = orn.ct (proof of
this statement appears in section 2a and Appendix A). In other words, the distribution
determines the probability that the photon escapes from the plasma cloud in the interval

u to u + 1. This is a well known problem solved elsewhere (e.g. ST80, ST85).



In order to generalize the Comptonization problem for the case of subrelativistic energies
and plasma temperatures, we should take into account the relativistic corrections intro-
duced into the diffusion coefficients of the energy and space operators (Prasad et al. 1988,
Shestakov et al. 1988, section 2a and Appendix A, B in this paper). The diffusion coeffi-
cient of the energy operator 7, is obtained by weighting the energy shift with the Compton
Scattering Kernel (CSK) (Prasad et al. 1988 ). The CSK is a result of integrating the
Klein— Nishina cross—section for Compton scattering of an electron over a relativistic
Maxwellian distribution of electrons (Pomraning 1973). The inclusion of the relativistic
corrections increases 7,, when the plasma temperature goes up. The corrected coefficient
contains the additional temperature dependent factor f = 1 + 2.50 + ... (e.g. Prasad et
al. 1988). Here O is a dimensionless temperature normalized with respect to the electron

rest energy © = "f.q;, . In the very hard tail (hv > 200 keV), photons are mainly scattered

in the forward direction and change their energy only slightly. The Compton effect loses
effectiveness, and hence the coefficient 7, drops.

The diffusion coefficient in the space operator is obtained by averaging the cosine square
of the angular variable ¥ over all photon directions. As an example, this equals to 1/3
for an isotropic radiation field. This approximation is valid for nonrelativistic energies
and temperatures. However, in the course of a random walk, photons are getting harder
because of upscattering, the Kleine—Nishina differential cross—section strongly deviates
from the Rayleigh one, and the approximation of isotropic radiation field breaks down.
The space diffusion coeflicient is corrected by the transport factor Ay which takes into

account the scattering anisotropy ( Grebenev & Sunyaev 1988; Shestakov et al. 1988). In



particular, for subrelativistic energies and temperatures, Shestakov et al. (1988) derive the

asymptotic behaviour of );, as follows:

16
A =1 — 57 +20+..< 1,

hy
mec3’

where z =

We give here a short description of changes in the emergent spectral shape caused by the
relativistic corrections.

At small energies (hv < kT.) the spectrum becomes harder, i.e. the spectral index
drops as a result of the growth of the energy diffusion coefficient 7,. Also, the hard
energy tail (hv > kT.) is steeper than what we have in the nonrelativistic case, since all
scattering processes in energy and space are suppressed — the coefficient 7, decreases, and
the coefficient ¢, increases along the photon energy axis. In sections 2a and Appendix A,
we give the derivation of the Fokker—Plank equation. It is the solution of this equation
which determines the emergent spectrum.

The next points should be emphasized: i. Photons undergoing many more scatterings,
u = ornect than the mean value, % escape from the plasma cloud in accordance with the
exponential law, i.e. the asymptotic distribution over escape time P,,(u) o exp (—fu).
The final spectral shape in the upscattering case is determined by these photons only.
Therefore, instead of deriving the full solution which is too complicated, we find the up-
scattering asymptotic solution of the Comptonization Stationary Equation (this is obtained
from the Fokker—Plank equation (9) and Eq.(10) through a Laplace transformation with
the parameter 3, (Eqs (15), (29)). ii. The shape of the emergent spectrum is calculated
numerically and analytically by solving Eq.(15). For the numerical solution we use the Run

8



method for the conversion of the three diagonal matrix operator. The analytical solution
combines some modification of our previous spectrum, ST80 and new relativistic hard tail
in the form F, o« z3~%1¢~2(14+%) (for details see section 3a).

In sections 2a and 3b we discuss the second problem of upscattering in the small optical
depth case. Even in this case the X~—ray spectrum is created by photons which suffer many
more scatterings in plasma cloud than the average number (ST80, ST85). However these
photons produce the specific radiation field, with the specific angular and space distribu-
tions which are only determined by the plasma cloud optical depth and are independent
of energy (ST85), i.e. photon random walk around plasma cloud occur independently on
photon energy change (gain). Thus the upscattering spectral formation in the case of small
optical depths can also be considered in terms of the Fokker—Plank approach when the
photon energy change is weighted by the Compton scattering kernel (CSK) over photon
directions and the photon scattering distribution. All previous calculations of the diffusion
coefficients (e.g. Prasad et al. 1988) are obtained for isotropic radiation field distribution
and therefore they are not valid in our case. The structure of the radiation field created
by photons which undergo repeated scatterings is quite different from isotropic. Most
photons are collimated along the longest size of the plasma cloud (in spherical geometry
this is along a diameter; in disk geometry it is along the disk). Therefore, we can simplify
the radiative transfer problem by considering only scatterings along the forward and back-
ward directions. However photon scatterings off electrons in the forward direction does
not produce any change of in the photon energy. Only backward scatterings change the

photon energy. When the plasma temperature grows, the Kleine—Nishina phase function



becomes sharper along the forward direction, and consequently, the backward part is more
suppressed. As a result, Compton scattering is not so efficient in the collimated field as
it is in the isotropic field, and hence, the temperature amplification factor of the energy
diffusion coefficient 7, is weaker in the former case than the latter one . The ratio of two

factors is

fr _ 1420,
.fiao 14 %ﬁ@_"'

Here, f.o and f;,, are the temperature factors of the energy diffusion coefficient 7, in the
collimated and isotropic cases respectively. This difference of the temperature dependences
changes dramatically the power law spectral slope estimates. For example, for the spherical
plasma cloud case with optical depth 7 = 0.5 and k7, = 250 keV, we get the power law
spectral slope aco = 0.60 instead of the isotropic value a;,0 = 0.43. The Monte—Carlo
calculations (Titarchuk & Hua 1994, Pozdnyakov et al. 1983, Zdziarski 1986) confirm our
Fokker—Plank approach of the Comptonization problem for the optically thin case.
Self-consistent hydrodynamic equilibrium calculations result, in a number of cases, in
a non-isothermal temperature distribution. The simplest realization of such non-isotherm-
ality is the sandwich model (Sunyaev & Titarchuk 1989, Haardt & Maraschi 1991): A cold
layer produces low-frequency photons which are subject of Comptonization in hot layer
(there is no lack of mechanism to heat that layer, see e.g., Guessoum & Kazanas 1990). If
the temperature distribution of the hot plasma is more or less homogeneous, the resulting
spectrum can be described by some mean temperature (Titarchuk 1988). Section 4 referes
to the sandwich model. We derive there the equation for the self-consistent determination

of the low-frequency photon energy. The astrophysical applications of the developed theory
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to recent high energy observations are shown in section 5. A full survey of the conclusions

is given in section 6.
2.RADIATIVE TRANSFER THEORY

2a. Basic equations

The photons which undergo, on average, many more than one scattering, independent
of the optical depth of the plasma cloud, produce the typical diffusion field of radiation
and can be described by the the diffusion (Fokker—Plank) approximation (see for details
Appendix A and Shestakov et al 1988). In this section we considér the case with the plasma
cloud optical depth 7 > 1 and we present all calculations of the appropriate diffusion
coefficients. The diffusion coefficients are obtained as a result of averaging over all solid
angles which is relevant only in the large optical depth case. The transport scattering
cross—section used in the coefficient of the spatial diffusion is D = c/30¢-n. takes into
account the fact that small angle scatterings weakly change the photon trajectories. The

transport cross—section of scattering by electrons is given by

- 9r _ - -—V—cos g(v — V'
o= gy = [~ Geostdoly =) (1)

where do (v — v') is the differential cross—section of Compton scattering averaged over
the Maxwellian distribution (e.g. Pomraning 1973, Shestakov et al. 1988), v and v' are
the frequencies of photons before and after the scattering, ¥ is the scattering angle, or is

Thomson cross—section and © = m"—:rgf is the dimensionless plasma temperature.
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The factor A, can be written with an accuracy of better than 2% in the range hv < 1

MeV for © = 0, by the formula (Grebenev & Sunyaev 1988)

A (z) = 1+ 2.8z —0.4422 (2)

where z = m’:‘; 5. It is worthwhile to point out that ). is also a weak function of tem-

perature (see Fig.2 in Shestakov et al. 1988), and we can take into this dependence as

follows

Atr(2) = 1+2.8(1 -1.10)z — 0.4422. (2a)

The time evolution of the photon energy is determined by the Doppler and recoil effects

through the energy diffusion coefficient 7(z,®) which is found by solving the differential

equation (Prasad et al. 1988).

n — G-Z—Z =<(z-2")>= Aw(z' — 2)dS.(z — 2',0). : (3)

Here S.(z — z',0) is the scattering kernel of the Compton Kinetic Equation (e.g. Pomran-
ing 1973, Shestakov et al. 1988). The exact analytical formula for the diffusion coefficient
7(z,©) was derived by Prasad et al. 1988. But with accuracy 1% in the range k7. < 100

keV, 7(z,©) may be approximated by the formula (see Cooper 1971)

_ z* fo(©)
%9 = [Tie 111 [1 Ty 10.2z] ’ (4)
Here f(O) is
fo(©) =250 +1.8750%(1 — O). (5)

12



In the diffusion (i.e. Fokker—Plank) approximation (75 >> 1) the problem of radiative
transfer can be reduced to the solution of the differential equation (see the proof of this

statement in Appendix A, Eqgs.[A6], [A8])

3 Bo(z,7)A;} (29)

3

L,n + Ls,d)nz

(6)
with appropriate boundary conditions (see Appendix A, Eq.[A8] and also ST80, 85;

Grebenev & Sunyaev 1987).

Here

b= D2 (002 g)). .
and space operators L2 for spherical and plane geometries are presented by Eqs.(20),
(A9) respectively. Equation (6) is written using the dimensionless variables 7 = 7 and
z = hv/kT,; n(z,7) = I,c2/2v° is the photon occupation number in phase space and
By(z,T) is the primary source distribution.

The first term of the left-hand side of the equation (6) describes the photon dispersion

and shift due to Doppler and recoil effects on electrons. The second term relates to spatial

diffusion.

If we suppose that this term

®(r,z) = Bo(

a:,‘r)it—r] (20) _ y(z)r(r),

i.e. is factorable into functions of « and 7 alone (in fact any such term is expended in series
over the eigenfunctions of the space operator L,) then it is easy to prove that the solution

of Eq.(6) can be represented by the following convolution (see the proof in Appendix A):

n(z,7) = /0°° N(z,u)R(7,u)du. (8)

13



N(z,u) is the solution of the time—dependent problem for the energy space with z > 0:

N
Be = L_N (9)
having as initial condition
N(z,0) = ¥(z). (10)

On the other hand R(7,u) is the solution of the time—dependent problem in configuration

space 0 < 7 < 27y for a disk and in 0 < 7 < 7y for a spherical plasma cloud given by

OR
ety S €|
; LR (11)
with the initial condition
R(1,0) = r(7) (12)

and with the proper boundary condition in configuration space. (e.g. Appendix A,

Eq.(A8)).
If 7(7) equals the first eigenfunction of the space operator L%, which is the case of

interest for Compton upscattering the solution of Eqs. (11) and (12) can then be written
R(7,u) = Ry(7)exp(—Bu). (13)
The main solution n(z,7) of Eq.(6) is then in the very simple form
oo
n(z,7) = ni(z,7) = Ry (1')/ N(z,u)e P*du = Ry(7)Ni(z). (14)
0

In the general case the solution of the equation (6) is presented by series of the form

presented in equation (14) corresponding to the different eigenfunctions L2, but the main

14



fraction in this series is determined by the first term, n,(z,7), if the photons of the primary
sources Bo(z,7) have low energies (hv <« kT.).

The Comptonization problem for this case reduces to solving the Comptonization Station-
ary Equation (CSE) for N;i(z) (compare with Chapline & Stevens 1973; Shapiro et al.

1976; ST80) given by

L,,N] —,BNI = —‘(ﬁ(ﬂ:). (15)

In fact the above equation results from a Laplace transformation of the time—dependent
problem (9) and (10).

The meaning of the convolutions in equations (8) and (14) is that the process of photon
energy gain and the process of the photon random walking of photon through the plasma.
cloud should be considered independently. Similarly, we show in Appendix A this is also
valid for photons in plasma clouds of arbitrary optical depth. The fact is that the X—ray
spectrum is created by photons which suffer many more scatterings in plasma cloud than
the average number (ST80, ST85). However these photons produce the specific radiation
field, with the specific angular and space distributions which are only determined by the
plasma cloud optical depth and are independent of energy (ST85), i.e. photon random
walk around plasma cloud occur independently on photon energy change (gain). Thus the
upscattering spectral formation in the case of small optical depths can also be considered
in terms of the Fokker—Plank approach when the photon energy change is weighted by

the Compton scattering kernel (CSK) over photon directions and the photon scattering

distribution.
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In the general case, the asymptotic behavior of the photon distribution over the escape
time is also described by an exponential law, exp(—pu) (see below Eq.[17] ). Hence we
find that Eq.(15) would be valid even for small optixca.l depth of the plasma cloud but with
the appropriate correction of the diffusion coefficient 7, for this (;,ase (see section 3b and
Appendix A, B)

The second term of Eq. (15) which takes into account the spatial escape rate of photons
from the plasma cloud, is proportional to the occupation number Ny with the coeflicieni
. 1t implies that the fractional number of photons which random walk out of the plasma
cloud becomes e~# less with each collision. On the other hand we know that this number
is equal to the first eigenvalue p; of the space scattering operator L (see Eqs.[25] and [26]),
i.e. thus

B = In(1/m)- (16)

Actually, the primary source space distribution Bo(r) is expanded in the generalized
Fourier series over the eigenfunctions {gi(7)} of the scattering operator L
oo
By(7) = Z a;gi-
=1
Using the iterative method of successive approximation we obtain the term v responsible
for photons which have undergone k—scatterings in the plasma cloud
o0
va(r) = LEBo =) aiplys.
=1
Because of the sequence of the eigenvalues {p;} is in decreasing order (it monotonically

converges to zero), i.e. p1 > pz2 > ... > pi =0 when i — 0 we get that with increasing k

16



the first term is dominant in vg, that is

vi(T) ~ a,]pfgl (7).

It is worthwhile noting that relationship (16) is valid for any optical depth of the plasma
cloud and reduces to 8 = 1 — p; o 75 2 only in the diffusion case because of (1 — p;) «
75 2 < 1. In the optically thin case p; o 7o and thus 8 ~ In (1/7). |

The solution N;(z) determines the shape of the output spectrum which is the same
throughout the plasma cloud. Generalizing the above statement one can say that for
an isothermal (or with a smoothly distributed temperature) disk, the shape of the hard
radiation spectrum does not depend on the low frequency photon source distribution, and

it is the same at any point inside the disk (independent of the 7—coordinate) (ST85 and

Titarchuk 1988).

2b. Distribution law of the number scattering

As we display, the problem of the X— ray spectral formation in a hot plasma cloud is
closely connected with the distribution law of the number of scatterings. It is important
to note that the time-dependent function R(7o,u), in Eqs.(11), (12) determines the distri-
bution of photons over the dimensionless time u they spend in a plasma cloud (scattering
number).

The exponential tail of the distribution over the scattering number is a typical i'eature of
the problem of photon escape from a limited region of space. This asymptotic behaviour

takes place in plasma cloud with arbitrary density distribution and source distribution

17



(ST80). The probability that a photon undergoes u scatterings where u > % (where @ is

the average number of photon scattering) , is given by the asymptotic relation:
P,,(u) = A(@, 7o) exp (—Bu), (17)

where the normalization constant A(#,7,) depends on the distribution of ]{ow-frequency
photon sources, Bo(7), inside the plasma cloud (ST80, 85). In the diffusion approximation
(applicable to the cases where the optical half—thickness of the disk, 7y, is much greater
than 1), the parameter 3 is given by the relation 8 = 12/3 and represents the first eigen-
value of the differential operator LW = %d!:—,— when the boundary conditions appropriately
describe photon escape from the disk. It is easy to show (see, e.g., ST85) that ); is the

solution of the transcendental equation:

3
tan Aty = —. 18
an ATp 21 ( )
When 79 > 1 this equation has the asymptotic solution \; = 2(1_—0_’;5-/7), and therefore:
2
B = for a disk (19)

12(m0 + 2/3)2°

The appropriate diffusion operator in the case of a spherical homogeneous plasma cloud

reads
118 ,98
L — -~ .27
T 37r20r or’ (20)
and its eigenvalues are determined by (see ST80)
ATO
tan Aty = . 21
andry = —— . (21)

18



Here 7y characterizes the optical radius of the spherical cloud. The asymptotic solution of
this equation, for 70 > 1, is Ay = /(19 + 2/3), and so

2

= Smrer

for a sphere . (22)

In order to generalize this photon diffusion approach for the case of arbitrary optical depth
To, we replace the diffusion operators L® with the radiative transfer operators L, (see,
Appendix A and Chandrasekhar 1960) describing photon scattering in the plasma cloud
of arbitrary optical depth. For the disk (plane) geometry this operator, it is

21’0
L. =%/ E(jr—'|)drt — E = L, — B, (23)
0

while for spherical geometry it is given by

7o

L= / P(By(jr—7'l) — Bx(r+7))dr' — 7E = L, — 7E  (24)
0

Here E is the identity operator and E;(z) is the exponential integral of the first order.

Both diffusion operators are derived from Egs. (23) and (24) under the assumption of

T0 > 1.

The space radiative transfer equations for the source function B(7) are written by means

of operator L, in the following form:
B(t) = L.B(r') + Bo(7) for a disk, (25)

TB(t) = L.(v'B(r")) + 7Bo(7) for a sphere. (26)

The solutions of Eqs. (25) and (26), obtained by successive approximations over scat-
tering events produced the distribution laws of the number of scatterings, P(u), and the
asymptotic escape dimensionless rates 1/ (see, e.g., ST85).

19



The 3 values which were presented in Table 1 and Fig. 2 in ST85 are given for the sake
of completeness in Fig. 1 here. These values are practically for any optical depth for disk
and spherical geometries. As it can be seen, by comparing equations (19) and (22) to the
results presented in Figure 1, for 79 > 3 or 4 the diffusion approximation gives 8 with a
satisfactory degree of accuracy. ST85 (see also Eqs.[27], [28]) presents analytical expression

for the exponential law for case of small optical depth, i.e.

2 .
,H = In (Wo—)—) for a dlSk, (190.)
and
B =ln— f h (22a)
= in 379 Oor a spnere. a

All these analytical estimates are in excellent agreement with computational results (see
Table 1 in ST85). In order to present these computational calculations in an analytical
form we derive the next approximations of B, which incorporate asymptotic expression for
both small (Eqs (19a) (22a)) and large (Eqgs (19) (22)) optical depths,

2

= _L._ — p—1.3571 -3.Tro E .
B T2(ro + 2/3)7 (1 e ) + 0.45e In 3’ for a disk (27)
ﬂ — __.L (1 _ e—O.TTo) + e—1.41'o ln i fOI' a 8phere (28)
3(7o +2/3)? 3r’

The results of comparison between analytical and computational results of B are given in

Fig. 1.
It is worthwhile noting, that the forms of the diffusion operators LS-J) = %:—:, ‘and L, in
Eqgs (23), (25) are independent on the density distribution throughout plasma cloud if the

homogeneous atmosphere height of the density distribution is much less than the curvature
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radius of the plasma cloud layers. Thus the § estimates, Eqs.(19), (19a), (27) are valid

for any such density distribution.

3. EMISSION SPECTRUM
3a. Diffusion regime (1o > 1)

As we emphasized above, the X—ray spectrum of the upscattered low-frequency pho-
tons in plasma clouds is found as a result of solving of Stationary Comptonization Equation

(SCE). The homogeneous SCE (15), i.e. with ¥(z) = 0 is transformed to
22N} + z(2(1 +¢)+4)N; + (2?e+4z—9)N; = 0. (29)

Here € = p'/p and p = n(z@, 0)/2%, (see Eq.[4]), i.e.

!
W 1+ 4.620 + 1.1(z0)?
ﬂAtr
= 31
¥ on (31)
and
N A— (32)

O(1 + fo(©))
Because vy and ¢ depend weakly on the dimensionless energy z, for z < 2 the solutions
of Eq.(29) are expressed approximately by means of the Whittaker functions through the

expression Y, g(z) which have convenient integral representation (see e.g. Abramowitz &

Stegan 1966). Thus

Ni(e) = = % exp [_(1_“1‘)_"’

L2y, sl (33)
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In the case of low-frequency primary sources, i.e. Bo(z,7) = §(z — z¢)r1(T), with 2y < 1,

the spectrum of photon emerging from the plasma cloud is described by the simple formula

ao(ao + 3) _]_._

Fy(ﬂ?,ibo) = 2&0 + 3 To

z 34+ag
<_) when 0 <z < z, (34)
Zo

and

F,,(a:,:z:o) = ao(a0+3)

e [z \ * [Tt (z + t)> e tdt
To

h . 2 xg. (35
p T(2at ) when z. >z > 2¢. (35)

Here I'(2) is the gamma function, . = 0.5 + 7o and

a(z) = /9/4+v(z) — 3/2, (36)

while
ap = +4/9/4+v — 3/2. (37)

The values of 3 are obtained by solving the equation 8 = B(7 ) for given optical depth
To.

The solution of the Comptonization problem, Eq.(29) is characterized by a couple
of asymptotic forms: the first one is low- frequency asymptotic form, F, o z—®° when
the dimensionless energy ¢ < ap and the second one is high energy asymptotic form for
z > ao which is determined by Wien law F, « z3e~* in the nonrelativistic case. In order
to find the spectrum F(z,zo) for high energies (z > z. and z 3> ay) in the relativistic
case we present the occupation number Ny(z) in a factorized form N;(z) = e~=e~f(2),

Then N, —equation (29) reduces to Riccati’s equation for f(z):

f" + (42 — 2)f' —22f? = —y(1 + 7.40¢(0)z +'13.5492p(9)zz), (38)
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where ¢(©) = 1.-0.4160 and p(®) = 1.-1.050. Deriving this equation from equation
(29) we neglect e~ term with respect to 1 and the third and the fourth degree terms of
z (z = Oz) in y—polynomial with respect to quadratic polynomial of z. The solution of

Eq.(38) can be represented by the following asymptotic series

oo bn
f(ib') = boz +bllnm — Z(T—_IT:;;"_—V (39)
n=2

with coefficients b,, given by

/1 +54.1602p(@)y, — 1 4by + 7.40¢(0 )70 _3b — b+
by = , b= y bp=—ou—— (40)
2 1+ 2b, 1+ 2bg
and
5 _ (6 —2k)byi—y) — 2y b(ak—1-4)b;
(2k—1) 1 + 2bo ’
5—2k)bak—1) — b2 — S bou_ b
by = Ok = B~ Ny barg fork = 2,3,...  (41)

1 + 2b

Finally we obtain spectrum F(z,z,) for 2 > 2. through the formula

F(z,z9) = cozle 2~ (=) — coz®b1e—=(1+b0) exp i _——(n — l;';zn_l ~ cozdhre—z(1+bo)
n=2 .

(42)

The coefficient ¢¢ is determined by the continuity condition between the two parts of the

spectrum (Eq.35 and Eq.42) at z ~ z,. It is worthwhile noting the difference between the

hard nonrelativistic and relativistic tail. Instead of a Wien tail, z3e~2, in the nonrelativistic
case, in the relativistic case we have the steeper tail z3—51¢—=(1+bo)

The spectra resulting from the Comptonization of soft photon radiation with hyy =

1073kT. in high temperature plasma clouds for various values of kT. and the parameter 3

are obtained by numerically solving Eq.(15), (or Eq.[29]). A comparison of these solutions
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with the nonrelativistic models of ST80 are presented in Fig.2. It is seen that the nonrel-
ativistic spectra are satisfactory for temperatures kT. < 30 keV and energies hv < 50
keV with optical depth of plasma clond 7y > 2. There is also shown in Fig. 2 comparison
between the analytical approximation of Eqs. (34), (35), (42) and the exact numerical
solution of Eq.(29). Fig.2 shows that the new analytical formula works even much better
than the modified nonrelativistic approximation of ST80 and fits excellent the numerical
solution of Eq.(29) in the whole temperature range up to 100 keV. The modified nonrel-
ativistic approximation of ST80 is determined by Eqs.(34-37) with z, = co and v = ¥
(the latter is defined by Eq.32). In order to test the accuracy of the numerical solution of
equation (29) a couple of nonrelativistic solutions are shown in Fig. 2. These includé the
modified ST80 formula for the monochromatic soft photon radiation hyy and the numer-

ical solution of Eq.(29) with ¢ = 0 and v = 4o when the soft radiation is described by a

blackbody with temperature Ty = hig /2.7.
3b. Optically thin case (7o < 2)

In the case of small optical depths 79 < 2 and high temperatures kT, > 100 keV the
radiation field of photons which undergo repeated scatterings form the specific angular
distribution. ST85 discuss details of the angular distribution and polarization of photons
escaping from optically thin layers. Here ¥ referes to the angle between the n(;rmal to the
disk plane and a given direction and £ = cos?. The main features of the distribution are as
follows: i. The intensity increases monotonically from £ = 1 to ¢ = 0. ii. The radiation flux
as product of £ and intensity I in given direction has its maximum at émaz = (7/ 2)1/ 3 ¢ 1.

iii. it is mainly photons with £.55 =~ 791n 2170 that stay in optically thin disk. Radiation
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from the optically disk generates a knife beam, it escapes from the disk at angles close to
the disk plane.

Thus we can formulate the problem of the determination of the energy diffusion coefficient
of Fokker—Plank equation in the case the knife beam radiation field. In Appendix B we
present the solution of the problem. In that approximation the photons gain energy in
the course of random walk when they scatter in the backward directions. The asymptotic

form of the energy diffusion coeflicient 7(z, ®) at energies hv < kT, is found through the

expression

J1+ 304

11(2,@) ~ Zz T—}W.

Note that such relative weak temperature dependence of 7(z,®) is expla.inéd by weak-
ening of the Kleine—Nishina differential cross—section in the backward directions with
increasing plasma temperature. The transport coefficient A, (see Eq.(1)) becomes smaller
and it is almost constant, 1 for the whole high energy range. In the spherical geometry
the preferential directions of radiation propagation are concentrated along radial direc-
tions. The fraction of photons H(£.,1) which escape between £ = £, and £ = 1 equals to
H(€,,1) =1—¢2 —0.7579(1 — £2). Here ¢ refers to the cosine of angle between the radial
direction and a given direction. The last relation shows the fraction of photons leaving
plasma cloud and detained (because of scattering) at the directions with £ < £, decline as
€3 and & respectively.

The the analytical approximation (34), (35) fits successfully Monte—Carlo calculations

(Titarchuk & Hua 1994, Pozdnyakov et al. 1983, Zdziarski 1986 ) and v and 7y used in the
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computations of o and ay (Eqs. (36), (37)) could be replaced by the following expressions

A(1 + £ 0)

= 1+4.62z+1.122 d =
¥ = 7o(l +4.62 z®) and 7 o(1+ %)

(44)

i.e. the temperature dependence of the space diffusion coefficient 7, can be replaced by that
weak temperature dependence which follows from Eq.(43). The equation (35) is computed
for all dimensionless energies z > o, i.e. z, = co. The results are given in Fig.3 for the
plasma temperatures kT. = 100, 500 keV and for the plasma optical depths 7 = 0.1 — 2.

In the conclusion of this section we want to summarize two things: i. The analytical
and numerical relativistic solutions of Eq.(29) are much better than ST80 and they ap-
proximate quite well the Monte Carlo results (Titarchuk & Hua 1994 ) for 8 < 0.6 — 0.7,
i.e. for the optical depth in spherical geometry more than 1 and for the optical depth in
disk geometry more than 0.5 and for the temperature range up to 150 keV. It is important
to point out that the diffusion coefficient 7(z,8) of the kinetic equations (6) (or Egs.[15],
[29]) should be replaced by the exact solution of Prasad et al. 1988 instead of using the
formula (4) for kT, > 100 keV. ii. in the case of relative small optical depth 8 > 0.4 (the
optical depth in spherical geometry 79 < 2 and the optical depth in disk geometry 7o < 1)
and high temperatures up to 500 keV the analytical approximation (35) along with the
appropriate corrections for the parameters v and v (Eq. (44)) works fairly well (Titarchuk
& Hua 1994) and could be used as a model in data analysis.

Below we show how this analytical approach is applied for interpretation Cyg X—1 data.

4. SOURCE OF LOW-FREQUENCY PHOTONS
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Sunyaev & Titarchuk (1989) formulated the problem of the interaction of radiation
between hot and cold material in the framework of a sandwich model. Later this problem
was also considered by Haardt & Maraschi 1991 with application to AGN, and by Haardt
et al. 1993 for the interpretation of OSSE observations of Cyg X—1. We shall present
the detailed theory, numerical calculation and astrophysical applications of this model
in a forthcoming paper (Titarchuk 1994). Here we will only present some very simple
estimations which directly follows from the presence of a hot region in the vicinity of
relatively cold material. As an example of a cold material we can consider an accretion
disk with a surrounding hot corona or some part of a neutron star surface surrounded by
a hot boundary layer.

We assume that the low-frequency photons are produced in the lower cold layers due to
heating of cold material by the hard photons emerging from the upper hot region. Some
fraction of the luminosity L irradiated outside therefore is deposited in the cold material
because of the recoil effect on cold electrons and photoelectric absorption. The first process
is more important for high temperature regions with kT, > 20 kev, as may be observed for
Cyg X—1(see e.g. Sunyaev & Trimper 1979; ST80; Frontera et al. 1992 Grabelsky et al.
1993) and for NGC 4151 (Maisack, et al. 1993). The second process (i.e. photoabsorption)
mainly defines the soft photon production in the cold layers of the accretion disks in galactic
sources when the temperature of the hot region is around a few keV (see e.g. White et al.
1988)

For simplicity we will consider only the recoil effect as the main source of the energy

deposition in the cold material. This deposition flux, which equals the soft photon energy
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flux Ly, is determined by the expression

_ Q-4r

Ly >

(45)

Here A is the albedo of the cold material, illuminated by the hard photon flux incident
from the hot region. The formula for albedo can be obtained if we assume that the incident
radiation spectrum F, has the specific shape. At the first we derive this formula with an

assumption of the nonrelativistic upscattering spectral shape (see Eq.(23) in ST80) using

the formula for the monochromatic albedo (Titarchuk 1987) 1— 4, = 2/ fm':‘; 5 . Then

we can write

L4 - Jo (1~ A,)F,dv _ /E kT. T'(3/2 — a)l(a + 4.5) (46)

I Fodv 3m.c2I'(3/2)[(a +4)I'(1 — @)’

To derive this formula we have used the method of integration presented in chapter 7.3
of ST85, assuming a spectral index & < 1. The case a < 1 contains the solution set of
zo < 1 for recoil effect deposition. Another relationship between L and L, follows from

the equation for the enhancement factor d(a) due to upscattering of photons (ST80, 85)

afa +3)T(a + (N1 - a)

L a—-1 _
I, = U= = T'(20 + 4)

Lo

(47)

Excluding the ratio LL in the system of Eqs. (45) and (47) and using Eq.(46) we derive

]

explicit equation for z,

_ (1, [7*Te T(3/2 - a)l(a + 4.5)[(a)a(a + 3) s
To = (5 3m.c? T(3/2)[(2a + 4) ) . (48)

The values of zo have to satisfy two conditions, namely ¢y < 1 and 1 — 4 < 1. In Fig.

4 the values of z¢ are plotted versus o for various plasma temperatures. For smaller kT,
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the set of the admissible « is: shifted to smaller values and the left boundary of this range
is determined by the evident inequality zo(a) < 1/2.

For example in the case of Cyg X1 (see below and also Haardt et al. 1993) kT, ~ 150
keV and the relevant o obey the condition & > 0.5. From the right side the spectral slopes

are limited by the equality @ = 1 because in this case the enhancement factor (ST80) is

L 4. 1
— = Zln— 49
Lo 5 " Lo ( )
but on the other hand (see Eq.[45])
L 2 I'(6) [3mec?4, 1
— = = —Iln—. 50
Lo 1-4 155\ =T, 5"z (50)

Comparing these equations we obtain that LLO as determined by Eq.(50) exceeds LLO

derived from Eq.(49) because

I'(6) [3m.c? > 1
I(5.5) \ wkT. )

In other words, the deposition energy due to recoil effect in cold layer is so small that
the produced soft photon radiation Ly cannot be upscattered to the output radiation L
because of the values of Comptonization parameter y ~ % < 3 too small.

Taking into account free -free absorption for the albedo calculation we assume that,
more energy could be deposited in the cold material and consequently we shift these
estimations to larger values of a (and thus to smaller values of y).

For given values of a, z¢, and luminosity L, we are able to estimate the size of the soft

photon emission area S, using Eq. (47)

2.7kT,\'™ L
s = (2220 = .
( kT, ) d(a)oT} (51)
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Now we derive the equations for the enhancement factor L/Lo, the energy of the soft
photons zo and the size of the soft photon emission area S with an assumption of the

spectral shape of the relativistic upscattering hard tail of Eq. (42). Thus for the flux

averaged albedo we can write

L4 fQ-A)Fdv  [r kT T(+1.5) 52)
- [PFdv ~ V3m.dST(6+1)

Here F, ~ coz’e~29, (see Eq. 42) and thus d = 1 + by and § = 3 — bg. In addition to Eq.

(45), L and Loy (Lo =1 in Eqgs. 34, 35 ) are related by the expression for the enhancement

factor due to the upscattering of photons

ré+1
/ F.dz ~ ¢ (d6+1 ) (53)

How we have mentioned before the coefficient ¢ is determined by the continuity condition

between the two parts of the spectrum (Egs. 35 and 42) at z ~ z,:

ao(ao + 3)e—b°”‘ ao—1

Eliminating L and L, from the equations (42), (53) and using the equation (52) we find

at once the frequency of soft radiation

fer
1 [ nkT. e~b*T(3/2 + §)ag(ao + 3) °
Zo = 9 2 aop+6 ’ (55)
2V 3mec 37 (2a0 + 3)

Thus, by knowing the parameter 3 and the temperature k7T, and using Eqs. (45), (52) one

can calculate the temperature of the soft photons kTy = Eﬂﬂ" and the size of the photon

1 [x BT, T(6+15) L
S =7R?® ~ —4/— . :
i 2V 3mec? dOST(6 + 1) o T8 (56)
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Equations (55), (56) (also as Eq. 48, 51) hold provided that zo < 1 and ag < 1.
5. ASTROPHYSICAL APPLICATIONS

Now we illustrate briefly the relevance of the above model to current high energy
observations by OSSE and GRANAT. A more detailed analysis of the relevant data will

be presented elsewhere (Titarchuk & Mastichiadis 1994).

5a. Cyg X-1

There is a number of models to explain the hard radiation of Cyg X—1 (see e.g. the
review by Liang & Nolan 1984). One of the most popular is the Comptonization model
according to which low frequency photons upscatter on hot electrons, thus producing the
observed hard spectrum. The solutions obtained in Sect. 3 allow one to estimate the
characteristics of the hard photon emission region, the electron temperature, the optical
depth and the size of the upper hot layer, and also to determine the soft photon energy
produced in cold layers of the accretion disk situated below the hot region.

The shape of the emission spectrum emerging from the plasma cloud is described by
Eqs.(35), (44) and depends only on two parameters 3, and the value of the temperature
kT,.

Figure 5 shows the data obtained by the EXOSAT, GRANAT and OSSE observations
of Cyg X—1 (for details on the data see Done et al. 1992; Salotti et al. 1992 and Grabelsky
et al. 1993). These are compared with calculations made by Haardt et al. 1993 for the
ST80 model with kT, = 63 keV, and 74 = 2 and by Haardt & Maraschi (1991), using

a Monte—Carlo sandwich model with k7. = 153 keV and 74 = 0.3. Also shown are the
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analytical results obtained from Eqs.(35), (44) with kT, = 153 keV and # = 1.02 and
All the parameter values k7., 8 correspond to the best fit values. The above value of 8
corresponds to the half—thickness of the disk 1y = 0.15 (70 = 74/ 2);1 for spherical case
it corresponds to 7, = 0.62. The comparison of the analytical best fit with Zdziarski’s
analytical approximation (Zdziarski 1986) with kT, = 153 keV and 7, = 0.62 is also
given in Fig.5. None of these fits don’t show the discrepancy between the theoretical curve
and the data in energies less than 30 keV presented by Haardt et al. 1993 which they try
to explain in terms of the reflection model i.e. that the gap might be filled in by photons
reflected from the underlying cold matter of the accretion disk.

Eqs. (48), and (51) can be used to estimate the energy of the soft photons hvy as well as the
emission region area S. As long as these equations are obtained with the approximation
of the ST80 model (i.e. without relativistic corrections), we use the best fit parameters
of ST80 for such estimations: the spectral slope a = 0.9 and kT, = 75 keV. The
temperature value corresponds to the upper fit value and differs by 20 % from the best
values. We choose this temperature in order to fill the gap between the data and the
theoretical model points in the hard energy region E > 300 keV.

Then the blackbody temperature of soft photons of 110 eV obtained from Eq.(48), implies
an area S = 6 x 10'® cm? or a radius of the emission region of ~ 14 Schwarzshild radii,

which for a Cyg X—1 luminosity equals to 1037erg s~ and mass of to 10 solar masses.

5b. NGC 4151
The recent OSSE observations of Seyfert 1, NGC 4151 (Maisack et al. 1993) repre-

sent the most sensitive observations of this object in the energy range from 60 keV up to
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1 MeV. The emission spectrum of NGC 4151 is supposed to be the typical Comptoniza-
tion spectrum formed due to upscattering of ultraviolet radiation reproduced in the cold
material of accretion disk (see e.g. Dermer et al. 1991). Zdziarski et al. 1993 show that
the OSSE (Maisack et al. 1993) and the Ginga (Yaqoob et al. 1993) observations of NGC
4151 are well explained by a nonthermal model with acceleration of relativistic electrons at
an efficiency of < 50 % and with the remaining power dissipated thermally in the source.
They point out that the pure thermal model gives a worse fit to the data than their hybrid
nonthermal /thermal model.

On our part we want to emphasize that using the exact Comptonization solution with
relativistic correction (Egs. (35), (42)) for thermal model produces extremely good fit for
the Ginga and the OSSE data.

Figure 6 shows the OSSE data and the best fit given by Eq. (29) or formulae (35),
(42) with a plasma temperature of 4613 keV and Thomson optical depth of 1.1732, for
the plane geometry and of 2.9793 for the spherical geometry (x? probability = 0.1). The
best fit with kT, = 46.3 keV and B = 0.21 gives x> = 11.4 for eleven points and x? = 12.2
in the case of higher temperature 55 keV and g = 0.32. |
Figure 7 shows the OSSE (Maisack et al. 1993) and the Ginga (Yaqoob et al. 1993) results
and the best theoretical fit with a plasma temperature of 441} keV and B = 0.18613-028,

: j
The corresponding Thomson optical depths are 1.25 in disk geometry and 3.2 in sphe:ica.l

geometry. The best fit with kT, = 44.1 keV and 8 = 0.186 gives x2 = 33.03 for twenty

nine points and x? = 35.4 in the case of higher temperature 48.5 keV and § = 0.214.

33



The absorber column density was kept fixed at the best—fit value given by Yaqoob et al.
(1993), namely N, = 9.8 x 1022 ecm™—2.

Assuming an X-ray luminosity equal to 104* erg/sec and using Eqs. (55), (56) with the
best fit Comptonization parameters, 3 = 0.186 and the temperature kT, = 44.1 keV ( the
relevant parameters o, bo, b1, d, § are functions of 8 and k7., and are found to be 0.5,
0.14, 1.28, 1.72 respectively) we produce the appropriate values of the photon blackbody
temperature and the emission surface size: kT, = 4.5 €V (hvy = 12€eV) and R = 5.3 x 1012
cm.

Thus we see that the thermal model provides a very good fit to the high—energy spectrum
of NGC 4151 and furthermore no significant nonthermal emission would be irradiated.
Electron temperature of ~ 40—50 keV for thermal fit would be consistent with those

which are predicted two—temperature accretion scenarios (e.g. Eilek & Kafatos 1983).

6. DISCUSSION AND CONCLUSION

The present description of high energy spectra enables us to discuss several issﬁes: the
technique and main idea in getting Comptonization spectra; fits and explanation of ob-
served X —ray spectra by the Comptonization models; constraints for physical pa.ra.meters.
and geometry of compact objects; self-consistent determination of low-frequency radiation.

We display the theoretical spectra which result from Comptonization of low-frequency
photons in plasma clouds. The problem is generalized in the case of subrelativistic energies
and temperature and it is reduced to a Fokker—Plank technique even for very moderate
plasma cloud optical depths. The main idea in getting the spectra is to present the

emergent spectra as a convolution of the time development of the photon energy in the
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course of a photon’s random walk in the plasma cloud, with the photon distribution over
scatterings. The latter defines the probability for the photon to undergo a certain number of
scatterings in the plasma cloud. The Comptonized X —ray spectrum is created by photons
which suffer many more scatterings in plasma cloud than the average number (ST80, ST85).
However these photons produce the specific radiation field, with the specific angular and
space distributions which are only determined by the plasma cloud optical depth and
are independent of energy (ST85), i.e. photon random walk around plasma cloud occur
independently on photon energy change (gain). Thus the upscattering spectral formation
even in the case of small optical depths can be considered in terms of the Fokker—Plank
approach when the photon energy change is weighted by the Compton scattering kernel
(CSK) over photon directions and the photon scattering distribution. It turns out that, for
high energies (much more than the average energy of the primary low-frequency photons),
the main contribution to the above convolution integral comes from the exponential tail
of the scattering distribution Eq.(17), which is the asymptotic form of any scattering
distribution in a finite medium. Therefore, it is possible to derive a simple equation for
the convolution determination, Eq.(15), the Comptonization Stationary Equation (CSE).
The shape of the emergent spectrum is obtained as a solution of that equation. As a
matter of fact, CSE contains only two parameters, the plasma temperature, kT, and the
dimensionless escape rate, B, which control the spectral shape. The temperature or average
energy of low-frequency photons determines simply the normalization of the spectrum. The

solution of equation (15) (or Eq.[29]) is presented in analytical form, Eqs.(35)—(37), (42)
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(Eqs (35), (44) in the optical thin case, 79 < 2). Numerical solutions are discussed as well
(the Run method). Both of them are very convenient for spectral data analysis.

The shape of a number of X—ray spectra are fitted by the Comptonization model. We
illustrate this in section 5. The spectral power law slope along with the exponential cut-off
contain information about the plasma optical depth and plasma temperature. The normal-
ization of spectrum helps to determine the emission region surface area. This enables us to
evaluate the energy flux per unit area, as long as the observed spectrum is fitted quite well
by a Comptonized low-frequency blackbody spectrum (we obtain the parameters, optical
depth and temperature, which give the Comptonization enhancement factor (see Eq.[47])).
Furthermore, the assumption of a certain distance to the X-—ray source, along with the
count flux on Earth, give the emission region surface area.

The next question is how to distinguish between the two geometries (plane and spher-
ical) by analyzing X—ray spectra. The optical depth values are obtained in a straight-
forward calculation in the framework of a certain geometrical model (disk or sphere).
However, a source characterized by very hard unsaturated Comptonization spectra, im-
plies very high plasma temperatures and very small optical depths in the assumption of
disk geometry. In this case, hard photons are mostly concentrated along the disk, forming
a specific knife beam. Because of this, the possibiiity of observation of such hard photons
from the disk drops when increasing the spectral hardeness. Therefore, it is natural to
suppose that hard photons come from quasi—spherical plasma clouds, rather than from

the disk. Another possibility for determining the emission region geometry is through po-
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larization measurements. For disk geometry, we would expect significant polarization with
magnitudes exceeding 40% in the case of optical depths less than 0.4 (ST85).

In section 4, we demonstrate that the self-consistent determination of the energy of
low-frequency sources, which results from energy exchange between hot and cold material
of an accretion disk, is possible only in the limited range of Comptonization parameters.
If the Comptonization parameter is too big, y > 6 (or spectral indices a < 0.5), a lot of
energy is deposited due to the recoil effect in the cold layer, and the average energy of
the photons escaping from the cold layer is comparable with the plasma temperature. In
the opposite case of small Comptonization parameter vall;es, y < 3 (or spectral indices
a > 1), the Comptonization spectrum suffers a shortage of hard photons. In that case, the
deposition of energy due to the recoil effect in a cold layer is so small that the produced

soft radiation cannot be upscattered to the output radiation.
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APPENDIX A

COMPTON RADIATIVE TRANSFER

AND FOKKER-PLANK APPROXIMATION

At first we consider the case of plane geometry. However, in what follows there is no
big difference between spherical and plane geometries. Therefore, a reader can repeat all
the details for spherical geometry too.

Let us assume that we have a disk with Thomson optical half-thickness 7, filled by

free electrons. The equation for the specific intensity, I of a radiation field is expressed

through

OI(v,T,§) _ 1
{———BT = Bo(v, 1) + —

/ du'/ an’ [1,0',(1/' -0 -Q,T.)I0,1,¢)
0 4x v
- 0',(1/ — V',nl . ﬂ,Te)I(V, T,{)] ’ (Al)

where v, ' are the photon frequencies, 7 is the Thomson optical coordinate with respect to
the middle disk plane, 2 (incoming) and £’ (outgoing) are photon directions, ¢ (incoming)
and ¢' (outgoing) are the cosines of angles with reépect to the disk normal. The intensity
of radiation depends on the frequency, v, the Thomson optical coordinate, 7, and the
photon direction cosine, ¢. The scattering kernel, o, (e.g. Pompraning 1973) depends on
the plasma temperature 7., the incoming (v) and outcoming (v') frequencies, and on the
cosine of the angle between the two photon directions (¢ = Q' - Q). In order to reduce this

equation to the equation for the zero moment of intensity, J(v,7) = L |, 4x 303 I over all
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solid angles, we multiply equation (A1) by - and then integrate over all solid angles (2,

keeping only the zero moment of the intensity in the right-hand side:

O0H (v,
;: _ = Bo(v,7)
+ ! / du'/ daqa’ [%S(u' =T )J(,7)— S(v— u',T,)J(u,‘r)] . (A2)
neor Jo . v

Here S(v = v/\Te) = L [, dQ0,(v - v, . O, T.) and drH(v,7) = [, _dQI(v,7,¢) is
the specific flux of radiation at the frequency v and at the optical coordinate .

The second equation which contains the first moment of intensity H(v, ) is obtained by
multiplying the original equation (A1) by f; and then integrating. We keep two terms in
the expansion of the intensity over ¢, (I (v, 7,€') = J(v,7) + 3H(v,7)€) in the ﬁ;st integral

on the right-hand side of equation (A1). Introducing the second moment of intensity

1
K(7) = /4 A0, 8),
and the transport function (see Eq.(1)) we find

_ H(v,7)

K(v,7) = o (1,0)°

(A3)

Excluding the first moment of intensity, H in Eqs.(A2), (A3) and introducing the ratio

of the second moment to the zero moment, v = K/J, the radiative transfer equation is

expressed through

—,\t,(u,@)gw = Bo(v,7) + n;T /0 Y /4 ar [L s - v, T)30,7)
=S(v ="\ T.)J(v,7)]. (A4)
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Here the differential operator
o (0
L,=—|—=— A5
ar (a#’) (45)

on the left-hand side, and the appropriate energy integral operator L, on the right-hand
side, act on the average intensity J(v,7). Thus we can rewrite equation (A4) in the

operator form

L,J(v,7) + L:J(v,7) = =-A;}(v,0)By(v,T). (A6)

We have to add to Eq.(A6) the boundary condition which implies that photon scattering

takes place only in the disk (the scattered photon flux from outside is zero); hence

2% 1
snH(v,m0) = / dp / eI, 0, E)dE. (A7)

Expressing H through K (Eq.[A3]) and finally through J by means of the ratio v, we

obtain the boundary condition at the edge of the disk, 7 = 7:

d(vJ(v, 7))

Atr 87'

+ voJ(v,70) = 0. (A8)

Here

vo = fol fI(Va TO;€)d€ .
Jo I(v, 0, €)dé

We need to note that ratios v and vy, in general, depend on the frequency v and the

Thomson optical coordinate 7. However, in the cases of interest for Compton upscattering,
the angular distribution of radiation field is determined by the plasma cloud optical depth
To, and is independent of the photon energy (ST85), hv and hence, these ratios are functions
of the optical coordinate 7 only. For an isotropic (70 > 1) and almost collimated (7o < 2)
radiation fields, these ratios are nearly conéfa.nt. For an isotropic field, v = 1/3 and
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vg = 1/2. For the beam field collimated near the direction for which cosine € =¢€,v=¢2
and vp = {.. We should remind that, the beam cosine €+, depends on 7y only, and is
independent of the energy, hv (ST85). Thus for the isotropic case, (170 > 1), the space

operator L. is reduced to the operator

1 d?
Gl A9
Ly 3dr? (49)
with the boundary operator, £,
8 3
r = Atr — —. Al0
be=Jus + 3 (Al0)

In the case of the beam field (7p < 1), because the form of L., (Eq.[A5]) is very sensitive to
the exact determination of the beam cosine ¢,, the space operator L, with the appropriate
boundary condition can be represented in a more elegant way by the single integral oper-
ator, Eq.(23). Also, the diffusion operator L3 is derived from the integral space equation
(25) for the case 79 < 1. In order to do this we expand the function B (7) of equation (25)

in a Tayler series over z = 7' — 1 , keeping only the three terms

B(r') = B(r) + B'(1)z + LZ(TZ;,,Z. (A11)

The zero, first, and second momenta of the exponential integral E; (|7 — 7'|) over the range

of 7', from —7y to 7y equal to 2, 0, 4/3 respectively. Using these values we find
1 n
§B (T) = —Bo(T). (A12)

It is worthwhile noting that the accuracy of the representation of momenta for E; is of

order of r¢e~" for all T « 75 — 1.
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In section 2a we formulate the statement that the solution of equation (6) can be
represented by the convolution form (8), if the right-hand side of equation (6) can be

factorized in the form

(r,v) = r(T)p(v). | (A13)
This statement is general and is valid for any boundary problem of the equation (A6),
i.e. if the left-hand side of arbitrary equation is a result of the action of the sum of two
operators, L, and L, and the right-hand side is factorized, as in Eq.(A13). The validity

of the convolution form, Eq.(8) as the solution of Eq.(A6) (or Eq.[6]) is checked by the

following substitution:

AwR(T,u)LVN(u,u)du + /ooL,R(T,u)N(u,u)du = —p(v)r(r). (A14)

0

Using Eqs.(9)-(12) we find

*° ON(v,u) * OR(t,u)
/0 R('r,u)Tdu-i—/o‘ 5y N(v,u)du

_ [T ON(v,u)R(7,u) , _
- /0' oL du = —p(v)r(r). (A15)

The integral energy operator, L, of equation (A6) was first reduced to the Fokker—Plank
form by Kompaneets (1956) for the case of nonrelativistic photon energies and plasma
temperatures. Subsequently, various authors have generalized Kompaneets’ work up to
the subrelativistic energies and temperatures (e.g. Cooper 1971, Prasad et al. 1988). In
section 2a we present L, in the Cooper—Prasad’s form.

In order to develop the same approach for spherical geometry we need only to replace
the plane space gradient of Eq.(A1) by the spherical space gradient:

1‘—{2_6_I
T O¢

aI
VI=¢_+
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and to repeat the integration over all solid angles. Here ¢ refers to the cosine of the angle

between the photon direction and the radial direction.

APPENDIX B
DIFFUSION COEFFICIENT FOR THE COMPTON FOKKER-PLANK EQUATION

IN THE COLLIMATED RADIATION FIELD

Prasad et al. 1988 have derived equation (3) for the energy diffusion coefficient 7, of

the Fokker—Plank equation (6) (or [A6]). The solution of equation (3) reads

”=0) =5 [ de'expl(s - 1)/0e(s",0). (B1)

Here
o(2,0)=<(z-2") > /0°°(z’ —2)dS.(z — 2',0). (B2)

The weighted energy change o(2', ©) is presented by the integral (compare with Prasad et

al. 1988)

o=,0) = [aviwe, (B3)

6= T2 [Tae [ 15w )+ 60— vy

-(z—z'){1+[ 1- ] +(1—£)223}5(£—1+/\2—A£’) (B4)

A2DD! A2DD!
In the case of a collimated radiation field by using Dirac delta function the integral over
photon direction Q' is reduced to the sum of two terms which correspond to the fixed
photon directions ¥, = arccosv; ~ 0 and ¥_ = arccos %— ~ 7. The integral over 2’ is

obtained by using the Dirac delta function which uniquely fixes the dimensionless photon
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energy z' in terms of 2, the photon directions ¥;, J_, and the electron velocity v. In

equation (B4)

Mexp(—A/0O)

= B5
) 4103 K,(10) (BS)
the relativistic Maxwellian distribution at electron temperature ®, K, is the modified

Bessel function of the second order, and

D=1—-pvfe, D'=1-p'vfe, A=1/4/1—v2/c2. (B6)

Here, p and u' are the cosines of incoming (outgoing) photon directions and electron
velocity direction respectively, £ is the cosine of the angle between photon incoming and
outgoing directions. In our case of a collimated radiation field we assume that ¢ ~ 1 or

€ ~ —1. The Dirac delta function is used to fix 2’,

. 2D
T D+(1 —&)z/A (B7)

The term of equation (B4) which corresponds to the scatterings in the forward direction
(¢ = 0) is eliminated, because z — z' = 0. Thus, integrating Eq.(B4) and taking into

account Eqs.(B5)-(B7) we obtain

Q(Z’,@) = m [w Az exp(—A/G))dA ‘/zi+ Gdz, (BS)

Here

(1 —=z) 1 2 1
6=2) = g p e )[( m—_ﬂ) +F(T__)‘] (B9)

and

Az -1

v
T =R T = H=) T

(B10)
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FIGURE CAPTIONS

Figure 1. f—Dependence as a function optical depth for disk geometry (solid line) and
spherical geometry (dashed line). The analytical approximations S—Dependence Egs.

(27), (28) are displayed by the dash—dotted curve (disk) and the dotted curve (sphere).

Figure 2a. The comparison of the outgoing photon spectra for plasma cloud with electron
temperature kT, = 10 keV for the modified nonrelativistic Comptonization model
ST80 (Eqs.34-37 with z. = oo and y = 7, the latter is defined by Eq.32) and the

outgoing spectra calculated with relativistic corrections (Eqs.(29), (34), (35) and (42))
Figure 2b. Same as 2a. for kT, = 25 keV
Figure 2c. Same as 2a. for kT. = 44.1 keV
Figure 2d. Same as 2a. for kT, = 50 keV

75 keV

Figure 2e. Same as 2a. for kT,
Figure 2f. Same as 2a. for kT. = 100 keV

Figure 3a. The the outgoing photon spectra for plasma cloud with electron temperature
kT. = 100 keV in the optical thin case with optical depths in spherical geometry

To = 0.1 — 2 calculated with relativistic corrections (Eqs.[35], [44] )
Figure 3b. Same as 3a. for kT. = 500 keV

Figure 4. The set of o vs a is presented as a function of plasma temperature kT..

Figure 5. The data obtained during EXOSAT, GRANAT and OSSE observation of Cyg
X—1 ( Done et al., 1992; Salotti et al., 1992 and Grabelsky et al., 1993). These

are compared with calculations made by Haardt et al. 1993 for ST80 model with
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kT = 63 keV and 74 = 2 (histogram) and by Haardt & Maraschi (1991) for a
Monte—Carlo sandwich model with ¥7. = 153 keV, and 74 = 0.3 (dashed line) also
with analytical results obtained with Eqs. (35), (44) (solid line), with kT, = 150 keV
and 8 = 1.02, which corresponds to the half— optical thickness of the disk 7 = 0.15
(To = 74/2) or 7, = 0.62 in spherical geometry. The dash—dot—dot—dot line presents
the Zdziarski’s (1986) analytical approximation for the given parameters kT, = 153
keV and 7, = 0.62. All parameter values k7., T, B correspond to the best fit values.
Figure 6a. The OSSE data of NGC 4151 (Maisack et al., 1993) and the best fit by Eq. (29)
or formulae (35), (42) with a plasma temperature of 463 keV and Thomson optical
depth of 1.1%J2, for the plane geometry and of 2.973-% for the spherical geometry (x?

probability = 0.1). The best fit with kT, = 46.3 keV and 8 = 0.21 gives x? = 11.4

for eleven points.

Figure 6b. Same as 6a. in the case of plasma temperature 55 keV and B = 0.32 giving
x? =12.2.

Figure 7a. OSSE (Maisack et al., 1993) and Ginga (Yaqoob et al., 1993) results for
NGC 4151 and the best theoretical fit with a plasma temperature of 447§ keV and
8= 0.186fg:g§§ and the appropriate Thomson optical depth are 1.25 in disk geometry
and 3.2 in spherical geometry. The best fit with kT, = 44.1 keV and B = 0.186 gives

x* = 33.03 for twenty nine points. The absorber column density was kept fixed at the

best—fit value given by Yaqoob et al. (1993), namely N, = 9.8 x 1022 ¢m—2.

Figure 7b. same as 6a for the case of plasma temperature of 48.5 keV and 8 = 0.214 giving

x? = 35.4.
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Figure 7c. Dependence of EF,, for the parameters kT, and 8 the same as in Fig. 7b.
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