
On-line Appendix: Generalized Correlation
and Kernel Causality with Applications in

Development Economics

Hrishikesh D. Vinod∗

first version, July 14, 2015

Abstract

This document describes on-line supplementary material explain-
ing the data and R software to accompany my paper Vinod (2015)
appearing in Communications in Statistics - Simulation and Compu-
tation. The aim of this supplement is to assist the reader in extending
and implementing the ideas in my paper. Included R code can be
used as a template allowing one to use my methods on any data of
interest to the reader. My software here is not claimed to be efficient,
but does work. Explanations of software steps are often included, but
not claimed to be complete. Hence some familiarity with R is needed
to use it properly. The software tools and their descriptions provided
here need additional work to bring them up to the standard of an
official R package.

1 Introduction

This document is intended to be read in conjunction with my paper Vinod
(2015) published in Communications in Statistics - Simulation and Compu-
tation (CSSC). This document is focused only on implementation and data

∗Vinod: Professor of Economics, Fordham University, Bronx, New York, USA 10458.
E-mail: vinod@fordham.edu. I thank Shurong Zheng for giving me the R code for GMC.
A version of the original paper (of which this is a supplement) was a keynote address to
the 50th annual (Golden Jubilee) meeting of the Indian Econometric Society in Mumbai,
December 2013. I thank two referees for several detailed and helpful suggestions.

1

analysis, and will not repeat the explained theory from the paper. Most
R code snippets are named for cross-reference purposes. The names always
start with “R-”.

There is considerable R code provided here which can be developed into
an R package. At the minimum the code can serve as a template for specific
graphics or computational applications with minor modifications. The code
is seen in red font ready to be copied and pasted by the user. All commands
of the type ‘require()’ or ‘library()’ will not work unless the particular R
package named in parentheses is first loaded at the R installation where the
code is used.

The blue font is reserved for outputs from the code. The outputs of many
code snippets is suppressed and /or abridged for brevity.

2 R software Initialization

While many R experts do not agree with me, I prefer to replace the R prompt
(>) implicit in the R software with one space and the R continuation symbol
(+) with two spaces. This change permits direct copy and paste from this
file into any user’s R console without modifications, avoiding confusion with
the greater than and plus symbols also used in R. I also prefer to use the one
stroke (=) symbol for assignment rather than (<-) requiring 4 strokes after
including spaces commonly used in R.

#R-Init

rm(list=ls()) #clean up the R memory

seed=42

set.seed(seed)

print(c("seed=",seed),quote=FALSE)

options(prompt = " ", continue = " ", width = 68,

useFancyQuotes = FALSE)

print(date())

It is recommended that the reader copy and paste this code named “R-
Init” before each new project. The next section describes our data sources
before use in the subsequent sections.

2

3 Details Regarding the Nine Variables in

Economic Development (EcDev) Data

Our data are publicly available at the UN, (See http://hdr.undp.org/en/

data), the World Bank http://search.worldbank.org/data, etc. The sup-
plementary material to this paper allows the reader to reproduce our re-
sults. Some data and country codes follow the Association of Religion Data
Archives (ARDA) www.TheARDA.com, with the Principal Investigator Jaime
Harris.

1. GRO: the least squares annual growth rate in Gross Domestic Prod-
uct (GDP) used with constant GDP per capita data in local currency
units. Sample growth rates are China=7.9, India=3.6, Mexico=1.7 and
USA=1.9.

2. INHDI: Inequality-adjusted Human Development Index.

This measure adjusts a country’s HDI score based on its scores on
three additional indexes: the inequality-adjusted life expectancy index,
the inequality-adjusted education index and the inequality-adjusted in-
come index. Sample scores are Albania=0.627, Bangladesh=0.321, In-
dia=0.365, USA =0.799 and Pakistan =0.336.

3. GINI: Income Gini coefficient. This is a measure of the deviation of the
distribution of income (or consumption) among individuals or house-
holds within a country from a perfectly equal distribution. A Lorenz
curve plots the cumulative percentages of total income received against
the cumulative number of recipients, starting with the poorest individ-
ual or household. The Gini index measures the area between the Lorenz
curve and a hypothetical line of absolute equality, expressed as a per-
centage of the maximum area under the line. A value of zero represents
absolute equality, a value of 100 absolute inequality. Sample scores are
Albania=33, Bangladesh=31, India=36.8, Iran=38.5 and USA=40.6.

4. GII: A country’s score on the Gender Inequality Index (GII), a compos-
ite index measuring loss in achievements in three dimensions of human
development: reproductive health (measured by the maternal mortality
ratio and the adolescent fertility rate), empowerment (measured by the
female and male population with at least a secondary education and by

3

http://hdr.undp.org/en/data
http://hdr.undp.org/en/data
http://search.worldbank.org/data
www.TheARDA.com

the female and male shares of parliamentary seats) and the labor mar-
ket due to inequality between genders (measured by female and male
labor force participation rates). These scores are high in countries with
large Muslim populations as: Egypt=0.714 and India=0.748 and low
in Westernized countries as Japan=0.273 and The Netherlands= 0.174.
The USA=0.400 is somewhat higher than expected.

5. MPI: Multidimensional Poverty Index. This indicates the share of the
population that is multidimensionally poor adjusted by the intensity of
the deprivations. These deprivation data are not reported for rich coun-
tries. The scores are Albania=0.004, Bangladesh=0.291, India=0.296
and Pakistan=0.275. India is among countries showing the worst de-
privations for her poor.

6. GEI: Governance Effectiveness Index from the World Bank ranging be-
tween -2.5 to 2.5. For examples: Australia=1.74, India=(-0.03), Pak-
istan =(-0.82), UK=1.55, Japan=1.35. It reflects perceptions of the
quality of public services, the quality of the civil service and the degree
of its independence from political pressures, the quality of policy for-
mulation and implementation, and the credibility of the government’s
commitment to such policies. The data are available for 1996–2011 for
over 200 countries. We use the 2011 data.

7. Entp: Entrepreneurship index is what the World Bank researchers call
“New Business Density”. A high density indicates prevalence of en-
trepreneurship in a country, calculated as the number of newly regis-
tered limited liability companies per 1,000 working-age people (those
ages 15-64), World Bank (2013). For examples: Australia=6.17, In-
dia=0.09, Pakistan=0.03, UK=8.32, Japan=1.1.

8. ECI: Economic Complexity Index developed at MIT and explained in
Hidalgo and Hausman (2009). The authors claim that the greater the
number of complex exchanges in international trade of goods under-
taken (manufactured) in a country, the higher is its economic growth
potential. For examples: Brazil=0.244, India=0.247, Pakistan =(-
0.398), Philippines=0.032, UK=1.558, Japan=2.316, reflecting that Pak-
istan does not do much of complex manufacturing and Philippines does
more than Pakistan.

4

9. AidPC: Per Capita net official development assistance (ODA) consists
of disbursements of loans made on concessional terms (net of repay-
ments of principal) and grants by official agencies of the members of
the Development Assistance Committee (DAC), by multilateral insti-
tutions, and by non-DAC countries to promote economic development
and welfare. One divides by the midyear population estimate. It in-
cludes loans with a grant element of at least 25 percent (calculated
at a rate of discount of 10 percent). Data are available online at:
www.oecd.org/dac/stats/idsonline. World Bank population esti-
mates are used for the denominator. For examples: Pakistan=20, In-
dia=3, Iraq=60, Bhutan=197, Kenya=59.

4 R software for reading Economic

Development (EcDev) Data

We use the country codes by ARDA available at http://www.fordham.edu/
economics/vinod/ARDAcountryCodes.xls. The data are available in R for-
mat at: http://www.fordham.edu/economics/vinod/DevEcData.Rdata. If
the Rdata file does not work an alternative version ‘DevEc10.csv’ a comma
separated csv file is also available at the same Internet location. Its use is
shown below.

The data for 250 countries contains lots of missing data (NAs). The
code named “R-get-EcDev-data” loads entire data into user’s R console for
the chosen nine variables (abbreviations listed in the previous section) and
country code.

#R-get-EcDev-data

UR="http://www.fordham.edu/economics/vinod/DevEc10.csv"

da=read.csv(file=UR, header=TRUE)

head(da,3)

tail(da,3)

attach(da)#enable access to names of variables

mtx=cbind(GRO, INHDI, GINI, GII, MPI, GEI, Entp, ECI, AidPC)

summary(mtx) #basic stats for 9 variables

The output from the above code allows one to briefly view the data by re-
porting the data for the first and last three countries only.

5

www.oecd.org/dac/stats/idsonline
http://www.fordham.edu/economics/vinod/ARDAcountryCodes.xls
http://www.fordham.edu/economics/vinod/ARDAcountryCodes.xls
http://www.fordham.edu/economics/vinod/DevEcData.Rdata

head(da,3)

CODE GRO INHDI GINI GII MPI GEI Entp ECI AidPC

1 1 1.9 NA NA 0.797 NA -1.46 0.12 NA 231

2 3 2.2 0.627 33.0 0.545 0.004 -0.20 NA 0.087 111

3 4 1.1 NA 35.3 0.594 NA -0.66 0.19 -1.213 5

tail(da,3)

CODE GRO INHDI GINI GII MPI GEI Entp ECI AidPC

196 248 -0.7 0.656 28.2 NA 0.003 -0.15 1.96 0.644 190

197 249 0.0 0.693 36.9 NA 0.006 0.10 NA NA 200

198 250 NA NA NA NA NA -0.49 0.70 NA 367

summary(mtx) #basic stats for 9 variables

GRO INHDI GINI GII

Min. :-3.000 Min. :0.0980 Min. :16.80 Min. :0.1740

1st Qu.: 0.600 1st Qu.:0.3110 1st Qu.:34.15 1st Qu.:0.3917

Median : 1.600 Median :0.5085 Median :39.70 Median :0.5955

Mean : 1.658 Mean :0.4992 Mean :40.79 Mean :0.5479

3rd Qu.: 2.400 3rd Qu.:0.6627 3rd Qu.:47.23 3rd Qu.:0.6960

Max. :10.900 Max. :0.8760 Max. :74.30 Max. :0.8530

NA's :16 NA's :60 NA's :54 NA's :62

MPI GEI Entp

Min. :0.00000 Min. :-2.16000 Min. : 0.000

1st Qu.:0.01425 1st Qu.:-0.77000 1st Qu.: 0.525

Median :0.11100 Median :-0.23000 Median : 1.300

Mean :0.18228 Mean :-0.05192 Mean : 3.024

3rd Qu.:0.32300 3rd Qu.: 0.62750 3rd Qu.: 3.965

Max. :0.64200 Max. : 2.25000 Max. :27.670

NA's :96 NA's :10 NA's :100

ECI

Min. :-1.90700

1st Qu.:-0.66100

Median :-0.09900

Mean :-0.00452

3rd Qu.: 0.75900

Max. : 2.31600

NA's :77

The next task is to compute the usual correlation coefficients. I recom-
mend using the package ‘Hmisc’ for this purpose. The output of the code

6

below named “R-plot-EcDev” consists of two figures. It is suppressed here
for brevity. The ‘corrgram’ is printed in the journal article as “Figure 1:
Corrogram for nine economic development variables.”

#R-plot-EcDev

require(Hmisc)

mycor=rcorr(mtx)$r #$

require(corrplot)

corrplot.mixed(mycor, lower="number", upper="ellipse",

order="AOE") #AOE= angular order of eigenvectors

library(corrgram)

corrgram(mtx, order=TRUE,

main="Economic development correlation ellipses",

panel=panel.ellipse,

text.panel=panel.txt, diag.panel=panel.minmax)

5 Plotting Bivariate Density for EcDev data

Now we provide the R code for plotting Bivariate density seen as “Figure
2: Joint density between economic growth (GRO) and income in- equality
(GINI)” in my CSSC paper.

One needs to do pair-wise deletion of missing data or NA’s by using the
code named “R-napair” providing my function called ‘napair.’

The code named“R-napair-Dev-data” further below uses ‘napair’ function
on EcDev data. It renames the pair-wise matched data as GRO2 and GINI2,
while keeping the original GRO and GINI data intact, since the original data
will have to be matched eventually with seven other variables.

#R-napair

napair=function(x,y){

#author: H D Vinod, Fordham University, 2013

ava.x=which(!is.na(x))#ava means available

ava.y=which(!is.na(y))#ava means non-missing

ava.both=intersect(ava.x,ava.y)

list(newx=x[ava.both],#delete NAs from x

newy=y[ava.both])#delete NAs from y

}#end napair function

7

#R-napair-Dev-data

attach(da)

na1=napair(GRO,GINI)

GRO2=na1$newx; GINI2=na1$newy

#R-bivariate-density

library(sparr)#GET THIS PACKAGE first

cb2=cbind(GRO2,GINI2);xr1=min(GRO2);xr2=max(GRO2)

yr1=min(GINI2);yr2=max(GINI2)

bd=bivariate.density(data=cb2,xrange=c(xr1,xr2),

yrange=c(yr1,yr2), pilotH=1.4)

plot(bd, display="persp", phi = 30,

theta = -30, ticktype = "detailed", xlab="X", ylab="Y")

title("Bivariate density GRO and GINI")

The code named “R-bivariate-density” above does the actual plotting of the
data after NAs are removed and series are matched.

6 Computing Generalized Correlation Matrix

The code named“R-gmcxy.np-function”below is my R function which in turn
relies on the ‘np’ package to do kernel regressions in equations (1) and (2) in
my CSSC paper. The function ‘npregbw’ suitably sets up the bandwidths.

The code named “R-gmcmtx0-function” provides my R function to com-
pute the R∗ (new asymmetric generalized correlation matrix) described in
Section 2.5 and defined in equation (10) of my CSSC paper. The zero in
the name ‘gmcmtx0’ is intended to distinguish it from a more CPU-time-
consuming bootstrap version ‘gmcmtx,’ described later.

#R-gmcxy.np-function

require(np)

options(np.messages=FALSE)

gmcxy.np=function(x,y){

#np means we call the np library functions

bw=npregbw(formula=x~y,tol=0.1, ftol=0.1)

model=npreg(bws=bw, gradients=FALSE, residuals=TRUE)

corxy= model$R2

8

bw2=npregbw(formula=y~x,tol=0.1, ftol=0.1)

model2=npreg(bws=bw2, gradients=FALSE, residuals=TRUE)

coryx= model2$R2

list(corxy=corxy,coryx=coryx)}

#R-gmcmtx0-function

gmcmtx0=function(mym, nam=colnames(mym)){

mym is a data matrix with n rows and p columns

some NAs may be present in the matrix

p=NCOL(mym)

#print(c("p=",p))

out1=matrix(1,p,p)# out1 stores asymmetric correlations

for (i in 1:p){

x=mym[,i]

for (j in 1:p){

if (j>i){ y=mym[,j]

ava.x=which(!is.na(x))#ava means available

ava.y=which(!is.na(y))

ava.both=intersect(ava.x,ava.y)

newx=x[ava.both]

newy=y[ava.both]

c1=cor(newx,newy)

sig=sign(c1)

#begin non parametric regressions

bw=npregbw(formula=newx~newy,tol=0.1, ftol=0.1)

mod.1=npreg(bws=bw, gradients=FALSE, residuals=TRUE)

corxy= sqrt(mod.1$R2)*sig

out1[i,j]=corxy

bw2=npregbw(formula=newy~newx,tol=0.1, ftol=0.1)

mod.2=npreg(bws=bw2, gradients=FALSE, residuals=TRUE)

coryx= sqrt(mod.2$R2)*sig

out1[j,i]=coryx

}#end i loop

}#end j loop

}#endif

colnames(out1)=nam

rownames(out1)=nam

return(out1)}

9

Now we are ready to use the function ‘gmcmtx0’ on any data having T
observations on p variables in columns, organized in the form of a T × p
matrix.

Our first example is the European crime data from Section 3.3 of my
CSSC paper.

#R-get-Crime-data

UR="http://www.fordham.edu/economics/vinod/PolicingSummary.csv"

da=read.csv(file=UR, header=TRUE)

summary(da)

attach(da)#total crime and police officers per 1000 population

pop=pop2008/10000

crim=as.numeric(crim2008)/as.numeric(pop)

off=as.numeric(Off2008)/as.numeric(pop)

na1=napair(crim,off)#remove missing data

crim=na1$newx; off=na1$newy

#R-call-gmcmtx0

gmcmtx0(cbind(crim,off))

summary(da)

Country Off2008 crim2008 pop2008

Austria : 1 1,555 : 1 1,022,682: 1 Min. : 35356

Belgium : 1 1,884 : 1 1,082,057: 1 1st Qu.: 2191810

Bulgaria : 1 10,743 : 1 1,112 : 1 Median : 8318592

Cyprus : 1 100,648: 1 1,266,165: 1 Mean :19246569

CzechRepublic: 1 11,018 : 1 1,377,854: 1 3rd Qu.:20635460

Denmark : 1 164,677: 1 104,758 : 1 Max. :82217837

(Other) :23 (Other):23 (Other) :23

gmcmtx0(cbind(crim,off))

crim off

crim 1.000000 0.9960115

off 0.997196 1.0000000

Note that row variable Xi is the “effect” and the column variable Xj is the
predictor or the “cause.” The value of R∗ in the column for crime is slightly
larger than the value in the off column for police officers. It stands to reason
that high crime causes larger police deployment.

10

Now consider the Internet advertising data of Section 3.4 of my CSSC
paper. The code named “R-read-ad-R*” reads in the Internet advertising
data and reports the R∗ matrix computed by using the function ‘gmcmtx0’
given above.

#R-read-ad-R*

CTR=c(0.0119, 0.0109,0.011, 0.0121,0.0096,0.0103,0.0105,0.0105,

0.0099,0.0122, 0.0108, 0.01, 0.0112,0.0097,0.0108,0.0114,0.0106,

0.0117,0.0112,0.0115, 0.0099, 0.0091,0.0107,0.0097,0.0127,0.0112,

0.0127,0.0101,0.0109,0.011, 0.0099, 0.0128,0.01,0.0109,0.011,

0.0109,0.0106,0.0098,0.0102,0.0106, 0.0117, 0.0099,0.011,0.0097,

0.0103,0.01, 0.0101,0.0091,0.0139,0.0103, 0.0132)

CollegeGrad=c(0.19, 0.247, 0.235, 0.167, 0.266,

0.327, 0.314, 0.25, 0.391, 0.223, 0.243,

0.262, 0.217, 0.261, 0.194, 0.212, 0.258,

0.171, 0.187, 0.229, 0.314, 0.332, 0.218,

0.274, 0.169, 0.216, 0.244, 0.237, 0.182,

0.287, 0.298, 0.235, 0.274, 0.225, 0.22,

0.211, 0.203, 0.251, 0.224, 0.256, 0.204,

0.215, 0.196, 0.232, 0.261, 0.294, 0.295,

0.277, 0.148, 0.224, 0.219)

cor.test(CTR,CollegeGrad)

gmcmtx0(cbind(CTR,CollegeGrad))

The output of the command ‘cor.test’ is included first. It includes the t-test
of the Pearson correlation coefficient, a confidence interval and p-value. It is
followed by the estimated R∗ matrix for the Internet advertising data.

Pearson's product-moment correlation

data: CTR and CollegeGrad

t = -5.6424, df = 49, p-value = 8.282e-07

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval: -0.7699822 -0.4255837

sample estimates: cor = -0.6275642

CTR CollegeGrad

CTR 1.0000000 -0.7312316

CollegeGrad -0.7008299 1.0000000

11

Again, the row variable Xi is the “effect” and the column variable Xj is the
“cause.” The magnitude 0.73 exceeds 0.70 suggesting that college graduates
are not easy customers of Internet advertising.

Consider the short data for 7 regions on housing bubble in Section 3.5 of
my CSSC paper which can be manually entered.

GDPchang=c(18.6, 7.4, 7.4, 5.6, 5.1, 4.1, 3.4, 2.1, 2.0)

HomPrChg=c(14.6, 1.6, -14.1, 0.0,-5.4, -9.6,-4.4,-11.1, -4.6)

gmcmtx0(cbind(GDPchang, HomPrChg))

The output R∗ matrix is given

GDPchang HomPrChg

GDPchang 1.0000000 0.968136

HomPrChg 0.7838597 1.000000

Since the row variable Xi is the “effect” and the column variable Xj is the
cause,” HomPrChg has a stronger effect (0.968) on GDPchang than vice
versa. This supports the notion that the housing bubbles during the partic-
ular time period may have hurt the growth in GDP.

Using the nine variables from ‘EcDev’ data in the matrix called ‘mtx’
above we can get the matrix of r∗(Xi|Xj) defined by eq. (10) in the text
of my CSSC paper by the following command. The generalized correlation
matrix does not appear in Section 4 of the CSSC paper.

rs=gmcmtx0(mtx)

print(rs,digits=2)

The output given below is abridged to only two digits to fit the width of the
page. The actual R∗ matrix in the memory of R has more than eight digits
than what is displayed here. Tables 5 and 6 of my CSSC paper displays
additional digits for 36 unique pairs and explicitly identify the “cause” by
name.

print(rs,digits=2)

GRO INHDI GINI GII MPI GEI Entp ECI AidPC

GRO 1.000 0.370 -0.061 -0.29 -0.28 0.380 0.317 0.40 -0.093

INHDI 0.385 1.000 -0.589 -0.94 -0.94 0.863 0.736 0.83 -0.511

GINI -0.049 -0.566 1.000 0.68 0.62 -0.486 0.058 -0.53 0.134

12

GII -0.307 -0.954 0.682 1.00 0.83 -0.864 -0.746 -0.86 0.593

MPI -0.271 -0.956 0.289 0.82 1.00 -0.641 -0.613 -0.71 0.445

GEI 0.500 0.889 -0.436 -0.87 -0.62 1.000 0.733 0.81 -0.315

Entp 0.306 0.431 0.060 -0.46 -0.63 0.507 1.000 0.25 0.166

ECI 0.406 0.843 -0.557 -0.83 -0.70 0.811 0.514 1.00 -0.285

AidPC -0.074 -0.044 0.076 0.14 0.42 -0.044 0.919 -0.39 1.000

7 Software for Multivariate Tools for

Ameliorating Misspecifications

This section provides software for Section 2.5 of my CSSC paper. It begins
with the R∗ matrix and computes its minors and cofactors, requiring R func-
tions for those tasks. The minors of a matrix are given by my R function
called ‘minor’ after removing row r and column c. The cofactors are signed
minors and are given by the function called ‘cofactor’. Both are given next.

#R-minor-function

minor=function(x,r,c){

#x is n by p matrix we want its minor

#after eliminating rth row and cth column

n=nrow(x)

p=ncol(x)

myn=1:n

myp=1:p

if (n<r) stop("n<r, minor undefined")

if (p<c) stop("p<c, minor undefined")

if (c<=0) stop("c<=0, minor undefined")

newr=myn[-r]

newc=myp[-c]

out=x[newr,newc]

return(out)}

#R-cofactor-function

cofactor=function(x,r,c){

out=minor(x,r,c)*((-1)^(r+c))

return(out)}

13

Recall that eq. (16) of my CSSC paper defines the partial correlation coef-
ficients for the R∗ matrix. The function ‘parcor.ijk’ computes those partial
correlation coefficients bet Xi and Xj after removing the effect of all Xk

variables. The function reports a list of removed columns named ‘myk’.

parcor.ijk=function(x,i,j){

n=nrow(x)

p=ncol(x)

if (n<i) stop("n<i, parcor undefined")

if (p<j) stop("p<j, parcor undefined")

if (i<=0 | j<=0) stop("i OR j <=0, parcor undefined")

myn=1:n

myp=1:p

myk=myp[c(-i,-j)]

numij=det(cofactor(x,i,j))

numji=det(cofactor(x,j,i))

deni=abs(det(cofactor(x,i,i)))

denj=abs(det(cofactor(x,j,j)))

ouij=(numij)/sqrt(deni*denj)

ouji=(numji)/sqrt(deni*denj)

list(ouij=ouij, ouji=ouji, myk=myk)}

Instead of using the general function ‘parcor.ijk’, it is convenient to use
Cox-Vermuth function called ‘partialc2’ to get the betas or scale free partial
regression coefficients described in my CSSC paper using the EcDev data.

#R-partialc2-function

partialc2= function(cor.matrix, digits = 3) {

THE FORMULA IS FROM COX, D.R. & WERMUTH, N. 1993. LINEAR

DEPENDENCIES REPRESENTED BY CHAIN GRAPHS. STATISTICAL SCIENCE

#8:204-283.

a <- solve(cor.matrix)

n <- length(a[1,])

ans <- matrix(NA, n, n)

for(i in 1:n) {

for(j in 1:n) {

aiaj=a[i,i]*a[j,j]

myif=ifelse(aiaj>0,sqrt(aiaj),1)

ans[i, j] <- round((-1 *

14

a[i, j])/myif,

digits)}}

return(ans) }

The function ‘getbeta’ computes the betas or scale-free regression coefficients
of two variables after removing the effect of additional variables. If the option
‘rstar’ is set FALSE, then Pearson correlations are used, which in tern require
the function ‘rcorr’ of the package ‘Hmisc’.

#R-getbeta-function

require(Hmisc)

getbeta=function(x,rstar=TRUE,verbo=TRUE,

nam=colnames(x)) {

#get beta coefficients from inverse of the corr matrix

#Input x=data matrix e.g. cbind(x,y,z)

p=NCOL(x)

if (p<3) stop(c("number of columns < 3",p))

if (rstar){

gm1=gmcmtx0(x)

if(verbo)print("r* matrix of generalized correlations")

if(verbo) print(gm1)

cr=gm1}

parco= partialc2(cr)

if (!rstar){

cr=rcorr(x)$r #$

if(verbo)print("matrix of Pearson correlations")

if(verbo) print(cr)

parco= partialc2(cr)

}#end if !rstar

colnames(parco)=colnames(x)

rownames(parco)=colnames(x)

if(verbo)print("matrix of partial correlations")

if(verbo) print(parco)

invert the correlation matrix

crinv=solve(cr)

if(verbo)print(" Inverse matrix ")

if(verbo) print(crinv)

pc1=partialc2(cr,digits=5)

15

pbeta=crinv # place to store

for (i in 1:p){

#diagonals of the output matrix has

Rsquare when Xi is regressed on all others

#off diagonals have regression beta coefficients

for (j in 1:p){

ratio= (crinv[j,j]/crinv[i,i])

if(ratio<=0) print(c("neg",j,i,round(ratio,4)),quote=FALSE)

#myif=ifelse(ratio>0,sqrt(ratio),sqrt(abs(ratio)))

myif=ifelse(ratio>0,sqrt(ratio),NA)

pbeta[i,j]=pc1[i,j]*myif

} #end j loop

pbeta[i,i]= 1-(1/crinv[i,i])

} #end i loop

print("p,length(nam),ncol(pbeta),nrow(pbeta)")

print(c(p,length(nam),ncol(pbeta),nrow(pbeta)))

colnames(pbeta)=nam

rownames(pbeta)=nam

if(verbo)print("matrix of partial R-sq on diag; betas off-diag")

if(verbo) print(pbeta)

list(cr=cr, parco=parco, pbeta=pbeta)

}#end function

Now we turn to recreating Table 7 of the CSSC paper. It is conveniently
created by using the additional functions ‘partialc2’ given above and ‘getPar-
cor’ given below.

#R-getParcor-function

NEEDS gmcmtx0' and partialc2' in memory

require(Hmisc) #rcorr does pairwise deletion

#otherwise corr matrix will have NAs Nan etc problems

getParcor=function(x,rstar=TRUE,verbo=TRUE,

nam=colnames(x)) {

#get partial coeff from inverse of the correlation matrix

#Input x=data matrix e.g. cbind(x,y,z)

p=ncol(x)

if (p<3) stop("number of columns < 3")

if (rstar){

gm1=gmcmtx0(x)

16

if(verbo)print("r* matrix of generalized correlations")

if(verbo) print(gm1)

cr=gm1}#end if rstar

if (!rstar){

#require(Hmisc) #rcorr does pairwise deletion

cr=rcorr(x)$r #$

if(verbo)print("matrix of Pearson correlations")

if(verbo) print(cr)

}#end if !rstar

INVERT correlation matrix

crinv=solve(cr)

if(verbo)print(" Inverse matrix ")

if(verbo) print(crinv)

pc1=partialc2(cr,digits=5)

par.cor=crinv # place to store partials

for (i in 1:p){

#diagonals of the output matrix has

Rsquare when Xi is regressed on all others

#off diagonals have regression beta coefficients

for (j in 1:p){

par.cor[i,j]=pc1[i,j]

} #end j loop

par.cor[i,i]= 1-(1/crinv[i,i])

} #end i loop

print("p,length(nam),ncol(par.cor),nrow(par.cor)")

print(c(p,length(nam),ncol(par.cor),nrow(par.cor)))

colnames(par.cor)=nam

rownames(par.cor)=nam

if(verbo)print("partial R-sq on diag and partial correl off-diag")

if(verbo) print(par.cor)

#cr has R correlations or R* if rstar=TRUE

list(cr=cr, par.cor=par.cor)

}#end function getParcor

Now we are ready to apply the above tools to Economic Development
data to create Table 7 of my CSSC paper illustrating the use of partial
correlations and betas in multivariate situations. Table 7 has two vertical
panels with the left panel for the three variables my3=(MPI, GRO, GINI)

17

and the right panel is for four variables my4=(MPI, GRO, GINI, GEI). Recall
that the ‘getbeta’ function offers a choice of Pearson correlation by using the
command ‘g1=getbeta(my3,rstar=FALSE)’ illustrated below. Of course, we
are more interested in the new R∗ and betas obtained from it obtained by the
command: ‘g2=getbeta(my3,rstar=TRUE)’. The four rows of the left panel
on Table 7 of the CSSC paper are in the matrix ‘myx’.

#R-left-panel-Table-7

my3=cbind(MPI, GRO, GINI)

g1=getbeta(my3,rstar=FALSE)

xg1=g1$pbeta[1,];xg1

g2=getbeta(my3,rstar=TRUE)

xg2=g2$pbeta[1,];xg2

g3=getParcor(my3,rstar=FALSE)

xg3=g3$par.cor[1,];xg3

g4=getParcor(my3,rstar=TRUE)

xg4=g4$par.cor[1,];xg4

myx=rbind(xg1,xg2,xg3,xg4);myx

#R-right-panel-Table-7 with 4 variables

my4=cbind(MPI, GRO, GINI, GEI)

g1=getbeta(my4,rstar=FALSE)

yg1=g1$pbeta[1,];yg1

g2=getbeta(my4,rstar=TRUE)

yg2=g2$pbeta[1,];yg2

g3=getParcor(my4,rstar=FALSE)

yg3=g3$par.cor[1,];yg3

g4=getParcor(my4,rstar=TRUE)

yg4=g4$par.cor[1,];yg4

myy=rbind(yg1,yg2,yg3,yg4);myy

ou1=cbind(myx[,2:3],myy[,2:3]);ou1

d1=abs(ou1[,1])-abs(ou1[,2]);d1

d2=abs(ou1[,3])-abs(ou1[,4]);d2

ou2=cbind(ou1[,1:2],d1,ou1[,3:4],d2)

require(xtable)

xtable(ou2,digits=4)

The output from the above code creates Table 7 in my CSSC paper, where
the discussion of evidence supports Bhagwati’s growth policies over Sen’s

18

redistribution policies for economic development. It allows consideration of
equation (22) (regressing MPI on GRO and GINI) which has two regressors
illustrating multivariate regressions. By using partial correlations we can
focus on the effect of one regressor at a time, removing the effect of remaining
regressors. The right panel of Table 7 considers regression of MPI on GRO,
GINI and GEI (i.e., three regressors). The partial correlations in the right
panel remove the effect of two regressors.

8 Non-spherical Error Corrections

Correcting for autocorrelation and heteroscedasticity (non-spherical errors)
is readilty done by using the following function called ‘autohetero’, which
in turn needs a function ‘sort.matrix’ which is given first. The theory is
described in Vinod (2010). The basic idea is to use generalized least squares.

#R-sort.matrix-function

sort.matrix =function(x,j){

y=x[sort.list(x[,j]),]

return(y) }

#R-autohetero-function

autohetero = function (y, bigx){

#construct omega^ matrix with AR(1) and hetero with linear regr

#of sorted u^squared on time forcing thru origin

reg1=lm(y~bigx)

#print("OLS estimation")

#print(summary(reg1))

uhat=resid(reg1)

#print(acf(uhat,plot=F))

bigt= length(uhat)

bigt

tim=1:bigt

u2=cbind(tim, uhat^2)

soru2=sort.matrix(u2,2)

su2=soru2[,2] #second col has sorted u^2

plot(tim,su2)

#first choice

19

#initialize

minf1=-9991

minf2=-9992

minf3=-9993

minf4=-9994

regt=lm(su2~tim+I(tim^2)) # quadratic case intercept present

fitu2=fitted(regt)

minf1=min(fitu2)

#if(minf1>=0) noquote(c("min fitted s^2 1+tim+tim^2",minf1))

if (minf1<0){

#second choice

regt=lm(su2~tim+I(tim^2)-1) # quadratic case NO intercept

fitu2=fitted(regt)

minf2=min(fitu2)

#if(minf2>=0) noquote(c("min fitted s^2~0+tim+tim^2",minf2))

}

if (minf1<0 && minf2<0) {

#third choice

regt=lm(su2~tim) # intercept present

fitu2=fitted(regt)

minf3=min(fitu2)

#if(minf3>=0) print(c("min fitted s^2 1+tim",minf3),q=F)

}

if (minf1<0 && minf2<0 && minf3<0) {

#4th choice

regt=lm(su2~tim-1) #force thru origin so min fitted value>0

fitu2=fitted(regt)

minf4=min(fitu2)

#if (minf4<=0) print("Error: heteroscedasticity regt fails")

}

#print(regt)

newu2=sort.matrix(cbind(soru2[,1],fitu2),1)

num=newu2[,2]

#

noquote("debug num diagonals")

#print(num)

20

#Now autocorrelaton correction

ac=acf(uhat,plot=F)

rho=ac$acf[2] #$

if (bigt >200){

A=zapsmall(ARMAacf(ar=rho, ma=0, lag.max=bigt-1))}

#if lag.max=100,one gets 101x101 matrix since begin lag=0

A=ARMAacf(ar=rho, ma=0, lag.max=bigt-1)

omeg=toeplitz(A)

#print(omeg[1:3,1:3])

#NOW GLS

ei=eigen(omeg)

#print(ei)

bigv =ei$vec %*% diag(sqrt(1/ei$val)) %*% t(ei$vec)

#print(bigv[1:3,1:3]) #$

vy=bigv%*%y

vx=bigv %*%bigx

regg=lm(vy~vx)

#print("GLS estimation")

#print(summary(regg))

list(vy=vy,vx=vx)}

9 Sampling distribution of δ̂ using meboot

The maximum entropy bootstrap is implemented in the R package ‘meboot’.
It creates a large number (n999=999) of resamples of ‘x’ (similar data series)
by the command ‘xboot=meboot(x=x, reps=n999)$ensemble’. Now xboot
has 999 columns of data. The following code needs ‘gmcxy.np’ from Section
6.

The function ‘pcause’ computes P(cause) defined in eq. (9) of my CSSC
paper giving the larger of the two rejection probabilities. The computed
P(cause) lies in the range [0,1], where a larger value is more desirable for
inference about the causal direction based on δ̂ using the meboot bootstrap.

#R-pcause-function from eq.(9) of my CSSC paper

require(meboot)

#Bring into R the function gmcxy.np from earlier section

pcause=function(x,y,n999=999){

21

#now find P(cause) using meboot

xboot=meboot(x=x, reps=n999)$ensemble

xb=x

yboot=meboot(x=y, reps=n999)$ensemble

yb=y

out.diff=rep(NA,n999)

out.corxy=rep(NA,n999)

out.coryx=rep(NA,n999)

for (i in 1:n999){

xb=xboot[,i]

yb=yboot[,i]

gm=gmcxy.np(xb,yb)

out.corxy[i]=gm$corxy

out.coryx[i]= gm$coryx

out.diff[i]=out.corxy[i]-out.coryx[i]

} #end of i loop

ou.nega=length(out.diff[out.diff<0])

ou.posi= length(out.diff[out.diff>0])

p.cause=max(ou.nega, ou.posi)/n999

list(out.corxy=out.corxy,out.coryx= out.coryx,

out.diff=out.diff,p.cause=p.cause)}

Note that ‘out.diff’ contains 999 estimates of δ̂ allowing us to approximate
its sampling distribution.

10 Comprehensive Tables Displaying 36 Rows

for 9 Variables

Note that our kernel causality criterion relies on the asymmetry of the gen-
eralized correlation matrix r∗(i, j) to identify the causal variable. Since the
row variable Xi is the “effect” and the column variable Xj is the “cause,” we
identify the cause depending on which matrix entry (i,j) or (j,i) is larger.
EcDev data have a large 9×9 matrix and it is not convenient to manually
compare such entries.

It is safer to let the computer choose all unique (i,j) pairs and explic-
itly identify the cause by comparing the indicated entries of the asymmetric
matrix. Since (9C2 = 36), our EcDev data needs a comparison of 36 pairs.

22

Tables 4 to 6 of my CSSC paper do have 36 rows for each unique pair and
the cause is identified and named in the third column by using a computer
program. A typical program is given below.

If the bootstrap is used for inference, a much slower version of gmcmtx0
called gmcmtx needs to be used before we do the 36 pairs. Hence we begin
with that code.

#Bring into R the function gmcxy.np from earlier section

#R-pcause-function version returning pcause only

pcause=function(x,y,n999=999){

#now find P(cause) using meboot

if (n999<=1){

p.cause=NA

return(p.cause)}

else {

xboot=meboot(x=x, reps=n999)$ensemble

xb=x

yboot=meboot(x=y, reps=n999)$ensemble

yb=y

out.diff=rep(NA,n999)

out.corxy=rep(NA,n999)

out.coryx=rep(NA,n999)

for (i in 1:n999){

xb=xboot[,i]

yb=yboot[,i]

gm=gmcxy.np(xb,yb)

out.corxy[i]=gm$corxy

out.coryx[i]= gm$coryx

out.diff[i]=out.corxy[i]-out.coryx[i]

} #end of i loop

ou.nega=length(out.diff[out.diff<0])

ou.posi= length(out.diff[out.diff>0])

p.cause=max(ou.nega, ou.posi)/n999

}#end of else

return(p.cause)}

#R-gmcmtx-function a slow CPU intensive version of gmcmtx0

23

gmcmtx=function(mym, n999=999){

mym is a matrix with n rows and p columns

some NAs may be present in the matrix

p=NCOL(mym);

#print(c("p=",p))

out1=matrix(1,p,p)# out1 has asymmetric correlations

out2=matrix(NA,p,p)#out2 diag has lengths of non-missing data

#out2 subdiag has usual p values

#out2 superdiag has P(cause) values

out3=matrix(NA,p,p)# super diag has non-missing data pairs

#out3 sub-diagonal has data lengths

#out3 super-diag has simple correlation coeff.

for (i in 1:p){

x=mym[,i]

for (j in 1:p){

if (j>i){ y=mym[,j]

ava.x=which(!is.na(x))#ava means available

ava.y=which(!is.na(y))#think of ava as non-missing

ava.both=intersect(ava.x,ava.y)

newx=x[ava.both]

newy=y[ava.both]

out2[i,i]=length(ava.x)

out3[i,i]=length(ava.x)

out2[j,j]=length(ava.y)

out3[j,j]=length(ava.y)

out3[i,j]=length(ava.both)

c1=cor.test(newx,newy)

sig=sign(c1$estimate)

out2[i,j]=c1$p.value #subdiagonal

out3[j,i]= c1$estimate

#begin non parametric kernel regressions $

bw=npregbw(formula=newx~newy,tol=0.1, ftol=0.1)

mod.1=npreg(bws=bw, gradients=FALSE, residuals=TRUE)

corxy= sqrt(mod.1$R2)*sig

out1[i,j]=corxy

bw2=npregbw(formula=newy~newx,tol=0.1, ftol=0.1)

mod.2=npreg(bws=bw2, gradients=FALSE, residuals=TRUE)

coryx= sqrt(mod.2$R2)*sig

24

out1[j,i]=coryx

#now find P(cause) using meboot

out2[j,i]=pcause(newx,newy,n999=999)

}#end i loop

}#end j loop

}#endif

list(out1=out1, out2=out2, out3=out3)}

#end function gmcmtx a bootstrap version of gmcmtx0

The function ‘cause36’ computes the appropriate number of unique data pairs
and reports the results. It needs the above code for ‘gmcmtx’.

#R-cause36-function

require(meboot)

require(np)

options(np.messages=FALSE)

##NEEDS gmcmtx in memory

cause36=function(mtx,n999=999,dig=6){

#input matrix of data with p columns with colnames

#input dig=digits for rounding

#input n999 is the number of bootstrap replications

#output column1:2 names, col3=cause, col4=correlation

#outpout col 5= P(cause)

#output col 6=p-value, col.7=generalized corij

#output col 8 =generalized corji

#output col 9 = name of the effect variable

n=NROW(mtx)

p=NCOL(mtx)

nam=colnames(mtx)

gm1=gmcmtx(mtx, n999=n999)

#print(gm1) #print gmcmtx?

out1=gm1$out1

out2=gm1$out2

#out2 subdiag [i,j]has usual p values

#out2 super-diag [j,i] has P(cause) values

out3=gm1$out3

#out3 sub-diagonal [i,j] has data lengths #$

#out3 super-diag has simple correlation coeff.

n36=(p*(p+1)/2)-p

25

outcause=matrix(NA, nrow=n36,ncol=9)

ii=0

#following loop is such that j<=i, which means

#[i,j] will have i>j or sub-diagonal

for (i in 1:p){

for (j in 1:i){

if (i != j){

ii=ii+1

outcause[ii,1]=nam[i]

outcause[ii,2]=nam[j]

#now identify which is the cause in column 3

if (!is.na(out1[i,j]^2>out1[j,i]^2)){

if(out1[i,j]^2>out1[j,i]^2){

outcause[ii,3]=nam[j]

outcause[ii,9]=nam[i] #name of the effect variable

}}

if (!is.na(out1[i,j]^2<out1[j,i]^2)){

if(out1[i,j]^2<out1[j,i]^2){

outcause[ii,3]=nam[i]

outcause[ii,9]=nam[j] #name of the effect variable

}}

#NOW simple correlations in column 4

outcause[ii,4]=round(out3[j,i],dig)

#outpout col 5= P(cause)

outcause[ii,5]= round(out2[j,i],dig)

outcause[ii,6]= round(out2[i,j],dig)

#output col 6=p-value,

output col.7=generalized corij

#output col 8 =generalized corji

outcause[ii,7]= round(out1[i,j],dig)

outcause[ii,8]= round(out1[j,i],dig)

#ninth column has effect variable

} #end of if

}} #end of i and j loops

list(out1=out1, out2=out2, out3=out3,outcause=outcause)

} #end of function

The above code can be modified for various comparisons in Tables 5 and 6

26

of the CSSC paper as shown in Section 12.

11 Bar Chart of the Frequency of Cause

Designations for Nine Variables

The ‘table’ command of R computes the frequencies and its result can be
used for a bar plot using the following code named ‘R-barchart-EcDev.’

#R-barchart-EcDev data, NEED cause36 in memory

require(Hmisc);mycor=rcorr(mtx)$r #$

require(corrplot)

#c3=corrplot.mixed(mycor, lower="number", upper="ellipse",

order="AOE")

mtx2=mtx[,corrMatOrder(mycor,order="AOE")];head(mtx2)

#reorder data matrix by angular order of eigenvalues

c1=cause36(mtx2,n999=999)

tab1=table(c1$outcause[,3])#column 3 has names of causes #$

names(tab1)

require(lattice)

tab1b=sort(tab1)

barchart(tab1b,main="frequency of cause designations")

12 Code for Kernel Regression Robustness

Checks

Recall that if the model regressing Y on X is more robust than the model
regression X on Y we conclude that X kernel causes Y . Section 2.3 of my
CSSC paper describes Kernel Regression Robustness Checks where the first
robustness check uses a nonparametric test of dependence between residuals
and regressors, where low dependence is desirable.

Table 5 of CSSC paper illustrates the results of this robustness check for
EcDev data. The version of gmcmtx0 in the code named ‘R-gmcmtx0npdep-
function’ is called ‘gmcmtx0npdep.’ The 0 in the name refers to fast version
(without the meboot) and ‘npdep’ is the name of the function from the
package ‘np’ used here to assess the dependence of regression residuals with

27

the regressor. The dependence is measured by Sρ explained in Section 2.3
of my CSSC paper. Note that it is desirable to choose the model with the
“smaller” value of Sρ.

#R-gmcmtx0npdep-function

gmcmtx0npdep=function(mym, nam=colnames(mym)){

#author: H.D.Vinod, Prof of Economics, Forhdam Univ. NY Sept2013

mym is a data matrix with n rows and p columns

some NAs may be present in the matrix

p=NCOL(mym)

#print(c("p=",p))

out1=matrix(1,p,p)# out1 stores asymmetric correlations

out2=matrix(1,p,p)# out1 stores asymmetric corr wrt residuals

for (i in 1:p){

x=mym[,i]

for (j in 1:p){

if (j>i){ y=mym[,j]

ava.x=which(!is.na(x))#ava means available

ava.y=which(!is.na(y))

ava.both=intersect(ava.x,ava.y)

newx=x[ava.both]

newy=y[ava.both]

c1=cor(newx,newy)

sig=sign(c1)

#begin non parametric regressions

bw=npregbw(formula=newx~newy,tol=0.1, ftol=0.1)

mod.1=npreg(bws=bw, gradients=FALSE, residuals=TRUE)

corxy= sqrt(mod.1$R2)*sig

res1=mod.1$resid

#if(i==1)print(newy)

#if(i==1)print(res1)

cor.resy=npdeptest(newy,res1, method="summation",bootstrap=FALSE)

#if(i==1)print(cor.resy$Srho)

out1[i,j]=corxy

out2[i,j]=cor.resy$Srho

bw2=npregbw(formula=newy~newx,tol=0.1, ftol=0.1)

mod.2=npreg(bws=bw2, gradients=FALSE, residuals=TRUE)

28

coryx= sqrt(mod.2$R2)*sig

res2=mod.2$resid

cor.resx=npdeptest(newx,res2, method="summation",bootstrap=FALSE)

#if(i==1)print(cor.resx$Srho)

out1[j,i]=coryx

out2[j,i]=cor.resx$Srho

}#end i loop

}#end j loop

}#endif

colnames(out1)=nam

rownames(out1)=nam

colnames(out2)=nam

rownames(out2)=nam

list(out1=out1,out2=out2)}

The command ‘gm1=gmcmtx(mtx,n999=n999)’ in the above code for the
function ‘cause36’ should be replaced by ‘gm1=gmcmtx0npdep(mtx)’ to cre-
ate a Table similar to Table 5 in my CSSC paper.

Section 2.3 of the CSSC paper also describes another robustness check
based on out-of-sample forecasts. The R code for that purpose is given next.

Using out of sample 10% root mean square and scaled

require(np)

options(np.messages=FALSE)

require(akima) #load this package

#R-stdze-function to standardize data matrix all columns

stdze=function(mtx){

stdx=function(x) (x-mean(x,na.rm=TRUE))/sd(x, na.rm=TRUE)

out=apply(mtx, 2, stdx)

return(out)}

The above standardization makes the mean zero and standard deviation unity
for all columns. The following function computes root mean squared (rms)
values defined in Section 2.3 of the CSSC paper. It uses the standardization
function and then sorts on the first column, while carrying along all other
columns.

#R-getrms-function computes root mean squared of errors

getrms=function(x,y,perc=10,reps=10){

29

perc is percent data excluded for out of sample forecasting

#we sort on one variable and leave out perc=10% randomly chosen

oldmtx=stdze(cbind(x,y))

newmtx= oldmtx[sort.list(oldmtx[,1]),] #sorts on first column or x

n=length(x);n10=floor(n*perc/100);n90=n-n10

print("n,n90,n10,perc,reps")

print(c(n,n90,n10,perc,reps))

newx=newmtx[,1];newy=newmtx[,2]

outrms=rep(NA,reps)

for (ir in 1:reps){

n1=sort(sample(1:n)[1:n90])

n2= (1:n)[-n1]#define complementary set of numbers

x90=newx[n1];y90=newy[n1]#choose the sorted

x10=newx[n2];y10=newy[n2]#choose the complementary subset

bw=npregbw(formula=x90~y90,tol=0.1, ftol=0.1)#define bandwidth

mod.1=npreg(bws=bw, gradients=FALSE, residuals=TRUE)

#Now use x90 and fitted(y90) to estimate akima interpolation

#of y10 from x10 data

#where the correct y values are known.

ak1=aspline(x90, fitted(mod.1),xout=x10,method="improved")

#now compare interpolated with true y10

#err=(y10-ak1$y)/sd(y90) rescale not needed for standardized data

err=(y10-ak1$y)/sd(y90)

#find root mean squared error sqrt(sum(err^2))

outrms[ir]= sqrt(sum(err^2)/n10)

}#end loop for reps

rms=mean(outrms)

return(rms)}

Next, we provide code for implementing robustness in terms of out-of-sample
forecasts using a function similar to gmcmtx called gmcmtx0out3samp. The
zero in its name refers to fast version without meboot. out3samp in its name
refers to a version of out-of-sample forecasting which reports asymmetric root
mean squared (rms) values for comparison of the two models.

#R-gmcmtx0out3samp-function 0=no boot,

Using out of sample 10% root mean square and scaled

#version 3 standardizes data for forecasting out of sample

30

gmcmtx0out3samp=function(mym, perc,reps,nam=colnames(mym)){

input mym = matrix with n rows and p columns

input perc=percent data excluded as out-of-sample

#we sort on one variable and leave out perc=10% randomly chosen

p=NCOL(mym)

#print(c("p=",p))

out1=matrix(1,p,p)# out1 stores asymmetric correlations

out2=matrix(1,p,p)# out2 stores asymmetric rms values

for (i in 1:p){

x=mym[,i]

for (j in 1:p){

if (j>i){ y=mym[,j]

ava.x=which(!is.na(x))#ava means available

ava.y=which(!is.na(y))

ava.both=intersect(ava.x,ava.y)

newx=x[ava.both]

newy=y[ava.both]

c1=cor(newx,newy)#cor.test gives p-values etc.

sig=sign(c1)

#begin non parametric regressions

bw=npregbw(formula=newx~newy,tol=0.1, ftol=0.1)

mod.1=npreg(bws=bw, gradients=FALSE, residuals=TRUE)

corxy= sqrt(mod.1$R2)*sig

cor.resy=getrms(newx,newy,perc=perc,reps=reps)

#if(i==1)print(cor.resy$Srho)

out1[i,j]=corxy

out2[i,j]=cor.resy

bw2=npregbw(formula=newy~newx,tol=0.1, ftol=0.1)

mod.2=npreg(bws=bw2, gradients=FALSE, residuals=TRUE)

coryx= sqrt(mod.2$R2)*sig

#use getrms function defined above here #$

cor.resx=getrms(newy,newx,perc=perc,reps=reps)

#if(i==1)print(cor.resx)

out1[j,i]=coryx

out2[j,i]=cor.resx

}#end i loop

31

print(c(nam[i],nam[j]))

}#end j loop

}#endif

colnames(out1)=nam

rownames(out1)=nam

colnames(out2)=nam

rownames(out2)=nam

list(out1=out1,out2=out2)}

Now we apply the above robustness check to EcDev data having 9 columns
and 36 unique pairs. This is done by using a revision of the function cause36
called ‘cause036outsamp’, which in turn calls the function ‘gmcmtx0out3samp’
above.

#R-cause36outsamp-function results for n C p pairs

cause036outsamp=function(mtx,dig=6,perc=10,reps=20){

#author:H.D.Vinod,Prof of Economics, Forhdam Uni.NY Sept2013

#input matrix of data with p columns with colnames

#input dig=digits for rounding

print("out of sample prediction using root mean square")

print("Choose the cause where rms is smaller")

n=NROW(mtx)

p=NCOL(mtx)

print(c("n,p,digits",n,p,dig))

nam=colnames(mtx)

gm1=gmcmtx0out3samp(mtx,perc=perc,reps=reps)

print(gm1)

out1=gm1$out1

out2=gm1$out2

n36=(p*(p+1)/2)-p

outcause=matrix(NA, nrow=n36,ncol=8)

ii=0

#following loop is such that j<=i, which means

#[i,j] will have i>j or sub-diagonal

for (i in 1:p){

for (j in 1:i){

if (i != j){

ii=ii+1

32

outcause[ii,1]=nam[i]

outcause[ii,2]=nam[j]

#now identify which is the cause in column 3

if (!is.na(out1[i,j]^2>out1[j,i]^2)){

if(out1[i,j]^2>out1[j,i]^2){

outcause[ii,3]=nam[j]}}

if (!is.na(out1[i,j]^2<out1[j,i]^2)){

if(out1[i,j]^2<out1[j,i]^2){

outcause[ii,3]=nam[i]}}

#output col 4,5 have generalized corji

outcause[ii,4]= round(out1[i,j],dig)

outcause[ii,5]= round(out1[j,i],dig)

#Name rms room mean square based cause in column 6

if (!is.na(out2[i,j]>out2[j,i])){

if(out2[i,j]>out2[j,i]){

outcause[ii,6]=nam[i]}}

if (!is.na(out2[i,j]<out2[j,i])){

if(out2[i,j]<out2[j,i]){

outcause[ii,6]=nam[j]}}

#outpout col 7 and 8 have rms values

outcause[ii,7]= round(out2[i,j],dig)

outcause[ii,8]= round(out2[j,i],dig)

} #end of if

}} #end of i and j loops

namo=c("X","Y","Cause","r*xy","r*yx","cauRms","rmsxy","rmsyx")

colnames(outcause)=namo

return(outcause)

} #end of function

#R-out-of-sample rms for EcDev data.

require(xtable)

head(da,3)

mtx=da[,2:10]

outcause=cause036outsamp(mtx)

print(xtable(outcause))

33

13 Final Remarks

The discussion in this supplement is kept at a practical level to facilitate
further enhancements, which can be both theoretical and practical. I hope
that readers find the supplementary material containing R software useful.
Suggestions to streamline, improve and convert the code into an R package
are welcome, and may be sent by e-mail to vinod@fordham.edu.

References

Hidalgo, C. and Hausman, R. (2009), “The building blocks of economic com-
plexity,” Tech. Rep. 26, Proceedings of the National Academy of Sciences,
URL http://www.pnas.org/cgi/doi/10.1073/pnas.0900943106.

Vinod, H. D. (2010), “Superior Estimation and Inference Avoiding Het-
eroscedasticity and Flawed Pivots: R-example of Inflation Unemployment
Trade-Off,” in “Advances in Social Science Research Using R,” , ed. Vinod,
H. D., New York: Springer, pp. 39–63.

— (2015), “Generalized Correlation and Kernel Causality with Applications
in Development Economics,” Communications in Statistics - Simulation
and Computation, accepted Nov. 10, 2015, URL Âăhttp://dx.doi.org/

10.1080/03610918.2015.1122048.

World Bank (2013), “Working for World Free of Poverty,” Tech. rep., IBRD,
Washington DC, URL http://iresearch.worldbank.org/PovcalNet/

index.htm?1.

34

vinod@fordham.edu
http:// www.pnas.org/cgi/doi/10.1073/pnas.0900943106
 http://dx.doi.org/10.1080/03610918.2015.1122048
 http://dx.doi.org/10.1080/03610918.2015.1122048
http://iresearch.worldbank.org/PovcalNet/index.htm?1
http://iresearch.worldbank.org/PovcalNet/index.htm?1

	Introduction
	R software Initialization
	Details Regarding the Nine Variables in Economic Development (EcDev) Data
	R software for reading Economic Development (EcDev) Data
	Plotting Bivariate Density for EcDev data
	Computing Generalized Correlation Matrix
	Software for Multivariate Tools for Ameliorating Misspecifications
	Non-spherical Error Corrections
	Sampling distribution of using meboot
	Comprehensive Tables Displaying 36 Rows for 9 Variables
	Bar Chart of the Frequency of Cause Designations for Nine Variables
	Code for Kernel Regression Robustness Checks
	Final Remarks

