
 Open access  Journal Article  DOI:10.2298/FIL1101021S

Generalized countable iterated function systems — Source link 

Adrian Nicolae Secelean

Institutions: Lucian Blaga University of Sibiu

Published on: 01 Jan 2011 - Filomat (National Library of Serbia)

Topics: Hutchinson operator, Contraction mapping, Collage theorem, Iterated function system and Lipschitz continuity

Related papers:

 Applications of Fixed Point Theorems in the Theory of Generalized IFS

 Fractals Everywhere

 The Existence of the Attractor of Countable Iterated Function Systems

 Countable Iterated Function Systems

 The hutchinson-barnsley theory for infinite iterated function systems

Share this paper:    

View more about this paper here: https://typeset.io/papers/generalized-countable-iterated-function-systems-
3cu1zhavoh

https://typeset.io/
https://www.doi.org/10.2298/FIL1101021S
https://typeset.io/papers/generalized-countable-iterated-function-systems-3cu1zhavoh
https://typeset.io/authors/adrian-nicolae-secelean-1kcd5v6g8g
https://typeset.io/institutions/lucian-blaga-university-of-sibiu-v86ez0n4
https://typeset.io/journals/filomat-2i5cix1b
https://typeset.io/topics/hutchinson-operator-2tontfzb
https://typeset.io/topics/contraction-mapping-29c2jvmj
https://typeset.io/topics/collage-theorem-2hnrbls0
https://typeset.io/topics/iterated-function-system-1h5k6lq3
https://typeset.io/topics/lipschitz-continuity-6sa6i2jr
https://typeset.io/papers/applications-of-fixed-point-theorems-in-the-theory-of-1u0yb5ordb
https://typeset.io/papers/fractals-everywhere-3dyi5aa36c
https://typeset.io/papers/the-existence-of-the-attractor-of-countable-iterated-b4dkat34m4
https://typeset.io/papers/countable-iterated-function-systems-q38lbfc6un
https://typeset.io/papers/the-hutchinson-barnsley-theory-for-infinite-iterated-1v9m124nl7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/generalized-countable-iterated-function-systems-3cu1zhavoh
https://twitter.com/intent/tweet?text=Generalized%20countable%20iterated%20function%20systems&url=https://typeset.io/papers/generalized-countable-iterated-function-systems-3cu1zhavoh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/generalized-countable-iterated-function-systems-3cu1zhavoh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/generalized-countable-iterated-function-systems-3cu1zhavoh
https://typeset.io/papers/generalized-countable-iterated-function-systems-3cu1zhavoh


Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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GENERALIZED COUNTABLE ITERATED

FUNCTION SYSTEMS

Nicolae Adrian Secelean

Abstract

One of the most common and most general way to generate fractals is by
using iterated function systems which consists of a finite or infinitely many
maps. Generalized countable iterated function systems (GCIFS) are a gen-
eralization of countable iterated function systems by considering contractions
from X × X into X instead of contractions on the metric space X to itself,
where (X, d) is a compact metric space. If all contractions of a GCIFS are
Lipschitz with respect to a parameter and the supremum of the Lipschitz
constants is finite, then the associated attractor depends continuously on the
respective parameter.

1 Introduction

In the famous paper [2], J.E. Hutchinson proves that, given a set of contractions
(ωn)N

n=1 in a complete metric space X, there exists a unique nonempty compact set
A ⊂ X, named the attractor of IFS. This attractor is, generally, a fractal set. These
ideas has been extended to infinitely many contractions, a such generalization can
be found, for example, in [3] and, for Countable Iterated Function Systems (CIFS)
on a compact metric space, in [6]. There is a current effort to extend the classi-
cal Hutchinson’s framework to more general spaces and infinite iterated function
systems or, more generally, to multifunction systems. In [7] it is shown that any
compact subset of a metric space ca be obtained as attractor of a CIFS. M. Barnsley
(in [1]) and others show that, if the contractions of an IFS depend continuously on
a parameter, then the corresponding attractor also depends continuously of the
respective parameter with respect to the Hausdorff metric. The result has been
extended to the countable case (see [8]).

We start with a short description of a Hausdorff metric on a metric space and
on a product of two metric spaces and we prove some of its properties which will
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be used in the sequel. Next, the notions of iterated function system (IFS) and
countable iterated function system on a complete and, respectively compact metric
space (X, d) together with some its properties are presented.

In [4], A. Mihail introduces the Recurrent Iterated Functions Systems (RIFS)
which is a finite family of contractions ωn : X×X → X, n = 1, . . . , N , where (X, d)
is a complete metric space and he proves some of its properties. That construction
is extended in [5] by A. Mihail and R. Miculescu to a finite family of contractive
mappings from Xm (m ∈ N) into X, the space (X, d) being compact.

The main results of that paper are given in section 3 when it is introduced the
Generalized Countable Iterated Functions Systems (GCIFS) of order two. A GCIFS
consists of a sequence of contractions ωn : X × X → X, n = 1, 2, . . . , where (X, d)
is a compact metric space. Notice that the treatment of GCIFS of any order m ∈ N,
m ≥ 3, (when the considered contractions are defined on Xm space) can be make
in an analogous way as in the case when m = 2.

It is described some ways to characterize the attractor of a GCIFS as a limiting
process and by means of the fixed points of a proper family of contractions. If
the contractions which compose the GCIFS obey some continuity conditions with
respect to a parameter, then the corresponding attractor depends continuously with
respect to that parameter.

Some ways to write the attractor of a GCIFS as a limit of a sequence of sets
are presented. They can be very beneficial in certain cases to use the computer to
approximate the attractor. Finally, some examples in the compact subspace X of
R and, respectively R

2, is given.

2 Preliminary Facts

In this section we give some well known aspects on Fractal Theory used in the sequel
(more complete and rigorous treatments may be found in [2], [1], [6], [8]).

Let us consider a function f : X → Y , where (X, d), (Y, δ) are two metric spaces,
and we define

Lip(f) := sup
x,y∈X
x6=y

δ
(
f(x), f(y)

)

d(x1, x2)
∈ R+.

f is said to be a Lipschitz function if Lip(f) < ∞ and a contraction if Lip(f) < 1.
If f is contraction, then any r ∈

(
0,Lip(f)

)
is called contraction ratio.

2.1 Hausdorff metric

Let (X, d) be a metric space and K(X) be the class of all compact non-empty subsets
of X. The function h : K(X) ×K(X) −→ R+, h(A,B) = max

{
D(A,B), D(B, A)

}
,

where D(A,B) = sup
x∈A

(
inf
y∈B

d(x, y)
)
, for all A,B ∈ K(X), is a metric, namely the

Hausdorff metric. If (X, d) is complete, then K(X) is a complete metric space with
respect to this metric h. Also,

(
K(X), h

)
is a compact metric space provided that

(X, d) is compact.
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Some simple standard facts in the space
(
K(X), h

)
, which will be used in the

sequel, are described in the following two lemmas:

Lemma 2.1. If (Ei)i∈ℑ, (Fi)i∈ℑ are two sequences of sets in K(X), then

h
( ⋃

i∈ℑ

Ei,
⋃

i∈ℑ

Fi

)
= h

( ⋃

i∈ℑ

Ei,
⋃

i∈ℑ

Fi

)
≤ sup

i∈ℑ

h(Ei, Fi).

Lemma 2.2. [6, Th.1.1] Let (An)n be a sequence of nonempty compact subsets of

X.

(a) If An ⊂ An+1, for all n ≥ 1, and the set A :=
⋃

n≥1

An is relatively compact,

then

A =
⋃

n≥1

An = lim
n

An,

the limiting process being taken with respect to the Hausdorff metric and the bar

means the closure;

(b) If An+1 ⊂ An, for any n ≥ 1, then lim
n

An =
⋂

n≥1

An.

We now consider another metric space (Y, δ) and we use the same notation h

for the Hausdorff metric on K(X) and K(Y ) and, analogously, for the function D.
We equip the space X × Y with the ”max” metric d2, namely

d2

(
(x1, y1), (x2, y2)

)
:= max

{
d(x1, x2), δ(y1, y2)

}
.

It is known that d2 is a metric and the space (X × Y,d2) is complete, respectively
compact, whenever (X, d) and (Y, δ) are completes, respectively compacts.

Let h2 be the Hausdorff metric on K(X) ×K(Y ) induces by d2. We denote D2

the corresponding set function from the definition of Hausdorff metric,

D2

(
(B1, C1), (B2, C2)

)
:= sup

x1∈B1

y1∈C1

inf
x2∈B2

y2∈C2

d2

(
(x1, x2), (y1, y2)

)
.

Lemma 2.3. Under the above conditions,

h2

(
(B1, C1), (B2, C2)

)
= max

{
h(B1, B2), h(C1, C2)

}
,

for any B1, B2 ∈ K(X) and any C1, C2 ∈ K(Y ).

Proof. We first prove that

D2

{
(B1, C1), (B2, C2)

}
= max

{
D(B1, B2), D(C1, C2)

}
, (2.1)

that is
sup

x1∈B1

y1∈C1

inf
x2∈B2

y2∈C2

max
{
d(x1, x2), δ(y1, y2)

}

= max
{

sup
x1∈B1

inf
x2∈B2

d(x1, x2), sup
y1∈C1

inf
y2∈C2

δ(y1, y2)
}
.
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We suppose, by contradiction, that one has

D2

{
(B1, C1), (B2, C2)

}
> max

{
D(B1, B2), D(C1, C2)

}
.

There exists r ∈ R such that

sup
x1∈B1

y1∈C1

inf
x2∈B2

y2∈C2

max
{
d(x1, x2), δ(y1, y2)

}
> r,

r > sup
x1∈B1

inf
x2∈B2

d(x1, x2) and r > sup
y1∈C1

inf
y2∈C2

δ(y1, y2).

Thence:
∃x0

1 ∈ B1, ∃ y0
1 ∈ C1 such that ∀x2 ∈ B2, ∀ y2 ∈ C2

⇒ d(x0
1, x2) > r or δ(y0

1 , y2) > r. (2.2)

At the same time,

∀x1 ∈ B1, ∃x2 ∈ B2 such that d(x1, x2) < r, and

∀ y1 ∈ C1, ∃ y2 ∈ C2 such that δ(y1, y2) < r.

Next, for x0
1 and y0

1 , there are x0
2 ∈ B2 and y0

2 ∈ C2 with d(x0
1, x

0
2) < r and

δ(y0
1 , y0

2) < r contradicting (2.2). It follows that, in (2.1), one has the inequality
”≤”.

By using the similar arguments as before, we deduce the other inequality.
Finally, by symmetry, we find

D2

{
(C1, B1), (C2, B2)

}
= max

{
D(B2, B1),D(C2, C1)

}

and thence, with (2.1), the equality of statement comes.

Theorem 2.1. Let (X, d), (Y, δ), (Z, ρ) be three metric spaces and ω : X × Y → Z

be a function. Then

(i) if ω is a Lipschitz map, one has

h
(
ω(B1, C1), ω(B2, C2)

)
≤ Lip(ω)h2

(
(B1, C1), (B2, C2)

)
;

(ii) if ω is uniform continuous, then the set function Fω : K(X) × K(Y ) → K(Z),
Fω(B, C) := ω(B,C), is continuous (for simplicity, we use the same notation h for

the Hausdorff metric on K(X),K(Y ) and K(Z)).

Proof. (i) By using Lemma 2.3, we have

sup
x1∈B1

y1∈C1

inf
x2∈B2

y2∈C2

ρ
(
ω(x1, y1), ω(x2, y2)

)
≤ Lip(ω) sup

x1∈B1

y1∈C1

inf
x2∈B2

y2∈C2

max
{
d(x1, x2), δ(y1, y2)

}

≤ Lip(ω)max{D(B1, B2),D(C1, C2)} ≤ Lip(ω) max{h(B1, B2), h(C1, C2)}
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= Lip(ω)h2

(
(B1, C1), (B2, C2)

)
.

Therefrom, we deduce

D
(
ω(B1, C1), ω(B2, C2)

)
≤ Lip(ω)h2

(
(B1, C1), (B2, C2)

)
,

consequently the assertion (i) follows.

(ii) We us consider the sequence of sets (Bn, Cn)n with Bn ∈ K(X), Cn ∈ K(Y )
converging to (B, C) ∈ K(X) × K(Y ) with respect to the Hausdorff metric h2.
Then h(Bn, B) → 0 and h(Cn, C) → 0. We suppose by reductio ad absurdum that(
ω(Bn, Cn)

)
n

do not converging to ω(B,C). Then there exists ε0 > 0 such that

∀n ∈ N, ∃ kn ≥ n such that h
(
ω(Bkn

, Ckn
), ω(B, C)

)
≥ ε0.

That is, for each n = 1, 2, . . . , one has

sup
x1∈Bkn

y1∈Ckn

inf
x2∈B
y2∈C

ρ
(
ω(x1, y1), ω(x2, y2)

)
≥ ε0

or
sup

x2∈B
y2∈C

inf
x1∈Bkn

y1∈Ckn

ρ
(
ω(x1, y1), ω(x2, y2)

)
≥ ε0.

Case I: By considering, eventually, a subsequence, we can suppose that, for any
n ≥ 1,

sup
x1∈Bn

y1∈Cn

inf
x2∈B
y2∈C

ρ
(
ω(x1, y1), ω(x2, y2)

)
≥ ε0.

So, for each n ≥ 1, one can find (xn, yn) ∈ (Bn, Cn) such that, for any
(x′, y′) ∈ (B,C), we have

ρ
(
ω(xn, yn), ω(x′, y′)

)
≥ ε0. (2.3)

Now, let be ε > 0, ε < ε0. By the uniform continuity of ω, there is η > 0 so that

∀ (x, y), (x′, y′) ∈ X × Y with max{d(x, x′), δ(y, y′)} < η

⇒ ρ
(
ω(x, y), ω(x′, y′)

)
< ε.

Next, by hypothesis, we have Bn → B and Cn → C. Thence, there is nη ≥ 1 so
that h(Bn, B) < η and h(Cn, C) < η for all n ≥ nη. It follows that

sup
x∈Bn

(
inf

x′∈B
d(x, x′)

)
< η

and as well as sup
y∈Cn

(
inf

y′∈C
δ(y, y′)

)
< η, for any n ≥ nη. Therefrom, for any x ∈ Bn

and any y ∈ Cn, there exist x′ ∈ B and y′ ∈ C with d(x, x′) < η and more
δ(y, y′) < η.
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In particular, d(xn, x′) < η, δ(yn, y′) < η and hence

ρ
(
ω(xn, yn), ω(x′

n, y′
n)

)
< ε < ε0,

contradicting (2.3).

Case II: We proceed in a similar way as in the preceding case denoting, for
simplicity, (Bn, Cn)n instead of (Bkn

, Ckn
)n.

Suppose that sup
x2∈B
y2∈C

inf
x1∈Bn

y1∈Cn

ρ
(
ω(x1, y1), ω(x2, y2)

)
≥ ε0, for all n ≥ 1. Then, for

every n = 1, 2, . . . , there is (x0, y0) ∈ (B, C) such that, for any (x′, y′) ∈ (Bn, Cn),
one has

ρ
(
ω(x0, y0), ω(x′, y′)

)
≥ ε0. (2.4)

At the same time, for an arbitrary ε > 0, ε < ε0, there exists η > 0 such that,
for all (x, y), (x′, y′) ∈ X × Y with max

{
d(x, x′), δ(y, y′)

}
< η, we have

ρ
(
ω(x, y), ω(x′, y′)

)
< ε. (2.5)

Next,
Bn → B, Cn → C ⇒ ∃nη ∈ N such that

sup
x∈B
y∈C

inf
x′∈Bn

y′∈Cn

ρ
(
ω(x, y), ω(x′, y′)

)
< η, ∀n ≥ nη,

namely, for any (x, y) ∈ B × C, there is (x′, y′) ∈ Bn × Cn so that d(x, x′) < η and
δ(y, y′) < η. In particular, taking x = x0 and y = y0, we have, in view of (2.5),
δ
(
ω(x′

0), ω(x)
)

< ε contradicting the relation (2.4).
Consequently, Fω is continuous in the arbitrary point (B, C), so it is continuous.
The proof is complete.

As a consequence of Lemma 2.1 and the above theorem, we have obviously:

Corollary 2.1. We consider a sequence of Lipschitz functions ωn : X × Y → Z,

the metric space (Z, ρ) being compact. We define a set function S : K(X)×K(Y ) →
K(Z) by

S(B,C) :=
⋃

n≥1

ωn(B, C). (2.6)

Then Lip(S) ≤ sup
n

Lip(ωn). In particular, if sup
n

Lip(ωn) < ∞, then S is a

Lipschitz function.

From Theorem 2.1 and Lemma 2.1 it follows easily:

Remark 2.1. If we have a finite set of uniform continuous functions (ωn)N
n=1,

then the set function SN : K(X) × K(Y ) → K(Z), SN (B, C) =
N⋃

n=1
ωn(B, C), is

continuous.
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2.2 Iterated Function Systems, Countable Iterated Function

Systems

Let us consider a complete metric space (X, d). A finite set of contractions
ωn : X → X, n = 1, 2, . . . , N , is called iterated function system, shortly IFS. Then

the set function SN : K(X) → K(X), SN (B) :=
N⋃

n=1
ωn(B), is a contraction in

the space (K(X), h), whose unique set-fixed point AN is named the attractor of the
considered IFS.

Now, assume that (X, d) is a compact metric space and we consider a countable
system of contractions (ωn)n on X into itself with contractivity factors, respectively
rn, n = 1, 2, · · · . We say that (ωn)n is a countable iterated function system (abbre-
viated CIFS) if sup

n
rn < 1. The associated set function S : K(X) → K(X) given

by

S(B) =
⋃

n≥1

ωn(B),

for any B ∈ K(X), is a contraction having the contractivity factor r = sup
n

rn.

According to the Banach contraction principle, there is a unique A ∈ K(X) such
that S(A) = A, namely the attractor of the considered CIFS.

The attractor of CIFS (ωn)n can be approximated in the Hausdorff metric by
the attractors of partial IFSs, N ≥ 1, (ωn)N

n=1 ([6, Th.2.3]). Also, concerning the
matter of the attractor A, one has the following result ([6, Cor.2.1]):

Lemma 2.4. The attractor of CIFS (ωn)n represents the adherence of the set of

fixed points ei1...ip
of all contractions ωi1...ip

, p ≥ 1 and ij ≥ 1, where ωi1...ip
:=

ωi1 ◦ · · · ◦ ωip
. In symbols,

A = {ei1...ip
; p, ij = 1, 2, . . . }.

We us consider further a metric space (T, dT ) and a sequences of mappings
ωn : T × X → X and rn : T → [0, 1), n = 1, 2, . . . , obeying the following three
properties:

(i) for each t ∈ T , d(ωn(t, x), ωn(t, y)) ≤ rn(t)d(x, y), for any x, y ∈ X, n ≥ 1;
(ii) there is C > 0 such that dT

(
ωn(t, x), ωn(s, x)

)
≤ CdT (t, s), for all x ∈ X,

t, s ∈ T , n ≥ 1;
(iii) sup

n,t
rn(t) < 1.

We define S : T × K(X) −→ K(X), S(t, B) =
⋃

n≥1

ωn(t, B), for any t ∈ T and

any B ∈ K(X). It follows that, for each t ∈ T , S(t, ·) is a contraction map on K(X)
with the contraction ratio r(t) = sup

n
rn(t) < 1.

The following theorem tell us that the attractor of a CIFS depends continuously
on the parameter t ∈ T ([8, Th.6]).
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Theorem 2.2. Under the above conditions, the function t 7→ A(t) is continu-

ous from T into K(X), where, for t ∈ T , A(t) means the attractor of the CIFS

(ωn(t, ·))n≥1.

3 Generalized Countable Iterated Function Sys-

tems

Throughout in this section (X, d) will be a compact metric space and we consider
the metric

d2

(
(x1, y1), (x2, y2)

)
= max{d(x1, x2),d(y1, y2)

}

on X × X. Then (X × X, d2) is a compact metric space.

3.1 Definition. Continuity with respect to a parameter

Definition 3.1. A sequence of contractions ωn : X×X → X with sup
n

Lip(ωn) < 1

is said to be a generalized countable iterated function system of order two on X,

abbreviated GCIFS.

If N ≥ 1 is an integer, then the finite family of functions (ωn)N
n=1 is called the

partial generalized iterated function system (GIFS) of (ωn)n.

By corollary 2.1, it follows immediately that S : K(X) × K(X) → K(X) given
by (2.6) is a contraction having the contractivity factor r = sup rn, where rn mains
the contraction ratio of ωn, n = 1, 2, · · · . At the same time, the set function

SN : K(X) ×K(X) → K(X), SN (B,C) :=

N⋃

n=1

ωn(B, C)

is a contraction with the contractivity factor rN = max
1≤n≤N

rn.

Theorem 3.1. [4, Th.2.1] (Banach Contraction Principle) Let (X, d) be a com-

plete metric space and f : X × X → X be a contraction with contractivity factor

c ∈ [0, 1). Then there exists a unique e ∈ X such that f(e, e) = e. Moreover, for any

x0, x1 ∈ X, the sequence (xk)k≥0 defined by xk+1 = f(xk, xk−1), k ≥ 1, is conver-

gent to e.

Furthermore,

d(xk, e) ≤
2c [k/2]

1 − c
max{d(x0, x1), d(x1, x2)}.

We say that e ∈ X with e = f(e, e) is a fixed point of f .

In view of the aforesaid, one obtain:
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Theorem 3.2. Let (X, d) be a compact metric space and (ωn)n be a GCIFS on X.

Then there is a unique A ∈ K(X) such that S(A,A) = A.

Moreover, if B0 and B1 be arbitrary sets in K(X), then the sequence (Bk)k≥0

given by Bk+1 = S(Bk, Bk−1), k ≥ 1, is converging to A.

Similarly, there uniquely exists a set AN ∈ K(X) with SN (AN , AN ) = AN .

The sets A,AN ∈ K(X) given in the above theorem are called the attractor of
GCIFS (ωn)n, respectively of GIFS (ωn)N

n=1.

We give now a construction of a CIFS associated to the considered GCIFS. For
each n ≥ 1, we put

ω̃n : X → X, ω̃n(x) := ωn(x, x).

Then ω̃n is a contraction map having the contraction ratio less than Lip(ωn) and
the same fixed point as ωn. The CIFS (ω̃n)n is said to be associated to GCIFS. If

Ã ∈ K(X) is the attractor of the associated CIFS, then Ã ⊂ A.

Let us define S̃ : K(X) → K(X), S̃(B) := S(B,B). Then S̃ is also a contraction
(see Corollary 2.1 and Lemma 2.3) and its unique set-fixed point is A. Further,
according to the Banach contraction principle, for every C ∈ K(X), the sequence(
S̃k(C)

)
k

converges to A. More precisely, one has

Lemma 3.1. Let us consider a set C0 ∈ K(X). Then the sequence (Ck)k given by

Ck := S(Ck−1, Ck−1), k ≥ 1, is converging in the Hausdorff metric to the attractor

A of the considered GCIFS.

Furthermore, we have

h(A,Ck) ≤
rk+1

1 − r
h
(
C0,S(C0, C0)

)
.

In view of the aforesaid and Lemma 2.4, one can observe that the attractor of
the GCIFS contain the fixed points of its contractions.

Proposition 3.1. The attractor A of a GCIFS (ωn)n contains the fixed points of

all ωn, n = 1, 2, · · · . Furthermore, one has

A ⊃ {ei1...ip
; p, ij = 1, 2, . . . },

where ei1...ip
denotes the unique fixed point of the contraction ω̃i1 ◦ · · · ◦ ω̃ip

.

Remark 3.1. Every CIFS can be seen as a GCIFS. Indeed, if (ωn)n constitutes

a CIFS on X, then the sequence of mappings ωn : X × X → X defined by

ωn(x, y) := ωn(x) is a GCIFS having the same attractor. Thence, the GCIFS

represents an improvement of CIFS.

Next, we will prove that, if the contractions of a GCIFS is Lipschitz maps with
respect to a parameter and the supremum of the Lipschitz constants is finite, then
the attractor depends continuously with respect to the respective parameter.
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Theorem 3.3. Let us consider a metric space (T, dT ) and the sequences of maps

ωn : T × X × X → X and rn : T → [0, 1), n = 1, 2, . . . , satisfying the following

requirements:

(i) for each t ∈ T , we have

d(ωn(t, x1, y1), ωn(t, x2, y2)) ≤ rn(t)d2

(
(x1, y1), (x2, y2)

)
,

for any x1, x2, y1, y2 ∈ X and any n ≥ 1;

(ii) there is C > 0 such that

d
(
ωn(t, x, y), ωn(s, x, y)

)
≤ CdT (t, s),

for all x, y ∈ X, t, s ∈ T , n ≥ 1;

(iii) r := sup
n,t

rn(t) < 1.

Then, if A(t) denotes the attractor of the GCIFS (ωn(t, ·, ·))n, then the mapping

t 7→ A(t) has Lipschitz constant
C

1 − r
, hence it is uniform continuous.

Proof. Let us define S : T ×K(X) ×K(X) −→ K(X),

S(t, B, C) =
⋃

n≥1

ωn(t, B,C),

for any t ∈ T , B,C ∈ K(X). It follows that, for each t ∈ T , S(t, ·, ·) is a contraction
mapping on K(X) ×K(X) with the contraction ratio sup

n
rn(t) < 1.

We will first show that

h
(
ωn(t, M, M), ωn(s,M,M)

)
≤ CdT (t, s), ∀M ⊂ X, ∀ t, s ∈ T. (3.7)

By symmetry, it is enough to prove

D
(
ωn(t,M, M), ωn(s, M, M)

)
≤ CdT (t, s). (3.8)

Let be t, s ∈ T . Choose w ∈ ωn(t,M,M). Then, there are x, y ∈ M such
that w = ωn(t, x, y). Let be z = ωn(s, x, y) ∈ ωn(s, M, M). By (ii) we deduce
that d(w, z) ≤ CdT (t, s), hence sup

w∈ωn(t,M,M)

inf
z∈ωn(s,M,M)

d(w, z) ≤ CdT (t, s) which

proves (3.8).

Next, by using Theorem 2.1(i) and Lemma 2.3, one has

h
(
ωn(s,M,M), ωn(s,N,N)

)
≤ rn(s)h(M,N), ∀M, N ⊂ X, s ∈ T, n ≥ 1. (3.9)

Now, for every t, s ∈ T , taking respectively A(t), A(s) in the place of M and N

in (3.7) and (3.9), we obtain
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h
(
A(t), A(s)

)
= h

( ⋃

n≥1

ωn

(
t, A(t), A(t)

)
,
⋃

n≥1

ωn

(
s,A(s), A(s)

) )

≤ sup
n

h
(
ωn

(
t, A(t), A(t)

)
, ωn

(
s,A(s), A(s)

)

≤ sup
n

h
(
ωn

(
t, A(t), A(t)

)
, ωn

(
s,A(t), A(t)

)

+sup
n

h
(
ωn

(
s, A(t), A(t)

)
, ωn

(
s,A(s), A(s)

)

≤ CdT (t, s) + rh
(
A(t), A(s)

)
.

It follows h
(
A(t), A(s)

)
≤

C

1 − r
dT (t, s) which implies the Lipschitz property of

A(t) completing the proof.

Under the preceding hypothesis, the associated CIFS ω̃n(t, x) = ωn(t, x, x),

n ≥ 1, obeys the conditions of Theorem 2.2. So, the attractor Ã(t) of the CIFS
(ω̃n(t, ·))n, depends continuously on the parameter t.

3.2 Approximation of the attractor of a GCIFS

Lemma 3.2. Under the conditions of Theorem 3.2, we have

AN −→
N

A,

with respect to the Hausdorff metric.

Proof. Let be ε > 0. By applying Lemma 2.2 (a) to the increasing sequence
( N⋃

n=1
ωn(A,A)

)

N
, we can find Nε ≥ 1 such that, for any N ≥ Nε, we have

h
( N⋃

n=1

ωn(A,A),
⋃

n≥1

ωn(A,A)
)

< ε(1 − λ), (3.10)

where λ = sup
n

rn. Thereinafter, for every N ≥ Nε,

h(AN , A) = h
(
SN (AN , AN ),S(A,A)

)
= h

( N⋃

n=1

ωn(AN , AN ),
⋃

n≥1

ωn(A, A)
)

≤ h
( N⋃

n=1

ωn(AN , AN ),

N⋃

n=1

ωn(A,A)
)

+ h
( N⋃

n=1

ωn(A,A),
⋃

n≥1

ωn(A,A)
)

≤ sup
1≤n≤N

h
(
ωn(AN , AN ), ωn(A,A)

)
+ ε(1 − λ) ≤ λh(AN , A) + ε(1 − λ).

Consequently, by using (3.10), Lemma 2.3 and Theorem 2.1, one obtain
h(AN , A) < ε, completing the proof.
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Lemma 3.3. Let us consider two arbitrary sets B0, B1 ∈ K(X) and, for each k ≥ 1,
BN

k+1 = SN (BN
k , BN

k−1) and, respectively Bk+1 = S(Bk, Bk−1). Then BN
k −→

N
Bk,

for any k = 0, 1, · · · .

Proof. Firstly, by using the same argument as in the proof of (3.10), for some k ≥ 1
and ε > 0, there is Nε ≥ 1 such that, whenever N ≥ Nε, one has

h
( N⋃

n=1

ωn(Bk, Bk−1),
⋃

n≥1

ωn(Bk, Bk−1)
)

<
ε

2
.

Next, we proceed by mathematical induction with respect to k. We suppose
that h(BN

m , Bm) −→
N

0 for all m ≤ k. Hence there is N∗ ≥ Nε such that

h(BN
m , Bm) <

ε

2 sup rn

and withal h(BN
m−1, Bm−1) <

ε

2 sup rn
, for any N ≥ N∗.

In view of the aforesaid, we find

h(BN
k+1, Bk+1) = h

(
S(BN

k , BN
k−1),S(Bk, Bk−1)

)

= h
( N⋃

n=1

ωn(BN
k , BN

k−1),
⋃

n≥1

ωn(Bk, Bk−1)
)

≤ h
( N⋃

n=1

ωn(BN
k , BN

k−1),

N⋃

n=1

ωn(Bk, Bk−1)
)

+h
( N⋃

n=1

ωn(Bk, Bk−1),
⋃

n≥1

ωn(Bk, Bk−1)
)

≤ sup
n

rn · max
{
h(BN

k , Bk), h(BN
k−1, Bk−1)

}
+

ε

2
< ε.

According to Lemmas 3.2, 3.3 and Theorem 3.2 we deduce immediately the
following result which is useful to approximate the attractor of a GCIFS.

Theorem 3.4. Let A be the attractor of a GCIFS (ωn)n≥1 and B0, B1 ∈ K(X) be

some arbitrary sets. Then A is approximated with respect to the Hausdorff metric

by the attractors AN of the associated partial GIFS (ωn)N
n=1 and, moreover, it is

also approximated by the sequence (Bk)k≥0, where Bk = S(Bk−1, Bk−2) for k ≥ 2.
More precisely, we have the following diagram

BN
k −→

k
ANyN
yN

Bk −→
k

A
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Another way to approximate the attractor of GCIFS are described below.

Lemma 3.4. Let us consider two sequences of sets (Bk)k and (Ck)k from K(X)
converging with respect to the Hausdorff metric to B, respectively to C, where

B,C ∈ K(X). Then Sk(Bk, Ck) −→
k

S(B, C).

Particulary, if Bk = Ck −→
k

A (A being the attractor of the GCIFS), then

Sk(Bk, Bk) −→
k

S(A, A) = A.

Proof. Let ε > 0 be arbitrary. Then, there exists kε ≥ 1 such that

h2

(
(Bk, Ck), (B,C)

)
= max

{
h(Bk, B), h(Ck, C)

}
<

ε

2
, ∀ k ≥ kε.

According to Theorem 2.1, one has

h
( k⋃

n=1

ωn(Bk, Ck),

k⋃

n=1

ωn(B, C)
)
≤ max

1≤n≤k
h
(
ωn(Bk, Ck), ωn(B, C)

)

≤ sup
n

rnh2

(
(Bk, Ck), (B, C)

)
<

ε

2
, ∀ k ≥ kε. (3.11)

By Lemma 2.2 (a) we can find Kε ≥ kε such that, for any k ≥ Kε,

h
( k⋃

n=1

ωn(B, C),
⋃

n≥1

ωn(B,C)
)

<
ε

2
. (3.12)

Finally, with (3.11) and (3.12), we have

h
(
Sk(Bk, Ck),S(B, C)

)
= h

( k⋃

n=1

ωn(Bk, Ck),
⋃

n≥1

ωn(B, C)
)

≤ h
( k⋃

n=1

ωn(Bk, Ck),

k⋃

n=1

ωn(B, C)
)

+ h
( k⋃

n=1

ωn(B,C),
⋃

n≥1

ωn(B, C)
)

<
ε

2
+

ε

2
= ε

which implies the assertion of statement.

Lemma 3.5. We suppose that B0, B1 ∈ K(X), B0 ⊂ B1 ⊂ SN (B0, B1), for each

N ≥ 1. We consider further the sequence (BN
k )k,N where BN

0 = B0, BN
1 = B1 and

BN
k+1 = SN (BN

k , BN
k−1), for all k,N ≥ 1. Then Bk

k ⊂ Bk+1
k+1 and

A = lim
k

Bk
k =

⋃

k≥1

Bk
k .

Moreover, (AN )N is increasing and A =
⋃

N≥1

AN
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Proof. Let be N ≥ 1. It is easy to establish by induction that BN
k ⊂ BN

k+1 for all
k. Then, in view of Lemmas 2.2 and 3.2, one has

AN = lim
k

BN
k =

⋃

k≥1

BN
k .

Also it is obvious that BN
k ⊂ BN+1

k , for any k, N , thence AN ⊂ AN+1. Thus

A = lim
k,N

BN
k =

⋃

k≥1

⋃

N≥1

BN
k .

Consequently, the diagonal sequence (Bk
k )k is increasing and

A = lim
k

Bk
k =

⋃

k≥1

Bk
k .

Remark 3.2. According to the preceding lemma, if the sets B0, B1 are finite, then

the attractor of a GCIFS can be approximated by the finite sets Bk
k , k ≥ 1. This

fact is very instrumental to represent, in certain cases, that attractor with the aim

of computer.

For every N ≥ 1, we set FN := {e1, . . . , eN} and B := {e1, e2, . . . }, en being the
fixed point of ωn. For a fixed integer N let be BN

0 = BN
1 = FN . It is evident that

FN ⊂ SN (FN , FN ). Then BN
k+1 = SN (BN

k , BN
k−1) րk AN . Thus

B = lim
N

FN ⊂ lim
N

AN = A.

Thereafter, we deduce that such a finite sets B0 ⊂ B1 can be B0 = B1 = F1

which obviously obey the requirement of Lemma 3.5.
Finally, we give two examples of GCIFS on a compact subset of R, respectively

on R
2.

Example 3.1. Let us consider the compact metric space X := [0, 1] ⊂ R equipped

with the Euclidean metric. Let α, p, q ∈ [0, 1] be any fixed constants with p+q 6=0 and

(αn)n be an increasing sequence of real numbers from [0, 1] converging to α−
p + q

3
α.

From each n = 1, 2, . . . , we define the mapping ωn : [0, 1] × [0, 1] → [0, 1], by

ωn(x, y) =
n(px + qy)

3n + 1
+ αn.

Then (ωn)n is a GCIFS whose attractor is [0, α].

Proof. Firstly, we make evident that ωn

(
[0, 1]× [0, 1]

)
=

[
0,

n(p + q)

3n + 1
+αn

]
⊂ [0, 1],

hence ωn is well defined.
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Next, it is simple to see that ωn is a contraction having the contraction ratio

rn =
(p + q)n

3n + 1
.

Moreover, since
(p + q)nα

3n + 1
+ αn ր α, it follows

S(A,A) =
⋃

n≥1

ωn(A,A) =
⋃

n≥1

[
0,

(p + q)nα

3n + 1
+ αn

]
= [0, α) = A,

where A = [0, α].

We present now as example a fractal of Sierpinski-infinite type as attractor of a
proper GCIFS by generalizing a construction from [6].

Example 3.2. Let X :=
{
(x, y) ∈ R

2; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x
}

be the plane

surface of the closed triangle having its vertices in the points (0, 0), (0, 1), (1, 0).
Next, we consider an integer p ≥ 2, q ∈ [0, 1] and the contractions ωij : X×X −→ X

defined by

ωij

(
(x1, y1), (x2, y2)

)

=
( 1

pi

(
qx1 + (1 − q)x2

)
+ (j − 1)

1

pi
,

1

pi

(
qy1 + (1 − q)y2

)
+

(pi − 1

p − 1
− j

) 1

pi

)

for all i = 1, 2, . . . , j = 1, 2, . . . ,
pi − 1

p − 1
. Then (ωi,j)i,j constitutes a GCIFS whose

attractor is given in the following figure.

The attractor associated to

the considered GCIFS for

p = 2
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