〇 Open access • Journal Article • DOI:10.2298/FIL1101021S
Generalized countable iterated function systems - Source link
Adrian Nicolae Secelean
Institutions: Lucian Blaga University of Sibiu
Published on: 01 Jan 2011 - Filomat (National Library of Serbia)
Topics: Hutchinson operator, Contraction mapping, Collage theorem, Iterated function system and Lipschitz continuity

Related papers:

- Applications of Fixed Point Theorems in the Theory of Generalized IFS
- Fractals Everywhere
- The Existence of the Attractor of Countable Iterated Function Systems
- Countable Iterated Function Systems
- The hutchinson-barnsley theory for infinite iterated function systems

GENERALIZED COUNTABLE ITERATED FUNCTION SYSTEMS

Nicolae Adrian Secelean

Abstract

One of the most common and most general way to generate fractals is by using iterated function systems which consists of a finite or infinitely many maps. Generalized countable iterated function systems (GCIFS) are a generalization of countable iterated function systems by considering contractions from $X \times X$ into X instead of contractions on the metric space X to itself, where $(X, \mathrm{~d})$ is a compact metric space. If all contractions of a GCIFS are Lipschitz with respect to a parameter and the supremum of the Lipschitz constants is finite, then the associated attractor depends continuously on the respective parameter.

1 Introduction

In the famous paper [2], J.E. Hutchinson proves that, given a set of contractions $\left(\omega_{n}\right)_{n=1}^{N}$ in a complete metric space X, there exists a unique nonempty compact set $A \subset X$, named the attractor of IFS. This attractor is, generally, a fractal set. These ideas has been extended to infinitely many contractions, a such generalization can be found, for example, in [3] and, for Countable Iterated Function Systems (CIFS) on a compact metric space, in [6]. There is a current effort to extend the classical Hutchinson's framework to more general spaces and infinite iterated function systems or, more generally, to multifunction systems. In [7] it is shown that any compact subset of a metric space ca be obtained as attractor of a CIFS. M. Barnsley (in [1]) and others show that, if the contractions of an IFS depend continuously on a parameter, then the corresponding attractor also depends continuously of the respective parameter with respect to the Hausdorff metric. The result has been extended to the countable case (see [8]).

We start with a short description of a Hausdorff metric on a metric space and on a product of two metric spaces and we prove some of its properties which will

[^0]be used in the sequel. Next, the notions of iterated function system (IFS) and countable iterated function system on a complete and, respectively compact metric space $(X, \mathrm{~d})$ together with some its properties are presented.

In [4], A. Mihail introduces the Recurrent Iterated Functions Systems (RIFS) which is a finite family of contractions $\omega_{n}: X \times X \rightarrow X, n=1, \ldots, N$, where ($X, \mathrm{~d}$) is a complete metric space and he proves some of its properties. That construction is extended in [5] by A. Mihail and R. Miculescu to a finite family of contractive mappings from $X^{m}(m \in \mathbb{N})$ into X, the space $(X, \mathrm{~d})$ being compact.

The main results of that paper are given in section 3 when it is introduced the Generalized Countable Iterated Functions Systems (GCIFS) of order two. A GCIFS consists of a sequence of contractions $\omega_{n}: X \times X \rightarrow X, n=1,2, \ldots$, where $(X, \mathrm{~d})$ is a compact metric space. Notice that the treatment of GCIFS of any order $m \in \mathbb{N}$, $m \geq 3$, (when the considered contractions are defined on X^{m} space) can be make in an analogous way as in the case when $m=2$.

It is described some ways to characterize the attractor of a GCIFS as a limiting process and by means of the fixed points of a proper family of contractions. If the contractions which compose the GCIFS obey some continuity conditions with respect to a parameter, then the corresponding attractor depends continuously with respect to that parameter.

Some ways to write the attractor of a GCIFS as a limit of a sequence of sets are presented. They can be very beneficial in certain cases to use the computer to approximate the attractor. Finally, some examples in the compact subspace X of \mathbb{R} and, respectively \mathbb{R}^{2}, is given.

2 Preliminary Facts

In this section we give some well known aspects on Fractal Theory used in the sequel (more complete and rigorous treatments may be found in [2], [1], [6], [8]).

Let us consider a function $f: X \rightarrow Y$, where $(X, \mathrm{~d}),(Y, \delta)$ are two metric spaces, and we define

$$
\operatorname{Lip}(f):=\sup _{\substack{x, y \in X \\ x \neq y}} \frac{\delta(f(x), f(y))}{\mathrm{d}\left(x_{1}, x_{2}\right)} \in \overline{\mathbb{R}}_{+} .
$$

f is said to be a Lipschitz function if $\operatorname{Lip}(f)<\infty$ and a contraction if $\operatorname{Lip}(f)<1$. If f is contraction, then any $r \in(0, \operatorname{Lip}(f))$ is called contraction ratio.

2.1 Hausdorff metric

Let ($X, \mathrm{~d}$) be a metric space and $\mathcal{K}(X)$ be the class of all compact non-empty subsets of X. The function $h: \mathcal{K}(X) \times \mathcal{K}(X) \longrightarrow \mathbb{R}_{+}, h(A, B)=\max \{\mathrm{D}(A, B), \mathrm{D}(B, A)\}$, where $\mathrm{D}(A, B)=\sup _{x \in A}\left(\inf _{y \in B} \mathrm{~d}(x, y)\right)$, for all $A, B \in \mathcal{K}(X)$, is a metric, namely the Hausdorff metric. If $(X, \mathrm{~d})$ is complete, then $\mathcal{K}(X)$ is a complete metric space with respect to this metric h. Also, $(\mathcal{K}(X), h)$ is a compact metric space provided that $(X, \mathrm{~d})$ is compact.

Some simple standard facts in the space $(\mathcal{K}(X), h)$, which will be used in the sequel, are described in the following two lemmas:

LEmma 2.1. If $\left(E_{i}\right)_{i \in \Im},\left(F_{i}\right)_{i \in \Im}$ are two sequences of sets in $\mathcal{K}(X)$, then

$$
h\left(\overline{\bigcup_{i \in \Im} E_{i}}, \overline{\bigcup_{i \in \Im} F_{i}}\right)=h\left(\bigcup_{i \in \Im} E_{i}, \bigcup_{i \in \Im} F_{i}\right) \leq \sup _{i \in \Im} h\left(E_{i}, F_{i}\right) .
$$

Lemma 2.2. [6, Th.1.1] Let $\left(A_{n}\right)_{n}$ be a sequence of nonempty compact subsets of X.
(a) If $A_{n} \subset A_{n+1}$, for all $n \geq 1$, and the set $A:=\bigcup_{n>1} A_{n}$ is relatively compact, then

$$
\bar{A}=\overline{\bigcup_{n \geq 1} A_{n}}=\lim _{n} A_{n}
$$

the limiting process being taken with respect to the Hausdorff metric and the bar means the closure;
(b) If $A_{n+1} \subset A_{n}$, for any $n \geq 1$, then $\lim _{n} A_{n}=\bigcap_{n \geq 1} A_{n}$.

We now consider another metric space (Y, δ) and we use the same notation h for the Hausdorff metric on $\mathcal{K}(X)$ and $\mathcal{K}(Y)$ and, analogously, for the function D . We equip the space $X \times Y$ with the " max" metric d_{2}, namely

$$
\mathrm{d}_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=\max \left\{\mathrm{d}\left(x_{1}, x_{2}\right), \delta\left(y_{1}, y_{2}\right)\right\} .
$$

It is known that d_{2} is a metric and the space $\left(X \times Y, \mathrm{~d}_{2}\right)$ is complete, respectively compact, whenever $(X, \mathrm{~d})$ and (Y, δ) are completes, respectively compacts.

Let h_{2} be the Hausdorff metric on $\mathcal{K}(X) \times \mathcal{K}(Y)$ induces by d_{2}. We denote D_{2} the corresponding set function from the definition of Hausdorff metric,

$$
\mathrm{D}_{2}\left(\left(B_{1}, C_{1}\right),\left(B_{2}, C_{2}\right)\right):=\sup _{\substack{x_{1} \in B_{1} \\ y_{1} \in C_{1}}} \inf _{\substack{x_{2} \in B_{2} \\ y_{2} \in C_{2}}} \mathrm{~d}_{2}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) .
$$

Lemma 2.3. Under the above conditions,

$$
h_{2}\left(\left(B_{1}, C_{1}\right),\left(B_{2}, C_{2}\right)\right)=\max \left\{h\left(B_{1}, B_{2}\right), h\left(C_{1}, C_{2}\right)\right\},
$$

for any $B_{1}, B_{2} \in \mathcal{K}(X)$ and any $C_{1}, C_{2} \in \mathcal{K}(Y)$.
Proof. We first prove that

$$
\begin{equation*}
\mathrm{D}_{2}\left\{\left(B_{1}, C_{1}\right),\left(B_{2}, C_{2}\right)\right\}=\max \left\{\mathrm{D}\left(B_{1}, B_{2}\right), \mathrm{D}\left(C_{1}, C_{2}\right)\right\}, \tag{2.1}
\end{equation*}
$$

that is

$$
\begin{gathered}
\sup _{\substack{x_{1} \in B_{1} \\
y_{1} \in C_{1}}} \inf _{x_{2} \in B_{2}} \max \left\{\mathrm{~d}\left(x_{1}, x_{2}\right), \delta\left(y_{1}, y_{2}\right)\right\} \\
=\max \left\{\sup _{x_{1} \in B_{1}} \inf _{x_{2} \in B_{2}} \mathrm{~d}\left(x_{1}, x_{2}\right), \sup _{y_{1} \in C_{1}} \inf _{y_{2} \in C_{2}} \delta\left(y_{1}, y_{2}\right)\right\} .
\end{gathered}
$$

We suppose, by contradiction, that one has

$$
\mathrm{D}_{2}\left\{\left(B_{1}, C_{1}\right),\left(B_{2}, C_{2}\right)\right\}>\max \left\{\mathrm{D}\left(B_{1}, B_{2}\right), \mathrm{D}\left(C_{1}, C_{2}\right)\right\}
$$

There exists $r \in \mathbb{R}$ such that

$$
\begin{gathered}
\sup _{\substack{x_{1} \in B_{1} \\
y_{1} \in C_{1}}} \inf _{x_{2} \in B_{2}}^{y_{2} \in C_{2}} ⿻ \\
r>\sup _{x_{1} \in B_{1}} \inf _{x_{2} \in B_{2}} \mathrm{~d}\left(x_{1}, x_{2}\right) \text { and } r>\sup _{y_{1} \in C_{1}} \inf _{y_{2} \in C_{2}} \delta\left(y_{1}, y_{2}\right) .
\end{gathered}
$$

Thence:

$$
\begin{gather*}
\exists x_{1}^{0} \in B_{1}, \exists y_{1}^{0} \in C_{1} \text { such that } \forall x_{2} \in B_{2}, \forall y_{2} \in C_{2} \\
\Rightarrow \mathrm{~d}\left(x_{1}^{0}, x_{2}\right)>r \text { or } \delta\left(y_{1}^{0}, y_{2}\right)>r . \tag{2.2}
\end{gather*}
$$

At the same time,

$$
\begin{aligned}
& \forall x_{1} \in B_{1}, \exists x_{2} \in B_{2} \text { such that } \mathrm{d}\left(x_{1}, x_{2}\right)<r, \text { and } \\
& \forall y_{1} \in C_{1}, \exists y_{2} \in C_{2} \text { such that } \delta\left(y_{1}, y_{2}\right)<r .
\end{aligned}
$$

Next, for x_{1}^{0} and y_{1}^{0}, there are $x_{2}^{0} \in B_{2}$ and $y_{2}^{0} \in C_{2}$ with $\mathrm{d}\left(x_{1}^{0}, x_{2}^{0}\right)<r$ and $\delta\left(y_{1}^{0}, y_{2}^{0}\right)<r$ contradicting (2.2). It follows that, in (2.1), one has the inequality $" \leq "$.

By using the similar arguments as before, we deduce the other inequality.
Finally, by symmetry, we find

$$
\mathrm{D}_{2}\left\{\left(C_{1}, B_{1}\right),\left(C_{2}, B_{2}\right)\right\}=\max \left\{\mathrm{D}\left(B_{2}, B_{1}\right), \mathrm{D}\left(C_{2}, C_{1}\right)\right\}
$$

and thence, with (2.1), the equality of statement comes.

Theorem 2.1. Let $(X, \mathrm{~d}),(Y, \delta),(Z, \rho)$ be three metric spaces and $\omega: X \times Y \rightarrow Z$ be a function. Then
(i) if ω is a Lipschitz map, one has

$$
h\left(\omega\left(B_{1}, C_{1}\right), \omega\left(B_{2}, C_{2}\right)\right) \leq \operatorname{Lip}(\omega) h_{2}\left(\left(B_{1}, C_{1}\right),\left(B_{2}, C_{2}\right)\right)
$$

(ii) if ω is uniform continuous, then the set function $F_{\omega}: \mathcal{K}(X) \times \mathcal{K}(Y) \rightarrow \mathcal{K}(Z)$, $F_{\omega}(B, C):=\omega(B, C)$, is continuous (for simplicity, we use the same notation h for the Hausdorff metric on $\mathcal{K}(X), \mathcal{K}(Y)$ and $\mathcal{K}(Z))$.

Proof. (i) By using Lemma 2.3, we have

$$
\begin{aligned}
& \sup _{\substack{x_{1} \in B_{1} \\
y_{1} \in C_{1}}} \inf _{\substack{x_{2} \in B_{2} \\
y_{2} \in C_{2}}} \rho\left(\omega\left(x_{1}, y_{1}\right), \omega\left(x_{2}, y_{2}\right)\right) \leq \operatorname{Lip}(\omega) \sup _{\substack{x_{1} \in B_{1} \\
y_{1} \in C_{1} \\
x_{2} \in B_{2} \\
y_{2} \in C_{2}}} \inf _{\max }\left\{\mathrm{d}\left(x_{1}, x_{2}\right), \delta\left(y_{1}, y_{2}\right)\right\} \\
& \quad \leq \operatorname{Lip}(\omega) \max \left\{\mathrm{D}\left(B_{1}, B_{2}\right), \mathrm{D}\left(C_{1}, C_{2}\right)\right\} \leq \operatorname{Lip}(\omega) \max \left\{h\left(B_{1}, B_{2}\right), h\left(C_{1}, C_{2}\right)\right\}
\end{aligned}
$$

$$
=\operatorname{Lip}(\omega) h_{2}\left(\left(B_{1}, C_{1}\right),\left(B_{2}, C_{2}\right)\right)
$$

Therefrom, we deduce

$$
\mathrm{D}\left(\omega\left(B_{1}, C_{1}\right), \omega\left(B_{2}, C_{2}\right)\right) \leq \operatorname{Lip}(\omega) h_{2}\left(\left(B_{1}, C_{1}\right),\left(B_{2}, C_{2}\right)\right)
$$

consequently the assertion (i) follows.
(ii) We us consider the sequence of sets $\left(B_{n}, C_{n}\right)_{n}$ with $B_{n} \in \mathcal{K}(X), C_{n} \in \mathcal{K}(Y)$ converging to $(B, C) \in \mathcal{K}(X) \times \mathcal{K}(Y)$ with respect to the Hausdorff metric h_{2}. Then $h\left(B_{n}, B\right) \rightarrow 0$ and $h\left(C_{n}, C\right) \rightarrow 0$. We suppose by reductio ad absurdum that $\left(\omega\left(B_{n}, C_{n}\right)\right)_{n}$ do not converging to $\omega(B, C)$. Then there exists $\varepsilon_{0}>0$ such that

$$
\forall n \in \mathbb{N}, \exists k_{n} \geq n \text { such that } h\left(\omega\left(B_{k_{n}}, C_{k_{n}}\right), \omega(B, C)\right) \geq \varepsilon_{0}
$$

That is, for each $n=1,2, \ldots$, one has

$$
\sup _{\substack{x_{1} \in B_{k_{n}} \\ y_{1} \in C_{k_{n}}}} \inf _{\substack{x_{2} \in B \\ y_{2} \in C}} \rho\left(\omega\left(x_{1}, y_{1}\right), \omega\left(x_{2}, y_{2}\right)\right) \geq \varepsilon_{0}
$$

or

$$
\sup _{\substack{x_{2} \in B \\ y_{2} \in C}}^{\inf _{\substack{x_{1} \in B_{k_{n}} \\ y_{1} \in C_{k_{n}}}} \rho\left(\omega\left(x_{1}, y_{1}\right), \omega\left(x_{2}, y_{2}\right)\right) \geq \varepsilon_{0} .}
$$

Case I: By considering, eventually, a subsequence, we can suppose that, for any $n \geq 1$,

$$
\sup _{\substack{x_{1} \in B_{n} \\ y_{1} \in C_{n}}} \inf _{\substack{x_{2} \in B \\ y_{2} \in C}} \rho\left(\omega\left(x_{1}, y_{1}\right), \omega\left(x_{2}, y_{2}\right)\right) \geq \varepsilon_{0}
$$

So, for each $n \geq 1$, one can find $\left(x_{n}, y_{n}\right) \in\left(B_{n}, C_{n}\right)$ such that, for any $\left(x^{\prime}, y^{\prime}\right) \in(B, C)$, we have

$$
\begin{equation*}
\rho\left(\omega\left(x_{n}, y_{n}\right), \omega\left(x^{\prime}, y^{\prime}\right)\right) \geq \varepsilon_{0} \tag{2.3}
\end{equation*}
$$

Now, let be $\varepsilon>0, \varepsilon<\varepsilon_{0}$. By the uniform continuity of ω, there is $\eta>0$ so that

$$
\begin{aligned}
\forall(x, y),\left(x^{\prime}, y^{\prime}\right) & \in X \times Y \text { with } \max \left\{\mathrm{d}\left(x, x^{\prime}\right), \delta\left(y, y^{\prime}\right)\right\}<\eta \\
& \Rightarrow \rho\left(\omega(x, y), \omega\left(x^{\prime}, y^{\prime}\right)\right)<\varepsilon
\end{aligned}
$$

Next, by hypothesis, we have $B_{n} \rightarrow B$ and $C_{n} \rightarrow C$. Thence, there is $n_{\eta} \geq 1$ so that $h\left(B_{n}, B\right)<\eta$ and $h\left(C_{n}, C\right)<\eta$ for all $n \geq n_{\eta}$. It follows that

$$
\sup _{x \in B_{n}}\left(\inf _{x^{\prime} \in B} \mathrm{~d}\left(x, x^{\prime}\right)\right)<\eta
$$

and as well as $\sup _{y \in C_{n}}\left(\inf _{y^{\prime} \in C} \delta\left(y, y^{\prime}\right)\right)<\eta$, for any $n \geq n_{\eta}$. Therefrom, for any $x \in B_{n}$ and any $y \in C_{n}$, there exist $x^{\prime} \in B$ and $y^{\prime} \in C$ with $\mathrm{d}\left(x, x^{\prime}\right)<\eta$ and more $\delta\left(y, y^{\prime}\right)<\eta$.

In particular, $\mathrm{d}\left(x_{n}, x^{\prime}\right)<\eta, \delta\left(y_{n}, y^{\prime}\right)<\eta$ and hence

$$
\rho\left(\omega\left(x_{n}, y_{n}\right), \omega\left(x_{n}^{\prime}, y_{n}^{\prime}\right)\right)<\varepsilon<\varepsilon_{0}
$$

contradicting (2.3).
Case II: We proceed in a similar way as in the preceding case denoting, for simplicity, $\left(B_{n}, C_{n}\right)_{n}$ instead of $\left(B_{k_{n}}, C_{k_{n}}\right)_{n}$.

Suppose that $\sup _{\sup _{2} \in B} \inf _{x_{1} \in B_{n}} \rho\left(\omega\left(x_{1}, y_{1}\right), \omega\left(x_{2}, y_{2}\right)\right) \geq \varepsilon_{0}$, for all $n \geq 1$. Then, for $\underset{\substack{x_{2} \in B \\ y_{2} \in C \\ y_{1} \in \underbrace{}_{1} \in B_{n} \\ y_{1} \in C_{n}}}{x_{n}}$
every $n=1,2, \ldots$, there is $\left(x_{0}, y_{0}\right) \in(B, C)$ such that, for any $\left(x^{\prime}, y^{\prime}\right) \in\left(B_{n}, C_{n}\right)$, one has

$$
\begin{equation*}
\rho\left(\omega\left(x_{0}, y_{0}\right), \omega\left(x^{\prime}, y^{\prime}\right)\right) \geq \varepsilon_{0} \tag{2.4}
\end{equation*}
$$

At the same time, for an arbitrary $\varepsilon>0, \varepsilon<\varepsilon_{0}$, there exists $\eta>0$ such that, for all $(x, y),\left(x^{\prime}, y^{\prime}\right) \in X \times Y$ with max $\left\{\mathrm{d}\left(x, x^{\prime}\right), \delta\left(y, y^{\prime}\right)\right\}<\eta$, we have

$$
\begin{equation*}
\rho\left(\omega(x, y), \omega\left(x^{\prime}, y^{\prime}\right)\right)<\varepsilon . \tag{2.5}
\end{equation*}
$$

Next,

$$
\begin{aligned}
& B_{n} \rightarrow B, C_{n} \rightarrow C \Rightarrow \exists n_{\eta} \in \mathbb{N} \text { such that } \\
& \sup _{x \in B} \inf _{x^{\prime} \in B_{n}} \rho\left(\omega(x, y), \omega\left(x^{\prime}, y^{\prime}\right)\right)<\eta, \forall n \geq n_{\eta} \text {, } \\
& \underset{y \in C}{x \in B} \begin{array}{c}
x^{\prime} \in B_{n} \\
y^{\prime} \in C_{n}
\end{array}
\end{aligned}
$$

namely, for any $(x, y) \in B \times C$, there is $\left(x^{\prime}, y^{\prime}\right) \in B_{n} \times C_{n}$ so that $\mathrm{d}\left(x, x^{\prime}\right)<\eta$ and $\delta\left(y, y^{\prime}\right)<\eta$. In particular, taking $x=x_{0}$ and $y=y_{0}$, we have, in view of (2.5), $\delta\left(\omega\left(x_{0}^{\prime}\right), \omega(x)\right)<\varepsilon$ contradicting the relation (2.4).

Consequently, F_{ω} is continuous in the arbitrary point (B, C), so it is continuous. The proof is complete.

As a consequence of Lemma 2.1 and the above theorem, we have obviously:
Corollary 2.1. We consider a sequence of Lipschitz functions $\omega_{n}: X \times Y \rightarrow Z$, the metric space (Z, ρ) being compact. We define a set function $\mathcal{S}: \mathcal{K}(X) \times \mathcal{K}(Y) \rightarrow$ $\mathcal{K}(Z)$ by

$$
\begin{equation*}
\mathcal{S}(B, C):=\overline{\bigcup_{n \geq 1} \omega_{n}(B, C)} \tag{2.6}
\end{equation*}
$$

Then $\operatorname{Lip}(\mathcal{S}) \leq \sup _{n} \operatorname{Lip}\left(\omega_{n}\right)$. In particular, if $\sup _{n} \operatorname{Lip}\left(\omega_{n}\right)<\infty$, then \mathcal{S} is a Lipschitz function.

From Theorem 2.1 and Lemma 2.1 it follows easily:
Remark 2.1. If we have a finite set of uniform continuous functions $\left(\omega_{n}\right)_{n=1}^{N}$, then the set function $\mathcal{S}_{N}: \mathcal{K}(X) \times \mathcal{K}(Y) \rightarrow \mathcal{K}(Z), \mathcal{S}_{N}(B, C)=\bigcup_{n=1}^{N} \omega_{n}(B, C)$, is continuous.

2.2 Iterated Function Systems, Countable Iterated Function Systems

Let us consider a complete metric space ($X, \mathrm{~d}$). A finite set of contractions $\omega_{n}: X \rightarrow X, n=1,2, \ldots, N$, is called iterated function system, shortly IFS. Then the set function $\mathcal{S}_{N}: \mathcal{K}(X) \rightarrow \mathcal{K}(X), \mathcal{S}_{N}(B):=\bigcup_{n=1}^{N} \omega_{n}(B)$, is a contraction in the space $(\mathcal{K}(X), h)$, whose unique set-fixed point A_{N} is named the attractor of the considered IFS.

Now, assume that $(X, \mathrm{~d})$ is a compact metric space and we consider a countable system of contractions $\left(\omega_{n}\right)_{n}$ on X into itself with contractivity factors, respectively $r_{n}, n=1,2, \cdots$. We say that $\left(\omega_{n}\right)_{n}$ is a countable iterated function system (abbreviated CIFS) if $\sup _{n} r_{n}<1$. The associated set function $\mathcal{S}: \mathcal{K}(X) \rightarrow \mathcal{K}(X)$ given by

$$
\mathcal{S}(B)=\overline{\bigcup_{n \geq 1} \omega_{n}(B)}
$$

for any $B \in \mathcal{K}(X)$, is a contraction having the contractivity factor $r=\sup r_{n}$. According to the Banach contraction principle, there is a unique $A \in \mathcal{K}(X)^{n}$ such that $\mathcal{S}(A)=A$, namely the attractor of the considered CIFS.

The attractor of CIFS $\left(\omega_{n}\right)_{n}$ can be approximated in the Hausdorff metric by the attractors of partial IFSs, $N \geq 1,\left(\omega_{n}\right)_{n=1}^{N}([6$, Th.2.3]). Also, concerning the matter of the attractor A, one has the following result ([6, Cor.2.1]):

LEMmA 2.4. The attractor of $\operatorname{CIFS}\left(\omega_{n}\right)_{n}$ represents the adherence of the set of fixed points $e_{i_{1} \ldots i_{p}}$ of all contractions $\omega_{i_{1} \ldots i_{p}}, p \geq 1$ and $i_{j} \geq 1$, where $\omega_{i_{1} \ldots i_{p}}:=$ $\omega_{i_{1}} \circ \cdots \circ \omega_{i_{p}}$. In symbols,

$$
A=\overline{\left\{e_{i_{1} \ldots i_{p}} ; p, i_{j}=1,2, \ldots\right\}} .
$$

We us consider further a metric space $\left(T, \mathrm{~d}_{T}\right)$ and a sequences of mappings $\omega_{n}: T \times X \rightarrow X$ and $r_{n}: T \rightarrow[0,1), n=1,2, \ldots$, obeying the following three properties:
(i) for each $t \in T, \mathrm{~d}\left(\omega_{n}(t, x), \omega_{n}(t, y)\right) \leq r_{n}(t) \mathrm{d}(x, y)$, for any $x, y \in X, n \geq 1$;
(ii) there is $C>0$ such that $\mathrm{d}_{T}\left(\omega_{n}(t, x), \omega_{n}(s, x)\right) \leq C \mathrm{~d}_{T}(t, s)$, for all $x \in X$, $t, s \in T, n \geq 1$;
(iii) $\sup _{n, t} r_{n}(t)<1$.

We define $\mathcal{S}: T \times \mathcal{K}(X) \longrightarrow \mathcal{K}(X), \mathcal{S}(t, B)=\overline{\bigcup_{n \geq 1} \omega_{n}(t, B)}$, for any $t \in T$ and any $B \in \mathcal{K}(X)$. It follows that, for each $t \in T, \mathcal{S}(t, \cdot)$ is a contraction map on $\mathcal{K}(X)$ with the contraction ratio $r(t)=\sup _{n} r_{n}(t)<1$.

The following theorem tell us that the attractor of a CIFS depends continuously on the parameter $t \in T([8$, Th. 6$])$.

THEOREM 2.2. Under the above conditions, the function $t \mapsto A(t)$ is continuous from T into $\mathcal{K}(X)$, where, for $t \in T, A(t)$ means the attractor of the CIFS $\left(\omega_{n}(t, \cdot)\right)_{n \geq 1}$.

3 Generalized Countable Iterated Function Systems

Throughout in this section $(X, \mathrm{~d})$ will be a compact metric space and we consider the metric

$$
\mathrm{d}_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{\mathrm{d}\left(x_{1}, x_{2}\right), \mathrm{d}\left(y_{1}, y_{2}\right)\right\}
$$

on $X \times X$. Then $\left(X \times X, \mathrm{~d}_{2}\right)$ is a compact metric space.

3.1 Definition. Continuity with respect to a parameter

Definition 3.1. A sequence of contractions $\omega_{n}: X \times X \rightarrow X$ with $\sup \operatorname{Lip}\left(\omega_{n}\right)<1$ is said to be a generalized countable iterated function system of order two on X, abbreviated GCIFS.

If $N \geq 1$ is an integer, then the finite family of functions $\left(\omega_{n}\right)_{n=1}^{N}$ is called the partial generalized iterated function system (GIFS) of $\left(\omega_{n}\right)_{n}$.

By corollary 2.1, it follows immediately that $\mathcal{S}: \mathcal{K}(X) \times \mathcal{K}(X) \rightarrow \mathcal{K}(X)$ given by (2.6) is a contraction having the contractivity factor $r=\sup r_{n}$, where r_{n} mains the contraction ratio of $\omega_{n}, n=1,2, \cdots$. At the same time, the set function

$$
\mathcal{S}_{N}: \mathcal{K}(X) \times \mathcal{K}(X) \rightarrow \mathcal{K}(X), \mathcal{S}_{N}(B, C):=\bigcup_{n=1}^{N} \omega_{n}(B, C)
$$

is a contraction with the contractivity factor $r_{N}=\max _{1 \leq n \leq N} r_{n}$.
Theorem 3.1. [4, Th.2.1] (Banach Contraction Principle) Let ($X, \mathrm{~d}$) be a complete metric space and $f: X \times X \rightarrow X$ be a contraction with contractivity factor $c \in[0,1)$. Then there exists a unique $e \in X$ such that $f(e, e)=e$. Moreover, for any $x_{0}, x_{1} \in X$, the sequence $\left(x_{k}\right)_{k \geq 0}$ defined by $x_{k+1}=f\left(x_{k}, x_{k-1}\right), k \geq 1$, is convergent to e.

Furthermore,

$$
\mathrm{d}\left(x_{k}, e\right) \leq \frac{2 c^{[k / 2]}}{1-c} \max \left\{\mathrm{~d}\left(x_{0}, x_{1}\right), \mathrm{d}\left(x_{1}, x_{2}\right)\right\}
$$

We say that $e \in X$ with $e=f(e, e)$ is a fixed point of f.
In view of the aforesaid, one obtain:

Theorem 3.2. Let $(X, \mathrm{~d})$ be a compact metric space and $\left(\omega_{n}\right)_{n}$ be a GCIFS on X. Then there is a unique $A \in \mathcal{K}(X)$ such that $\mathcal{S}(A, A)=A$.

Moreover, if B_{0} and B_{1} be arbitrary sets in $\mathcal{K}(X)$, then the sequence $\left(B_{k}\right)_{k \geq 0}$ given by $B_{k+1}=\mathcal{S}\left(B_{k}, B_{k-1}\right), k \geq 1$, is converging to A.

Similarly, there uniquely exists a set $A_{N} \in \mathcal{K}(X)$ with $\mathcal{S}_{N}\left(A_{N}, A_{N}\right)=A_{N}$.
The sets $A, A_{N} \in \mathcal{K}(X)$ given in the above theorem are called the attractor of GCIFS $\left(\omega_{n}\right)_{n}$, respectively of GIFS $\left(\omega_{n}\right)_{n=1}^{N}$.

We give now a construction of a CIFS associated to the considered GCIFS. For each $n \geq 1$, we put

$$
\widetilde{\omega}_{n}: X \rightarrow X, \widetilde{\omega}_{n}(x):=\omega_{n}(x, x) .
$$

Then $\widetilde{\omega}_{n}$ is a contraction map having the contraction ratio less than $\operatorname{Lip}\left(\omega_{n}\right)$ and the same fixed point as ω_{n}. The CIFS $\left(\widetilde{\omega}_{n}\right)_{n}$ is said to be associated to GCIFS. If $\widetilde{A} \in \mathcal{K}(X)$ is the attractor of the associated CIFS, then $\widetilde{A} \subset A$.

Let us define $\widetilde{\mathcal{S}}: \mathcal{K}(X) \rightarrow \mathcal{K}(X), \widetilde{\mathcal{S}}(B):=\mathcal{S}(B, B)$. Then $\widetilde{\mathcal{S}}$ is also a contraction (see Corollary 2.1 and Lemma 2.3) and its unique set-fixed point is A. Further, according to the Banach contraction principle, for every $C \in \mathcal{K}(X)$, the sequence $\left(\widetilde{\mathcal{S}}^{k}(C)\right)_{k}$ converges to A. More precisely, one has

Lemma 3.1. Let us consider a set $C_{0} \in \mathcal{K}(X)$. Then the sequence $\left(C_{k}\right)_{k}$ given by $C_{k}:=\mathcal{S}\left(C_{k-1}, C_{k-1}\right), k \geq 1$, is converging in the Hausdorff metric to the attractor A of the considered GCIFS.

Furthermore, we have

$$
h\left(A, C_{k}\right) \leq \frac{r^{k+1}}{1-r} h\left(C_{0}, \mathcal{S}\left(C_{0}, C_{0}\right)\right)
$$

In view of the aforesaid and Lemma 2.4, one can observe that the attractor of the GCIFS contain the fixed points of its contractions.

Proposition 3.1. The attractor A of a $\operatorname{GCIFS}\left(\omega_{n}\right)_{n}$ contains the fixed points of all $\omega_{n}, n=1,2, \cdots$. Furthermore, one has

$$
A \supset \overline{\left\{e_{i_{1} \ldots i_{p}} ; p, i_{j}=1,2, \ldots\right\}}
$$

where $e_{i_{1} \ldots i_{p}}$ denotes the unique fixed point of the contraction $\widetilde{\omega}_{i_{1}} \circ \ldots \circ \widetilde{\omega}_{i_{p}}$.
Remark 3.1. Every CIFS can be seen as a GCIFS. Indeed, if $\left(\omega_{n}\right)_{n}$ constitutes a CIFS on X, then the sequence of mappings $\bar{\omega}_{n}: X \times X \rightarrow X$ defined by $\bar{\omega}_{n}(x, y):=\omega_{n}(x)$ is a GCIFS having the same attractor. Thence, the GCIFS represents an improvement of CIFS.

Next, we will prove that, if the contractions of a GCIFS is Lipschitz maps with respect to a parameter and the supremum of the Lipschitz constants is finite, then the attractor depends continuously with respect to the respective parameter.

THEOREM 3.3. Let us consider a metric space $\left(T, \mathrm{~d}_{T}\right)$ and the sequences of maps $\omega_{n}: T \times X \times X \rightarrow X$ and $r_{n}: T \rightarrow[0,1), n=1,2, \ldots$, satisfying the following requirements:
(i) for each $t \in T$, we have

$$
\mathrm{d}\left(\omega_{n}\left(t, x_{1}, y_{1}\right), \omega_{n}\left(t, x_{2}, y_{2}\right)\right) \leq r_{n}(t) \mathrm{d}_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)
$$

for any $x_{1}, x_{2}, y_{1}, y_{2} \in X$ and any $n \geq 1$;
(ii) there is $C>0$ such that

$$
\mathrm{d}\left(\omega_{n}(t, x, y), \omega_{n}(s, x, y)\right) \leq C \mathrm{~d}_{T}(t, s)
$$

for all $x, y \in X, t, s \in T, n \geq 1$;
(iii) $r:=\sup _{n, t} r_{n}(t)<1$.

Then, if $A(t)$ denotes the attractor of the $\operatorname{GCIFS}\left(\omega_{n}(t, \cdot, \cdot)\right)_{n}$, then the mapping $t \mapsto A(t)$ has Lipschitz constant $\frac{C}{1-r}$, hence it is uniform continuous.

Proof. Let us define $\mathcal{S}: T \times \mathcal{K}(X) \times \mathcal{K}(X) \longrightarrow \mathcal{K}(X)$,

$$
\mathcal{S}(t, B, C)=\overline{\bigcup_{n \geq 1} \omega_{n}(t, B, C)}
$$

for any $t \in T, B, C \in \mathcal{K}(X)$. It follows that, for each $t \in T, \mathcal{S}(t, \cdot, \cdot)$ is a contraction mapping on $\mathcal{K}(X) \times \mathcal{K}(X)$ with the contraction ratio $\sup _{n} r_{n}(t)<1$.

We will first show that

$$
\begin{equation*}
h\left(\omega_{n}(t, M, M), \omega_{n}(s, M, M)\right) \leq C \mathrm{~d}_{T}(t, s), \forall M \subset X, \forall t, s \in T \tag{3.7}
\end{equation*}
$$

By symmetry, it is enough to prove

$$
\begin{equation*}
D\left(\omega_{n}(t, M, M), \omega_{n}(s, M, M)\right) \leq C \mathrm{~d}_{T}(t, s) \tag{3.8}
\end{equation*}
$$

Let be $t, s \in T$. Choose $w \in \omega_{n}(t, M, M)$. Then, there are $x, y \in M$ such that $w=\omega_{n}(t, x, y)$. Let be $z=\omega_{n}(s, x, y) \in \omega_{n}(s, M, M)$. By (ii) we deduce that $\mathrm{d}(w, z) \leq C \mathrm{~d}_{T}(t, s)$, hence $\sup _{w \in \omega_{n}(t, M, M)} \inf _{z \in \omega_{n}(s, M, M)} \mathrm{d}(w, z) \leq C \mathrm{~d}_{T}(t, s)$ which proves (3.8).

Next, by using Theorem 2.1(i) and Lemma 2.3, one has

$$
\begin{equation*}
h\left(\omega_{n}(s, M, M), \omega_{n}(s, N, N)\right) \leq r_{n}(s) h(M, N), \forall M, N \subset X, s \in T, n \geq 1 \tag{3.9}
\end{equation*}
$$

Now, for every $t, s \in T$, taking respectively $A(t), A(s)$ in the place of M and N in (3.7) and (3.9), we obtain

$$
\left.\begin{array}{c}
h(A(t), A(s))=h\left(\overline{\bigcup_{n \geq 1} \omega_{n}(t, A(t), A(t))}, \bigcup_{n \geq 1} \omega_{n}(s, A(s), A(s))\right.
\end{array}\right)
$$

It follows $h(A(t), A(s)) \leq \frac{C}{1-r} \mathrm{~d}_{T}(t, s)$ which implies the Lipschitz property of $A(t)$ completing the proof.

Under the preceding hypothesis, the associated CIFS $\widetilde{\omega}_{n}(t, x)=\omega_{n}(t, x, x)$, $n \geq 1$, obeys the conditions of Theorem 2.2. So, the attractor $\widetilde{A}(t)$ of the CIFS $\left(\widetilde{\omega}_{n}(t, \cdot)\right)_{n}$, depends continuously on the parameter t.

3.2 Approximation of the attractor of a GCIFS

Lemma 3.2. Under the conditions of Theorem 3.2, we have

$$
A_{N} \underset{N}{\longrightarrow} A
$$

with respect to the Hausdorff metric.
Proof. Let be $\varepsilon>0$. By applying Lemma 2.2 (a) to the increasing sequence $\left(\bigcup_{n=1}^{N} \omega_{n}(A, A)\right)_{N}$, we can find $N_{\varepsilon} \geq 1$ such that, for any $N \geq N_{\varepsilon}$, we have

$$
\begin{equation*}
h\left(\bigcup_{n=1}^{N} \omega_{n}(A, A), \overline{\bigcup_{n \geq 1} \omega_{n}(A, A)}\right)<\varepsilon(1-\lambda) \tag{3.10}
\end{equation*}
$$

where $\lambda=\sup _{n} r_{n}$. Thereinafter, for every $N \geq N_{\varepsilon}$,

$$
\begin{aligned}
& h\left(A_{N}, A\right)=h\left(\mathcal{S}_{N}\left(A_{N}, A_{N}\right), \mathcal{S}(A, A)\right)=h\left(\bigcup_{n=1}^{N} \omega_{n}\left(A_{N}, A_{N}\right), \overline{\bigcup_{n \geq 1} \omega_{n}(A, A)}\right) \\
& \quad \leq h\left(\bigcup_{n=1}^{N} \omega_{n}\left(A_{N}, A_{N}\right), \bigcup_{n=1}^{N} \omega_{n}(A, A)\right)+h\left(\bigcup_{n=1}^{N} \omega_{n}(A, A), \overline{\bigcup_{n \geq 1} \omega_{n}(A, A)}\right) \\
& \quad \leq \sup _{1 \leq n \leq N} h\left(\omega_{n}\left(A_{N}, A_{N}\right), \omega_{n}(A, A)\right)+\varepsilon(1-\lambda) \leq \lambda h\left(A_{N}, A\right)+\varepsilon(1-\lambda) .
\end{aligned}
$$

Consequently, by using (3.10), Lemma 2.3 and Theorem 2.1, one obtain $h\left(A_{N}, A\right)<\varepsilon$, completing the proof.

Lemma 3.3. Let us consider two arbitrary sets $B_{0}, B_{1} \in \mathcal{K}(X)$ and, for each $k \geq 1$, $B_{k+1}^{N}=\mathcal{S}_{N}\left(B_{k}^{N}, B_{k-1}^{N}\right)$ and, respectively $B_{k+1}=\mathcal{S}\left(B_{k}, B_{k-1}\right)$. Then $B_{k}^{N} \underset{N}{\longrightarrow} B_{k}$, for any $k=0,1, \cdots$.

Proof. Firstly, by using the same argument as in the proof of (3.10), for some $k \geq 1$ and $\varepsilon>0$, there is $N_{\varepsilon} \geq 1$ such that, whenever $N \geq N_{\varepsilon}$, one has

$$
h\left(\bigcup_{n=1}^{N} \omega_{n}\left(B_{k}, B_{k-1}\right), \overline{\bigcup_{n \geq 1} \omega_{n}\left(B_{k}, B_{k-1}\right)}\right)<\frac{\varepsilon}{2} .
$$

Next, we proceed by mathematical induction with respect to k. We suppose that $h\left(B_{m}^{N}, B_{m}\right) \underset{N}{\longrightarrow} 0$ for all $m \leq k$. Hence there is $N^{*} \geq N_{\varepsilon}$ such that

$$
h\left(B_{m}^{N}, B_{m}\right)<\frac{\varepsilon}{2 \sup r_{n}}
$$

and withal $h\left(B_{m-1}^{N}, B_{m-1}\right)<\frac{\varepsilon}{2 \sup r_{n}}$, for any $N \geq N^{*}$.
In view of the aforesaid, we find

$$
\begin{gathered}
h\left(B_{k+1}^{N}, B_{k+1}\right)=h\left(\mathcal{S}\left(B_{k}^{N}, B_{k-1}^{N}\right), \mathcal{S}\left(B_{k}, B_{k-1}\right)\right) \\
=h\left(\bigcup_{n=1}^{N} \omega_{n}\left(B_{k}^{N}, B_{k-1}^{N}\right), \overline{\bigcup_{n \geq 1} \omega_{n}\left(B_{k}, B_{k-1}\right)}\right) \\
\leq h\left(\bigcup_{n=1}^{N} \omega_{n}\left(B_{k}^{N}, B_{k-1}^{N}\right), \bigcup_{n=1}^{N} \omega_{n}\left(B_{k}, B_{k-1}\right)\right) \\
\quad+h\left(\bigcup_{n=1}^{N} \omega_{n}\left(B_{k}, B_{k-1}\right), \overline{\bigcup_{n \geq 1} \omega_{n}\left(B_{k}, B_{k-1}\right)}\right) \\
\leq \sup _{n} r_{n} \cdot \max \left\{h\left(B_{k}^{N}, B_{k}\right), h\left(B_{k-1}^{N}, B_{k-1}\right)\right\}+\frac{\varepsilon}{2}<\varepsilon .
\end{gathered}
$$

According to Lemmas 3.2, 3.3 and Theorem 3.2 we deduce immediately the following result which is useful to approximate the attractor of a GCIFS.

THEOREM 3.4. Let A be the attractor of a $\operatorname{GCIFS}\left(\omega_{n}\right)_{n \geq 1}$ and $B_{0}, B_{1} \in \mathcal{K}(X)$ be some arbitrary sets. Then A is approximated with respect to the Hausdorff metric by the attractors A_{N} of the associated partial GIFS $\left(\omega_{n}\right)_{n=1}^{N}$ and, moreover, it is also approximated by the sequence $\left(B_{k}\right)_{k \geq 0}$, where $B_{k}=\mathcal{S}\left(B_{k-1}, B_{k-2}\right)$ for $k \geq 2$.

More precisely, we have the following diagram

$$
\begin{gathered}
B_{k}^{N} \longrightarrow A_{N} \\
\downarrow_{k} N \\
B_{k} \xrightarrow[k]{\longrightarrow} A N
\end{gathered}
$$

Another way to approximate the attractor of GCIFS are described below.
Lemma 3.4. Let us consider two sequences of sets $\left(B_{k}\right)_{k}$ and $\left(C_{k}\right)_{k}$ from $\mathcal{K}(X)$ converging with respect to the Hausdorff metric to B, respectively to C, where $B, C \in \mathcal{K}(X)$. Then $\mathcal{S}_{k}\left(B_{k}, C_{k}\right) \underset{k}{\longrightarrow} \mathcal{S}(B, C)$.

Particulary, if $B_{k}=C_{k} \underset{k}{\longrightarrow} A$ (A being the attractor of the GCIFS), then

$$
\mathcal{S}_{k}\left(B_{k}, B_{k}\right) \underset{k}{\longrightarrow} \mathcal{S}(A, A)=A .
$$

Proof. Let $\varepsilon>0$ be arbitrary. Then, there exists $k_{\varepsilon} \geq 1$ such that

$$
h_{2}\left(\left(B_{k}, C_{k}\right),(B, C)\right)=\max \left\{h\left(B_{k}, B\right), h\left(C_{k}, C\right)\right\}<\frac{\varepsilon}{2}, \forall k \geq k_{\varepsilon} .
$$

According to Theorem 2.1, one has

$$
\begin{gather*}
h\left(\bigcup_{n=1}^{k} \omega_{n}\left(B_{k}, C_{k}\right), \bigcup_{n=1}^{k} \omega_{n}(B, C)\right) \leq \max _{1 \leq n \leq k} h\left(\omega_{n}\left(B_{k}, C_{k}\right), \omega_{n}(B, C)\right) \\
\leq \sup _{n} r_{n} h_{2}\left(\left(B_{k}, C_{k}\right),(B, C)\right)<\frac{\varepsilon}{2}, \forall k \geq k_{\varepsilon} \tag{3.11}
\end{gather*}
$$

By Lemma 2.2 (a) we can find $K_{\varepsilon} \geq k_{\varepsilon}$ such that, for any $k \geq K_{\varepsilon}$,

$$
\begin{equation*}
h\left(\bigcup_{n=1}^{k} \omega_{n}(B, C), \overline{\bigcup_{n \geq 1} \omega_{n}(B, C)}\right)<\frac{\varepsilon}{2} \tag{3.12}
\end{equation*}
$$

Finally, with (3.11) and (3.12), we have

$$
\begin{gathered}
h\left(\mathcal{S}_{k}\left(B_{k}, C_{k}\right), \mathcal{S}(B, C)\right)=h\left(\bigcup_{n=1}^{k} \omega_{n}\left(B_{k}, C_{k}\right), \overline{\bigcup_{n \geq 1} \omega_{n}(B, C)}\right) \\
\leq h\left(\bigcup_{n=1}^{k} \omega_{n}\left(B_{k}, C_{k}\right), \bigcup_{n=1}^{k} \omega_{n}(B, C)\right)+h\left(\bigcup_{n=1}^{k} \omega_{n}(B, C), \overline{\bigcup_{n \geq 1} \omega_{n}(B, C)}\right) \\
<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{gathered}
$$

which implies the assertion of statement.
Lemma 3.5. We suppose that $B_{0}, B_{1} \in \mathcal{K}(X), B_{0} \subset B_{1} \subset \mathcal{S}_{N}\left(B_{0}, B_{1}\right)$, for each $N \geq 1$. We consider further the sequence $\left(B_{k}^{N}\right)_{k, N}$ where $B_{0}^{N}=B_{0}, B_{1}^{N}=B_{1}$ and $B_{k+1}^{N}=\mathcal{S}_{N}\left(B_{k}^{N}, B_{k-1}^{N}\right)$, for all $k, N \geq 1$. Then $B_{k}^{k} \subset B_{k+1}^{k+1}$ and

$$
A=\lim _{k} B_{k}^{k}=\overline{\bigcup_{k \geq 1} B_{k}^{k}}
$$

Moreover, $\left(A_{N}\right)_{N}$ is increasing and $A=\overline{\bigcup_{N \geq 1} A_{N}}$

Proof. Let be $N \geq 1$. It is easy to establish by induction that $B_{k}^{N} \subset B_{k+1}^{N}$ for all k. Then, in view of Lemmas 2.2 and 3.2, one has

$$
A_{N}=\lim _{k} B_{k}^{N}=\overline{\bigcup_{k \geq 1} B_{k}^{N}}
$$

Also it is obvious that $B_{k}^{N} \subset B_{k}^{N+1}$, for any k, N, thence $A_{N} \subset A_{N+1}$. Thus

$$
A=\lim _{k, N} B_{k}^{N}=\overline{\bigcup_{k \geq 1} \bigcup_{N \geq 1} B_{k}^{N}}
$$

Consequently, the diagonal sequence $\left(B_{k}^{k}\right)_{k}$ is increasing and

$$
A=\lim _{k} B_{k}^{k}=\overline{\bigcup_{k \geq 1} B_{k}^{k}}
$$

Remark 3.2. According to the preceding lemma, if the sets B_{0}, B_{1} are finite, then the attractor of a GCIFS can be approximated by the finite sets $B_{k}^{k}, k \geq 1$. This fact is very instrumental to represent, in certain cases, that attractor with the aim of computer.

For every $N \geq 1$, we set $F_{N}:=\left\{e_{1}, \ldots, e_{N}\right\}$ and $B:=\left\{e_{1}, e_{2}, \ldots\right\}, e_{n}$ being the fixed point of ω_{n}. For a fixed integer N let be $B_{0}^{N}=B_{1}^{N}=F_{N}$. It is evident that $F_{N} \subset \mathcal{S}_{N}\left(F_{N}, F_{N}\right)$. Then $B_{k+1}^{N}=\mathcal{S}_{N}\left(B_{k}^{N}, B_{k-1}^{N}\right) / \hat{k} A_{N}$. Thus

$$
\bar{B}=\lim _{N} F_{N} \subset \lim _{N} A_{N}=A
$$

Thereafter, we deduce that such a finite sets $B_{0} \subset B_{1}$ can be $B_{0}=B_{1}=F_{1}$ which obviously obey the requirement of Lemma 3.5.

Finally, we give two examples of GCIFS on a compact subset of \mathbb{R}, respectively on \mathbb{R}^{2}.

Example 3.1. Let us consider the compact metric space $X:=[0,1] \subset \mathbb{R}$ equipped with the Euclidean metric. Let $\alpha, p, q \in[0,1]$ be any fixed constants with $p+q \neq 0$ and $\left(\alpha_{n}\right)_{n}$ be an increasing sequence of real numbers from $[0,1]$ converging to $\alpha-\frac{p+q}{3} \alpha$. From each $n=1,2, \ldots$, we define the mapping $\omega_{n}:[0,1] \times[0,1] \rightarrow[0,1]$, by

$$
\omega_{n}(x, y)=\frac{n(p x+q y)}{3 n+1}+\alpha_{n}
$$

Then $\left(\omega_{n}\right)_{n}$ is a GCIFS whose attractor is $[0, \alpha]$.
Proof. Firstly, we make evident that $\omega_{n}([0,1] \times[0,1])=\left[0, \frac{n(p+q)}{3 n+1}+\alpha_{n}\right] \subset[0,1]$, hence ω_{n} is well defined.

Next, it is simple to see that ω_{n} is a contraction having the contraction ratio $r_{n}=\frac{(p+q) n}{3 n+1}$.

Moreover, since $\frac{(p+q) n \alpha}{3 n+1}+\alpha_{n} \nearrow \alpha$, it follows

$$
\mathcal{S}(A, A)=\overline{\bigcup_{n \geq 1} \omega_{n}(A, A)}=\overline{\bigcup_{n \geq 1}\left[0, \frac{(p+q) n \alpha}{3 n+1}+\alpha_{n}\right]}=\overline{[0, \alpha)}=A
$$

where $A=[0, \alpha]$.
We present now as example a fractal of Sierpinski-infinite type as attractor of a proper GCIFS by generalizing a construction from [6].

Example 3.2. Let $X:=\left\{(x, y) \in \mathbb{R}^{2} ; 0 \leq x \leq 1,0 \leq y \leq 1-x\right\}$ be the plane surface of the closed triangle having its vertices in the points $(0,0),(0,1),(1,0)$. Next, we consider an integer $p \geq 2, q \in[0,1]$ and the contractions $\omega_{i j}: X \times X \longrightarrow X$ defined by

$$
\begin{gathered}
\omega_{i j}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \\
=\left(\frac{1}{p^{i}}\left(q x_{1}+(1-q) x_{2}\right)+(j-1) \frac{1}{p^{i}}, \frac{1}{p^{i}}\left(q y_{1}+(1-q) y_{2}\right)+\left(\frac{p^{i}-1}{p-1}-j\right) \frac{1}{p^{i}}\right)
\end{gathered}
$$

for all $i=1,2, \ldots, j=1,2, \ldots, \frac{p^{i}-1}{p-1}$. Then $\left(\omega_{i, j}\right)_{i, j}$ constitutes a GCIFS whose attractor is given in the following figure.

The attractor associated to the considered GCIFS for $p=2$

References

[1] M.F. Barnsley, Fractals everywhere, Academic Press, Harcourt Brace Janovitch, 1988
[2] J. Hutchinson, Fractals and self-similarity, Indiana Univ. J. Math. 30, 1981 (p.713-747)
[3] K. Leśniak, Infinite iterated function systems: a multivalued approach, Bulletin of the Polish Academy of Sciences Mathematics 52, nr.1, 2004 (p.1-8)
[4] A. Mihail, Recurrent iterated function systems, Rev. Roumaine Math. Pures Appl., 53, 2008 (p.43-53)
[5] A. Mihail, R. Miculescu, Applications of Fixed Point Theorems in the Theory of Generalized IFS, Fixed Point Theory and Applications, 2008, Article ID 312876, 11 pages
[6] N.A. Secelean, Countable Iterated Fuction Systems, Far East Journal of Dynamical Systems, Pushpa Publishing House, vol. 3(2), 2001 (p.149-167)
[7] N.A. Secelean, Any compact subset of a metric space is the attractor of a CIFS, Bull. Math. Soc. Sc. Math. Roumanie, tome 44 (92), nr.3, 2001 (p.77-89)
[8] N.A. Secelean, Some continuity and approximation properties of a countable iterated function system, Mathematica Pannonica, 14/2, 2003 (p.237-252)

Address:
"Lucian Blaga" University of Sibiu, Department of Mathematics, str. Dr. Ion Raţiu, nr. 5-7, 550012-Sibiu, Romania

E-mail: nicolae.secelean@ulbsibiu.ro

[^0]: 2010 Mathematics Subject Classifications. Primary 28A80, Secondary 37C25, 37C70.
 Key words and Phrases. countable iterated function system, generalized countable iterated function system, attractor, fixed point.

 Received: November 19, 2009
 Communicated by Dragan S. Djordjević

