

Open access · Journal Article · DOI:10.2298/FIL1101021S

Generalized countable iterated function systems — Source link []

Adrian Nicolae Secelean

Institutions: Lucian Blaga University of Sibiu

Published on: 01 Jan 2011 - Filomat (National Library of Serbia)

Topics: Hutchinson operator, Contraction mapping, Collage theorem, Iterated function system and Lipschitz continuity

Related papers:

- · Applications of Fixed Point Theorems in the Theory of Generalized IFS
- Fractals Everywhere
- The Existence of the Attractor of Countable Iterated Function Systems
- Countable Iterated Function Systems
- The hutchinson-barnsley theory for infinite iterated function systems

Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **25:1** (2011), 21–36 DOI: 10.2298/FIL1101021S

GENERALIZED COUNTABLE ITERATED FUNCTION SYSTEMS

Nicolae Adrian Secelean

Abstract

One of the most common and most general way to generate fractals is by using iterated function systems which consists of a finite or infinitely many maps. Generalized countable iterated function systems (GCIFS) are a generalization of countable iterated function systems by considering contractions from $X \times X$ into X instead of contractions on the metric space X to itself, where (X, d) is a compact metric space. If all contractions of a GCIFS are Lipschitz with respect to a parameter and the supremum of the Lipschitz constants is finite, then the associated attractor depends continuously on the respective parameter.

1 Introduction

In the famous paper [2], J.E. Hutchinson proves that, given a set of contractions $(\omega_n)_{n=1}^N$ in a complete metric space X, there exists a unique nonempty compact set $A \subset X$, named the *attractor* of IFS. This attractor is, generally, a fractal set. These ideas has been extended to infinitely many contractions, a such generalization can be found, for example, in [3] and, for Countable Iterated Function Systems (CIFS) on a compact metric space, in [6]. There is a current effort to extend the classical Hutchinson's framework to more general spaces and infinite iterated function systems or, more generally, to multifunction systems. In [7] it is shown that any compact subset of a metric space ca be obtained as attractor of a CIFS. M. Barnsley (in [1]) and others show that, if the contractions of an IFS depend continuously on a parameter, then the corresponding attractor also depends continuously of the respective parameter with respect to the Hausdorff metric. The result has been extended to the countable case (see [8]).

We start with a short description of a Hausdorff metric on a metric space and on a product of two metric spaces and we prove some of its properties which will

²⁰¹⁰ Mathematics Subject Classifications. Primary 28A80, Secondary 37C25, 37C70.

Key words and Phrases. countable iterated function system, generalized countable iterated function system, attractor, fixed point.

Received: November 19, 2009

Communicated by Dragan S. Djordjević

be used in the sequel. Next, the notions of iterated function system (IFS) and countable iterated function system on a complete and, respectively compact metric space (X, d) together with some its properties are presented.

In [4], A. Mihail introduces the Recurrent Iterated Functions Systems (RIFS) which is a finite family of contractions $\omega_n : X \times X \to X$, $n = 1, \ldots, N$, where (X, d) is a complete metric space and he proves some of its properties. That construction is extended in [5] by A. Mihail and R. Miculescu to a finite family of contractive mappings from X^m $(m \in \mathbb{N})$ into X, the space (X, d) being compact.

The main results of that paper are given in section 3 when it is introduced the Generalized Countable Iterated Functions Systems (GCIFS) of order two. A GCIFS consists of a sequence of contractions $\omega_n : X \times X \to X$, $n = 1, 2, \ldots$, where (X, d) is a compact metric space. Notice that the treatment of GCIFS of any order $m \in \mathbb{N}$, $m \geq 3$, (when the considered contractions are defined on X^m space) can be make in an analogous way as in the case when m = 2.

It is described some ways to characterize the attractor of a GCIFS as a limiting process and by means of the fixed points of a proper family of contractions. If the contractions which compose the GCIFS obey some continuity conditions with respect to a parameter, then the corresponding attractor depends continuously with respect to that parameter.

Some ways to write the attractor of a GCIFS as a limit of a sequence of sets are presented. They can be very beneficial in certain cases to use the computer to approximate the attractor. Finally, some examples in the compact subspace X of \mathbb{R} and, respectively \mathbb{R}^2 , is given.

2 Preliminary Facts

In this section we give some well known aspects on Fractal Theory used in the sequel (more complete and rigorous treatments may be found in [2], [1], [6], [8]).

Let us consider a function $f: X \to Y$, where (X, d), (Y, δ) are two metric spaces, and we define

$$\operatorname{Lip}(f) := \sup_{\substack{x,y \in X \\ x \neq y}} \frac{\delta(f(x), f(y))}{\mathrm{d}(x_1, x_2)} \in \overline{\mathbb{R}}_+.$$

f is said to be a Lipschitz function if $\operatorname{Lip}(f) < \infty$ and a contraction if $\operatorname{Lip}(f) < 1$. If f is contraction, then any $r \in (0, \operatorname{Lip}(f))$ is called contraction ratio.

2.1 Hausdorff metric

Let (X, d) be a metric space and $\mathcal{K}(X)$ be the class of all compact non-empty subsets of X. The function $h : \mathcal{K}(X) \times \mathcal{K}(X) \longrightarrow \mathbb{R}_+$, $h(A, B) = \max \{ D(A, B), D(B, A) \}$, where $D(A, B) = \sup_{x \in A} (\inf_{y \in B} d(x, y))$, for all $A, B \in \mathcal{K}(X)$, is a metric, namely the Hausdorff metric. If (X, d) is complete, then $\mathcal{K}(X)$ is a complete metric space with respect to this metric h. Also, $(\mathcal{K}(X), h)$ is a compact metric space provided that (X, d) is compact. Some simple standard facts in the space $(\mathcal{K}(X), h)$, which will be used in the sequel, are described in the following two lemmas:

LEMMA 2.1. If $(E_i)_{i \in \mathfrak{F}}$, $(F_i)_{i \in \mathfrak{F}}$ are two sequences of sets in $\mathcal{K}(X)$, then

$$h\Big(\overline{\bigcup_{i\in\mathfrak{S}}E_i},\overline{\bigcup_{i\in\mathfrak{S}}F_i}\Big)=h\Big(\bigcup_{i\in\mathfrak{S}}E_i,\bigcup_{i\in\mathfrak{S}}F_i\Big)\leq\sup_{i\in\mathfrak{S}}h(E_i,F_i).$$

LEMMA 2.2. [6, Th.1.1] Let $(A_n)_n$ be a sequence of nonempty compact subsets of X.

(a) If $A_n \subset A_{n+1}$, for all $n \ge 1$, and the set $A := \bigcup_{n \ge 1} A_n$ is relatively compact, then

$$\overline{A} = \overline{\bigcup_{n \ge 1} A_n} = \lim_n A_n,$$

the limiting process being taken with respect to the Hausdorff metric and the bar means the closure;

(b) If $A_{n+1} \subset A_n$, for any $n \ge 1$, then $\lim_n A_n = \bigcap_{n \ge 1} A_n$.

We now consider another metric space (Y, δ) and we use the same notation h for the Hausdorff metric on $\mathcal{K}(X)$ and $\mathcal{K}(Y)$ and, analogously, for the function D. We equip the space $X \times Y$ with the "max" metric d₂, namely

$$d_2((x_1, y_1), (x_2, y_2)) := \max \{ d(x_1, x_2), \delta(y_1, y_2) \}.$$

It is known that d_2 is a metric and the space $(X \times Y, d_2)$ is complete, respectively compact, whenever (X, d) and (Y, δ) are completes, respectively compacts.

Let h_2 be the Hausdorff metric on $\mathcal{K}(X) \times \mathcal{K}(Y)$ induces by d_2 . We denote D_2 the corresponding set function from the definition of Hausdorff metric,

$$D_2((B_1, C_1), (B_2, C_2)) := \sup_{\substack{x_1 \in B_1 \\ y_1 \in C_1 \\ y_2 \in C_2}} \inf_{\substack{x_2 \in B_2 \\ y_2 \in C_2}} d_2((x_1, x_2), (y_1, y_2)).$$

LEMMA 2.3. Under the above conditions,

$$h_2((B_1, C_1), (B_2, C_2)) = \max \{h(B_1, B_2), h(C_1, C_2)\},\$$

for any $B_1, B_2 \in \mathcal{K}(X)$ and any $C_1, C_2 \in \mathcal{K}(Y)$.

Proof. We first prove that

$$D_2\{(B_1, C_1), (B_2, C_2)\} = \max\{D(B_1, B_2), D(C_1, C_2)\},$$
(2.1)

that is

$$\sup_{\substack{x_1 \in B_1 \\ y_1 \in C_1 \\ y_2 \in C_2}} \max \left\{ d(x_1, x_2), \delta(y_1, y_2) \right\}$$

= max { sup inf $x_1 \in B_1$ if $d(x_1, x_2)$, sup inf $y_1 \in C_1$ if $y_2 \in C_2$ if $\delta(y_1, y_2)$ }.

We suppose, by contradiction, that one has

$$D_2\{(B_1, C_1), (B_2, C_2)\} > \max\{D(B_1, B_2), D(C_1, C_2)\}.$$

There exists $r \in \mathbb{R}$ such that

1

$$\sup_{\substack{x_1 \in B_1 \\ y_1 \in C_1}} \inf_{\substack{x_2 \in B_2 \\ y_2 \in C_2}} \max \left\{ d(x_1, x_2), \delta(y_1, y_2) \right\} > r,$$

$$r > \sup_{x_1 \in B_1} \inf_{x_2 \in B_2} d(x_1, x_2) \text{ and } r > \sup_{y_1 \in C_1} \inf_{y_2 \in C_2} \delta(y_1, y_2).$$

Thence:

$$\exists x_1^0 \in B_1, \ \exists y_1^0 \in C_1 \text{ such that } \forall x_2 \in B_2, \ \forall y_2 \in C_2 \Rightarrow d(x_1^0, x_2) > r \text{ or } \delta(y_1^0, y_2) > r.$$
(2.2)

At the same time,

$$\forall x_1 \in B_1, \exists x_2 \in B_2 \text{ such that } d(x_1, x_2) < r, \text{ and}$$

$$\forall y_1 \in C_1, \exists y_2 \in C_2 \text{ such that } \delta(y_1, y_2) < r.$$

Next, for x_1^0 and y_1^0 , there are $x_2^0 \in B_2$ and $y_2^0 \in C_2$ with $d(x_1^0, x_2^0) < r$ and $\delta(y_1^0, y_2^0) < r$ contradicting (2.2). It follows that, in (2.1), one has the inequality " \leq ".

By using the similar arguments as before, we deduce the other inequality. Finally, by symmetry, we find

$$D_2\{(C_1, B_1), (C_2, B_2)\} = \max\{D(B_2, B_1), D(C_2, C_1)\}$$

and thence, with (2.1), the equality of statement comes.

THEOREM 2.1. Let $(X, d), (Y, \delta), (Z, \rho)$ be three metric spaces and $\omega : X \times Y \to Z$ be a function. Then

(i) if ω is a Lipschitz map, one has

$$h(\omega(B_1, C_1), \omega(B_2, C_2)) \leq \operatorname{Lip}(\omega)h_2((B_1, C_1), (B_2, C_2));$$

(ii) if ω is uniform continuous, then the set function $F_{\omega} : \mathcal{K}(X) \times \mathcal{K}(Y) \to \mathcal{K}(Z)$, $F_{\omega}(B,C) := \omega(B,C)$, is continuous (for simplicity, we use the same notation h for the Hausdorff metric on $\mathcal{K}(X), \mathcal{K}(Y)$ and $\mathcal{K}(Z)$).

Proof. (i) By using Lemma 2.3, we have

 $\sup_{\substack{x_1 \in B_1 \\ y_1 \in C_1 \\ y_2 \in C_2}} \inf_{\substack{x_2 \in B_2 \\ y_2 \in C_2}} \rho\left(\omega(x_1, y_1), \omega(x_2, y_2)\right) \le \operatorname{Lip}(\omega) \sup_{\substack{x_1 \in B_1 \\ y_1 \in C_1 \\ y_2 \in C_2}} \inf_{\substack{x_2 \in B_2 \\ y_2 \in C_2}} \max\left\{ \operatorname{d}(x_1, x_2), \delta(y_1, y_2) \right\}$

$$\leq \operatorname{Lip}(\omega) \max\{ D(B_1, B_2), D(C_1, C_2) \} \leq \operatorname{Lip}(\omega) \max\{ h(B_1, B_2), h(C_1, C_2) \}$$

$$= \operatorname{Lip}(\omega) h_2((B_1, C_1), (B_2, C_2)).$$

Therefrom, we deduce

$$D(\omega(B_1, C_1), \omega(B_2, C_2)) \le Lip(\omega)h_2((B_1, C_1), (B_2, C_2)),$$

consequently the assertion (i) follows.

(*ii*) We us consider the sequence of sets $(B_n, C_n)_n$ with $B_n \in \mathcal{K}(X)$, $C_n \in \mathcal{K}(Y)$ converging to $(B, C) \in \mathcal{K}(X) \times \mathcal{K}(Y)$ with respect to the Hausdorff metric h_2 . Then $h(B_n, B) \to 0$ and $h(C_n, C) \to 0$. We suppose by reductio ad absurdum that $(\omega(B_n, C_n))_n$ do not converging to $\omega(B, C)$. Then there exists $\varepsilon_0 > 0$ such that

$$\forall n \in \mathbb{N}, \exists k_n \geq n \text{ such that } h(\omega(B_{k_n}, C_{k_n}), \omega(B, C)) \geq \varepsilon_0.$$

That is, for each $n = 1, 2, \ldots$, one has

$$\sup_{\substack{x_1 \in B_{k_n} \\ y_1 \in C_{k_n}}} \inf_{\substack{x_2 \in B \\ y_2 \in C}} \rho(\omega(x_1, y_1), \omega(x_2, y_2)) \ge \varepsilon_0$$

or

$$\sup_{\substack{x_2 \in B \\ y_2 \in C \\ y_1 \in C_{k_n}}} \inf_{p(\omega(x_1, y_1), \omega(x_2, y_2))} \ge \varepsilon_0.$$

Case I: By considering, eventually, a subsequence, we can suppose that, for any $n \ge 1$,

$$\sup_{\substack{x_1 \in B_n \\ y_1 \in C_n}} \inf_{\substack{x_2 \in B \\ y_2 \in C}} \rho(\omega(x_1, y_1), \omega(x_2, y_2)) \ge \varepsilon_0.$$

So, for each $n \geq 1$, one can find $(x_n, y_n) \in (B_n, C_n)$ such that, for any $(x', y') \in (B, C)$, we have

$$\rho(\omega(x_n, y_n), \omega(x', y')) \ge \varepsilon_0.$$
(2.3)

Now, let be $\varepsilon > 0$, $\varepsilon < \varepsilon_0$. By the uniform continuity of ω , there is $\eta > 0$ so that

$$\begin{aligned} \forall \, (x,y), (x',y') \in X \times Y \text{ with } \max\{\mathrm{d}(x,x'), \delta(y,y')\} < \eta \\ \Rightarrow \ \rho\big(\omega(x,y), \omega(x',y')\big) < \varepsilon. \end{aligned}$$

Next, by hypothesis, we have $B_n \to B$ and $C_n \to C$. Thence, there is $n_\eta \ge 1$ so that $h(B_n, B) < \eta$ and $h(C_n, C) < \eta$ for all $n \ge n_\eta$. It follows that

$$\sup_{x \in B_n} \left(\inf_{x' \in B} \mathrm{d}(x, x') \right) < \eta$$

and as well as $\sup_{y \in C_n} \left(\inf_{y' \in C} \delta(y, y') \right) < \eta$, for any $n \ge n_\eta$. Therefrom, for any $x \in B_n$ and any $y \in C_n$, there exist $x' \in B$ and $y' \in C$ with $d(x, x') < \eta$ and more $\delta(y, y') < \eta$. In particular, $d(x_n, x') < \eta$, $\delta(y_n, y') < \eta$ and hence

$$\rho(\omega(x_n, y_n), \omega(x'_n, y'_n)) < \varepsilon < \varepsilon_0,$$

contradicting (2.3).

Case II: We proceed in a similar way as in the preceding case denoting, for simplicity, $(B_n, C_n)_n$ instead of $(B_{k_n}, C_{k_n})_n$.

Suppose that $\sup_{\substack{x_2 \in B \\ y_2 \in C \\ y_1 \in C_n}} \inf \rho(\omega(x_1, y_1), \omega(x_2, y_2)) \ge \varepsilon_0$, for all $n \ge 1$. Then, for

every $n = 1, 2, \ldots$, there is $(x_0, y_0) \in (B, C)$ such that, for any $(x', y') \in (B_n, C_n)$, one has

$$\rho(\omega(x_0, y_0), \omega(x', y')) \ge \varepsilon_0.$$
(2.4)

At the same time, for an arbitrary $\varepsilon > 0$, $\varepsilon < \varepsilon_0$, there exists $\eta > 0$ such that, for all $(x, y), (x', y') \in X \times Y$ with max $\{d(x, x'), \delta(y, y')\} < \eta$, we have

$$\rho(\omega(x,y),\omega(x',y')) < \varepsilon.$$
(2.5)

Next,

$$B_n \to B, \ C_n \to C \ \Rightarrow \ \exists n_\eta \in \mathbb{N} \text{ such that}$$

$$\sup_{\substack{x \in B \ x' \in B_n \\ y \in C \ y' \in C_n}} \inf \rho(\omega(x, y), \omega(x', y')) < \eta, \ \forall n \ge n_\eta,$$

namely, for any $(x, y) \in B \times C$, there is $(x', y') \in B_n \times C_n$ so that $d(x, x') < \eta$ and $\delta(y, y') < \eta$. In particular, taking $x = x_0$ and $y = y_0$, we have, in view of (2.5), $\delta(\omega(x'_0), \omega(x)) < \varepsilon$ contradicting the relation (2.4).

Consequently, F_{ω} is continuous in the arbitrary point (B, C), so it is continuous. The proof is complete.

As a consequence of Lemma 2.1 and the above theorem, we have obviously:

COROLLARY 2.1. We consider a sequence of Lipschitz functions $\omega_n : X \times Y \to Z$, the metric space (Z, ρ) being compact. We define a set function $S : \mathcal{K}(X) \times \mathcal{K}(Y) \to \mathcal{K}(Z)$ by

$$\mathcal{S}(B,C) := \overline{\bigcup_{n \ge 1} \omega_n(B,C)}.$$
(2.6)

Then $\operatorname{Lip}(\mathcal{S}) \leq \sup_{n} \operatorname{Lip}(\omega_{n})$. In particular, if $\sup_{n} \operatorname{Lip}(\omega_{n}) < \infty$, then \mathcal{S} is a Lipschitz function.

From Theorem 2.1 and Lemma 2.1 it follows easily:

REMARK 2.1. If we have a finite set of uniform continuous functions $(\omega_n)_{n=1}^N$, then the set function $\mathcal{S}_N : \mathcal{K}(X) \times \mathcal{K}(Y) \to \mathcal{K}(Z), \ \mathcal{S}_N(B,C) = \bigcup_{n=1}^N \omega_n(B,C)$, is continuous.

2.2**Iterated Function Systems, Countable Iterated Function** Systems

Let us consider a complete metric space (X, d). A finite set of contractions $\omega_n: X \to X, n = 1, 2, \dots, N$, is called iterated function system, shortly IFS. Then the set function $\mathcal{S}_N : \mathcal{K}(X) \to \mathcal{K}(X), \ \mathcal{S}_N(B) := \bigcup_{n=1}^N \omega_n(B)$, is a contraction in the space $(\mathcal{K}(X), h)$, whose unique set-fixed point A_N is named the **attractor** of the considered IFS.

Now, assume that (X, d) is a compact metric space and we consider a countable system of contractions $(\omega_n)_n$ on X into itself with contractivity factors, respectively $r_n, n = 1, 2, \cdots$. We say that $(\omega_n)_n$ is a countable iterated function system (abbreviated CIFS) if $\sup r_n < 1$. The associated set function $\mathcal{S} : \mathcal{K}(X) \to \mathcal{K}(X)$ given by

$$\mathcal{S}(B) = \overline{\bigcup_{n \ge 1} \omega_n(B)},$$

for any $B \in \mathcal{K}(X)$, is a contraction having the contractivity factor $r = \sup r_n$. According to the Banach contraction principle, there is a unique $A \in \mathcal{K}(X)$ such that $\mathcal{S}(A) = A$, namely the attractor of the considered CIFS.

The attractor of CIFS $(\omega_n)_n$ can be approximated in the Hausdorff metric by the attractors of partial IFSs, $N \ge 1$, $(\omega_n)_{n=1}^N$ ([6, Th.2.3]). Also, concerning the matter of the attractor A, one has the following result ([6, Cor.2.1]):

LEMMA 2.4. The attractor of CIFS $(\omega_n)_n$ represents the adherence of the set of fixed points $e_{i_1...i_p}$ of all contractions $\omega_{i_1...i_p}$, $p \ge 1$ and $i_j \ge 1$, where $\omega_{i_1...i_p} :=$ $\omega_{i_1} \circ \cdots \circ \omega_{i_p}$. In symbols,

$$A = \overline{\{e_{i_1...i_p}; \ p, i_j = 1, 2, ...\}}.$$

We us consider further a metric space (T, d_T) and a sequences of mappings $\omega_n: T \times X \to X$ and $r_n: T \to [0,1), n = 1, 2, \ldots$, obeying the following three properties:

(i) for each $t \in T$, $d(\omega_n(t, x), \omega_n(t, y)) \leq r_n(t)d(x, y)$, for any $x, y \in X$, $n \geq 1$;

(*ii*) there is C > 0 such that $d_T(\omega_n(t, x), \omega_n(s, x)) \leq C d_T(t, s)$, for all $x \in X$, $t, s \in T, n \ge 1;$

 $(iii) \sup_{n,t} r_n(t) < 1.$ We define $S: T \times \mathcal{K}(X) \longrightarrow \mathcal{K}(X), S(t, B) = \bigcup_{n \ge 1} \omega_n(t, B)$, for any $t \in T$ and $T = \mathcal{C}(t_n)$ is a contraction map on $\mathcal{K}(X)$ any $B \in \mathcal{K}(X)$. It follows that, for each $t \in T$, $\mathcal{S}(t, \cdot)$ is a contraction map on $\mathcal{K}(X)$ with the contraction ratio $r(t) = \sup r_n(t) < 1$.

The following theorem tell us that the attractor of a CIFS depends continuously on the parameter $t \in T$ ([8, Th.6]).

THEOREM 2.2. Under the above conditions, the function $t \mapsto A(t)$ is continuous from T into $\mathcal{K}(X)$, where, for $t \in T$, A(t) means the attractor of the CIFS $(\omega_n(t, \cdot))_{n\geq 1}$.

3 Generalized Countable Iterated Function Systems

Throughout in this section (X, d) will be a compact metric space and we consider the metric

 $d_2((x_1, y_1), (x_2, y_2)) = \max\{d(x_1, x_2), d(y_1, y_2)\}$

on $X \times X$. Then $(X \times X, d_2)$ is a compact metric space.

3.1 Definition. Continuity with respect to a parameter

DEFINITION 3.1. A sequence of contractions $\omega_n : X \times X \to X$ with $\sup_n \operatorname{Lip}(\omega_n) < 1$ is said to be a generalized countable iterated function system of order two on X, abbreviated GCIFS.

If $N \ge 1$ is an integer, then the finite family of functions $(\omega_n)_{n=1}^N$ is called the partial generalized iterated function system (GIFS) of $(\omega_n)_n$.

By corollary 2.1, it follows immediately that $S : \mathcal{K}(X) \times \mathcal{K}(X) \to \mathcal{K}(X)$ given by (2.6) is a contraction having the contractivity factor $r = \sup r_n$, where r_n mains the contraction ratio of ω_n , $n = 1, 2, \cdots$. At the same time, the set function

$$\mathcal{S}_N : \mathcal{K}(X) \times \mathcal{K}(X) \to \mathcal{K}(X), \ \mathcal{S}_N(B,C) := \bigcup_{n=1}^N \omega_n(B,C)$$

is a contraction with the contractivity factor $r_N = \max_{1 \le n \le N} r_n$.

THEOREM 3.1. [4, Th.2.1] (Banach Contraction Principle) Let (X, d) be a complete metric space and $f : X \times X \to X$ be a contraction with contractivity factor $c \in [0, 1)$. Then there exists a unique $e \in X$ such that f(e, e) = e. Moreover, for any $x_0, x_1 \in X$, the sequence $(x_k)_{k\geq 0}$ defined by $x_{k+1} = f(x_k, x_{k-1}), k \geq 1$, is convergent to e.

Furthermore,

$$d(x_k, e) \le \frac{2c^{[k/2]}}{1-c} \max\{d(x_0, x_1), d(x_1, x_2)\}.$$

We say that $e \in X$ with e = f(e, e) is a fixed point of f. In view of the aforesaid, one obtain:

THEOREM 3.2. Let (X, d) be a compact metric space and $(\omega_n)_n$ be a GCIFS on X. Then there is a unique $A \in \mathcal{K}(X)$ such that $\mathcal{S}(A, A) = A$.

Moreover, if B_0 and B_1 be arbitrary sets in $\mathcal{K}(X)$, then the sequence $(B_k)_{k\geq 0}$ given by $B_{k+1} = \mathcal{S}(B_k, B_{k-1}), k \geq 1$, is converging to A.

Similarly, there uniquely exists a set $A_N \in \mathcal{K}(X)$ with $\mathcal{S}_N(A_N, A_N) = A_N$.

The sets $A, A_N \in \mathcal{K}(X)$ given in the above theorem are called the **attractor** of GCIFS $(\omega_n)_n$, respectively of GIFS $(\omega_n)_{n=1}^N$.

We give now a construction of a CIFS associated to the considered GCIFS. For each $n \ge 1$, we put

$$\widetilde{\omega}_n: X \to X, \ \widetilde{\omega}_n(x) := \omega_n(x, x).$$

Then $\widetilde{\omega}_n$ is a contraction map having the contraction ratio less than $\operatorname{Lip}(\omega_n)$ and the same fixed point as ω_n . The CIFS $(\widetilde{\omega}_n)_n$ is said to be **associated** to GCIFS. If $\widetilde{A} \in \mathcal{K}(X)$ is the attractor of the associated CIFS, then $\widetilde{A} \subset A$.

Let us define $\widetilde{S} : \mathcal{K}(X) \to \mathcal{K}(X), \widetilde{S}(B) := \mathcal{S}(B, B)$. Then \widetilde{S} is also a contraction (see Corollary 2.1 and Lemma 2.3) and its unique set-fixed point is A. Further, according to the Banach contraction principle, for every $C \in \mathcal{K}(X)$, the sequence $(\widetilde{S}^k(C))_{\iota}$ converges to A. More precisely, one has

LEMMA 3.1. Let us consider a set $C_0 \in \mathcal{K}(X)$. Then the sequence $(C_k)_k$ given by $C_k := \mathcal{S}(C_{k-1}, C_{k-1}), k \ge 1$, is converging in the Hausdorff metric to the attractor A of the considered GCIFS.

Furthermore, we have

$$h(A, C_k) \le \frac{r^{k+1}}{1-r} h(C_0, \mathcal{S}(C_0, C_0)).$$

In view of the aforesaid and Lemma 2.4, one can observe that the attractor of the GCIFS contain the fixed points of its contractions.

PROPOSITION 3.1. The attractor A of a GCIFS $(\omega_n)_n$ contains the fixed points of all ω_n , $n = 1, 2, \cdots$. Furthermore, one has

$$A \supset \overline{\{e_{i_1\dots i_p}; \ p, i_j = 1, 2, \dots\}},$$

where $e_{i_1...i_p}$ denotes the unique fixed point of the contraction $\widetilde{\omega}_{i_1} \circ \cdots \circ \widetilde{\omega}_{i_p}$.

REMARK 3.1. Every CIFS can be seen as a GCIFS. Indeed, if $(\omega_n)_n$ constitutes a CIFS on X, then the sequence of mappings $\overline{\omega}_n : X \times X \to X$ defined by $\overline{\omega}_n(x,y) := \omega_n(x)$ is a GCIFS having the same attractor. Thence, the GCIFS represents an improvement of CIFS.

Next, we will prove that, if the contractions of a GCIFS is Lipschitz maps with respect to a parameter and the supremum of the Lipschitz constants is finite, then the attractor depends continuously with respect to the respective parameter. THEOREM 3.3. Let us consider a metric space (T, d_T) and the sequences of maps $\omega_n : T \times X \times X \to X$ and $r_n : T \to [0, 1), n = 1, 2, \ldots$, satisfying the following requirements:

(i) for each $t \in T$, we have

$$d(\omega_n(t, x_1, y_1), \omega_n(t, x_2, y_2)) \le r_n(t) d_2((x_1, y_1), (x_2, y_2)),$$

for any $x_1, x_2, y_1, y_2 \in X$ and any $n \ge 1$;

(ii) there is C > 0 such that

$$d(\omega_n(t,x,y),\omega_n(s,x,y)) \le C d_T(t,s),$$

for all $x, y \in X$, $t, s \in T$, $n \ge 1$; (iii) $r := \sup_{n,t} r_n(t) < 1$.

Then, if A(t) denotes the attractor of the GCIFS $(\omega_n(t, \cdot, \cdot))_n$, then the mapping $t \mapsto A(t)$ has Lipschitz constant $\frac{C}{1-r}$, hence it is uniform continuous.

Proof. Let us define $\mathcal{S}: T \times \mathcal{K}(X) \times \mathcal{K}(X) \longrightarrow \mathcal{K}(X)$,

$$\mathcal{S}(t, B, C) = \overline{\bigcup_{n \ge 1} \omega_n(t, B, C)},$$

for any $t \in T$, $B, C \in \mathcal{K}(X)$. It follows that, for each $t \in T$, $\mathcal{S}(t, \cdot, \cdot)$ is a contraction mapping on $\mathcal{K}(X) \times \mathcal{K}(X)$ with the contraction ratio $\sup r_n(t) < 1$.

We will first show that

$$h(\omega_n(t, M, M), \omega_n(s, M, M)) \le C d_T(t, s), \ \forall M \subset X, \ \forall t, s \in T.$$
(3.7)

By symmetry, it is enough to prove

$$D(\omega_n(t, M, M), \omega_n(s, M, M)) \le C d_T(t, s).$$
(3.8)

Let be $t, s \in T$. Choose $w \in \omega_n(t, M, M)$. Then, there are $x, y \in M$ such that $w = \omega_n(t, x, y)$. Let be $z = \omega_n(s, x, y) \in \omega_n(s, M, M)$. By (*ii*) we deduce that $d(w, z) \leq Cd_T(t, s)$, hence $\sup_{w \in \omega_n(t, M, M)} \inf_{z \in \omega_n(s, M, M)} d(w, z) \leq Cd_T(t, s)$ which

proves (3.8).

Next, by using Theorem 2.1(i) and Lemma 2.3, one has

$$h(\omega_n(s, M, M), \omega_n(s, N, N)) \le r_n(s)h(M, N), \ \forall M, N \subset X, s \in T, n \ge 1.$$
(3.9)

Now, for every $t, s \in T$, taking respectively A(t), A(s) in the place of M and N in (3.7) and (3.9), we obtain

$$h(A(t), A(s)) = h\left(\overline{\bigcup_{n \ge 1} \omega_n(t, A(t), A(t))}, \overline{\bigcup_{n \ge 1} \omega_n(s, A(s), A(s))}\right)$$

$$\leq \sup_n h(\omega_n(t, A(t), A(t)), \omega_n(s, A(s), A(s)))$$

$$\leq \sup_n h(\omega_n(t, A(t), A(t)), \omega_n(s, A(t), A(t)))$$

$$+ \sup_n h(\omega_n(s, A(t), A(t)), \omega_n(s, A(s), A(s)))$$

$$\leq Cd_T(t, s) + rh(A(t), A(s)).$$

It follows $h(A(t), A(s)) \leq \frac{C}{1-r} d_T(t, s)$ which implies the Lipschitz property of A(t) completing the proof.

Under the preceding hypothesis, the associated CIFS $\tilde{\omega}_n(t,x) = \omega_n(t,x,x)$, $n \geq 1$, obeys the conditions of Theorem 2.2. So, the attractor $\tilde{A}(t)$ of the CIFS $(\tilde{\omega}_n(t,\cdot))_n$, depends continuously on the parameter t.

3.2 Approximation of the attractor of a GCIFS

LEMMA 3.2. Under the conditions of Theorem 3.2, we have

$$A_N \xrightarrow[N]{} A_N$$

with respect to the Hausdorff metric.

Proof. Let be $\varepsilon > 0$. By applying Lemma 2.2 (a) to the increasing sequence $\left(\bigcup_{n=1}^{N}\omega_n(A,A)\right)_N$, we can find $N_{\varepsilon} \ge 1$ such that, for any $N \ge N_{\varepsilon}$, we have $h\left(\bigcup_{n=1}^{N}\omega_n(A,A), \overline{\bigcup_{n\ge 1}\omega_n(A,A)}\right) < \varepsilon(1-\lambda),$ (3.10)

where $\lambda = \sup_{n} r_n$. Thereinafter, for every $N \ge N_{\varepsilon}$,

$$h(A_N, A) = h(\mathcal{S}_N(A_N, A_N), \mathcal{S}(A, A)) = h\left(\bigcup_{n=1}^N \omega_n(A_N, A_N), \overline{\bigcup_{n\geq 1}} \omega_n(A, A)\right)$$
$$\leq h\left(\bigcup_{n=1}^N \omega_n(A_N, A_N), \bigcup_{n=1}^N \omega_n(A, A)\right) + h\left(\bigcup_{n=1}^N \omega_n(A, A), \overline{\bigcup_{n\geq 1}} \omega_n(A, A)\right)$$
$$\leq \sup_{1\leq n\leq N} h(\omega_n(A_N, A_N), \omega_n(A, A)) + \varepsilon(1-\lambda) \leq \lambda h(A_N, A) + \varepsilon(1-\lambda).$$

Consequently, by using (3.10), Lemma 2.3 and Theorem 2.1, one obtain $h(A_N, A) < \varepsilon$, completing the proof.

LEMMA 3.3. Let us consider two arbitrary sets $B_0, B_1 \in \mathcal{K}(X)$ and, for each $k \geq 1$, $B_{k+1}^N = \mathcal{S}_N(B_k^N, B_{k-1}^N)$ and, respectively $B_{k+1} = \mathcal{S}(B_k, B_{k-1})$. Then $B_k^N \xrightarrow[N]{} B_k$, for any $k = 0, 1, \cdots$.

Proof. Firstly, by using the same argument as in the proof of (3.10), for some $k \ge 1$ and $\varepsilon > 0$, there is $N_{\varepsilon} \ge 1$ such that, whenever $N \ge N_{\varepsilon}$, one has

$$h\Big(\bigcup_{n=1}^{N}\omega_n(B_k, B_{k-1}), \overline{\bigcup_{n\geq 1}\omega_n(B_k, B_{k-1})}\Big) < \frac{\varepsilon}{2}$$

Next, we proceed by mathematical induction with respect to k. We suppose that $h(B_m^N, B_m) \xrightarrow{N} 0$ for all $m \leq k$. Hence there is $N^* \geq N_{\varepsilon}$ such that

$$h(B_m^N, B_m) < \frac{\varepsilon}{2\sup r_n}$$

and with $h(B_{m-1}^N, B_{m-1}) < \frac{\varepsilon}{2\sup r_n}$, for any $N \ge N^*$. In view of the aforesaid, we find

N 7

$$h(B_{k+1}^N, B_{k+1}) = h\left(\mathcal{S}(B_k^N, B_{k-1}^N), \mathcal{S}(B_k, B_{k-1})\right)$$
$$= h\left(\bigcup_{n=1}^N \omega_n(B_k^N, B_{k-1}^N), \overline{\bigcup_{n\geq 1}} \omega_n(B_k, B_{k-1})\right)$$
$$\leq h\left(\bigcup_{n=1}^N \omega_n(B_k^N, B_{k-1}^N), \bigcup_{n=1}^N \omega_n(B_k, B_{k-1})\right)$$
$$+ h\left(\bigcup_{n=1}^N \omega_n(B_k, B_{k-1}), \overline{\bigcup_{n\geq 1}} \omega_n(B_k, B_{k-1})\right)$$
$$\leq \sup_n r_n \cdot \max\left\{h(B_k^N, B_k), h(B_{k-1}^N, B_{k-1})\right\} + \frac{\varepsilon}{2} < \varepsilon.$$

According to Lemmas 3.2, 3.3 and Theorem 3.2 we deduce immediately the following result which is useful to approximate the attractor of a GCIFS.

THEOREM 3.4. Let A be the attractor of a GCIFS $(\omega_n)_{n\geq 1}$ and $B_0, B_1 \in \mathcal{K}(X)$ be some arbitrary sets. Then A is approximated with respect to the Hausdorff metric by the attractors A_N of the associated partial GIFS $(\omega_n)_{n=1}^N$ and, moreover, it is also approximated by the sequence $(B_k)_{k\geq 0}$, where $B_k = \mathcal{S}(B_{k-1}, B_{k-2})$ for $k \geq 2$. More precisely, we have the following diagram

 $\begin{array}{ccc} B_k^N & \longrightarrow & A_N \\ \downarrow_N & & \downarrow_N \\ B_k & \longrightarrow & A \end{array}$

Another way to approximate the attractor of GCIFS are described below.

LEMMA 3.4. Let us consider two sequences of sets $(B_k)_k$ and $(C_k)_k$ from $\mathcal{K}(X)$ converging with respect to the Hausdorff metric to B, respectively to C, where $B, C \in \mathcal{K}(X)$. Then $\mathcal{S}_k(B_k, C_k) \xrightarrow{k} \mathcal{S}(B, C)$. Particulary, if $B_k = C_k \xrightarrow{k} A$ (A being the attractor of the GCIFS), then

$$\mathcal{S}_k(B_k, B_k) \xrightarrow[k]{} \mathcal{S}(A, A) = A.$$

Proof. Let $\varepsilon > 0$ be arbitrary. Then, there exists $k_{\varepsilon} \ge 1$ such that

$$h_2((B_k, C_k), (B, C)) = \max\left\{h(B_k, B), h(C_k, C)\right\} < \frac{\varepsilon}{2}, \ \forall k \ge k_{\varepsilon}.$$

According to Theorem 2.1, one has

$$h\Big(\bigcup_{n=1}^{k}\omega_{n}(B_{k},C_{k}),\bigcup_{n=1}^{k}\omega_{n}(B,C)\Big) \leq \max_{1\leq n\leq k}h\Big(\omega_{n}(B_{k},C_{k}),\omega_{n}(B,C)\Big)$$
$$\leq \sup_{n}r_{n}h_{2}\Big((B_{k},C_{k}),(B,C)\Big) < \frac{\varepsilon}{2}, \ \forall k\geq k_{\varepsilon}.$$
(3.11)

By Lemma 2.2 (a) we can find $K_{\varepsilon} \geq k_{\varepsilon}$ such that, for any $k \geq K_{\varepsilon}$,

$$h\Big(\bigcup_{n=1}^{k}\omega_n(B,C),\overline{\bigcup_{n\geq 1}\omega_n(B,C)}\Big) < \frac{\varepsilon}{2}.$$
(3.12)

Finally, with (3.11) and (3.12), we have

$$h\left(\mathcal{S}_{k}(B_{k},C_{k}),\mathcal{S}(B,C)\right) = h\left(\bigcup_{n=1}^{k}\omega_{n}(B_{k},C_{k}),\overline{\bigcup_{n\geq1}}\omega_{n}(B,C)\right)$$
$$\leq h\left(\bigcup_{n=1}^{k}\omega_{n}(B_{k},C_{k}),\bigcup_{n=1}^{k}\omega_{n}(B,C)\right) + h\left(\bigcup_{n=1}^{k}\omega_{n}(B,C),\overline{\bigcup_{n\geq1}}\omega_{n}(B,C)\right)$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

which implies the assertion of statement.

LEMMA 3.5. We suppose that $B_0, B_1 \in \mathcal{K}(X), B_0 \subset B_1 \subset \mathcal{S}_N(B_0, B_1)$, for each $N \geq 1$. We consider further the sequence $(B_k^N)_{k,N}$ where $B_0^N = B_0, B_1^N = B_1$ and $B_{k+1}^N = \mathcal{S}_N(B_k^N, B_{k-1}^N)$, for all $k, N \geq 1$. Then $B_k^k \subset B_{k+1}^{k+1}$ and

$$A = \lim_{k} B_k^k = \bigcup_{k \ge 1} B_k^k.$$

Moreover, $(A_N)_N$ is increasing and $A = \overline{\bigcup_{N \ge 1} A_N}$

Proof. Let be $N \ge 1$. It is easy to establish by induction that $B_k^N \subset B_{k+1}^N$ for all k. Then, in view of Lemmas 2.2 and 3.2, one has

$$A_N = \lim_k B_k^N = \overline{\bigcup_{k \ge 1} B_k^N}$$

Also it is obvious that $B_k^N \subset B_k^{N+1}$, for any k, N, thence $A_N \subset A_{N+1}$. Thus

$$A = \lim_{k,N} B_k^N = \bigcup_{k \ge 1} \bigcup_{N \ge 1} B_k^N.$$

Consequently, the diagonal sequence $(B_k^k)_k$ is increasing and

$$A = \lim_k B_k^k = \bigcup_{k \ge 1} B_k^k.$$

REMARK 3.2. According to the preceding lemma, if the sets B_0, B_1 are finite, then the attractor of a GCIFS can be approximated by the finite sets B_k^k , $k \ge 1$. This fact is very instrumental to represent, in certain cases, that attractor with the aim of computer.

For every $N \ge 1$, we set $F_N := \{e_1, \ldots, e_N\}$ and $B := \{e_1, e_2, \ldots\}$, e_n being the fixed point of ω_n . For a fixed integer N let be $B_0^N = B_1^N = F_N$. It is evident that $F_N \subset \mathcal{S}_N(F_N, F_N)$. Then $B_{k+1}^N = \mathcal{S}_N(B_k^N, B_{k-1}^N) \not\subset A_N$. Thus

$$\overline{B} = \lim_{N} F_N \subset \lim_{N} A_N = A.$$

Thereafter, we deduce that such a finite sets $B_0 \subset B_1$ can be $B_0 = B_1 = F_1$ which obviously obey the requirement of Lemma 3.5.

Finally, we give two examples of GCIFS on a compact subset of \mathbb{R} , respectively on \mathbb{R}^2 .

EXAMPLE 3.1. Let us consider the compact metric space $X := [0,1] \subset \mathbb{R}$ equipped with the Euclidean metric. Let $\alpha, p, q \in [0,1]$ be any fixed constants with $p+q \neq 0$ and $(\alpha_n)_n$ be an increasing sequence of real numbers from [0,1] converging to $\alpha - \frac{p+q}{3}\alpha$. From each $n = 1, 2, \ldots$, we define the mapping $\omega_n : [0,1] \times [0,1] \to [0,1]$, by

$$\omega_n(x,y) = \frac{n(px+qy)}{3n+1} + \alpha_n.$$

Then $(\omega_n)_n$ is a GCIFS whose attractor is $[0, \alpha]$.

Proof. Firstly, we make evident that $\omega_n([0,1] \times [0,1]) = \left[0, \frac{n(p+q)}{3n+1} + \alpha_n\right] \subset [0,1]$, hence ω_n is well defined.

Next, it is simple to see that ω_n is a contraction having the contraction ratio $r_n = \frac{(p+q)n}{3n+1}.$

Moreover, since $\frac{(p+q)n\alpha}{3n+1} + \alpha_n \nearrow \alpha$, it follows

$$\mathcal{S}(A,A) = \overline{\bigcup_{n \ge 1} \omega_n(A,A)} = \bigcup_{n \ge 1} \left[0, \frac{(p+q)n\alpha}{3n+1} + \alpha_n \right] = \overline{[0,\alpha)} = A,$$

where $A = [0, \alpha]$.

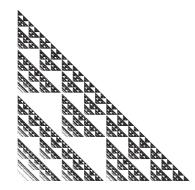
We present now as example a fractal of Sierpinski-infinite type as attractor of a proper GCIFS by generalizing a construction from [6].

EXAMPLE 3.2. Let $X := \{(x, y) \in \mathbb{R}^2; 0 \le x \le 1, 0 \le y \le 1 - x\}$ be the plane surface of the closed triangle having its vertices in the points (0,0), (0,1), (1,0). Next, we consider an integer $p \ge 2, q \in [0,1]$ and the contractions $\omega_{ij} : X \times X \longrightarrow X$ defined by

$$\omega_{ij}\big((x_1,y_1),(x_2,y_2)\big)$$

$$= \left(\frac{1}{p^{i}}\left(qx_{1} + (1-q)x_{2}\right) + (j-1)\frac{1}{p^{i}}, \frac{1}{p^{i}}\left(qy_{1} + (1-q)y_{2}\right) + \left(\frac{p^{i}-1}{p-1} - j\right)\frac{1}{p^{i}}\right)$$

for all $i = 1, 2, ..., j = 1, 2, ..., \frac{p^i - 1}{p - 1}$. Then $(\omega_{i,j})_{i,j}$ constitutes a GCIFS whose attractor is given in the following figure.



The attractor associated to the considered GCIFS for p = 2

References

- M.F. Barnsley, *Fractals everywhere*, Academic Press, Harcourt Brace Janovitch, 1988
- [2] J. Hutchinson, Fractals and self-similarity, Indiana Univ. J. Math. 30, 1981 (p.713-747)
- [3] K. Leśniak, *Infinite iterated function systems: a multivalued approach*, Bulletin of the Polish Academy of Sciences Mathematics **52**, nr.1, 2004 (p.1-8)
- [4] A. Mihail, *Recurrent iterated function systems*, Rev. Roumaine Math. Pures Appl., 53, 2008 (p.43-53)
- [5] A. Mihail, R. Miculescu, Applications of Fixed Point Theorems in the Theory of Generalized IFS, Fixed Point Theory and Applications, 2008, Article ID 312876, 11 pages
- [6] N.A. Secelean, Countable Iterated Function Systems, Far East Journal of Dynamical Systems, Pushpa Publishing House, vol. 3(2), 2001 (p.149-167)
- [7] N.A. Secelean, Any compact subset of a metric space is the attractor of a CIFS, Bull. Math. Soc. Sc. Math. Roumanie, tome 44 (92), nr.3, 2001 (p.77-89)
- [8] N.A. Secelean, Some continuity and approximation properties of a countable iterated function system, Mathematica Pannonica, 14/2, 2003 (p.237-252)

Address:

"Lucian Blaga" University of Sibiu, Department of Mathematics, str. Dr. Ion Rațiu, nr. 5-7, 550012 - Sibiu, Romania

E-mail: nicolae.secelean@ulbsibiu.ro