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Using a first-order multiple-scale expansion approach, we derive a set of coupled-mode equations that describe
both forward and backward second-harmonic generation and amplification processes in nonlinear, one-
dimensional, multilayered structures of finite length. The theory is valid for index modulation of arbitrary
depth and profile. We derive analytical solutions in the undepleted pump regime under different pumping
circumstances. The model shows excellent agreement with the numerical integration of Maxwell’s equations.
© 2002 Optical Society of America

OCIS codes: 190.4410, 230.4170.
1. INTRODUCTION
The nonlinear quadratic response in finite, one-
dimensional (1-D), photonic bandgap (PBG) structures
with deep gratings can be enhanced by several orders of
magnitude with respect to an equivalent length of a bulk
material owing to the simultaneous availability of high
field localization, i.e., high density of modes (DOM) and
exact phase-matching conditions near the photonic band
edge.1–7 However, a formal theory that describes nonlin-
ear quadratic interactions in finite, 1-D structures with
arbitrary index-modulation depth is still lacking. There-
fore our aim is to present a generalized coupled-mode
theory that applies to this case.

Current approaches can be summarized as follows: (a)
the coupled-mode theory8 or the Green’s function
approach9 for finite, periodic, shallow gratings, and (b)
Bloch mode expansion10,11 or a generalized coupled-mode
theory12 for infinite, periodic, deep gratings that are used
mostly within the context of solitonlike pulses (often re-
ferred to as gap solitons) in cubic x (3) and quadratic x (2)

media. In the situations studied in Refs. 1–7 the spatial
extension of incident pulses exceeds the spatial extension
0740-3224/2002/092111-11$15.00 ©
of a typical structure by several orders of magnitude.1,7

In this case, field localization resulting from cavity effects
plays a crucial role in the enhancement of the nonlinear
response, and boundary conditions at the input and the
output interfaces have to be taken into account explicitly.
These circumstances are not the same as those that are
typically considered in Refs. 10–12, for example, in which
the structure is much longer compared with the spatial
extension of the pulse.

This paper is organized as follows: In Section 2, we
first discuss some key properties of the electromagnetic
modes in a linear grating and find a suitable basis of ex-
pansion. Then we perform a first-order multiple-scale
expansion and derive a set of coupled-mode equations.
In Section 3, we use the coupled-mode equations derived
in Section 2 to study different regimes under the unde-
pleted pump approximation, namely, (a) second-harmonic
generation (SHG), and (b) second harmonics (SHs) gener-
ated by counterpropagating pump fields. In Section 4,
we apply the theory to the case of SHG in a single mate-
rial layer. In Section 5, we apply the theory to the case of
resonant interaction in nonabsorbing, finite, PBG struc-
2002 Optical Society of America



2112 J. Opt. Soc. Am. B/Vol. 19, No. 9 /September 2002 D’Aguanno et al.
tures. We derive simple analytical solutions that show
excellent agreement with the full numerical integration of
Maxwell’s equations, as verified in Section 6.

2. COUPLED-MODE EQUATIONS
The condition in which an incident pulse may be orders of
magnitude longer than the spatial extension of the struc-
ture is equivalent to stating that the spectral bandwidth
of the pulse is much narrower with respect to any of the

Fig. 1. (a) Transmittance plotted versus the normalized fre-
quency for a typical structure made of a half–quarter-wave
stack. The structure is composed of 39 alternating layers of
high and low refractive index. The indices of refraction of the
layers are, respectively: n1 5 1.4285 and n2 5 1. The layers
have thicknesses of a 5 l0 /(2n1) and b 5 l0 /(4n2), where l0
5 1 mm and v0 5 2pc/l0 ; the total length of the structure is
L 5 11.75 mm. The arrow identifies the first transmission reso-
nance near the first-order bandgap. (b) Magnification of the
first transmission resonance (solid curve) near the first-order
bandgap. Also shown is the power spectrum (dashed curve) of a
Gaussian input pulse of 2 ps in duration with its carrier fre-
quency tuned to the first transmission resonance. Note that the
spectral bandwidth of the pulse is approximately 1 order of mag-
nitude narrower than the spectral bandwidth of the transmission
resonance. This is a typical situation in which the interaction
can be described by monochromatic waves.
transmission resonances of the structure. This relation
allows us to neglect the temporal dynamics and to write
the solution of the wave equation in the form of mono-
chromatic waves: Ej(z, t) 5 Ejv(z)exp@2i( jv)t#, as out-
lined at length in Ref. 7. Although at first sight the
monochromatic approximation might seem to be a rather
severe restriction, in reality for the typical multilayered
structures that we consider the monochromatic regime is
quickly approached with input pulses that are only a few
picoseconds in duration—see Fig. 1.

If we assume the rotating-wave approximation the
equations governing nonlinear quadratic interactions of
two monochromatic plane waves at the fundamental fre-
quency (FF) v and the SH frequency 2v in a layered, 1-D,
finite structure can be written as4

d2Ev

dz2 1
v2ev~z !

c2 Ev 5 22
v2

c2 d ~2 !~z !Ev* E2v , (1a)

d2E2v

dz2 1
4v2e2v~z !

c2 E2v 5 24
v2

c2 d ~2 !~z !Ev
2, (1b)

where e jv(z), j 5 1, 2, are the spatially dependent, dielec-
tric functions for the FF and the SH fields. In general,
e jv(z) are assumed to be complex functions. The condi-
tion ev(z) Þ e2v(z) takes into account possible material
dispersion. Finally, d (2)(z) is the spatially dependent
quadratic coupling function.

Before considering the full nonlinear problem, we dis-
cuss some key properties of the electromagnetic modes in
a linear grating. Let us begin with the Helmholtz equa-
tion for a monochromatic plane wave oscillating at fre-
quency v:

d2Ejv

dz2 1
~ jv!2e jv~z !

c2 Ejv 5 0. (2)

For a finite grating of length L located between z 5 0 and
z 5 L the general solution of Eq. (2) between z 5 0 and
z 5 L can be expressed as a linear superposition of the
left-to-right (LTR) and the right-to-left (RTL) propagating
modes, as in13

Ejv~z ! 5 Av
~1!F jv

~1!~z ! 1 Ajv
~2!F jv

~2!~z !, (3)

where Ajv
(1) is the amplitude of the electric field incident

from LTR and Ajv
(2) is the electric field amplitude incident

from RTL (see Fig. 2). The LTR and the RTL modes
F jv

(6)(z) can be calculated by use of the standard matrix-
transfer technique14 and satisfy the usual boundary con-
ditions (see Fig. 2). In what follows, we can define a met-
ric by using the following scalar product:

^ f u g& [
1

L
E

0

L

f* ~z !g~z !dz.

In general F jv
(6)(z) are not orthogonal. We may redefine a

more convenient orthogonal system of functions by using
a standard orthogonalization procedure. This approach
allows us to express the general solution of the Helmholtz
equation in terms of a new orthogonal set of functions
@F jv

(1) , Ujv
(2)# as

Ejv~z ! 5 Bjv
~1!F jv

~1!~z ! 1 Ajv
~2!Ujv

~2!~z !, (4)
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where

Bjv
~1! 5 Ajv

~1! 1 b jvAjv
~2! , (5a)

Ujv
~2!~z ! 5 F jv

~2!~z ! 2 b jvF jv
~1! , (5b)

b jv 5
^F jv

~1!uF jv
~2!&

^F jv
~1!uF jv

~1!&
. (5c)

We chose to represent the solution of the Helmholtz equa-
tion in terms of an orthogonal set of functions because
that allows us to perform the projection of the perturbed
nonlinear equations in a consistent way.

Now we return to the full nonlinear equations (1). The
physical idea that will guide us in looking for solutions of
Eqs. (1) can be expressed as follows: We assume that the
effect of the nonlinearity in Eqs. (1) is to modulate the so-
lution of the linear problem on a length scale that is much
longer with respect to the length scale over which modu-
lation of the linear solution occurs. Therefore we apply a
multiple-scale expansion10,15 by introducing a new set of
independent variables: za 5 laz, with a 5 0,1,2,....
The relation l ! 1 is a dimensionless expansion param-
eter that allows us to separate fast and slow scale varia-
tions. At the end of the multiple-scale approach, we for-
mally take the limit l → 1 to restore the original space
variable z. We point out that the use of the expansion
parameter l does not imply any kind of assumption about
the order of magnitude of the nonlinear coefficient d (2).
The effect of the parameter l is to allow the separation of
fast and slow scale variations in the spatial dynamics of
the nonlinear equations. The use of the multiple-scale
expansion approach is based on only the hypothesis of the
existence of different-length scales of variation as the dy-
namics evolve.

The linear and the nonlinear dielectric functions, e jv(z)
and d (2)(z), respectively, are considered as functions of
the fast variable z0 . The field envelope functions, which
we introduce below, are functions of the slowly varying
variables z1 , z2 , and so forth. The multiple-scale proce-
dure calls for the expansion of the derivative operator in
terms of the new set of coordinates:

d

dz
5

]

]z0
1 l

]

]z1
1 l2

]

]z2
1 ... . (6)

The electric fields are also expanded in powers of the per-
turbing parameter l in a self-consistent manner:

Ejv 5 lEjv
~1 !~z0 , z1 , z2 , ... ! 1 l2Ejv

~2 !~z0 , z1 , z2 , ... !

1 ... , j 5 1, 2. (7)

Substituting Eqs. (6) and (7) into Eqs. (1a) and (1b) and
collecting the terms proportional to l, we find

]2Ejv
~1 !

]z0
2 5 2

~ jv!2

c2 e jv~z0!Ejv
~1 ! , j 5 1, 2. (8)

In accord with our discussion above, solutions of Eq. (8)
can be expressed [see Eq. (3)] as

Ejv
~1 ! 5 Bjv

~1!~z1 , z2 , ... !F jv
~1!~z0!

1 Ajv
~2!~z1 , z2 , ... !Ujv

~2!~z0!, (9)
where Bjv
(1)(z1 , z2 ,... ) and Ajv

(2)(z1 , z2 ,... ) are field en-
velopes that depend on the slow variables (z1 , z2 ,... ).
Collecting the terms proportional to l2, we find

F ]2

]z0
2 1

v2ev~z0!

c2 GEv
~2 ! 1 2

]

]z0

]

]z1
Ev

~1 !

5 22
v2

c2 d ~2 !~z0!Ev
~1 !* E2v

~1 ! , (10a)

F ]2

]z0
2 1

4v2e2v~z0!

c2 GE2v
~2 ! 1 2

]

]z0

]

]z1
E2v

~1 !

5 2
4v2

c2 d ~2 !~z0!@Ev
~1 !#2. (10b)

To solve Eqs. (10a) and (10b), we expand the fields Ejv
(2) as

Ejv
~2 ! 5 Cjv

~1!~z1 , z2 , ... !F jv
~1!~z0!

1 Cjv
~2!~z1 , z2 ,... !Ujv

~2!~z0!, (11)

where Cjv
(6)(z1 , z2 ,... ) are a new set of envelope func-

tions. Substituting Eqs. (9) and (11) into Eqs. (10), we ar-
rive at the following set of equations:

2F ]Fv
~1!

]z0
GF ]Bv

~1!

]z1
G 1 2F ]Uv

~2!

]z0
GF ]Av

~2!

]z1
G

5 22
v2

c2 d ~2 !@B2v
~1!Bv

~1!* F2v
~1!Fv

~1!*

1 B2v
~1!Av

~2!* F2v
~1!Uv

~2!*

1 A2v
~2!Bv

~1!* U2v
~2!Fv

~1!* 1 A2v
~2!Av

~2!* Uv
~2!* U2v

~2!#,

(12a)

2F ]F2v
~1!

]z0
GF ]B2v

~1!

]z1
G 1 2F ]U2v

~2!

]z0
GF ]A2v

~2!

]z1
G

5 24
v2

c2 d ~2 !@Bv
~1!2

Fv
~1!2 1 Av

~2!2Uv
~2!2

1 2Bv
~1!Av

~2!Uv
~2!Fv

~1!#. (12b)

We now (a) project Eqs. (12) over the orthogonal func-
tions F jv

(1) and Ujv
(2) ; (b) use Eqs. (5) to restore the original

envelope functions Ajv
(6)(z1 , z2 ,... ), and (c) take the limit

l → 1 to restore the original spatial variable z. After
straightforward but tedious calculations, we arrive at
four coupled nonlinear differential equations,

(
l51,2

pv
~1,l !

dAv
~l !

dz
5 i

v

c (
~k,l !5~1,2!

G~v,1!
~k,l ! A2v

~k ! Av
~l !* ,

(13a)

(
l51,2

pv
~2,l !

dAv
~l !

dz
5 i

v

c (
~k,l !5~1,2!

G~v,2!
~k,l ! A2v

~k ! Av
~l !* ,

(13b)

(
l51,2

p2v
~1,l !

dA2v
~l !

dz
5 i

v

c (
~k,l !5~1,2!

G~2v,1!
~k,l ! Av

~k ! Av
~l ! ,

(13c)
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Fig. 2. Schematic representation of the boundary conditions imposed on: (a) the LTR and (b) the RTL modes. The terms rjv
(6) are the

LTR and the RTL reflection coefficients, respectively, and tjv
(6) is the transmission coefficient. We find that tjv

(1) 5 tjv
(2) 5 tjv for a non-

absorbing structure as a consequence of time-reversal symmetry.
(
l51,2

p2v
~2,l !

dA2v
~l !

dz
5 i

v

c (
~k,l !5~1,2!

G~2v,2!
~k,l ! Av

~k ! Av
~l ! ,

(13d)

where

pjv
~k,l ! 5 ^F jv

~k !up̂ jvF jv
~l !&,

for j 5 1, 2 and k, l 5 1, 2, (14a)

G~v,n !
~k,l ! 5 ^Fv

~n !ud ~2 !F2v
~k !Fv

~l !* &, for n, k, l 5 1, 2,
(14b)

G~2v,n !
~k,l ! 5 ^F2v

~n !ud ~2 !Fv
~k !Fv

~l !&, for n, k, l 5 1, 2.
(14c)

The variables pjv
(k,l) are the matrix elements of the mo-

mentum operator p̂ jv [ 2i(c/jv)(d/dz) that is calculated
for the RTL and the LTR modes, $F jv

(6)%. The overlap co-
efficients G ( jv,n)

(k,l) are effective, complex coupling coeffi-
cients that reflect the way in which the LTR and the RTL
modes sample the distribution of the nonlinearity d (2)(z)
over the structure. The values of G ( jv,n)

(k,l) are maximized
and can be greater than the magnitude of d (2)(z), when
the fields interact coherently inside the structure. The
phase-matching conditions, therefore, do not appear ex-
plicitly in the dynamical equations that govern the inter-
action. Rather, phase-matching conditions appear in the
form of effective, complex coupling coefficients. Because
no assumptions were made regarding the type of grating,
Eqs. (13) are valid for arbitrary index profiles.

3. UNDEPLETED PUMP APPROXIMATION
A. Second-Harmonic Generation
Let us first consider the case of a field at the FF that is
incident at the input surface (z 5 0) of the structure, and
let us assume that the FF field generates a SH signal
with negligible depletion. The fact that the pump re-
mains undepleted is equivalent to stating that Av

(1)(z)
> Av

(1)(0) and Av
(2)(z) > 0. From Eqs. (13) it follows

that

p2v
~1,1!

dA2v
~1!

dz
1 p2v

~1,2!
dA2v

~2!

dz
5 i

v

c
G~2v,1!

~1,1! @Av
~1!~0 !#2,

(15a)

p2v
~2,1!

dA2v
~1!

dz
1 p2v

~2,2!
dA2v

~2!

dz
5 i

v

c
G~2v,2!

~1,1! @Av
~1!~0 !#2.

(15b)

Because we are considering generation, the boundary con-
ditions on the SH field are as follows: A2v

(1)(0) 5 0 and
A2v

(2)(L) 5 0. Equations (15) can then be easily solved:

A2v
~1!~z ! 5 i

v

c
@Av

~1!~0 !#2
G~2v,1!

~1,1! p2v
~2,2! 2 G~2v,2!

~1,1! p2v
~1,2!

p2v
~1,1!p2v

~2,2! 2 p2v
~1,2!p2v

~2,1!
z,

(16a)

A2v
~2!~z ! 5 i

v

c
@Av

~1!~0 !#2
G~2v,2!

~1,1! p2v
~1,1! 2 G~2v,1!

~1,1! p2v
~2,1!

p2v
~1,1!p2v

~2,2! 2 p2v
~1,2!p2v

~2,1!

3 ~z 2 L !. (16b)

We note that forward and backward SHG in the unde-
pleted pump regime depends on the product between the
matrix elements of the momentum operator and the over-
lap integrals. In the subsections that follow, we give ex-
amples of applications of Eqs. (16) to specific situations.

B. Second-Harmonic Generation by Use of
Counterpropagating Beams
Let us consider two pump fields at FF that are injected
from the left and from the right of the structure. From
Eqs. (13) the undepleted pump approximation imposes
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the conditions Av
(1)(z) > Av

(1)(0) and Av
(2)(z) > Av

(2)(L).
We then obtain the following equations:

p2v
~1,2!

dA2v
~1!

dz
1 p2v

~1,2!
dA2v

~2!

dz

5 i
v

c
$G~2v,1!

~1,1! @Av
~1!~0 !#2 1 G~2v,1!

~2,2! @Av
~2!~L !#2

1 2G~2v,1!
~1,2! Av

~1!~0 !Av
~2!~L !%, (17a)

p2v
~2,1!

dA2v
~1!

dz
1 p2v

~2,2!
dA2v

~2!

dz

5 i
v

c
$G~2v,2!

~1,1! @Av
~1!~0 !#2 1 G~2v,2!

~2,2! @Av
~2!~L !#2

1 2G~2v,2!
~1,2! Av

~1!~0 !Av
~2!~L !%. (17b)

With the initial conditions A2v
(1)(0) 5 0 and A2v

(2)(L) 5 0,
the solutions of Eqs. (17) can be written as

A2v
~1!~z ! 5 i

vz

c@ p2v
~1,1!p2v

~2,2! 2 p2v
~1,2!p2v

~2,1!#
$@Av

~1!

3 ~0 !#2@G~2v,1!
~1,1! p2v

~2,2! 2 G~2v,2!
~1,1! p2v

~1,2!#

1 @Av
~2!~L !#2@G~2v,1!

~2,2! p2v
~2,2! 2 G~2v,2!

~2,2! p2v
~1,2!#

1 2Av
~1!~0 !Av

~2!~L !@G~2v,1!
~1,2! p2v

~2,2!

2 G~2v,2!
~1,2! p2v

~1,2!#%, (18a)

Av
~2!~z ! 5 i

v~z 2 L !

c@ p2v
~1,1!p2v

~2,2! 2 p2v
~1,2!p2v

~2,1!#
$@Av

~1!

3 ~0 !#2@G~2v,2!
~1,1! p2v

~1,1! 2 G~2v,1!
~1,1! p2v

~2,1!#

1 @Av
~2!~L !#2@G~2v,2!

~2,2! p2v
~1,1! 2 G~2v,1!

~1,1! p2v
~2,1!#

1 2Av
~1!~0 !Av

~2!~L !@G~2v,2!
~1,2! p2v

~1,1!

2 G~2v,1!
~1,2! p2v

~2,1!#%. (18b)

We note that, when Av
(2)(L) 5 0, the solutions of Eqs. (18)

reduce to the case of SHG by a single pump beam, as in
Eqs. (16). Equations (18) can be recast in a more conve-
nient form. In fact, if we write the input amplitudes of
the LTR and the RTL pump fields, respectively, as
Av

(1) (0) 5 $@2Iv
(1,pump)/e0c#1/2 exp@igv

(1)#% and Av
(2)(L)

5 $@2Iv
(2,pump)/e0c#1/2 exp@igv

(2)#%, we obtain

A2v
~1!~z ! 5 i

2vzIv
~1,pump! exp@2igv

~1!#

e0c2@ p2v
~1,1!p2v

~2,2! 2 p2v
~1,2!p2v

~2,1!#

3 $@G~2v,1!
~1,1! p2v

~2,2! 2 G~2v,2!
~1,1! p2v

~1,2!#

1 Q exp~2idfv!@G~2v,1!
~2,2! p2v

~2,2!

2 G~2v,2!
~2,2! p2v

~1,2!# 1 2AQ exp@idfv#

3 @G~2v,1!
~1,2! p2v

~2,2! 2 G~2v,2!
~1,2! p2v

~1,2!#%,
(19a)
A2v
~2!~z ! 5 i

2v~z 2 L !Iv
~1,pump! exp@2igv

~1!#

e0c2@ p2v
~1,1!p2v

~2,2! 2 p2v
~1,2!p2v

~2,1!#

3 $@G~2v,2!
~1,1! p2v

~1,1! 2 G~2v,1!
~1,1! p2v

~2,1!#

1 Q exp~2idfv!@G~2v,2!
~2,2! p2v

~1,1!

2 G~2v,1!
~1,1! p2v

~2,1!# 1 2AQ exp~idfv!

3 @G~2v,2!
~1,2! p2v

~1,1! 2 G~2v,1!
~1,2! p2v

~2,1!#%,
(19b)

where Iv
(6,pump) are the input LTR and RTL pump intensi-

ties, gv
(6) are the input phases, Q 5 Iv

(2,pump)/Iv
(1,pump) is

the ratio of the input intensities, and dfv 5 gv
(2) 2 gv

(1) is
the phase difference between the input fields. Equations
(19) suggest that SHG depends on the ratio of the input
intensities and their phase difference. The input inten-
sity ratio and the phase difference of the input fields are,
in essence, control parameters that allow enhancement or
inhibition of the nonlinear process.

4. SECOND-HARMONIC GENERATION
FROM A SINGLE LAYER
As a first application of the theory of Sections 2 and 3, we
proceed with the simplest possible example: SH genera-
tion from a Fabry–Perot etalon. For a nonabsorbing
layer it is possible to evaluate the overlap integrals found
in Eqs. (12) analytically. For more complicated struc-
tures evaluation of the LTR and the RTL modes F jv

(6)(z) of
the linear problem must be done numerically by use of the
matrix-transfer technique.14 This evaluation is then
usually followed up with an evaluation of the overlap in-
tegrals of Eqs. (14).

Let us suppose that the single layer is composed of an
exactly phase-matched quadratic material such that
ev 5 e2v 5 e and that the LTR and the RTL modes for
both the pump and the generated signal are tuned to a
transmission resonance of the structure. In this case the
LTR and the RTL modes can be written as

F jv
~1! 5

1

2 S 1 1
1

n D expS i
jmp

L
z D

1
1

2 S 1 2
1

n D expS 2i
jmp

L
z D , j 5 1, 2,

(20a)

F jv
~2! 5

1

2 S 1 2
1

n D expF iS jmp

L
z 1 jmp D G

1
1

2 S 1 1
1

n D
3 expF2iS jmp

L
z 2 jmp D G , j 5 1, 2,

(20b)

where L is the thickness of the layer, n 5 Ae is the refrac-
tive index, and m 5 1,2,... is an integer that counts the
order of the transmission resonance and that also deter-
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mines the tuning frequency: v 5 mpc/Ln. Using Eqs.
(20), we then calculate the overlap integrals of Eqs. (14);
the coupled-mode equations (13) can be written as

dAv
~1!

dz
5 i

v

c

d ~2 !

4 H S 1 1
3

n2DA2v
~1!Av

~1!* 1 S 1 2
1

n2D
3 @exp~2imp!A2v

~1!Av
~2!* 1 A2v

~2!Av
~1!*

1 exp~2imp!A2v
~2!Av

~2!* #J , (21a)

dAv
~2!

dz
5 2i

v

c

d ~2 !

4 H S 1 2
1

n2D Fexp~2imp!A2v
~1!Av

~1!*

1 A2v
~1!Av

~2!* 1 exp~2imp!A2v
~2!Av

~1!*

1 S 1 1
3

n2DA2v
~2!Av

~2!* G J , (21b)

dA2v
~1!

dz
5 i

v

c

d ~2 !

4 H S 1 1
3

n2DAv
~1!2 1 S 1 2

1

n2D
3 @2 exp~imp!Av

~1!Av
~2! 1 Av

~2!2#J , (21c)

dA2v
~2!

dz
5 2i

v

c

d ~2 !

4 H S 1 2
1

n2D @Av
~1!2

1 2 exp~imp!Av
~1!Av

~2!# 1 S 1 1
3

n2DAv
~2!2J ,

(21d)

where d (2) is the nonlinear coupling coefficient of the
layer. SH fields generated in the forward and the back-
ward directions are described respectively by the follow-
ing expressions:

I2v
~1! 5

2v2

c3e0
Fd ~2 !

4 S 1 1
3

n2D G2

L2@Iv
~1,pump!#2, (22a)

I2v
~2! 5

2v2

c3e0
Fd ~2 !

4 S 1 2
1

n2D G2

L2@Iv
~1,pump!#2. (22b)

In Fig. 3, we show the forward and the backward conver-
sion efficiencies plotted versus the input intensity for the
single layer described in the caption of the figure. From
Eqs. (22) we also obtain

I2v
~1!

I2v
~2!

5 S n2 1 3

n2 2 1 D 2

. (23)

Equation (23) suggests that, in the limit of large n and
strong feedback, forward and backward conversion effi-
ciencies become approximately equal. In the case of SHG
by counterpropagating pump beams, we obtain
I2v
~1! 5

2v2

c3e0
Fd ~2 !

4 S 1 1
3

n2D G2

L2@Iv
~1,pump!#2

3 U1 1 QS n2 2 1

n2 1 3 D exp~2idfv!

1 2AQS n2 2 1

n2 1 3 D exp@i~dfv 1 mp!#U2

,

(24a)

I2v
~2! 5

2v2

c3e0
Fd ~2 !

4 S 1 2
1

n2D G2

L2@Iv
~1,pump!#2

3 U1 1 QS n2 1 3

n2 2 1 D exp~2idfv!

1 2AQ exp@i~dfv 1 mp!#U2

, (24b)

where Q 5 Iv
(2,pump)/Iv

(1,pump) is the ratio between the RTL
and the LTR input intensities and dfv 5 gv

(2)

2 gv
(1) is the phase difference of the input fields, as in

Eqs. (19). From Figs. 4, one can deduce that the SHG
process can be inhibited for a wide range of values of the
phase difference dfv . This inhibition makes it possible
to achieve a sensitive phase-controlled, all-optical switch-
ing process. We say more about the possibility of control-
ling SH generation with counterpropagating beams in
Section 6.

5. RESONANT INTERACTIONS IN FINITE,
NONABSORBING, MULTILAYERED
STRUCTURES
In the case of resonant interactions, i.e., when both the
FF and the SH modes are tuned to transmission reso-
nances, the coupled-mode equations (13) can be recast in

Fig. 3. Forward (solid curve) and backward (dashed curve) con-
version efficiency, defined by h (6) 5 Iv

(6)/Iv
(1,pump) , plotted versus

the input pump intensity Iv
(1,pump) for an undepleted pump, as

given by Eqs. (22). The layer thickness is L 5 10 mm, the re-
fractive index is n 5 2.5, the nonlinear coefficient is taken to be
equal to d (2) 5 100 pm/V. The wavelength of the pump beam is
l 5 1 mm, and the pump is tuned to the m 5 50 transmission
resonance.
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a simpler form. Although it may seem draconian to re-
strict our discussion to transmission resonances, in real-
ity off-resonant quadratic interactions become very ineffi-
cient for at least two reasons: (a) the impossibility of

Fig. 4. Forward (solid curve) and backward (dashed curve) con-
version efficiencies for h (6) 5 Iv

(6)/(Iv
(1,pump) 1 Iv

(2,pump)) plotted
versus the phase difference of the input fields dfv 5 gv

(2)

2 gv
(1) for different pump-intensity ratios Q 5 Iv

(2,pump)/
Iv

(1,pump) . (a) Q 5 0.5, (b) Q 5 1, (c) Q 5 2. For Q 5 1 the for-
ward and the backward conversion efficiency are equal. All the
parameters are the same as reported in the caption of Fig. 3 and
Iv

(1,pump) 5 0.1 GW/cm2.
finding phase-matching conditions, and (b) poor field lo-
calization inside the structure, as outlined in Refs. 1, 2,
and 7.

Let us begin by writing the LTR and the RTL modes as
F jv

(6)(z) 5 uF jv
(6)(z)uexp@ifjv

(6)#. Because we are consider-
ing real grating profiles, it follows that uF jv

(6)

3 (z)u2@df jv
(6)/dz# is a conserved quantity16 that can be

calculated by one’s resorting to the boundary conditions
imposed on the LTR and the RTL modes (see Fig. 2). At
the peaks of transmission, where rjv

(6) 5 0, we obtain16

uF jv
~6!u2

df jv
~6!

dz
5 6

jv

c
. (25)

The boundary conditions on the LTR and the RTL modes
are

F jv
~1!~0 ! 5 F jv

~2!~L ! 5 1, (26a)

F jv
~2!~0 ! 5 F jv

~1!~L ! 5 exp@if t~ jv!#, (26b)

where f t( jv) is the phase of the transmission function,
tjv 5 (Tjv)1/2 exp@ift( jv)#. It can be verified that, for
nonabsorbing structures, tjv

(1) 5 tjv
(2) 5 tjv as a conse-

quence of time-reversal symmetry. From Eqs. (25) and
from the boundary conditions [Eqs. (26)], we obtain

pjv
~1,1! 5 ^F jv

~1!up̂ jvF jv
~1!& 5 1, (27a)

pjv
~2,2! 5 ^F jv

~2!up̂ jvF jv
~2!& 5 21, (27b)

pjv
~2,1! 5 @ pjv

~1,2!#* 1
2c

jvL
sin@ f t~ jv!#. (27c)

B. Symmetric Structures
For symmetric structures the amplitudes of the LTR and
the RTL modes are equal: uF jv

(1)u 5 uF jv
(2)u. As a conse-

quence, from Eqs. (25) and (26) we obtain

F jv
~2! 5 F jv

~1!* exp@if t~ jv!#. (28)

Substituting Eq. (28) into the expressions for the off-
diagonal elements of the momentum operator [see Eq.
(14a)], integrating by parts, and using the boundary con-
ditions given in Eqs. (26), we obtain

pjv
~2,1! 5 2@ pjv

~1,2!# 5
c

jvL
sin@ f t~ jv!#. (29)

In the regime in which l ! 2pL (l is the wavelength of
the FF field in vacuum), the off-diagonal elements of the
momentum operator become negligible with respect to the
diagonal elements, and the coupled-mode equations can
be written in the following form:

dAv
~1!

dz
5 i

v

c (
~k,l ! 5 ~1,2!

G~v,1!
~k,l ! A2v

~k !Av
~l !* , (30a)

dAv
~2!

dz
5 2i

v

c (
~k,l ! 5 ~1,2!

G~v,2!
~k,l ! A2v

~k !Av
~l !* , (30b)

dA2v
~1!

dz
5 i

v

c (
~k,l ! 5 ~1,2!

G~2v,1!
~k,l ! Av

~k !Av
~l ! , (30c)
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dA2v
~2!

dz
5 2i

v

c (
~k,l ! 5 ~1,2!

G~2v,2!
~k,l ! Av

~k !Av
~l ! . (30d)

The solutions for the case of a SH signal generated by
counterpropagating pump beams in the undepleted pump
regime can be written as

I2v
~1! 5

2v2

c3e0
L2@Iv

~1,pump!#2uG~2v,1!
~1,1! u2

3 U1 1 Q
G~2v,1!

~2,2!

G~2v,1!
~1,1!

exp~2idfv!

1 2AQ exp~idfv!
G~2v,1!

~1,2!

G~2v,1!
~1,1! U2

, (31a)

I2v
~2! 5

2v2

c3e0
L2@Iv

~1,pump!#2uG~2v,2!
~1,1! u2

3 U1 1 Q exp~2idfv!
G~2v,2!

~2,2!

G~2v,2!
~1,1!

1 2AQ
G~2v,2!

~1,2!

G~2v,2!
~1,1!

exp~idfv!U2

. (31b)

In the case of generation by a single pump beam, i.e.,
Q 5 0, the SH signal generated in the forward direction
depends on the effective coupling coefficient

G~2v,1!
~1,1! 5 ~1/L !E

0

L

F2v
~1!* d ~2 !~z !@Fv

~1!#2dz,
as is also predicted in Ref. 17 through more heuristic ar-
guments and later experimentally verified in Refs. 6 and
7. The coupling coefficient G (2v,1)

(1,1) is a phase-dependent
overlap integral whose magnitude is maximized when the
fields overlap well inside the nonlinear material, i.e.,
when the fields coherently interact inside the structure.17

The perfect phase-matching conditions studied in Ref. 2
correspond to the case in which the effective coupling co-
efficient becomes an approximately real quantity, and its
value is

G~2v,1!
~1,1! ' ~1/L !E

0

L

d ~2 !uF2v
~1!uuFv

~1!u2dz.

At the transmission resonance the DOM can be expressed
as7

rv 5 ~1/Lc !E
0

L

ev~z !uFv
~1!u2dz.

It follows that G (2v,1)
(1,1) is enhanced by a factor proportional

to the DOM when the LTR linear mode is localized inside
the nonlinear layers, namely, G (2v,1)

(1,1) } rvd layer
(2) , where

d layer
(2) is the actual second-order susceptibility of the non-

linear layer.7 This situation means that the conversion
efficiency during a SHG process in a PBG structure is en-
hanced by a factor proportional to rv

2 with respect to an
equivalent length of perfectly phase-matched bulk mate-
rial. The DOM is proportional to N2, where N is the
number of periods18; this condition leads to SH conversion
efficiencies proportional to factor of N4 better when com-
pared with an equivalent length of phase-matched bulk
material. The conversion efficiency in a perfectly phase-
matched PBG structure follows the scaling law h
Fig. 5. (a) Generic N-period stack composed of two-layer unit cells of thicknesses a and b and constant, real indices n1 and n2 , respec-
tively. (b) Symmetry is restored to the structure by removing the last layer.
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} (rvdlayer
(2) L)2 ' N6, as was analytically demonstrated

first in Ref. 17. On the basis of these considerations it
should be evident that the high DOM and the particular
phase conditions that are available near the photonic
band edge make PBG structures the best candidates for
highly efficient, micrometer-sized devices based on qua-
dratic nonlinearities.

C. Periodic Structures
The simplest example of a 1-D, periodic multilayered
structure is that made by the repetition of a unit cell com-
posed of two layers of refractive indices n1 and n2 taken N
times the unit cell. The structure is illustrated in Fig.
(5a). The optical properties of the periodic structure de-
picted in Fig. (5a) are approximately the same as those of
the symmetric structure depicted in Fig. (5b), provided
that the optical path of the last layer is negligible com-
pared with the total optical path of the structure. More
quantitatively, this relation means that N(1 1 n1a/n2b)
@ 1. If this condition is satisfied both the LTR and the
RTL linear modes possess approximately the same
symmetry properties, as in Eq. (28): F jv

(2) ' F jv
(1)*

3 exp@ift( jv)#. Therefore the off-diagonal elements of
the momentum operator can be estimated as follows:

pjv
~2,1! ' 2@ pjv

~1,2!# '
c

jvL
sin@ f t~ jv!#. (32)

Once again, in the regime in which l ! 2pL, the off-
diagonal elements of the momentum operator become
negligible with respect to its diagonal elements, and the
coupled-mode equations can be formally written in the
same way as for symmetric structures:

dAv
~1!

dz
5 i

v

c (
~k,l !5~1,2!

G~v,1!
~k,l ! A2v

~k !Av
~l !* , (33a)

dAv
~2!

dz
5 2i

v

c (
~k,l !5~1,2!

G~v,2!
~k,l ! A2v

~k !Av
~l !* , (33b)

dA2v
~1!

dz
5 i

v

c (
~k,l !5~1,2!

G~2v,1!
~k,l ! Av

~k !Av
~l ! , (33c)

dA2v
~2!

dz
5 2i

v

c (
~k,l !5~1,2!

G~2v,2!
~k,l ! Av

~k !Av
~l ! . (33d)

In the undepleted pump regime, we obtain

I2v
~1! 5

2v2

c3e0
L2@Iv

~1,pump!#2uG~2v,1!
~1,1! u2

3 U1 1 Q
G~2v,1!

~2,2!

G~2v,1!
~1,1!

exp~2idfv!

1 2AQ exp~idfv!
G~2v,1!

~1,2!

G~2v,1!
~1,1! U2

, (34a)
I2v
~2! 5

2v2

c3e0
L2@Iv

~1,pump!2uG~2v,2!
~1,1! u2

3 U1 1 Q exp~2idfv!
G~2v,2!

~2,2!

G~2v,2!
~1,1!

1 2AQ
G~2v,2!

~1,2!

G~2v,2!
~1,1!

exp~idfv!U2

.

(34b)

6. SECOND-HARMONIC GENERATION IN A
FINITE, NONABSORBING PHOTONIC
BANDGAP STRUCTURE: COMPARISON
WITH NUMERICAL RESULTS
Alternative options to the numerical integration of Eqs.
(1) also exist in the form of more approximate solutions
for the case of shallow gratings.8,9 In this paper, we pro-
pose a simple and elegant approach that makes it possible
to find analytical solutions for Eqs. (1) in many dynamical
situations. Furthermore, the method that we propose
can be applied to any generic linear index profile, pro-
vided the monochromatic regime is approached.

To test the validity of the model, we compare in Fig. 6
the conversion efficiency for the SH signal generated with
a single pump beam, i.e., Q 5 0, as calculated from Eqs.
(31), with the results of the conversion efficiency calcu-
lated by numerical integration of the nonlinear coupled
Maxwell equations in the time domain.19 The structure
under consideration is symmetric, and the details are de-
scribed in the caption. The pump field at the wavelength
of l 5 1.69 mm is tuned at the first transmission reso-
nance near the first-order bandgap, and the SH field is
tuned at the second transmission resonance near the

Fig. 6. Forward (solid curve) and backward (dashed curve) SH
conversion efficiencies for h (6) 5 Iv

(6)/Iv
(1,pump) plotted versus the

input pump intensity as calculated from Eqs. (31) in the unde-
pleted pump regime. Forward (squares) and backward (circles)
conversion efficiencies were calculated by use of the algorithm of
the fast Fourier transform beam-propagation method. The
structure is the same as that described in the caption of Figs. 1.
The nonlinear material is dispersed in the high-index layer, with
d (2) 5 80 pm/V. The high-index material is also assumed to be
dispersive, and its index of refraction at the SH frequency is
n1(2v) 5 1.5179. The wavelength of the incident pump is
l 5 1.69 mm and is tuned to the first transmission resonance
near the first-order bandgap.
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Fig. 7. Forward (solid curves) and backward (dashed curves)
conversion efficiencies for h (6) 5 Iv

(6)/(Iv
(1,pump) 1 Iv

(2,pump)) plot-
ted versus the phase difference of the input fields dfv 5 gv

(2)

2 gv
(1) , for different pump intensity ratios Q 5 Iv

(2,pump)/
Iv

(1,pump) : (a) Q 5 0.5, (b) Q 5 1, (c) Q 5 2. For Q 5 1 the
backward and the forward conversion efficiencies are equal.
Forward (squares) and backward (circles) conversion efficiencies
were calculated numerically. All the parameters are the same
as those reported in the caption of Fig. 6, and Iv

(1,pump)

5 0.019 GW/cm2.
second-order bandgap. Under these tuning conditions
the SH field is exactly phase matched with the FF field.2

The nonlinear coefficient of the high index layer is d (2)

5 80 pm/V. Figure 6 suggests that both the forward
and the backward conversion efficiencies predicted by
Eqs. (31) are nearly indistinguishable from the numerical
results in the undepleted regime—or at least for total con-
version efficiencies that do not exceed approximately 10%.
Therefore we conclude that, when pump depletion is neg-
ligible, one may describe the dynamics by straightforward
numerical integration of the coupled-mode equations, i.e.,
Eqs. (30), by a shooting algorithm,20 for example.

In Fig. 7, we plot the SH signal generated by counter-
propagating beams as a function of the phase difference
between the input pump fields and for different ratios of
the input intensities. We note an interesting phenom-
enon: SH emission can be severely disrupted with a
proper choice of the relative input phases of the incident
beams. In particular, we point out that, even though the
interaction takes place under exact phase-matching con-
ditions, SH emissions are practically switched off when
the phase differences are 0 < dfv < p/4 and 7/4p
< dfv < 2p (see Fig. 7). The contrast between the ON

and the OFF states can be 2 to 4 orders of magnitude with
respect to the maximum SH emission that occurs when
dfv > p. The possibility of controlling high-harmonic
generation in gases by use of counterpropagating beams
has recently been addressed in the literature.21 Pattern-
formation and -modulation instabilities resulting from
the interaction of counterpropagating beams have re-
cently been investigated for quadratic nonlinear media.22

A comprehensive study of nonlinear interactions in PBG
structures that are due to counterpropagating fields is be-
yond the scope of this study but will be given more atten-
tion in future investigations.

7. CONCLUSIONS
In summary, we have presented a generalized coupled-
mode theory for quadratic interactions in multilayered
structures of finite length. Because no assumptions have
been made with regard to the type of grating, Eqs. (13)
and (14) are valid for gratings of arbitrary depth and pro-
file. We have exploited different interaction regimes and
have derived simple analytical solutions for the case of
SH generation under resonant conditions in nonabsorbing
structures, as exemplified by our Eqs. (31). The results
predicted by this theory are in excellent agreement with
those obtained by use of a numerical integration of the
nonlinear, coupled equations in the time domain. We be-
lieve that it may be possible to extend the present results
to include at least one transverse dimension, which would
make it possible to study diffraction and diffraction ef-
fects in general.
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